body
stringlengths
26
98.2k
body_hash
int64
-9,222,864,604,528,158,000
9,221,803,474B
docstring
stringlengths
1
16.8k
path
stringlengths
5
230
name
stringlengths
1
96
repository_name
stringlengths
7
89
lang
stringclasses
1 value
body_without_docstring
stringlengths
20
98.2k
@model_info.command('gtrnadb') @click.argument('filename', type=click.File('r')) @click.argument('output', default='-', type=click.File('w')) def gtrnadb_model_info(filename, output): '\n Parse the metadata.tsv file from R2DT for gtrnadb models to\n produce something we can put in our database.\n ' r2dt.write_gtrnadb(filename, output)
-578,127,961,795,464,700
Parse the metadata.tsv file from R2DT for gtrnadb models to produce something we can put in our database.
rnacentral_pipeline/cli/r2dt.py
gtrnadb_model_info
RNAcentral/rnacentral-import-pipeline
python
@model_info.command('gtrnadb') @click.argument('filename', type=click.File('r')) @click.argument('output', default='-', type=click.File('w')) def gtrnadb_model_info(filename, output): '\n Parse the metadata.tsv file from R2DT for gtrnadb models to\n produce something we can put in our database.\n ' r2dt.write_gtrnadb(filename, output)
@model_info.command('rnase-p') @click.argument('filename', type=click.File('r')) @click.argument('output', default='-', type=click.File('w')) def rnase_p_model_info(filename, output): '\n Parse the metadata.tsv file from R2DT for Ribovision models to\n produce something we can put in our database.\n ' r2dt.write_rnase_p(filename, output)
2,337,609,762,601,865,000
Parse the metadata.tsv file from R2DT for Ribovision models to produce something we can put in our database.
rnacentral_pipeline/cli/r2dt.py
rnase_p_model_info
RNAcentral/rnacentral-import-pipeline
python
@model_info.command('rnase-p') @click.argument('filename', type=click.File('r')) @click.argument('output', default='-', type=click.File('w')) def rnase_p_model_info(filename, output): '\n Parse the metadata.tsv file from R2DT for Ribovision models to\n produce something we can put in our database.\n ' r2dt.write_rnase_p(filename, output)
def __init__(self, devpath): 'Return a disc object' self.devpath = devpath self.mountpoint = ('/mnt' + devpath) self.hasnicetitle = False self.video_type = 'unknown' self.ejected = False self.updated = False if (cfg['VIDEOTYPE'] != 'auto'): self.video_type = cfg['VIDEOTYPE'] self.parse_udev() self.get_pid()
8,437,722,910,963,163,000
Return a disc object
arm/models/models.py
__init__
charmarkk/automatic-ripping-machine
python
def __init__(self, devpath): self.devpath = devpath self.mountpoint = ('/mnt' + devpath) self.hasnicetitle = False self.video_type = 'unknown' self.ejected = False self.updated = False if (cfg['VIDEOTYPE'] != 'auto'): self.video_type = cfg['VIDEOTYPE'] self.parse_udev() self.get_pid()
def parse_udev(self): 'Parse udev for properties of current disc' context = pyudev.Context() device = pyudev.Devices.from_device_file(context, self.devpath) self.disctype = 'unknown' for (key, value) in device.items(): if (key == 'ID_FS_LABEL'): self.label = value if (value == 'iso9660'): self.disctype = 'data' elif (key == 'ID_CDROM_MEDIA_BD'): self.disctype = 'bluray' elif (key == 'ID_CDROM_MEDIA_DVD'): self.disctype = 'dvd' elif (key == 'ID_CDROM_MEDIA_TRACK_COUNT_AUDIO'): self.disctype = 'music' else: pass
5,184,117,535,612,883,000
Parse udev for properties of current disc
arm/models/models.py
parse_udev
charmarkk/automatic-ripping-machine
python
def parse_udev(self): context = pyudev.Context() device = pyudev.Devices.from_device_file(context, self.devpath) self.disctype = 'unknown' for (key, value) in device.items(): if (key == 'ID_FS_LABEL'): self.label = value if (value == 'iso9660'): self.disctype = 'data' elif (key == 'ID_CDROM_MEDIA_BD'): self.disctype = 'bluray' elif (key == 'ID_CDROM_MEDIA_DVD'): self.disctype = 'dvd' elif (key == 'ID_CDROM_MEDIA_TRACK_COUNT_AUDIO'): self.disctype = 'music' else: pass
def identify_audio_cd(self): '\n Get the title for audio cds to use for the logfile name.\n\n Needs the job class passed into it so it can be forwarded to mb\n\n return - only the logfile - setup_logging() adds the full path\n ' disc_id = music_brainz.get_disc_id(self) mb_title = music_brainz.get_title(disc_id, self) if (mb_title == 'not identified'): self.label = self.title = 'not identified' logfile = 'music_cd.log' new_log_file = f'music_cd_{round((time.time() * 100))}.log' else: logfile = f'{mb_title}.log' new_log_file = f'{mb_title}_{round((time.time() * 100))}.log' temp_log_full = os.path.join(cfg['LOGPATH'], logfile) logfile = (new_log_file if os.path.isfile(temp_log_full) else logfile) return logfile
6,480,684,719,705,463,000
Get the title for audio cds to use for the logfile name. Needs the job class passed into it so it can be forwarded to mb return - only the logfile - setup_logging() adds the full path
arm/models/models.py
identify_audio_cd
charmarkk/automatic-ripping-machine
python
def identify_audio_cd(self): '\n Get the title for audio cds to use for the logfile name.\n\n Needs the job class passed into it so it can be forwarded to mb\n\n return - only the logfile - setup_logging() adds the full path\n ' disc_id = music_brainz.get_disc_id(self) mb_title = music_brainz.get_title(disc_id, self) if (mb_title == 'not identified'): self.label = self.title = 'not identified' logfile = 'music_cd.log' new_log_file = f'music_cd_{round((time.time() * 100))}.log' else: logfile = f'{mb_title}.log' new_log_file = f'{mb_title}_{round((time.time() * 100))}.log' temp_log_full = os.path.join(cfg['LOGPATH'], logfile) logfile = (new_log_file if os.path.isfile(temp_log_full) else logfile) return logfile
def __str__(self): 'Returns a string of the object' s = (self.__class__.__name__ + ': ') for (attr, value) in self.__dict__.items(): s = (((((s + '(') + str(attr)) + '=') + str(value)) + ') ') return s
5,233,745,533,802,784,000
Returns a string of the object
arm/models/models.py
__str__
charmarkk/automatic-ripping-machine
python
def __str__(self): s = (self.__class__.__name__ + ': ') for (attr, value) in self.__dict__.items(): s = (((((s + '(') + str(attr)) + '=') + str(value)) + ') ') return s
def pretty_table(self): 'Returns a string of the prettytable' x = PrettyTable() x.field_names = ['Config', 'Value'] x._max_width = {'Config': 50, 'Value': 60} for (attr, value) in self.__dict__.items(): if (attr == 'config'): x.add_row([str(attr), str(value.pretty_table())]) else: x.add_row([str(attr), str(value)]) return str(x.get_string())
-5,753,102,044,256,257,000
Returns a string of the prettytable
arm/models/models.py
pretty_table
charmarkk/automatic-ripping-machine
python
def pretty_table(self): x = PrettyTable() x.field_names = ['Config', 'Value'] x._max_width = {'Config': 50, 'Value': 60} for (attr, value) in self.__dict__.items(): if (attr == 'config'): x.add_row([str(attr), str(value.pretty_table())]) else: x.add_row([str(attr), str(value)]) return str(x.get_string())
def eject(self): "Eject disc if it hasn't previously been ejected" if (not self.ejected): self.ejected = True try: if os.system(('umount ' + self.devpath)): logging.debug(('we unmounted disc' + self.devpath)) if os.system(('eject ' + self.devpath)): logging.debug(('we ejected disc' + self.devpath)) self.ejected = True else: logging.debug(('failed to eject' + self.devpath)) except Exception as e: logging.debug(((self.devpath + " couldn't be ejected ") + str(e)))
3,129,454,796,627,657,000
Eject disc if it hasn't previously been ejected
arm/models/models.py
eject
charmarkk/automatic-ripping-machine
python
def eject(self): if (not self.ejected): self.ejected = True try: if os.system(('umount ' + self.devpath)): logging.debug(('we unmounted disc' + self.devpath)) if os.system(('eject ' + self.devpath)): logging.debug(('we ejected disc' + self.devpath)) self.ejected = True else: logging.debug(('failed to eject' + self.devpath)) except Exception as e: logging.debug(((self.devpath + " couldn't be ejected ") + str(e)))
def __init__(self, job_id, track_number, length, aspect_ratio, fps, main_feature, source, basename, filename): 'Return a track object' self.job_id = job_id self.track_number = track_number self.length = length self.aspect_ratio = aspect_ratio self.fps = fps self.main_feature = main_feature self.source = source self.basename = basename self.filename = filename self.ripped = False
190,976,422,805,984,930
Return a track object
arm/models/models.py
__init__
charmarkk/automatic-ripping-machine
python
def __init__(self, job_id, track_number, length, aspect_ratio, fps, main_feature, source, basename, filename): self.job_id = job_id self.track_number = track_number self.length = length self.aspect_ratio = aspect_ratio self.fps = fps self.main_feature = main_feature self.source = source self.basename = basename self.filename = filename self.ripped = False
def list_params(self): 'Returns a string of the object' s = (self.__class__.__name__ + ': ') for (attr, value) in self.__dict__.items(): if s: s = (s + '\n') if ((str(attr) in hidden_attribs) and value): value = HIDDEN_VALUE s = (((s + str(attr)) + ':') + str(value)) return s
6,946,453,928,283,418,000
Returns a string of the object
arm/models/models.py
list_params
charmarkk/automatic-ripping-machine
python
def list_params(self): s = (self.__class__.__name__ + ': ') for (attr, value) in self.__dict__.items(): if s: s = (s + '\n') if ((str(attr) in hidden_attribs) and value): value = HIDDEN_VALUE s = (((s + str(attr)) + ':') + str(value)) return s
def __str__(self): 'Returns a string of the object' s = (self.__class__.__name__ + ': ') for (attr, value) in self.__dict__.items(): if ((str(attr) in hidden_attribs) and value): value = HIDDEN_VALUE s = (((((s + '(') + str(attr)) + '=') + str(value)) + ') ') return s
-2,756,119,392,359,758,000
Returns a string of the object
arm/models/models.py
__str__
charmarkk/automatic-ripping-machine
python
def __str__(self): s = (self.__class__.__name__ + ': ') for (attr, value) in self.__dict__.items(): if ((str(attr) in hidden_attribs) and value): value = HIDDEN_VALUE s = (((((s + '(') + str(attr)) + '=') + str(value)) + ') ') return s
def pretty_table(self): 'Returns a string of the prettytable' x = PrettyTable() x.field_names = ['Config', 'Value'] x._max_width = {'Config': 20, 'Value': 30} for (attr, value) in self.__dict__.items(): if ((str(attr) in hidden_attribs) and value): value = HIDDEN_VALUE x.add_row([str(attr), str(value)]) return str(x.get_string())
2,637,011,702,280,520,700
Returns a string of the prettytable
arm/models/models.py
pretty_table
charmarkk/automatic-ripping-machine
python
def pretty_table(self): x = PrettyTable() x.field_names = ['Config', 'Value'] x._max_width = {'Config': 20, 'Value': 30} for (attr, value) in self.__dict__.items(): if ((str(attr) in hidden_attribs) and value): value = HIDDEN_VALUE x.add_row([str(attr), str(value)]) return str(x.get_string())
def __str__(self): 'Returns a string of the object' s = (self.__class__.__name__ + ': ') for (attr, value) in self.__dict__.items(): s = (((((s + '(') + str(attr)) + '=') + str(value)) + ') ') return s
5,233,745,533,802,784,000
Returns a string of the object
arm/models/models.py
__str__
charmarkk/automatic-ripping-machine
python
def __str__(self): s = (self.__class__.__name__ + ': ') for (attr, value) in self.__dict__.items(): s = (((((s + '(') + str(attr)) + '=') + str(value)) + ') ') return s
def testDistributionGroupAppsDeleteRequest(self): 'Test DistributionGroupAppsDeleteRequest' pass
-6,899,858,591,365,831,000
Test DistributionGroupAppsDeleteRequest
sdks/python/test/test_DistributionGroupAppsDeleteRequest.py
testDistributionGroupAppsDeleteRequest
Brantone/appcenter-sdks
python
def testDistributionGroupAppsDeleteRequest(self): pass
def __fleiss_pi_linear__(dataset, **kwargs): "\n Calculates Fleiss' :math:`\\pi` (or multi-:math:`\\pi`), originally proposed in\n [Fleiss1971]_, and is equivalent to Siegel and Castellan's :math:`K`\n [SiegelCastellan1988]_. For 2 coders, this is equivalent to Scott's :math:`\\pi`\n [Scott1955]_.\n " metric_kwargs = dict(kwargs) metric_kwargs['return_parts'] = True return_parts = kwargs['return_parts'] if (len(set([len(coder_segs.values()) for coder_segs in dataset.values()])) != 1): raise Exception('Unequal number of items contained.') (all_numerators, all_denominators, _, coders_boundaries) = __actual_agreement_linear__(dataset, **metric_kwargs) A_a = (Decimal(sum(all_numerators)) / sum(all_denominators)) p_e_segs = list() for boundaries_info in coders_boundaries.values(): for item in boundaries_info: (boundaries, total_boundaries) = item p_e_seg = (Decimal(boundaries) / total_boundaries) p_e_segs.append(p_e_seg) P_e_seg = (Decimal(sum(p_e_segs)) / len(p_e_segs)) A_e = (P_e_seg ** 2) pi = ((A_a - A_e) / (Decimal('1') - A_e)) if return_parts: return (A_a, A_e) else: return pi
5,795,092,333,693,014,000
Calculates Fleiss' :math:`\pi` (or multi-:math:`\pi`), originally proposed in [Fleiss1971]_, and is equivalent to Siegel and Castellan's :math:`K` [SiegelCastellan1988]_. For 2 coders, this is equivalent to Scott's :math:`\pi` [Scott1955]_.
segeval/agreement/pi.py
__fleiss_pi_linear__
cfournie/segmentation.evaluation
python
def __fleiss_pi_linear__(dataset, **kwargs): "\n Calculates Fleiss' :math:`\\pi` (or multi-:math:`\\pi`), originally proposed in\n [Fleiss1971]_, and is equivalent to Siegel and Castellan's :math:`K`\n [SiegelCastellan1988]_. For 2 coders, this is equivalent to Scott's :math:`\\pi`\n [Scott1955]_.\n " metric_kwargs = dict(kwargs) metric_kwargs['return_parts'] = True return_parts = kwargs['return_parts'] if (len(set([len(coder_segs.values()) for coder_segs in dataset.values()])) != 1): raise Exception('Unequal number of items contained.') (all_numerators, all_denominators, _, coders_boundaries) = __actual_agreement_linear__(dataset, **metric_kwargs) A_a = (Decimal(sum(all_numerators)) / sum(all_denominators)) p_e_segs = list() for boundaries_info in coders_boundaries.values(): for item in boundaries_info: (boundaries, total_boundaries) = item p_e_seg = (Decimal(boundaries) / total_boundaries) p_e_segs.append(p_e_seg) P_e_seg = (Decimal(sum(p_e_segs)) / len(p_e_segs)) A_e = (P_e_seg ** 2) pi = ((A_a - A_e) / (Decimal('1') - A_e)) if return_parts: return (A_a, A_e) else: return pi
def fleiss_pi_linear(dataset, **kwargs): "\n Calculates Fleiss' :math:`\\pi` (or multi-:math:`\\pi`), originally proposed in\n [Fleiss1971]_, and is equivalent to Siegel and Castellan's :math:`K`\n [SiegelCastellan1988]_. For 2 coders, this is equivalent to Scott's :math:`\\pi`\n [Scott1955]_.\n " return __fnc_metric__(__fleiss_pi_linear__, dataset, **kwargs)
5,529,600,764,925,489,000
Calculates Fleiss' :math:`\pi` (or multi-:math:`\pi`), originally proposed in [Fleiss1971]_, and is equivalent to Siegel and Castellan's :math:`K` [SiegelCastellan1988]_. For 2 coders, this is equivalent to Scott's :math:`\pi` [Scott1955]_.
segeval/agreement/pi.py
fleiss_pi_linear
cfournie/segmentation.evaluation
python
def fleiss_pi_linear(dataset, **kwargs): "\n Calculates Fleiss' :math:`\\pi` (or multi-:math:`\\pi`), originally proposed in\n [Fleiss1971]_, and is equivalent to Siegel and Castellan's :math:`K`\n [SiegelCastellan1988]_. For 2 coders, this is equivalent to Scott's :math:`\\pi`\n [Scott1955]_.\n " return __fnc_metric__(__fleiss_pi_linear__, dataset, **kwargs)
def _parse_general_counters(self, init_config): '\n Return a dictionary for each job counter\n {\n counter_group_name: [\n counter_name\n ]\n }\n }\n ' job_counter = {} if init_config.get('general_counters'): for counter_group in init_config['general_counters']: counter_group_name = counter_group.get('counter_group_name') counters = counter_group.get('counters') if (not counter_group_name): raise Exception('"general_counters" must contain a valid "counter_group_name"') if (not counters): raise Exception('"general_counters" must contain a list of "counters"') if (counter_group_name not in job_counter): job_counter[counter_group_name] = [] for counter in counters: counter_name = counter.get('counter_name') if (not counter_name): raise Exception('At least one "counter_name" should be specified in the list of "counters"') job_counter[counter_group_name].append(counter_name) return job_counter
-5,951,628,006,159,175,000
Return a dictionary for each job counter { counter_group_name: [ counter_name ] } }
checks.d/mapreduce.py
_parse_general_counters
WPMedia/dd-agent
python
def _parse_general_counters(self, init_config): '\n Return a dictionary for each job counter\n {\n counter_group_name: [\n counter_name\n ]\n }\n }\n ' job_counter = {} if init_config.get('general_counters'): for counter_group in init_config['general_counters']: counter_group_name = counter_group.get('counter_group_name') counters = counter_group.get('counters') if (not counter_group_name): raise Exception('"general_counters" must contain a valid "counter_group_name"') if (not counters): raise Exception('"general_counters" must contain a list of "counters"') if (counter_group_name not in job_counter): job_counter[counter_group_name] = [] for counter in counters: counter_name = counter.get('counter_name') if (not counter_name): raise Exception('At least one "counter_name" should be specified in the list of "counters"') job_counter[counter_group_name].append(counter_name) return job_counter
def _parse_job_specific_counters(self, init_config): '\n Return a dictionary for each job counter\n {\n job_name: {\n counter_group_name: [\n counter_name\n ]\n }\n }\n }\n ' job_counter = {} if init_config.get('job_specific_counters'): for job in init_config['job_specific_counters']: job_name = job.get('job_name') metrics = job.get('metrics') if (not job_name): raise Exception('Counter metrics must have a "job_name"') if (not metrics): raise Exception('Jobs specified in counter metrics must contain at least one metric') if (job_name not in job_counter): job_counter[job_name] = {} for metric in metrics: counter_group_name = metric.get('counter_group_name') counters = metric.get('counters') if (not counter_group_name): raise Exception('Each counter metric must contain a valid "counter_group_name"') if (not counters): raise Exception('Each counter metric must contain a list of "counters"') if (counter_group_name not in job_counter[job_name]): job_counter[job_name][counter_group_name] = [] for counter in counters: counter_name = counter.get('counter_name') if (not counter_name): raise Exception('At least one "counter_name" should be specified in the list of "counters"') job_counter[job_name][counter_group_name].append(counter_name) return job_counter
-1,406,056,200,574,110,500
Return a dictionary for each job counter { job_name: { counter_group_name: [ counter_name ] } } }
checks.d/mapreduce.py
_parse_job_specific_counters
WPMedia/dd-agent
python
def _parse_job_specific_counters(self, init_config): '\n Return a dictionary for each job counter\n {\n job_name: {\n counter_group_name: [\n counter_name\n ]\n }\n }\n }\n ' job_counter = {} if init_config.get('job_specific_counters'): for job in init_config['job_specific_counters']: job_name = job.get('job_name') metrics = job.get('metrics') if (not job_name): raise Exception('Counter metrics must have a "job_name"') if (not metrics): raise Exception('Jobs specified in counter metrics must contain at least one metric') if (job_name not in job_counter): job_counter[job_name] = {} for metric in metrics: counter_group_name = metric.get('counter_group_name') counters = metric.get('counters') if (not counter_group_name): raise Exception('Each counter metric must contain a valid "counter_group_name"') if (not counters): raise Exception('Each counter metric must contain a list of "counters"') if (counter_group_name not in job_counter[job_name]): job_counter[job_name][counter_group_name] = [] for counter in counters: counter_name = counter.get('counter_name') if (not counter_name): raise Exception('At least one "counter_name" should be specified in the list of "counters"') job_counter[job_name][counter_group_name].append(counter_name) return job_counter
def _get_running_app_ids(self, rm_address, **kwargs): '\n Return a dictionary of {app_id: (app_name, tracking_url)} for the running MapReduce applications\n ' metrics_json = self._rest_request_to_json(rm_address, YARN_APPS_PATH, YARN_SERVICE_CHECK, states=YARN_APPLICATION_STATES, applicationTypes=YARN_APPLICATION_TYPES) running_apps = {} if metrics_json.get('apps'): if (metrics_json['apps'].get('app') is not None): for app_json in metrics_json['apps']['app']: app_id = app_json.get('id') tracking_url = app_json.get('trackingUrl') app_name = app_json.get('name') if (app_id and tracking_url and app_name): running_apps[app_id] = (app_name, tracking_url) return running_apps
-2,774,981,823,774,166,500
Return a dictionary of {app_id: (app_name, tracking_url)} for the running MapReduce applications
checks.d/mapreduce.py
_get_running_app_ids
WPMedia/dd-agent
python
def _get_running_app_ids(self, rm_address, **kwargs): '\n \n ' metrics_json = self._rest_request_to_json(rm_address, YARN_APPS_PATH, YARN_SERVICE_CHECK, states=YARN_APPLICATION_STATES, applicationTypes=YARN_APPLICATION_TYPES) running_apps = {} if metrics_json.get('apps'): if (metrics_json['apps'].get('app') is not None): for app_json in metrics_json['apps']['app']: app_id = app_json.get('id') tracking_url = app_json.get('trackingUrl') app_name = app_json.get('name') if (app_id and tracking_url and app_name): running_apps[app_id] = (app_name, tracking_url) return running_apps
def _mapreduce_job_metrics(self, running_apps, addl_tags): "\n Get metrics for each MapReduce job.\n Return a dictionary for each MapReduce job\n {\n job_id: {\n 'job_name': job_name,\n 'app_name': app_name,\n 'user_name': user_name,\n 'tracking_url': tracking_url\n }\n " running_jobs = {} for (app_id, (app_name, tracking_url)) in running_apps.iteritems(): metrics_json = self._rest_request_to_json(tracking_url, MAPREDUCE_JOBS_PATH, MAPREDUCE_SERVICE_CHECK) if metrics_json.get('jobs'): if metrics_json['jobs'].get('job'): for job_json in metrics_json['jobs']['job']: job_id = job_json.get('id') job_name = job_json.get('name') user_name = job_json.get('user') if (job_id and job_name and user_name): running_jobs[str(job_id)] = {'job_name': str(job_name), 'app_name': str(app_name), 'user_name': str(user_name), 'tracking_url': self._join_url_dir(tracking_url, MAPREDUCE_JOBS_PATH, job_id)} tags = [('app_name:' + str(app_name)), ('user_name:' + str(user_name)), ('job_name:' + str(job_name))] tags.extend(addl_tags) self._set_metrics_from_json(tags, job_json, MAPREDUCE_JOB_METRICS) return running_jobs
-1,703,499,876,109,679,600
Get metrics for each MapReduce job. Return a dictionary for each MapReduce job { job_id: { 'job_name': job_name, 'app_name': app_name, 'user_name': user_name, 'tracking_url': tracking_url }
checks.d/mapreduce.py
_mapreduce_job_metrics
WPMedia/dd-agent
python
def _mapreduce_job_metrics(self, running_apps, addl_tags): "\n Get metrics for each MapReduce job.\n Return a dictionary for each MapReduce job\n {\n job_id: {\n 'job_name': job_name,\n 'app_name': app_name,\n 'user_name': user_name,\n 'tracking_url': tracking_url\n }\n " running_jobs = {} for (app_id, (app_name, tracking_url)) in running_apps.iteritems(): metrics_json = self._rest_request_to_json(tracking_url, MAPREDUCE_JOBS_PATH, MAPREDUCE_SERVICE_CHECK) if metrics_json.get('jobs'): if metrics_json['jobs'].get('job'): for job_json in metrics_json['jobs']['job']: job_id = job_json.get('id') job_name = job_json.get('name') user_name = job_json.get('user') if (job_id and job_name and user_name): running_jobs[str(job_id)] = {'job_name': str(job_name), 'app_name': str(app_name), 'user_name': str(user_name), 'tracking_url': self._join_url_dir(tracking_url, MAPREDUCE_JOBS_PATH, job_id)} tags = [('app_name:' + str(app_name)), ('user_name:' + str(user_name)), ('job_name:' + str(job_name))] tags.extend(addl_tags) self._set_metrics_from_json(tags, job_json, MAPREDUCE_JOB_METRICS) return running_jobs
def _mapreduce_job_counters_metrics(self, running_jobs, addl_tags): '\n Get custom metrics specified for each counter\n ' for (job_id, job_metrics) in running_jobs.iteritems(): job_name = job_metrics['job_name'] if (self.general_counters or (job_name in self.job_specific_counters)): job_specific_metrics = self.job_specific_counters.get(job_name) metrics_json = self._rest_request_to_json(job_metrics['tracking_url'], 'counters', MAPREDUCE_SERVICE_CHECK) if metrics_json.get('jobCounters'): if metrics_json['jobCounters'].get('counterGroup'): for counter_group in metrics_json['jobCounters']['counterGroup']: group_name = counter_group.get('counterGroupName') if group_name: counter_metrics = set([]) if (job_specific_metrics and (group_name in job_specific_metrics)): counter_metrics = counter_metrics.union(job_specific_metrics[group_name]) if (group_name in self.general_counters): counter_metrics = counter_metrics.union(self.general_counters[group_name]) if counter_metrics: if counter_group.get('counter'): for counter in counter_group['counter']: counter_name = counter.get('name') if (counter_name and (counter_name in counter_metrics)): tags = [('app_name:' + job_metrics.get('app_name')), ('user_name:' + job_metrics.get('user_name')), ('job_name:' + job_name), ('counter_name:' + str(counter_name).lower())] tags.extend(addl_tags) self._set_metrics_from_json(tags, counter, MAPREDUCE_JOB_COUNTER_METRICS)
1,464,761,827,869,469,700
Get custom metrics specified for each counter
checks.d/mapreduce.py
_mapreduce_job_counters_metrics
WPMedia/dd-agent
python
def _mapreduce_job_counters_metrics(self, running_jobs, addl_tags): '\n \n ' for (job_id, job_metrics) in running_jobs.iteritems(): job_name = job_metrics['job_name'] if (self.general_counters or (job_name in self.job_specific_counters)): job_specific_metrics = self.job_specific_counters.get(job_name) metrics_json = self._rest_request_to_json(job_metrics['tracking_url'], 'counters', MAPREDUCE_SERVICE_CHECK) if metrics_json.get('jobCounters'): if metrics_json['jobCounters'].get('counterGroup'): for counter_group in metrics_json['jobCounters']['counterGroup']: group_name = counter_group.get('counterGroupName') if group_name: counter_metrics = set([]) if (job_specific_metrics and (group_name in job_specific_metrics)): counter_metrics = counter_metrics.union(job_specific_metrics[group_name]) if (group_name in self.general_counters): counter_metrics = counter_metrics.union(self.general_counters[group_name]) if counter_metrics: if counter_group.get('counter'): for counter in counter_group['counter']: counter_name = counter.get('name') if (counter_name and (counter_name in counter_metrics)): tags = [('app_name:' + job_metrics.get('app_name')), ('user_name:' + job_metrics.get('user_name')), ('job_name:' + job_name), ('counter_name:' + str(counter_name).lower())] tags.extend(addl_tags) self._set_metrics_from_json(tags, counter, MAPREDUCE_JOB_COUNTER_METRICS)
def _mapreduce_task_metrics(self, running_jobs, addl_tags): "\n Get metrics for each MapReduce task\n Return a dictionary of {task_id: 'tracking_url'} for each MapReduce task\n " for (job_id, job_stats) in running_jobs.iteritems(): metrics_json = self._rest_request_to_json(job_stats['tracking_url'], 'tasks', MAPREDUCE_SERVICE_CHECK) if metrics_json.get('tasks'): if metrics_json['tasks'].get('task'): for task in metrics_json['tasks']['task']: task_type = task.get('type') if task_type: tags = [('app_name:' + job_stats['app_name']), ('user_name:' + job_stats['user_name']), ('job_name:' + job_stats['job_name']), ('task_type:' + str(task_type).lower())] tags.extend(addl_tags) if (task_type == 'MAP'): self._set_metrics_from_json(tags, task, MAPREDUCE_MAP_TASK_METRICS) elif (task_type == 'REDUCE'): self._set_metrics_from_json(tags, task, MAPREDUCE_REDUCE_TASK_METRICS)
-522,691,520,259,828,400
Get metrics for each MapReduce task Return a dictionary of {task_id: 'tracking_url'} for each MapReduce task
checks.d/mapreduce.py
_mapreduce_task_metrics
WPMedia/dd-agent
python
def _mapreduce_task_metrics(self, running_jobs, addl_tags): "\n Get metrics for each MapReduce task\n Return a dictionary of {task_id: 'tracking_url'} for each MapReduce task\n " for (job_id, job_stats) in running_jobs.iteritems(): metrics_json = self._rest_request_to_json(job_stats['tracking_url'], 'tasks', MAPREDUCE_SERVICE_CHECK) if metrics_json.get('tasks'): if metrics_json['tasks'].get('task'): for task in metrics_json['tasks']['task']: task_type = task.get('type') if task_type: tags = [('app_name:' + job_stats['app_name']), ('user_name:' + job_stats['user_name']), ('job_name:' + job_stats['job_name']), ('task_type:' + str(task_type).lower())] tags.extend(addl_tags) if (task_type == 'MAP'): self._set_metrics_from_json(tags, task, MAPREDUCE_MAP_TASK_METRICS) elif (task_type == 'REDUCE'): self._set_metrics_from_json(tags, task, MAPREDUCE_REDUCE_TASK_METRICS)
def _set_metrics_from_json(self, tags, metrics_json, metrics): '\n Parse the JSON response and set the metrics\n ' for (status, (metric_name, metric_type)) in metrics.iteritems(): metric_status = metrics_json.get(status) if (metric_status is not None): self._set_metric(metric_name, metric_type, metric_status, tags)
-362,926,577,410,417,300
Parse the JSON response and set the metrics
checks.d/mapreduce.py
_set_metrics_from_json
WPMedia/dd-agent
python
def _set_metrics_from_json(self, tags, metrics_json, metrics): '\n \n ' for (status, (metric_name, metric_type)) in metrics.iteritems(): metric_status = metrics_json.get(status) if (metric_status is not None): self._set_metric(metric_name, metric_type, metric_status, tags)
def _set_metric(self, metric_name, metric_type, value, tags=None, device_name=None): '\n Set a metric\n ' if (metric_type == HISTOGRAM): self.histogram(metric_name, value, tags=tags, device_name=device_name) elif (metric_type == INCREMENT): self.increment(metric_name, value, tags=tags, device_name=device_name) else: self.log.error(('Metric type "%s" unknown' % metric_type))
-4,149,084,100,854,976,500
Set a metric
checks.d/mapreduce.py
_set_metric
WPMedia/dd-agent
python
def _set_metric(self, metric_name, metric_type, value, tags=None, device_name=None): '\n \n ' if (metric_type == HISTOGRAM): self.histogram(metric_name, value, tags=tags, device_name=device_name) elif (metric_type == INCREMENT): self.increment(metric_name, value, tags=tags, device_name=device_name) else: self.log.error(('Metric type "%s" unknown' % metric_type))
def _rest_request_to_json(self, address, object_path, service_name, *args, **kwargs): '\n Query the given URL and return the JSON response\n ' response_json = None service_check_tags = [('url:%s' % self._get_url_base(address))] url = address if object_path: url = self._join_url_dir(url, object_path) if args: for directory in args: url = self._join_url_dir(url, directory) self.log.debug(('Attempting to connect to "%s"' % url)) if kwargs: query = '&'.join(['{0}={1}'.format(key, value) for (key, value) in kwargs.iteritems()]) url = urljoin(url, ('?' + query)) try: response = requests.get(url, timeout=self.default_integration_http_timeout) response.raise_for_status() response_json = response.json() except Timeout as e: self.service_check(service_name, AgentCheck.CRITICAL, tags=service_check_tags, message='Request timeout: {0}, {1}'.format(url, e)) raise except (HTTPError, InvalidURL, ConnectionError) as e: self.service_check(service_name, AgentCheck.CRITICAL, tags=service_check_tags, message='Request failed: {0}, {1}'.format(url, e)) raise except JSONDecodeError as e: self.service_check(service_name, AgentCheck.CRITICAL, tags=service_check_tags, message='JSON Parse failed: {0}, {1}'.format(url, e)) raise except ValueError as e: self.service_check(service_name, AgentCheck.CRITICAL, tags=service_check_tags, message=str(e)) raise return response_json
-6,006,647,949,090,792,000
Query the given URL and return the JSON response
checks.d/mapreduce.py
_rest_request_to_json
WPMedia/dd-agent
python
def _rest_request_to_json(self, address, object_path, service_name, *args, **kwargs): '\n \n ' response_json = None service_check_tags = [('url:%s' % self._get_url_base(address))] url = address if object_path: url = self._join_url_dir(url, object_path) if args: for directory in args: url = self._join_url_dir(url, directory) self.log.debug(('Attempting to connect to "%s"' % url)) if kwargs: query = '&'.join(['{0}={1}'.format(key, value) for (key, value) in kwargs.iteritems()]) url = urljoin(url, ('?' + query)) try: response = requests.get(url, timeout=self.default_integration_http_timeout) response.raise_for_status() response_json = response.json() except Timeout as e: self.service_check(service_name, AgentCheck.CRITICAL, tags=service_check_tags, message='Request timeout: {0}, {1}'.format(url, e)) raise except (HTTPError, InvalidURL, ConnectionError) as e: self.service_check(service_name, AgentCheck.CRITICAL, tags=service_check_tags, message='Request failed: {0}, {1}'.format(url, e)) raise except JSONDecodeError as e: self.service_check(service_name, AgentCheck.CRITICAL, tags=service_check_tags, message='JSON Parse failed: {0}, {1}'.format(url, e)) raise except ValueError as e: self.service_check(service_name, AgentCheck.CRITICAL, tags=service_check_tags, message=str(e)) raise return response_json
def _join_url_dir(self, url, *args): '\n Join a URL with multiple directories\n ' for path in args: url = (url.rstrip('/') + '/') url = urljoin(url, path.lstrip('/')) return url
8,838,647,529,342,381,000
Join a URL with multiple directories
checks.d/mapreduce.py
_join_url_dir
WPMedia/dd-agent
python
def _join_url_dir(self, url, *args): '\n \n ' for path in args: url = (url.rstrip('/') + '/') url = urljoin(url, path.lstrip('/')) return url
def _get_url_base(self, url): '\n Return the base of a URL\n ' s = urlsplit(url) return urlunsplit([s.scheme, s.netloc, '', '', ''])
8,414,673,978,274,218,000
Return the base of a URL
checks.d/mapreduce.py
_get_url_base
WPMedia/dd-agent
python
def _get_url_base(self, url): '\n \n ' s = urlsplit(url) return urlunsplit([s.scheme, s.netloc, , , ])
def build_gui_help_add_sine_attr(): ' Creates GUI for Make Stretchy IK ' window_name = 'build_gui_help_add_sine_attr' if cmds.window(window_name, exists=True): cmds.deleteUI(window_name, window=True) cmds.window(window_name, title=(script_name + ' Help'), mnb=False, mxb=False, s=True) cmds.window(window_name, e=True, s=True, wh=[1, 1]) cmds.columnLayout('main_column', p=window_name) cmds.separator(h=12, style='none') cmds.rowColumnLayout(nc=1, cw=[(1, 310)], cs=[(1, 10)], p='main_column') cmds.rowColumnLayout(nc=1, cw=[(1, 300)], cs=[(1, 10)], p='main_column') cmds.text((script_name + ' Help'), bgc=[0.4, 0.4, 0.4], fn='boldLabelFont', align='center') cmds.separator(h=10, style='none', p='main_column') cmds.rowColumnLayout(nc=1, cw=[(1, 300)], cs=[(1, 10)], p='main_column') cmds.text(l='Create Sine attributes without using\nthird-party plugins or expressions.', align='center') cmds.separator(h=5, style='none') cmds.text(l='Select and object, then click on "Add Sine Attributes"', align='center') cmds.separator(h=10, style='none') cmds.text(l='Sine Attributes:', align='center', font='boldLabelFont') cmds.text(l='Time: Multiplier for the time input (tick)', align='center') cmds.text(l='Amplitude: Wave amplitude (how high it gets)', align='center') cmds.text(l='Frequency: Wave frequency (how often it happens)', align='center') cmds.text(l='Offset: Value added after calculation, offset.', align='center') cmds.text(l='Tick: Time as seen by the sine system.', align='center') cmds.text(l='Output: Result of the sine operation.', align='center') cmds.text(l='Abs Output: Aboslute output. (no negative values)', align='center') cmds.separator(h=10, style='none') cmds.separator(h=15, style='none') cmds.rowColumnLayout(nc=2, cw=[(1, 140), (2, 140)], cs=[(1, 10), (2, 0)], p='main_column') cmds.text('Guilherme Trevisan ') cmds.text(l='<a href="mailto:example@example.com">TrevisanGMW@gmail.com</a>', hl=True, highlightColor=[1, 1, 1]) cmds.rowColumnLayout(nc=2, cw=[(1, 140), (2, 140)], cs=[(1, 10), (2, 0)], p='main_column') cmds.separator(h=15, style='none') cmds.text(l='<a href="https://github.com/TrevisanGMW">Github</a>', hl=True, highlightColor=[1, 1, 1]) cmds.separator(h=7, style='none') cmds.rowColumnLayout(nc=1, cw=[(1, 300)], cs=[(1, 10)], p='main_column') cmds.separator(h=10, style='none') cmds.button(l='OK', h=30, c=(lambda args: close_help_gui())) cmds.separator(h=8, style='none') cmds.showWindow(window_name) cmds.window(window_name, e=True, s=False) qw = omui.MQtUtil.findWindow(window_name) widget = wrapInstance(long(qw), QWidget) icon = QIcon(':/question.png') widget.setWindowIcon(icon) def close_help_gui(): ' Closes Help Window ' if cmds.window(window_name, exists=True): cmds.deleteUI(window_name, window=True)
8,131,861,237,518,420,000
Creates GUI for Make Stretchy IK
python-scripts/gt_add_sine_attributes.py
build_gui_help_add_sine_attr
freemanpro/gt-tools
python
def build_gui_help_add_sine_attr(): ' ' window_name = 'build_gui_help_add_sine_attr' if cmds.window(window_name, exists=True): cmds.deleteUI(window_name, window=True) cmds.window(window_name, title=(script_name + ' Help'), mnb=False, mxb=False, s=True) cmds.window(window_name, e=True, s=True, wh=[1, 1]) cmds.columnLayout('main_column', p=window_name) cmds.separator(h=12, style='none') cmds.rowColumnLayout(nc=1, cw=[(1, 310)], cs=[(1, 10)], p='main_column') cmds.rowColumnLayout(nc=1, cw=[(1, 300)], cs=[(1, 10)], p='main_column') cmds.text((script_name + ' Help'), bgc=[0.4, 0.4, 0.4], fn='boldLabelFont', align='center') cmds.separator(h=10, style='none', p='main_column') cmds.rowColumnLayout(nc=1, cw=[(1, 300)], cs=[(1, 10)], p='main_column') cmds.text(l='Create Sine attributes without using\nthird-party plugins or expressions.', align='center') cmds.separator(h=5, style='none') cmds.text(l='Select and object, then click on "Add Sine Attributes"', align='center') cmds.separator(h=10, style='none') cmds.text(l='Sine Attributes:', align='center', font='boldLabelFont') cmds.text(l='Time: Multiplier for the time input (tick)', align='center') cmds.text(l='Amplitude: Wave amplitude (how high it gets)', align='center') cmds.text(l='Frequency: Wave frequency (how often it happens)', align='center') cmds.text(l='Offset: Value added after calculation, offset.', align='center') cmds.text(l='Tick: Time as seen by the sine system.', align='center') cmds.text(l='Output: Result of the sine operation.', align='center') cmds.text(l='Abs Output: Aboslute output. (no negative values)', align='center') cmds.separator(h=10, style='none') cmds.separator(h=15, style='none') cmds.rowColumnLayout(nc=2, cw=[(1, 140), (2, 140)], cs=[(1, 10), (2, 0)], p='main_column') cmds.text('Guilherme Trevisan ') cmds.text(l='<a href="mailto:example@example.com">TrevisanGMW@gmail.com</a>', hl=True, highlightColor=[1, 1, 1]) cmds.rowColumnLayout(nc=2, cw=[(1, 140), (2, 140)], cs=[(1, 10), (2, 0)], p='main_column') cmds.separator(h=15, style='none') cmds.text(l='<a href="https://github.com/TrevisanGMW">Github</a>', hl=True, highlightColor=[1, 1, 1]) cmds.separator(h=7, style='none') cmds.rowColumnLayout(nc=1, cw=[(1, 300)], cs=[(1, 10)], p='main_column') cmds.separator(h=10, style='none') cmds.button(l='OK', h=30, c=(lambda args: close_help_gui())) cmds.separator(h=8, style='none') cmds.showWindow(window_name) cmds.window(window_name, e=True, s=False) qw = omui.MQtUtil.findWindow(window_name) widget = wrapInstance(long(qw), QWidget) icon = QIcon(':/question.png') widget.setWindowIcon(icon) def close_help_gui(): ' Closes Help Window ' if cmds.window(window_name, exists=True): cmds.deleteUI(window_name, window=True)
def add_sine_attributes(obj, sine_prefix='sine', tick_source_attr='time1.outTime', hide_unkeyable=True, add_absolute_output=False, nice_name_prefix=True): ' \n Create Sine function without using third-party plugins or expressions\n \n Parameters:\n obj (string): Name of the object\n sine (string): Prefix given to the name of the attributes (default is "sine")\n tick_source_attr (string): Name of the attribute used as the source for time. It uses the default "time1" node if nothing else is specified\n hide_unkeyable (bool): Hides the tick and output attributes\n add_absolute_output (bool): Also creates an output version that gives only positive numbers much like the abs() expression\n\n Returns:\n sine_output_attrs (list): A string with the name of the object and the name of the sine output attribute. E.g. "pSphere1.sineOutput"\n In case an absolute output is added, it will be the second object in the list. E.g. ["pSphere1.sineOutput", "pSphere1.sineAbsOutput"]\n If add_absolute_output is False the second attribute is None\n ' required_plugin = 'quatNodes' if (not cmds.pluginInfo(required_plugin, q=True, loaded=True)): cmds.loadPlugin(required_plugin, qt=False) influence_suffix = 'Time' amplitude_suffix = 'Amplitude' frequency_suffix = 'Frequency' offset_suffix = 'Offset' output_suffix = 'Output' tick_suffix = 'Tick' abs_suffix = 'AbsOutput' influence_attr = (sine_prefix + influence_suffix) amplitude_attr = (sine_prefix + amplitude_suffix) frequency_attr = (sine_prefix + frequency_suffix) offset_attr = (sine_prefix + offset_suffix) output_attr = (sine_prefix + output_suffix) tick_attr = (sine_prefix + tick_suffix) abs_attr = (sine_prefix + abs_suffix) mdl_node = cmds.createNode('multDoubleLinear', name=(obj + '_multDoubleLiner')) quat_node = cmds.createNode('eulerToQuat', name=(obj + '_eulerToQuat')) multiply_node = cmds.createNode('multiplyDivide', name=(obj + '_amplitude_multiply')) sum_node = cmds.createNode('plusMinusAverage', name=(obj + '_offset_sum')) influence_multiply_node = cmds.createNode('multiplyDivide', name=(obj + '_influence_multiply')) if nice_name_prefix: cmds.addAttr(obj, ln=influence_attr, at='double', k=True, maxValue=1, minValue=0) cmds.addAttr(obj, ln=amplitude_attr, at='double', k=True) cmds.addAttr(obj, ln=frequency_attr, at='double', k=True) cmds.addAttr(obj, ln=offset_attr, at='double', k=True) cmds.addAttr(obj, ln=tick_attr, at='double', k=True) cmds.addAttr(obj, ln=output_attr, at='double', k=True) if add_absolute_output: cmds.addAttr(obj, ln=abs_attr, at='double', k=True) else: cmds.addAttr(obj, ln=influence_attr, at='double', k=True, maxValue=1, minValue=0, nn=influence_suffix) cmds.addAttr(obj, ln=amplitude_attr, at='double', k=True, nn=amplitude_suffix) cmds.addAttr(obj, ln=frequency_attr, at='double', k=True, nn=frequency_suffix) cmds.addAttr(obj, ln=offset_attr, at='double', k=True, nn=offset_suffix) cmds.addAttr(obj, ln=tick_attr, at='double', k=True, nn=tick_suffix) cmds.addAttr(obj, ln=output_attr, at='double', k=True, nn=output_suffix) if add_absolute_output: cmds.addAttr(obj, ln=abs_attr, at='double', k=True, nn=re.sub('(\\w)([A-Z])', '\\1 \\2', abs_suffix)) cmds.setAttr(((obj + '.') + influence_attr), 1) cmds.setAttr(((obj + '.') + amplitude_attr), 1) cmds.setAttr(((obj + '.') + frequency_attr), 10) if hide_unkeyable: cmds.setAttr(((obj + '.') + tick_attr), k=False) cmds.setAttr(((obj + '.') + output_attr), k=False) if (add_absolute_output and hide_unkeyable): cmds.setAttr(((obj + '.') + abs_attr), k=False) cmds.connectAttr(tick_source_attr, (influence_multiply_node + '.input1X')) cmds.connectAttr((influence_multiply_node + '.outputX'), ((obj + '.') + tick_attr)) cmds.connectAttr(((obj + '.') + influence_attr), (influence_multiply_node + '.input2X')) cmds.connectAttr(((obj + '.') + amplitude_attr), (multiply_node + '.input2X')) cmds.connectAttr(((obj + '.') + frequency_attr), (mdl_node + '.input1')) cmds.connectAttr(((obj + '.') + tick_attr), (mdl_node + '.input2')) cmds.connectAttr(((obj + '.') + offset_attr), (sum_node + '.input1D[0]')) cmds.connectAttr((mdl_node + '.output'), (quat_node + '.inputRotateX')) cmds.connectAttr((quat_node + '.outputQuatX'), (multiply_node + '.input1X')) cmds.connectAttr((multiply_node + '.outputX'), (sum_node + '.input1D[1]')) cmds.connectAttr((sum_node + '.output1D'), ((obj + '.') + output_attr)) if add_absolute_output: squared_node = cmds.createNode('multiplyDivide', name=(obj + '_abs_squared')) reverse_squared_node = cmds.createNode('multiplyDivide', name=(obj + '_reverseAbs_multiply')) cmds.setAttr((squared_node + '.operation'), 3) cmds.setAttr((reverse_squared_node + '.operation'), 3) cmds.setAttr((squared_node + '.input2X'), 2) cmds.setAttr((reverse_squared_node + '.input2X'), 0.5) cmds.connectAttr(((obj + '.') + output_attr), (squared_node + '.input1X')) cmds.connectAttr((squared_node + '.outputX'), (reverse_squared_node + '.input1X')) cmds.connectAttr((reverse_squared_node + '.outputX'), ((obj + '.') + abs_attr)) return [((obj + '.') + output_attr), ((obj + '.') + abs_attr)] else: return [((obj + '.') + output_attr), None]
-4,182,535,674,872,841,000
Create Sine function without using third-party plugins or expressions Parameters: obj (string): Name of the object sine (string): Prefix given to the name of the attributes (default is "sine") tick_source_attr (string): Name of the attribute used as the source for time. It uses the default "time1" node if nothing else is specified hide_unkeyable (bool): Hides the tick and output attributes add_absolute_output (bool): Also creates an output version that gives only positive numbers much like the abs() expression Returns: sine_output_attrs (list): A string with the name of the object and the name of the sine output attribute. E.g. "pSphere1.sineOutput" In case an absolute output is added, it will be the second object in the list. E.g. ["pSphere1.sineOutput", "pSphere1.sineAbsOutput"] If add_absolute_output is False the second attribute is None
python-scripts/gt_add_sine_attributes.py
add_sine_attributes
freemanpro/gt-tools
python
def add_sine_attributes(obj, sine_prefix='sine', tick_source_attr='time1.outTime', hide_unkeyable=True, add_absolute_output=False, nice_name_prefix=True): ' \n Create Sine function without using third-party plugins or expressions\n \n Parameters:\n obj (string): Name of the object\n sine (string): Prefix given to the name of the attributes (default is "sine")\n tick_source_attr (string): Name of the attribute used as the source for time. It uses the default "time1" node if nothing else is specified\n hide_unkeyable (bool): Hides the tick and output attributes\n add_absolute_output (bool): Also creates an output version that gives only positive numbers much like the abs() expression\n\n Returns:\n sine_output_attrs (list): A string with the name of the object and the name of the sine output attribute. E.g. "pSphere1.sineOutput"\n In case an absolute output is added, it will be the second object in the list. E.g. ["pSphere1.sineOutput", "pSphere1.sineAbsOutput"]\n If add_absolute_output is False the second attribute is None\n ' required_plugin = 'quatNodes' if (not cmds.pluginInfo(required_plugin, q=True, loaded=True)): cmds.loadPlugin(required_plugin, qt=False) influence_suffix = 'Time' amplitude_suffix = 'Amplitude' frequency_suffix = 'Frequency' offset_suffix = 'Offset' output_suffix = 'Output' tick_suffix = 'Tick' abs_suffix = 'AbsOutput' influence_attr = (sine_prefix + influence_suffix) amplitude_attr = (sine_prefix + amplitude_suffix) frequency_attr = (sine_prefix + frequency_suffix) offset_attr = (sine_prefix + offset_suffix) output_attr = (sine_prefix + output_suffix) tick_attr = (sine_prefix + tick_suffix) abs_attr = (sine_prefix + abs_suffix) mdl_node = cmds.createNode('multDoubleLinear', name=(obj + '_multDoubleLiner')) quat_node = cmds.createNode('eulerToQuat', name=(obj + '_eulerToQuat')) multiply_node = cmds.createNode('multiplyDivide', name=(obj + '_amplitude_multiply')) sum_node = cmds.createNode('plusMinusAverage', name=(obj + '_offset_sum')) influence_multiply_node = cmds.createNode('multiplyDivide', name=(obj + '_influence_multiply')) if nice_name_prefix: cmds.addAttr(obj, ln=influence_attr, at='double', k=True, maxValue=1, minValue=0) cmds.addAttr(obj, ln=amplitude_attr, at='double', k=True) cmds.addAttr(obj, ln=frequency_attr, at='double', k=True) cmds.addAttr(obj, ln=offset_attr, at='double', k=True) cmds.addAttr(obj, ln=tick_attr, at='double', k=True) cmds.addAttr(obj, ln=output_attr, at='double', k=True) if add_absolute_output: cmds.addAttr(obj, ln=abs_attr, at='double', k=True) else: cmds.addAttr(obj, ln=influence_attr, at='double', k=True, maxValue=1, minValue=0, nn=influence_suffix) cmds.addAttr(obj, ln=amplitude_attr, at='double', k=True, nn=amplitude_suffix) cmds.addAttr(obj, ln=frequency_attr, at='double', k=True, nn=frequency_suffix) cmds.addAttr(obj, ln=offset_attr, at='double', k=True, nn=offset_suffix) cmds.addAttr(obj, ln=tick_attr, at='double', k=True, nn=tick_suffix) cmds.addAttr(obj, ln=output_attr, at='double', k=True, nn=output_suffix) if add_absolute_output: cmds.addAttr(obj, ln=abs_attr, at='double', k=True, nn=re.sub('(\\w)([A-Z])', '\\1 \\2', abs_suffix)) cmds.setAttr(((obj + '.') + influence_attr), 1) cmds.setAttr(((obj + '.') + amplitude_attr), 1) cmds.setAttr(((obj + '.') + frequency_attr), 10) if hide_unkeyable: cmds.setAttr(((obj + '.') + tick_attr), k=False) cmds.setAttr(((obj + '.') + output_attr), k=False) if (add_absolute_output and hide_unkeyable): cmds.setAttr(((obj + '.') + abs_attr), k=False) cmds.connectAttr(tick_source_attr, (influence_multiply_node + '.input1X')) cmds.connectAttr((influence_multiply_node + '.outputX'), ((obj + '.') + tick_attr)) cmds.connectAttr(((obj + '.') + influence_attr), (influence_multiply_node + '.input2X')) cmds.connectAttr(((obj + '.') + amplitude_attr), (multiply_node + '.input2X')) cmds.connectAttr(((obj + '.') + frequency_attr), (mdl_node + '.input1')) cmds.connectAttr(((obj + '.') + tick_attr), (mdl_node + '.input2')) cmds.connectAttr(((obj + '.') + offset_attr), (sum_node + '.input1D[0]')) cmds.connectAttr((mdl_node + '.output'), (quat_node + '.inputRotateX')) cmds.connectAttr((quat_node + '.outputQuatX'), (multiply_node + '.input1X')) cmds.connectAttr((multiply_node + '.outputX'), (sum_node + '.input1D[1]')) cmds.connectAttr((sum_node + '.output1D'), ((obj + '.') + output_attr)) if add_absolute_output: squared_node = cmds.createNode('multiplyDivide', name=(obj + '_abs_squared')) reverse_squared_node = cmds.createNode('multiplyDivide', name=(obj + '_reverseAbs_multiply')) cmds.setAttr((squared_node + '.operation'), 3) cmds.setAttr((reverse_squared_node + '.operation'), 3) cmds.setAttr((squared_node + '.input2X'), 2) cmds.setAttr((reverse_squared_node + '.input2X'), 0.5) cmds.connectAttr(((obj + '.') + output_attr), (squared_node + '.input1X')) cmds.connectAttr((squared_node + '.outputX'), (reverse_squared_node + '.input1X')) cmds.connectAttr((reverse_squared_node + '.outputX'), ((obj + '.') + abs_attr)) return [((obj + '.') + output_attr), ((obj + '.') + abs_attr)] else: return [((obj + '.') + output_attr), None]
def validate_operation(): ' Checks elements one last time before running the script ' is_valid = False stretchy_name = None add_abs_output_value = cmds.checkBox(add_abs_output_chkbox, q=True, value=True) add_prefix_nn_value = cmds.checkBox(add_prefix_nn_chkbox, q=True, value=True) stretchy_prefix = cmds.textField(stretchy_system_prefix, q=True, text=True).replace(' ', '') selection = (cmds.ls(selection=True) or []) if (len(selection) > 0): target = selection[0] is_valid = True else: cmds.warning('Please select a target object to be the attribute holder.') is_valid = False if (stretchy_prefix != ''): stretchy_name = stretchy_prefix else: stretchy_name = 'sine' if is_valid: current_attributes = (cmds.listAttr(target, r=True, s=True, userDefined=True) or []) possible_conflicts = [] possible_conflicts.append((stretchy_name + 'Time')) possible_conflicts.append((stretchy_name + 'Amplitude')) possible_conflicts.append((stretchy_name + 'Frequency')) possible_conflicts.append((stretchy_name + 'Offset')) possible_conflicts.append((stretchy_name + 'Output')) possible_conflicts.append((stretchy_name + 'Tick')) possible_conflicts.append((stretchy_name + 'AbsOutput')) for conflict in possible_conflicts: for attr in current_attributes: if (attr == conflict): is_valid = False if (not is_valid): cmds.warning('The object selected has conflicting attributes. Please change the prefix or select another object.') if is_valid: if stretchy_name: add_sine_attributes(target, sine_prefix=stretchy_name, tick_source_attr='time1.outTime', hide_unkeyable=False, add_absolute_output=add_abs_output_value, nice_name_prefix=add_prefix_nn_value) cmds.select(target, r=True) else: add_sine_attributes(target, sine_prefix=stretchy_name, tick_source_attr='time1.outTime', hide_unkeyable=False, add_absolute_output=add_abs_output_value, nice_name_prefix=add_prefix_nn_value) cmds.select(target, r=True)
-4,784,751,434,494,775,000
Checks elements one last time before running the script
python-scripts/gt_add_sine_attributes.py
validate_operation
freemanpro/gt-tools
python
def validate_operation(): ' ' is_valid = False stretchy_name = None add_abs_output_value = cmds.checkBox(add_abs_output_chkbox, q=True, value=True) add_prefix_nn_value = cmds.checkBox(add_prefix_nn_chkbox, q=True, value=True) stretchy_prefix = cmds.textField(stretchy_system_prefix, q=True, text=True).replace(' ', ) selection = (cmds.ls(selection=True) or []) if (len(selection) > 0): target = selection[0] is_valid = True else: cmds.warning('Please select a target object to be the attribute holder.') is_valid = False if (stretchy_prefix != ): stretchy_name = stretchy_prefix else: stretchy_name = 'sine' if is_valid: current_attributes = (cmds.listAttr(target, r=True, s=True, userDefined=True) or []) possible_conflicts = [] possible_conflicts.append((stretchy_name + 'Time')) possible_conflicts.append((stretchy_name + 'Amplitude')) possible_conflicts.append((stretchy_name + 'Frequency')) possible_conflicts.append((stretchy_name + 'Offset')) possible_conflicts.append((stretchy_name + 'Output')) possible_conflicts.append((stretchy_name + 'Tick')) possible_conflicts.append((stretchy_name + 'AbsOutput')) for conflict in possible_conflicts: for attr in current_attributes: if (attr == conflict): is_valid = False if (not is_valid): cmds.warning('The object selected has conflicting attributes. Please change the prefix or select another object.') if is_valid: if stretchy_name: add_sine_attributes(target, sine_prefix=stretchy_name, tick_source_attr='time1.outTime', hide_unkeyable=False, add_absolute_output=add_abs_output_value, nice_name_prefix=add_prefix_nn_value) cmds.select(target, r=True) else: add_sine_attributes(target, sine_prefix=stretchy_name, tick_source_attr='time1.outTime', hide_unkeyable=False, add_absolute_output=add_abs_output_value, nice_name_prefix=add_prefix_nn_value) cmds.select(target, r=True)
def close_help_gui(): ' Closes Help Window ' if cmds.window(window_name, exists=True): cmds.deleteUI(window_name, window=True)
-6,909,947,570,174,779,000
Closes Help Window
python-scripts/gt_add_sine_attributes.py
close_help_gui
freemanpro/gt-tools
python
def close_help_gui(): ' ' if cmds.window(window_name, exists=True): cmds.deleteUI(window_name, window=True)
@event('manager.startup') def init_parsers(manager): 'Prepare our list of parsing plugins and default parsers.' for parser_type in PARSER_TYPES: parsers[parser_type] = {} for p in plugin.get_plugins(group=(parser_type + '_parser')): parsers[parser_type][p.name.replace('parser_', '')] = p.instance func_name = ('parse_' + parser_type) default_parsers[parser_type] = max(iter(parsers[parser_type].items()), key=(lambda p: getattr(getattr(p[1], func_name), 'priority', 0)))[0] log.debug(('setting default %s parser to %s. (options: %s)' % (parser_type, default_parsers[parser_type], parsers[parser_type])))
8,651,478,703,859,171,000
Prepare our list of parsing plugins and default parsers.
flexget/plugins/parsers/plugin_parsing.py
init_parsers
jbones89/Flexget
python
@event('manager.startup') def init_parsers(manager): for parser_type in PARSER_TYPES: parsers[parser_type] = {} for p in plugin.get_plugins(group=(parser_type + '_parser')): parsers[parser_type][p.name.replace('parser_', )] = p.instance func_name = ('parse_' + parser_type) default_parsers[parser_type] = max(iter(parsers[parser_type].items()), key=(lambda p: getattr(getattr(p[1], func_name), 'priority', 0)))[0] log.debug(('setting default %s parser to %s. (options: %s)' % (parser_type, default_parsers[parser_type], parsers[parser_type])))
def parse_series(self, data, name=None, **kwargs): '\n Use the selected series parser to parse series information from `data`\n\n :param data: The raw string to parse information from.\n :param name: The series name to parse data for. If not supplied, parser will attempt to guess series name\n automatically from `data`.\n\n :returns: An object containing the parsed information. The `valid` attribute will be set depending on success.\n ' parser = parsers['series'][selected_parsers.get('series', default_parsers.get('series'))] return parser.parse_series(data, name=name, **kwargs)
5,577,953,992,979,921,000
Use the selected series parser to parse series information from `data` :param data: The raw string to parse information from. :param name: The series name to parse data for. If not supplied, parser will attempt to guess series name automatically from `data`. :returns: An object containing the parsed information. The `valid` attribute will be set depending on success.
flexget/plugins/parsers/plugin_parsing.py
parse_series
jbones89/Flexget
python
def parse_series(self, data, name=None, **kwargs): '\n Use the selected series parser to parse series information from `data`\n\n :param data: The raw string to parse information from.\n :param name: The series name to parse data for. If not supplied, parser will attempt to guess series name\n automatically from `data`.\n\n :returns: An object containing the parsed information. The `valid` attribute will be set depending on success.\n ' parser = parsers['series'][selected_parsers.get('series', default_parsers.get('series'))] return parser.parse_series(data, name=name, **kwargs)
def parse_movie(self, data, **kwargs): '\n Use the selected movie parser to parse movie information from `data`\n\n :param data: The raw string to parse information from\n\n :returns: An object containing the parsed information. The `valid` attribute will be set depending on success.\n ' parser = parsers['movie'][(selected_parsers.get('movie') or default_parsers['movie'])] return parser.parse_movie(data, **kwargs)
3,685,681,231,583,774,700
Use the selected movie parser to parse movie information from `data` :param data: The raw string to parse information from :returns: An object containing the parsed information. The `valid` attribute will be set depending on success.
flexget/plugins/parsers/plugin_parsing.py
parse_movie
jbones89/Flexget
python
def parse_movie(self, data, **kwargs): '\n Use the selected movie parser to parse movie information from `data`\n\n :param data: The raw string to parse information from\n\n :returns: An object containing the parsed information. The `valid` attribute will be set depending on success.\n ' parser = parsers['movie'][(selected_parsers.get('movie') or default_parsers['movie'])] return parser.parse_movie(data, **kwargs)
def save_users(users, filename='output.csv'): "Save users out to a .csv file\n\n Each row will represent a user UID, following by all the user's students\n (if the user has any)\n\n INPUT:\n > users: set of User objects\n > filename: filename to save .csv to." with open(filename, 'w') as file: for (count, user) in enumerate(users): file.write(str(user.get_uid())) for student in user.get_students(): file.write((',' + str(student.get_uid()))) file.write('\n') if ((count % 100) == 0): file.flush() return
-6,584,503,492,924,957,000
Save users out to a .csv file Each row will represent a user UID, following by all the user's students (if the user has any) INPUT: > users: set of User objects > filename: filename to save .csv to.
save_load.py
save_users
Garrett-R/infections
python
def save_users(users, filename='output.csv'): "Save users out to a .csv file\n\n Each row will represent a user UID, following by all the user's students\n (if the user has any)\n\n INPUT:\n > users: set of User objects\n > filename: filename to save .csv to." with open(filename, 'w') as file: for (count, user) in enumerate(users): file.write(str(user.get_uid())) for student in user.get_students(): file.write((',' + str(student.get_uid()))) file.write('\n') if ((count % 100) == 0): file.flush() return
def load_users(filename): "Load users from a .csv file\n\n Each row will represent a user uid, following by all the user's student\n (if the user has any). Note: the uid is not assumed to be an integer,\n so it read in as a string, which shouldn't matter anyway.\n\n TODO: we could probably speed this up by loading multiple lines at a time.\n\n INPUT:\n > filename: filename to read .csv from\n\n RETURN:\n > users: a set of User objects" users = dict() with open(filename, 'r') as file: for line in file: line = line.split('\n')[0] split_line = line.split(',') new_uid = _try_converting_to_int(split_line[0]) new_user = User(new_uid) users.update({new_user.get_uid(): new_user}) with open(filename, 'r') as file: for line in file: line = line.split('\n')[0] split_line = line.split(',') current_uid = _try_converting_to_int(split_line[0]) for student_uid in split_line[1:]: student_uid = _try_converting_to_int(student_uid) users[current_uid].add_students(users[student_uid]) return set(users.values())
6,156,269,794,225,563,000
Load users from a .csv file Each row will represent a user uid, following by all the user's student (if the user has any). Note: the uid is not assumed to be an integer, so it read in as a string, which shouldn't matter anyway. TODO: we could probably speed this up by loading multiple lines at a time. INPUT: > filename: filename to read .csv from RETURN: > users: a set of User objects
save_load.py
load_users
Garrett-R/infections
python
def load_users(filename): "Load users from a .csv file\n\n Each row will represent a user uid, following by all the user's student\n (if the user has any). Note: the uid is not assumed to be an integer,\n so it read in as a string, which shouldn't matter anyway.\n\n TODO: we could probably speed this up by loading multiple lines at a time.\n\n INPUT:\n > filename: filename to read .csv from\n\n RETURN:\n > users: a set of User objects" users = dict() with open(filename, 'r') as file: for line in file: line = line.split('\n')[0] split_line = line.split(',') new_uid = _try_converting_to_int(split_line[0]) new_user = User(new_uid) users.update({new_user.get_uid(): new_user}) with open(filename, 'r') as file: for line in file: line = line.split('\n')[0] split_line = line.split(',') current_uid = _try_converting_to_int(split_line[0]) for student_uid in split_line[1:]: student_uid = _try_converting_to_int(student_uid) users[current_uid].add_students(users[student_uid]) return set(users.values())
def check_best(self, metric_dict): '\n Hook function, called after metrics are calculated\n ' if (metric_dict['bl_acc'] > self.best_value): if (self.iters > 0): LOGGER.text(f"Evaluation improved from {self.best_value} to {metric_dict['bl_acc']}", level=LoggerObserver.INFO) self.best_value = metric_dict['bl_acc'] self.save_checkpoint('best') elif self.visualize_when_val: self.visualize_pred()
969,269,354,907,937,000
Hook function, called after metrics are calculated
theseus/classification/trainer/trainer.py
check_best
lannguyen0910/theseus
python
def check_best(self, metric_dict): '\n \n ' if (metric_dict['bl_acc'] > self.best_value): if (self.iters > 0): LOGGER.text(f"Evaluation improved from {self.best_value} to {metric_dict['bl_acc']}", level=LoggerObserver.INFO) self.best_value = metric_dict['bl_acc'] self.save_checkpoint('best') elif self.visualize_when_val: self.visualize_pred()
def save_checkpoint(self, outname='last'): '\n Save all information of the current iteration\n ' weights = {'model': self.model.model.state_dict(), 'optimizer': self.optimizer.state_dict(), 'iters': self.iters, 'best_value': self.best_value} if (self.scaler is not None): weights[self.scaler.state_dict_key] = self.scaler.state_dict() self.checkpoint.save(weights, outname)
-3,763,531,432,588,769,300
Save all information of the current iteration
theseus/classification/trainer/trainer.py
save_checkpoint
lannguyen0910/theseus
python
def save_checkpoint(self, outname='last'): '\n \n ' weights = {'model': self.model.model.state_dict(), 'optimizer': self.optimizer.state_dict(), 'iters': self.iters, 'best_value': self.best_value} if (self.scaler is not None): weights[self.scaler.state_dict_key] = self.scaler.state_dict() self.checkpoint.save(weights, outname)
def load_checkpoint(self, path: str): '\n Load all information the current iteration from checkpoint \n ' LOGGER.text('Loading checkpoints...', level=LoggerObserver.INFO) state_dict = torch.load(path, map_location='cpu') self.iters = load_state_dict(self.iters, state_dict, 'iters') self.best_value = load_state_dict(self.best_value, state_dict, 'best_value') self.scaler = load_state_dict(self.scaler, state_dict, self.scaler.state_dict_key)
-1,633,654,067,348,363,500
Load all information the current iteration from checkpoint
theseus/classification/trainer/trainer.py
load_checkpoint
lannguyen0910/theseus
python
def load_checkpoint(self, path: str): '\n \n ' LOGGER.text('Loading checkpoints...', level=LoggerObserver.INFO) state_dict = torch.load(path, map_location='cpu') self.iters = load_state_dict(self.iters, state_dict, 'iters') self.best_value = load_state_dict(self.best_value, state_dict, 'best_value') self.scaler = load_state_dict(self.scaler, state_dict, self.scaler.state_dict_key)
def visualize_gt(self): '\n Visualize dataloader for sanity check \n ' LOGGER.text('Visualizing dataset...', level=LoggerObserver.DEBUG) visualizer = Visualizer() batch = next(iter(self.trainloader)) images = batch['inputs'] batch = [] for (idx, inputs) in enumerate(images): img_show = visualizer.denormalize(inputs) img_cam = TFF.to_tensor(img_show) batch.append(img_cam) grid_img = visualizer.make_grid(batch) fig = plt.figure(figsize=(8, 8)) plt.axis('off') plt.imshow(grid_img) plt.tight_layout(pad=0) LOGGER.log([{'tag': 'Sanitycheck/batch/train', 'value': fig, 'type': LoggerObserver.FIGURE, 'kwargs': {'step': self.iters}}]) batch = next(iter(self.valloader)) images = batch['inputs'] batch = [] for (idx, inputs) in enumerate(images): img_show = visualizer.denormalize(inputs) img_cam = TFF.to_tensor(img_show) batch.append(img_cam) grid_img = visualizer.make_grid(batch) fig = plt.figure(figsize=(8, 8)) plt.axis('off') plt.imshow(grid_img) plt.tight_layout(pad=0) LOGGER.log([{'tag': 'Sanitycheck/batch/val', 'value': fig, 'type': LoggerObserver.FIGURE, 'kwargs': {'step': self.iters}}])
7,366,678,842,902,099,000
Visualize dataloader for sanity check
theseus/classification/trainer/trainer.py
visualize_gt
lannguyen0910/theseus
python
def visualize_gt(self): '\n \n ' LOGGER.text('Visualizing dataset...', level=LoggerObserver.DEBUG) visualizer = Visualizer() batch = next(iter(self.trainloader)) images = batch['inputs'] batch = [] for (idx, inputs) in enumerate(images): img_show = visualizer.denormalize(inputs) img_cam = TFF.to_tensor(img_show) batch.append(img_cam) grid_img = visualizer.make_grid(batch) fig = plt.figure(figsize=(8, 8)) plt.axis('off') plt.imshow(grid_img) plt.tight_layout(pad=0) LOGGER.log([{'tag': 'Sanitycheck/batch/train', 'value': fig, 'type': LoggerObserver.FIGURE, 'kwargs': {'step': self.iters}}]) batch = next(iter(self.valloader)) images = batch['inputs'] batch = [] for (idx, inputs) in enumerate(images): img_show = visualizer.denormalize(inputs) img_cam = TFF.to_tensor(img_show) batch.append(img_cam) grid_img = visualizer.make_grid(batch) fig = plt.figure(figsize=(8, 8)) plt.axis('off') plt.imshow(grid_img) plt.tight_layout(pad=0) LOGGER.log([{'tag': 'Sanitycheck/batch/val', 'value': fig, 'type': LoggerObserver.FIGURE, 'kwargs': {'step': self.iters}}])
@torch.enable_grad() def visualize_pred(self): 'Visualize model prediction and CAM\n \n ' LOGGER.text('Visualizing model predictions...', level=LoggerObserver.DEBUG) visualizer = Visualizer() batch = next(iter(self.valloader)) images = batch['inputs'] targets = batch['targets'] self.model.eval() model_name = self.model.model.name grad_cam = CAMWrapper.get_method(name='gradcam', model=self.model.model.get_model(), model_name=model_name, use_cuda=next(self.model.parameters()).is_cuda) (grayscale_cams, label_indices, scores) = grad_cam(images, return_probs=True) gradcam_batch = [] pred_batch = [] for idx in range(len(grayscale_cams)): image = images[idx] target = targets[idx].item() label = label_indices[idx] grayscale_cam = grayscale_cams[idx, :] score = scores[idx] img_show = visualizer.denormalize(image) visualizer.set_image(img_show) if (self.valloader.dataset.classnames is not None): label = self.valloader.dataset.classnames[label] target = self.valloader.dataset.classnames[target] if (label == target): color = [0, 1, 0] else: color = [1, 0, 0] visualizer.draw_label(f'''GT: {target} P: {label} C: {score:.4f}''', fontColor=color, fontScale=0.8, thickness=2, outline=None, offset=100) img_cam = show_cam_on_image(img_show, grayscale_cam, use_rgb=True) img_cam = TFF.to_tensor(img_cam) gradcam_batch.append(img_cam) pred_img = visualizer.get_image() pred_img = TFF.to_tensor(pred_img) pred_batch.append(pred_img) if (idx == 63): break gradcam_grid_img = visualizer.make_grid(gradcam_batch) fig = plt.figure(figsize=(8, 8)) plt.imshow(gradcam_grid_img) plt.axis('off') plt.tight_layout(pad=0) LOGGER.log([{'tag': 'Validation/gradcam', 'value': fig, 'type': LoggerObserver.FIGURE, 'kwargs': {'step': self.iters}}]) pred_grid_img = visualizer.make_grid(pred_batch) fig = plt.figure(figsize=(10, 10)) plt.imshow(pred_grid_img) plt.axis('off') plt.tight_layout(pad=0) LOGGER.log([{'tag': 'Validation/prediction', 'value': fig, 'type': LoggerObserver.FIGURE, 'kwargs': {'step': self.iters}}]) self.optimizer.zero_grad()
-2,684,438,551,393,966,000
Visualize model prediction and CAM
theseus/classification/trainer/trainer.py
visualize_pred
lannguyen0910/theseus
python
@torch.enable_grad() def visualize_pred(self): '\n \n ' LOGGER.text('Visualizing model predictions...', level=LoggerObserver.DEBUG) visualizer = Visualizer() batch = next(iter(self.valloader)) images = batch['inputs'] targets = batch['targets'] self.model.eval() model_name = self.model.model.name grad_cam = CAMWrapper.get_method(name='gradcam', model=self.model.model.get_model(), model_name=model_name, use_cuda=next(self.model.parameters()).is_cuda) (grayscale_cams, label_indices, scores) = grad_cam(images, return_probs=True) gradcam_batch = [] pred_batch = [] for idx in range(len(grayscale_cams)): image = images[idx] target = targets[idx].item() label = label_indices[idx] grayscale_cam = grayscale_cams[idx, :] score = scores[idx] img_show = visualizer.denormalize(image) visualizer.set_image(img_show) if (self.valloader.dataset.classnames is not None): label = self.valloader.dataset.classnames[label] target = self.valloader.dataset.classnames[target] if (label == target): color = [0, 1, 0] else: color = [1, 0, 0] visualizer.draw_label(f'GT: {target} P: {label} C: {score:.4f}', fontColor=color, fontScale=0.8, thickness=2, outline=None, offset=100) img_cam = show_cam_on_image(img_show, grayscale_cam, use_rgb=True) img_cam = TFF.to_tensor(img_cam) gradcam_batch.append(img_cam) pred_img = visualizer.get_image() pred_img = TFF.to_tensor(pred_img) pred_batch.append(pred_img) if (idx == 63): break gradcam_grid_img = visualizer.make_grid(gradcam_batch) fig = plt.figure(figsize=(8, 8)) plt.imshow(gradcam_grid_img) plt.axis('off') plt.tight_layout(pad=0) LOGGER.log([{'tag': 'Validation/gradcam', 'value': fig, 'type': LoggerObserver.FIGURE, 'kwargs': {'step': self.iters}}]) pred_grid_img = visualizer.make_grid(pred_batch) fig = plt.figure(figsize=(10, 10)) plt.imshow(pred_grid_img) plt.axis('off') plt.tight_layout(pad=0) LOGGER.log([{'tag': 'Validation/prediction', 'value': fig, 'type': LoggerObserver.FIGURE, 'kwargs': {'step': self.iters}}]) self.optimizer.zero_grad()
def analyze_gt(self): '\n Perform simple data analysis\n ' LOGGER.text('Analyzing datasets...', level=LoggerObserver.DEBUG) analyzer = ClassificationAnalyzer() analyzer.add_dataset(self.trainloader.dataset) fig = analyzer.analyze(figsize=(10, 5)) LOGGER.log([{'tag': 'Sanitycheck/analysis/train', 'value': fig, 'type': LoggerObserver.FIGURE, 'kwargs': {'step': self.iters}}]) analyzer = ClassificationAnalyzer() analyzer.add_dataset(self.valloader.dataset) fig = analyzer.analyze(figsize=(10, 5)) LOGGER.log([{'tag': 'Sanitycheck/analysis/val', 'value': fig, 'type': LoggerObserver.FIGURE, 'kwargs': {'step': self.iters}}])
2,394,997,057,899,787,000
Perform simple data analysis
theseus/classification/trainer/trainer.py
analyze_gt
lannguyen0910/theseus
python
def analyze_gt(self): '\n \n ' LOGGER.text('Analyzing datasets...', level=LoggerObserver.DEBUG) analyzer = ClassificationAnalyzer() analyzer.add_dataset(self.trainloader.dataset) fig = analyzer.analyze(figsize=(10, 5)) LOGGER.log([{'tag': 'Sanitycheck/analysis/train', 'value': fig, 'type': LoggerObserver.FIGURE, 'kwargs': {'step': self.iters}}]) analyzer = ClassificationAnalyzer() analyzer.add_dataset(self.valloader.dataset) fig = analyzer.analyze(figsize=(10, 5)) LOGGER.log([{'tag': 'Sanitycheck/analysis/val', 'value': fig, 'type': LoggerObserver.FIGURE, 'kwargs': {'step': self.iters}}])
def sanitycheck(self): 'Sanity check before training\n ' self.visualize_gt() self.analyze_gt() self.visualize_model() self.evaluate_epoch()
2,781,777,548,193,682,000
Sanity check before training
theseus/classification/trainer/trainer.py
sanitycheck
lannguyen0910/theseus
python
def sanitycheck(self): '\n ' self.visualize_gt() self.analyze_gt() self.visualize_model() self.evaluate_epoch()
def test_message_causes_disconnect(self, message): 'Add a p2p connection that sends a message and check that it disconnects.' peer = self.nodes[0].add_p2p_connection(P2PInterface()) peer.send_message(message) peer.wait_for_disconnect() assert_equal(self.nodes[0].getconnectioncount(), 0)
1,046,188,331,780,544,800
Add a p2p connection that sends a message and check that it disconnects.
test/functional/p2p_nobloomfilter_messages.py
test_message_causes_disconnect
BakedInside/Beans-Core
python
def test_message_causes_disconnect(self, message): peer = self.nodes[0].add_p2p_connection(P2PInterface()) peer.send_message(message) peer.wait_for_disconnect() assert_equal(self.nodes[0].getconnectioncount(), 0)
def evaluate(datasource, select, result_table, model, label_name=None, model_params=None, result_column_names=[], pai_table=None): 'TBD\n ' if (model_params is None): model_params = {} validation_metrics = model_params.get('validation.metrics', 'accuracy_score') validation_metrics = [m.strip() for m in validation_metrics.split(',')] bst = xgb.Booster() if isinstance(model, six.string_types): with temp_file.TemporaryDirectory(as_cwd=True): model = Model.load_from_db(datasource, model) bst.load_model('my_model') else: assert isinstance(model, Model), ('not supported model type %s' % type(model)) bst.load_model('my_model') model_params = model.get_meta('attributes') fc_map_ir = model.get_meta('features') train_label = model.get_meta('label') train_label_desc = train_label.get_field_desc()[0] if label_name: train_label_desc.name = label_name feature_columns = compile_ir_feature_columns(fc_map_ir, EstimatorType.XGBOOST) field_descs = get_ordered_field_descs(fc_map_ir) feature_column_names = [fd.name for fd in field_descs] feature_metas = dict([(fd.name, fd.to_dict(dtype_to_string=True)) for fd in field_descs]) transform_fn = ComposedColumnTransformer(feature_column_names, *feature_columns['feature_columns']) is_pai = (True if pai_table else False) if is_pai: conn = PaiIOConnection.from_table(pai_table) else: conn = db.connect_with_data_source(datasource) with temp_file.TemporaryDirectory() as tmp_dir_name: pred_fn = os.path.join(tmp_dir_name, 'predict.txt') dpred = xgb_dataset(datasource=datasource, fn=pred_fn, dataset_sql=select, feature_metas=feature_metas, feature_column_names=feature_column_names, label_meta=train_label_desc.to_dict(dtype_to_string=True), cache=True, batch_size=10000, transform_fn=transform_fn, is_pai=is_pai, pai_table=pai_table, pai_single_file=True, feature_column_code=fc_map_ir) for (i, pred_dmatrix) in enumerate(dpred): if is_pai: feature_file_name = pred_fn else: feature_file_name = (pred_fn + ('_%d' % i)) preds = _calc_predict_result(bst, pred_dmatrix, model_params) _store_evaluate_result(preds, feature_file_name, train_label_desc, result_table, result_column_names, validation_metrics, conn) conn.close()
-4,562,751,783,326,163,500
TBD
python/runtime/step/xgboost/evaluate.py
evaluate
awsl-dbq/sqlflow
python
def evaluate(datasource, select, result_table, model, label_name=None, model_params=None, result_column_names=[], pai_table=None): '\n ' if (model_params is None): model_params = {} validation_metrics = model_params.get('validation.metrics', 'accuracy_score') validation_metrics = [m.strip() for m in validation_metrics.split(',')] bst = xgb.Booster() if isinstance(model, six.string_types): with temp_file.TemporaryDirectory(as_cwd=True): model = Model.load_from_db(datasource, model) bst.load_model('my_model') else: assert isinstance(model, Model), ('not supported model type %s' % type(model)) bst.load_model('my_model') model_params = model.get_meta('attributes') fc_map_ir = model.get_meta('features') train_label = model.get_meta('label') train_label_desc = train_label.get_field_desc()[0] if label_name: train_label_desc.name = label_name feature_columns = compile_ir_feature_columns(fc_map_ir, EstimatorType.XGBOOST) field_descs = get_ordered_field_descs(fc_map_ir) feature_column_names = [fd.name for fd in field_descs] feature_metas = dict([(fd.name, fd.to_dict(dtype_to_string=True)) for fd in field_descs]) transform_fn = ComposedColumnTransformer(feature_column_names, *feature_columns['feature_columns']) is_pai = (True if pai_table else False) if is_pai: conn = PaiIOConnection.from_table(pai_table) else: conn = db.connect_with_data_source(datasource) with temp_file.TemporaryDirectory() as tmp_dir_name: pred_fn = os.path.join(tmp_dir_name, 'predict.txt') dpred = xgb_dataset(datasource=datasource, fn=pred_fn, dataset_sql=select, feature_metas=feature_metas, feature_column_names=feature_column_names, label_meta=train_label_desc.to_dict(dtype_to_string=True), cache=True, batch_size=10000, transform_fn=transform_fn, is_pai=is_pai, pai_table=pai_table, pai_single_file=True, feature_column_code=fc_map_ir) for (i, pred_dmatrix) in enumerate(dpred): if is_pai: feature_file_name = pred_fn else: feature_file_name = (pred_fn + ('_%d' % i)) preds = _calc_predict_result(bst, pred_dmatrix, model_params) _store_evaluate_result(preds, feature_file_name, train_label_desc, result_table, result_column_names, validation_metrics, conn) conn.close()
def _store_evaluate_result(preds, feature_file_name, label_desc, result_table, result_column_names, validation_metrics, conn): '\n Save the evaluation result in the table.\n\n Args:\n preds: the prediction result.\n feature_file_name (str): the file path where the feature dumps.\n label_desc (FieldDesc): the label FieldDesc object.\n result_table (str): the result table name.\n result_column_names (list[str]): the result column names.\n validation_metrics (list[str]): the evaluation metric names.\n conn: the database connection object.\n\n Returns:\n None.\n ' y_test = [] with open(feature_file_name, 'r') as f: for line in f.readlines(): row = [i for i in line.strip().split('\t')] if (label_desc.dtype == DataType.INT64): y_test.append(int(row[0])) elif (label_desc.dtype == DataType.FLOAT32): y_test.append(float(row[0])) else: raise TypeError('unsupported data type {}'.format(label_desc.dtype)) y_test = np.array(y_test) evaluate_results = dict() for metric_name in validation_metrics: metric_name = metric_name.strip() if (metric_name not in SKLEARN_METRICS): raise ValueError(('unsupported metrics %s' % metric_name)) metric_func = getattr(sklearn.metrics, metric_name) metric_value = metric_func(y_test, preds) evaluate_results[metric_name] = metric_value with db.buffered_db_writer(conn, result_table, result_column_names) as w: row = ['0.0'] for mn in validation_metrics: row.append(str(evaluate_results[mn])) w.write(row)
-7,471,850,992,633,782,000
Save the evaluation result in the table. Args: preds: the prediction result. feature_file_name (str): the file path where the feature dumps. label_desc (FieldDesc): the label FieldDesc object. result_table (str): the result table name. result_column_names (list[str]): the result column names. validation_metrics (list[str]): the evaluation metric names. conn: the database connection object. Returns: None.
python/runtime/step/xgboost/evaluate.py
_store_evaluate_result
awsl-dbq/sqlflow
python
def _store_evaluate_result(preds, feature_file_name, label_desc, result_table, result_column_names, validation_metrics, conn): '\n Save the evaluation result in the table.\n\n Args:\n preds: the prediction result.\n feature_file_name (str): the file path where the feature dumps.\n label_desc (FieldDesc): the label FieldDesc object.\n result_table (str): the result table name.\n result_column_names (list[str]): the result column names.\n validation_metrics (list[str]): the evaluation metric names.\n conn: the database connection object.\n\n Returns:\n None.\n ' y_test = [] with open(feature_file_name, 'r') as f: for line in f.readlines(): row = [i for i in line.strip().split('\t')] if (label_desc.dtype == DataType.INT64): y_test.append(int(row[0])) elif (label_desc.dtype == DataType.FLOAT32): y_test.append(float(row[0])) else: raise TypeError('unsupported data type {}'.format(label_desc.dtype)) y_test = np.array(y_test) evaluate_results = dict() for metric_name in validation_metrics: metric_name = metric_name.strip() if (metric_name not in SKLEARN_METRICS): raise ValueError(('unsupported metrics %s' % metric_name)) metric_func = getattr(sklearn.metrics, metric_name) metric_value = metric_func(y_test, preds) evaluate_results[metric_name] = metric_value with db.buffered_db_writer(conn, result_table, result_column_names) as w: row = ['0.0'] for mn in validation_metrics: row.append(str(evaluate_results[mn])) w.write(row)
def chunk_fg_comp_dict_by_nbls(fg_model_comps_dict, use_redundancy=False, grp_size_threshold=5): "\n Order dict keys in order of number of baselines in each group\n\n\n chunk fit_groups in fg_model_comps_dict into chunks where all groups in the\n same chunk have the same number of baselines in each group.\n\n Parameters\n ----------\n fg_model_comps_dict: dict\n dictionary with keys that are tuples of tuples of 2-tuples (thats right, 3 levels)\n in the first level, each tuple represents a 'modeling group' visibilities in each\n modeling group are represented by a set of basis vectors that span all baselines in that\n group with elements raveled by baseline and then frequency. Each tuple in the modeling group is a\n 'redundant group' representing visibilities that we will represent with identical component coefficients\n each element of each 'redundant group' is a 2-tuple antenna pair. Our formalism easily accomodates modeling\n visibilities as redundant or non redundant (one simply needs to make each redundant group length 1).\n\n use_redundancy: bool, optional\n If False, break fitting groups with the same number of baselines in each redundant\n sub_group into different fitting groups with no redundancy in each\n redundant subgroup. This is to prevent fitting groups with single\n redundant groups of varying lengths from being lumped into different chunks\n increasing the number of chunks has a more significant impact on run-time\n then increasing the number of baselines in each chunk.\n default is False.\n Returns:\n fg_model_comps_dict_chunked: dict\n dictionary where each key is a 2-tuple (nbl, nvecs) referring to the number\n of baselines in each vector and the number of vectors. Each 2-tuple points to\n a dictionary where each key is the fitting group in fg_comps_dict that includes\n nbl baselines. Each key in the referenced dict points to an (nred_grps * nfreqs x nvecs)\n numpy.ndarray describing the modeling components for each fitting group in the chunk.\n\n " chunked_keys = {} maxvecs = {} fg_model_comps_dict = copy.deepcopy(fg_model_comps_dict) if (not use_redundancy): keys_with_redundancy = list(fg_model_comps_dict.keys()) for fit_grp in keys_with_redundancy: rlens = np.asarray([len(red_grp) for red_grp in fit_grp]) if (np.allclose(rlens, np.mean(rlens)) and (len(rlens) < grp_size_threshold)): modeling_vectors = fg_model_comps_dict.pop(fit_grp) for rednum in range(int(rlens[0])): fit_grp_new = tuple([(red_grp[rednum],) for red_grp in fit_grp]) fg_model_comps_dict[fit_grp_new] = modeling_vectors for fit_grp in fg_model_comps_dict: nbl = 0 for red_grp in fit_grp: for ap in red_grp: nbl += 1 if (nbl in chunked_keys): chunked_keys[nbl].append(fit_grp) if (fg_model_comps_dict[fit_grp].shape[1] > maxvecs[nbl]): maxvecs[nbl] = fg_model_comps_dict[fit_grp].shape[1] else: chunked_keys[nbl] = [fit_grp] maxvecs[nbl] = fg_model_comps_dict[fit_grp].shape[1] fg_model_comps_dict_chunked = {} for nbl in chunked_keys: fg_model_comps_dict_chunked[(nbl, maxvecs[nbl])] = {k: fg_model_comps_dict[k] for k in chunked_keys[nbl]} return fg_model_comps_dict_chunked
-964,472,370,095,410,200
Order dict keys in order of number of baselines in each group chunk fit_groups in fg_model_comps_dict into chunks where all groups in the same chunk have the same number of baselines in each group. Parameters ---------- fg_model_comps_dict: dict dictionary with keys that are tuples of tuples of 2-tuples (thats right, 3 levels) in the first level, each tuple represents a 'modeling group' visibilities in each modeling group are represented by a set of basis vectors that span all baselines in that group with elements raveled by baseline and then frequency. Each tuple in the modeling group is a 'redundant group' representing visibilities that we will represent with identical component coefficients each element of each 'redundant group' is a 2-tuple antenna pair. Our formalism easily accomodates modeling visibilities as redundant or non redundant (one simply needs to make each redundant group length 1). use_redundancy: bool, optional If False, break fitting groups with the same number of baselines in each redundant sub_group into different fitting groups with no redundancy in each redundant subgroup. This is to prevent fitting groups with single redundant groups of varying lengths from being lumped into different chunks increasing the number of chunks has a more significant impact on run-time then increasing the number of baselines in each chunk. default is False. Returns: fg_model_comps_dict_chunked: dict dictionary where each key is a 2-tuple (nbl, nvecs) referring to the number of baselines in each vector and the number of vectors. Each 2-tuple points to a dictionary where each key is the fitting group in fg_comps_dict that includes nbl baselines. Each key in the referenced dict points to an (nred_grps * nfreqs x nvecs) numpy.ndarray describing the modeling components for each fitting group in the chunk.
calamity/calibration.py
chunk_fg_comp_dict_by_nbls
aewallwi/calamity
python
def chunk_fg_comp_dict_by_nbls(fg_model_comps_dict, use_redundancy=False, grp_size_threshold=5): "\n Order dict keys in order of number of baselines in each group\n\n\n chunk fit_groups in fg_model_comps_dict into chunks where all groups in the\n same chunk have the same number of baselines in each group.\n\n Parameters\n ----------\n fg_model_comps_dict: dict\n dictionary with keys that are tuples of tuples of 2-tuples (thats right, 3 levels)\n in the first level, each tuple represents a 'modeling group' visibilities in each\n modeling group are represented by a set of basis vectors that span all baselines in that\n group with elements raveled by baseline and then frequency. Each tuple in the modeling group is a\n 'redundant group' representing visibilities that we will represent with identical component coefficients\n each element of each 'redundant group' is a 2-tuple antenna pair. Our formalism easily accomodates modeling\n visibilities as redundant or non redundant (one simply needs to make each redundant group length 1).\n\n use_redundancy: bool, optional\n If False, break fitting groups with the same number of baselines in each redundant\n sub_group into different fitting groups with no redundancy in each\n redundant subgroup. This is to prevent fitting groups with single\n redundant groups of varying lengths from being lumped into different chunks\n increasing the number of chunks has a more significant impact on run-time\n then increasing the number of baselines in each chunk.\n default is False.\n Returns:\n fg_model_comps_dict_chunked: dict\n dictionary where each key is a 2-tuple (nbl, nvecs) referring to the number\n of baselines in each vector and the number of vectors. Each 2-tuple points to\n a dictionary where each key is the fitting group in fg_comps_dict that includes\n nbl baselines. Each key in the referenced dict points to an (nred_grps * nfreqs x nvecs)\n numpy.ndarray describing the modeling components for each fitting group in the chunk.\n\n " chunked_keys = {} maxvecs = {} fg_model_comps_dict = copy.deepcopy(fg_model_comps_dict) if (not use_redundancy): keys_with_redundancy = list(fg_model_comps_dict.keys()) for fit_grp in keys_with_redundancy: rlens = np.asarray([len(red_grp) for red_grp in fit_grp]) if (np.allclose(rlens, np.mean(rlens)) and (len(rlens) < grp_size_threshold)): modeling_vectors = fg_model_comps_dict.pop(fit_grp) for rednum in range(int(rlens[0])): fit_grp_new = tuple([(red_grp[rednum],) for red_grp in fit_grp]) fg_model_comps_dict[fit_grp_new] = modeling_vectors for fit_grp in fg_model_comps_dict: nbl = 0 for red_grp in fit_grp: for ap in red_grp: nbl += 1 if (nbl in chunked_keys): chunked_keys[nbl].append(fit_grp) if (fg_model_comps_dict[fit_grp].shape[1] > maxvecs[nbl]): maxvecs[nbl] = fg_model_comps_dict[fit_grp].shape[1] else: chunked_keys[nbl] = [fit_grp] maxvecs[nbl] = fg_model_comps_dict[fit_grp].shape[1] fg_model_comps_dict_chunked = {} for nbl in chunked_keys: fg_model_comps_dict_chunked[(nbl, maxvecs[nbl])] = {k: fg_model_comps_dict[k] for k in chunked_keys[nbl]} return fg_model_comps_dict_chunked
def tensorize_fg_model_comps_dict(fg_model_comps_dict, ants_map, nfreqs, use_redundancy=False, dtype=np.float32, notebook_progressbar=False, verbose=False, grp_size_threshold=5): 'Convert per-baseline model components into a Ndata x Ncomponent tensor\n\n Parameters\n ----------\n fg_model_comps_dict: dict\n dictionary where each key is a 2-tuple (nbl, nvecs) referring to the number\n of baselines in each vector and the number of vectors. Each 2-tuple points to\n a dictionary where each key is the fitting group in fg_comps_dict that includes\n nbl baselines. Each key in the referenced dict points to an (nred_grps * nfreqs x nvecs)\n numpy.ndarray describing the modeling components for each fitting group in the chunk.\n ants_map: dict mapping integers to integers\n map between each antenna number to a unique index between 0 and Nants_data\n (typically the index of each antenna in ants_map)\n nfreqs: int, optional\n number of frequency channels\n dtype: numpy.dtype\n tensor data types\n default is np.float32\n\n Returns\n -------\n fg_model_comps: list\n list of tf.Tensor objects where each tensor has shape (nvecs, ngrps, nbls, nfreqs)\n where nbls varies from tensor to tensor. Fitting groups with vectors that span nbls are lumped into the same\n modeling tensor along the ngrps axis. nvecs is chosen in chunk_fg_comp_dict_by_nbls\n to be the maximum number of vectors representing any of the ngrps baseline grps\n which means that many rows in nvecs will be zero. For example, if we are modeling with\n vectors that all span nbls=1 baseline and using delay-modes to model our data\n then nvecs will equal the largest number of delay modes necessary to model the wedge\n on all baselines even though the short baselines are described by far fewer modes\n on short baselines, most of the rows along the vector dimension will therefor be zero.\n This is wasteful of memory but it allows us to take advantage of the fast\n dense matrix operations on a GPU.\n\n corr_inds: list\n list of list of lists of 2-tuples. Hierarchy of lists is\n chunk\n group\n baseline - (int 2-tuple)\n\n ' echo(f'''{datetime.datetime.now()} Computing foreground components matrices... ''', verbose=verbose) fg_model_comps_dict = chunk_fg_comp_dict_by_nbls(fg_model_comps_dict, use_redundancy=use_redundancy, grp_size_threshold=grp_size_threshold) fg_model_comps = [] corr_inds = [] for (nbls, nvecs) in fg_model_comps_dict: ngrps = len(fg_model_comps_dict[(nbls, nvecs)]) modeling_matrix = np.zeros((nvecs, ngrps, nbls, nfreqs)) corr_inds_chunk = [] for (grpnum, modeling_grp) in enumerate(fg_model_comps_dict[(nbls, nvecs)]): corr_inds_grp = [] nbl = 0 for (rgrpnum, red_grp) in enumerate(modeling_grp): nred = len(red_grp) for ap in red_grp: (i, j) = (ants_map[ap[0]], ants_map[ap[1]]) corr_inds_grp.append((i, j)) vecslice = slice(0, fg_model_comps_dict[(nbls, nvecs)][modeling_grp].shape[1]) compslice = slice((rgrpnum * nfreqs), ((rgrpnum + 1) * nfreqs)) dslice = slice((nbl * nfreqs), ((nbl + 1) * nfreqs)) modeling_matrix[(vecslice, grpnum, nbl)] = fg_model_comps_dict[(nbls, nvecs)][modeling_grp][compslice].T nbl += 1 corr_inds_chunk.append(corr_inds_grp) fg_model_comps.append(tf.convert_to_tensor(modeling_matrix, dtype=dtype)) corr_inds.append(corr_inds_chunk) return (fg_model_comps, corr_inds)
-8,335,094,441,089,768,000
Convert per-baseline model components into a Ndata x Ncomponent tensor Parameters ---------- fg_model_comps_dict: dict dictionary where each key is a 2-tuple (nbl, nvecs) referring to the number of baselines in each vector and the number of vectors. Each 2-tuple points to a dictionary where each key is the fitting group in fg_comps_dict that includes nbl baselines. Each key in the referenced dict points to an (nred_grps * nfreqs x nvecs) numpy.ndarray describing the modeling components for each fitting group in the chunk. ants_map: dict mapping integers to integers map between each antenna number to a unique index between 0 and Nants_data (typically the index of each antenna in ants_map) nfreqs: int, optional number of frequency channels dtype: numpy.dtype tensor data types default is np.float32 Returns ------- fg_model_comps: list list of tf.Tensor objects where each tensor has shape (nvecs, ngrps, nbls, nfreqs) where nbls varies from tensor to tensor. Fitting groups with vectors that span nbls are lumped into the same modeling tensor along the ngrps axis. nvecs is chosen in chunk_fg_comp_dict_by_nbls to be the maximum number of vectors representing any of the ngrps baseline grps which means that many rows in nvecs will be zero. For example, if we are modeling with vectors that all span nbls=1 baseline and using delay-modes to model our data then nvecs will equal the largest number of delay modes necessary to model the wedge on all baselines even though the short baselines are described by far fewer modes on short baselines, most of the rows along the vector dimension will therefor be zero. This is wasteful of memory but it allows us to take advantage of the fast dense matrix operations on a GPU. corr_inds: list list of list of lists of 2-tuples. Hierarchy of lists is chunk group baseline - (int 2-tuple)
calamity/calibration.py
tensorize_fg_model_comps_dict
aewallwi/calamity
python
def tensorize_fg_model_comps_dict(fg_model_comps_dict, ants_map, nfreqs, use_redundancy=False, dtype=np.float32, notebook_progressbar=False, verbose=False, grp_size_threshold=5): 'Convert per-baseline model components into a Ndata x Ncomponent tensor\n\n Parameters\n ----------\n fg_model_comps_dict: dict\n dictionary where each key is a 2-tuple (nbl, nvecs) referring to the number\n of baselines in each vector and the number of vectors. Each 2-tuple points to\n a dictionary where each key is the fitting group in fg_comps_dict that includes\n nbl baselines. Each key in the referenced dict points to an (nred_grps * nfreqs x nvecs)\n numpy.ndarray describing the modeling components for each fitting group in the chunk.\n ants_map: dict mapping integers to integers\n map between each antenna number to a unique index between 0 and Nants_data\n (typically the index of each antenna in ants_map)\n nfreqs: int, optional\n number of frequency channels\n dtype: numpy.dtype\n tensor data types\n default is np.float32\n\n Returns\n -------\n fg_model_comps: list\n list of tf.Tensor objects where each tensor has shape (nvecs, ngrps, nbls, nfreqs)\n where nbls varies from tensor to tensor. Fitting groups with vectors that span nbls are lumped into the same\n modeling tensor along the ngrps axis. nvecs is chosen in chunk_fg_comp_dict_by_nbls\n to be the maximum number of vectors representing any of the ngrps baseline grps\n which means that many rows in nvecs will be zero. For example, if we are modeling with\n vectors that all span nbls=1 baseline and using delay-modes to model our data\n then nvecs will equal the largest number of delay modes necessary to model the wedge\n on all baselines even though the short baselines are described by far fewer modes\n on short baselines, most of the rows along the vector dimension will therefor be zero.\n This is wasteful of memory but it allows us to take advantage of the fast\n dense matrix operations on a GPU.\n\n corr_inds: list\n list of list of lists of 2-tuples. Hierarchy of lists is\n chunk\n group\n baseline - (int 2-tuple)\n\n ' echo(f'{datetime.datetime.now()} Computing foreground components matrices... ', verbose=verbose) fg_model_comps_dict = chunk_fg_comp_dict_by_nbls(fg_model_comps_dict, use_redundancy=use_redundancy, grp_size_threshold=grp_size_threshold) fg_model_comps = [] corr_inds = [] for (nbls, nvecs) in fg_model_comps_dict: ngrps = len(fg_model_comps_dict[(nbls, nvecs)]) modeling_matrix = np.zeros((nvecs, ngrps, nbls, nfreqs)) corr_inds_chunk = [] for (grpnum, modeling_grp) in enumerate(fg_model_comps_dict[(nbls, nvecs)]): corr_inds_grp = [] nbl = 0 for (rgrpnum, red_grp) in enumerate(modeling_grp): nred = len(red_grp) for ap in red_grp: (i, j) = (ants_map[ap[0]], ants_map[ap[1]]) corr_inds_grp.append((i, j)) vecslice = slice(0, fg_model_comps_dict[(nbls, nvecs)][modeling_grp].shape[1]) compslice = slice((rgrpnum * nfreqs), ((rgrpnum + 1) * nfreqs)) dslice = slice((nbl * nfreqs), ((nbl + 1) * nfreqs)) modeling_matrix[(vecslice, grpnum, nbl)] = fg_model_comps_dict[(nbls, nvecs)][modeling_grp][compslice].T nbl += 1 corr_inds_chunk.append(corr_inds_grp) fg_model_comps.append(tf.convert_to_tensor(modeling_matrix, dtype=dtype)) corr_inds.append(corr_inds_chunk) return (fg_model_comps, corr_inds)
def tensorize_data(uvdata, corr_inds, ants_map, polarization, time, data_scale_factor=1.0, weights=None, nsamples_in_weights=False, dtype=np.float32): 'Convert data in uvdata object to a tensor\n\n Parameters\n ----------\n uvdata: UVData object\n UVData object containing data, flags, and nsamples to tensorize.\n corr_inds: list\n list of list of lists of 2-tuples. Hierarchy of lists is\n chunk\n group\n baseline - (int 2-tuple)\n ants_map: dict mapping integers to integers\n map between each antenna number to a unique index between 0 and Nants_data\n (typically the index of each antenna in ants_map)\n polarization: str\n pol-str of gain to extract.\n time: float\n time of data to convert to tensor.\n data_scale_factor: float, optional\n overall scaling factor to divide tensorized data by.\n default is 1.0\n weights: UVFlag object, optional\n UVFlag weights object containing weights to use for data fitting.\n default is None -> use nsamples * ~flags if nsamples_in_weights\n or ~flags if not nsamples_in_weights\n nsamples_in_weights: bool, optional\n If True and weights is None, generate weights proportional to nsamples.\n default is False.\n dtype: numpy.dtype\n data-type to store in tensor.\n default is np.float32\n\n Returns\n -------\n data_r: list of tf.Tensor objects\n list of tf.Tensor objects. Each tensor has shape (ngrps, nbls, nfreqs)\n where ngrps, nbls are the dimensions of each sublist in corr_inds\n and contain the real components of the baselines specified by these 2-tuples.\n data_i: list of tf.Tensor objects\n list of tf.Tensor objects. Each tensor has shape (ngrps, nbls, nfreqs)\n where ngrps, nbls are the dimensions of each sublist in corr_inds\n and contain the imag components of the baselines specified by these 2-tuples.\n wgts: tf.Tensor object\n list of tf.Tensor objects. Each tensor has shape (ngrps, nbls, nfreqs)\n where ngrps, nbls are the dimensions of each sublist in corr_inds\n and contain the weights of the baselines specified by these 2-tuples.\n ' ants_map_inv = {ants_map[i]: i for i in ants_map} dshape = (uvdata.Nants_data, uvdata.Nants_data, uvdata.Nfreqs) data_r = np.zeros(dshape, dtype=dtype) data_i = np.zeros_like(data_r) wgts = np.zeros_like(data_r) wgtsum = 0.0 for chunk in corr_inds: for fitgrp in chunk: for (i, j) in fitgrp: ap = (ants_map_inv[i], ants_map_inv[j]) bl = (ap + (polarization,)) (dinds1, dinds2, pol_ind) = uvdata._key2inds(bl) if (len(dinds1) > 0): dinds = dinds1 conjugate = False pol_ind = pol_ind[0] else: dinds = dinds2 conjugate = True pol_ind = pol_ind[1] dind = dinds[np.where(np.isclose(uvdata.time_array[dinds], time, rtol=0.0, atol=1e-07))[0][0]] data = uvdata.data_array[dind, 0, :, pol_ind].squeeze() iflags = (~ uvdata.flag_array[dind, 0, :, pol_ind].squeeze()) nsamples = uvdata.nsample_array[dind, 0, :, pol_ind].squeeze() data /= data_scale_factor if conjugate: data = np.conj(data) data_r[(i, j)] = data.real.astype(dtype) data_i[(i, j)] = data.imag.astype(dtype) if (weights is None): wgts[(i, j)] = iflags if nsamples_in_weights: wgts[(i, j)] *= nsamples else: if (ap in weights.get_antpairs()): dinds = weights.antpair2ind(*ap) else: dinds = weights.antpair2ind(*ap[::(- 1)]) dind = dinds[np.where(np.isclose(weights.time_array[dinds], time, atol=1e-07, rtol=0.0))[0][0]] polnum = np.where((weights.polarization_array == uvutils.polstr2num(polarization, x_orientation=weights.x_orientation)))[0][0] wgts[(i, j)] = (weights.weights_array[dind, 0, :, polnum].astype(dtype) * iflags) if nsamples_in_weights: wgts[(i, j)] *= nsamples wgtsum += np.sum(wgts[(i, j)]) data_r = tf.convert_to_tensor(data_r, dtype=dtype) data_i = tf.convert_to_tensor(data_i, dtype=dtype) wgts = tf.convert_to_tensor((wgts / wgtsum), dtype=dtype) nchunks = len(corr_inds) data_r = [tf.gather_nd(data_r, corr_inds[cnum]) for cnum in range(nchunks)] data_i = [tf.gather_nd(data_i, corr_inds[cnum]) for cnum in range(nchunks)] wgts = [tf.gather_nd(wgts, corr_inds[cnum]) for cnum in range(nchunks)] return (data_r, data_i, wgts)
-2,030,708,951,956,363,000
Convert data in uvdata object to a tensor Parameters ---------- uvdata: UVData object UVData object containing data, flags, and nsamples to tensorize. corr_inds: list list of list of lists of 2-tuples. Hierarchy of lists is chunk group baseline - (int 2-tuple) ants_map: dict mapping integers to integers map between each antenna number to a unique index between 0 and Nants_data (typically the index of each antenna in ants_map) polarization: str pol-str of gain to extract. time: float time of data to convert to tensor. data_scale_factor: float, optional overall scaling factor to divide tensorized data by. default is 1.0 weights: UVFlag object, optional UVFlag weights object containing weights to use for data fitting. default is None -> use nsamples * ~flags if nsamples_in_weights or ~flags if not nsamples_in_weights nsamples_in_weights: bool, optional If True and weights is None, generate weights proportional to nsamples. default is False. dtype: numpy.dtype data-type to store in tensor. default is np.float32 Returns ------- data_r: list of tf.Tensor objects list of tf.Tensor objects. Each tensor has shape (ngrps, nbls, nfreqs) where ngrps, nbls are the dimensions of each sublist in corr_inds and contain the real components of the baselines specified by these 2-tuples. data_i: list of tf.Tensor objects list of tf.Tensor objects. Each tensor has shape (ngrps, nbls, nfreqs) where ngrps, nbls are the dimensions of each sublist in corr_inds and contain the imag components of the baselines specified by these 2-tuples. wgts: tf.Tensor object list of tf.Tensor objects. Each tensor has shape (ngrps, nbls, nfreqs) where ngrps, nbls are the dimensions of each sublist in corr_inds and contain the weights of the baselines specified by these 2-tuples.
calamity/calibration.py
tensorize_data
aewallwi/calamity
python
def tensorize_data(uvdata, corr_inds, ants_map, polarization, time, data_scale_factor=1.0, weights=None, nsamples_in_weights=False, dtype=np.float32): 'Convert data in uvdata object to a tensor\n\n Parameters\n ----------\n uvdata: UVData object\n UVData object containing data, flags, and nsamples to tensorize.\n corr_inds: list\n list of list of lists of 2-tuples. Hierarchy of lists is\n chunk\n group\n baseline - (int 2-tuple)\n ants_map: dict mapping integers to integers\n map between each antenna number to a unique index between 0 and Nants_data\n (typically the index of each antenna in ants_map)\n polarization: str\n pol-str of gain to extract.\n time: float\n time of data to convert to tensor.\n data_scale_factor: float, optional\n overall scaling factor to divide tensorized data by.\n default is 1.0\n weights: UVFlag object, optional\n UVFlag weights object containing weights to use for data fitting.\n default is None -> use nsamples * ~flags if nsamples_in_weights\n or ~flags if not nsamples_in_weights\n nsamples_in_weights: bool, optional\n If True and weights is None, generate weights proportional to nsamples.\n default is False.\n dtype: numpy.dtype\n data-type to store in tensor.\n default is np.float32\n\n Returns\n -------\n data_r: list of tf.Tensor objects\n list of tf.Tensor objects. Each tensor has shape (ngrps, nbls, nfreqs)\n where ngrps, nbls are the dimensions of each sublist in corr_inds\n and contain the real components of the baselines specified by these 2-tuples.\n data_i: list of tf.Tensor objects\n list of tf.Tensor objects. Each tensor has shape (ngrps, nbls, nfreqs)\n where ngrps, nbls are the dimensions of each sublist in corr_inds\n and contain the imag components of the baselines specified by these 2-tuples.\n wgts: tf.Tensor object\n list of tf.Tensor objects. Each tensor has shape (ngrps, nbls, nfreqs)\n where ngrps, nbls are the dimensions of each sublist in corr_inds\n and contain the weights of the baselines specified by these 2-tuples.\n ' ants_map_inv = {ants_map[i]: i for i in ants_map} dshape = (uvdata.Nants_data, uvdata.Nants_data, uvdata.Nfreqs) data_r = np.zeros(dshape, dtype=dtype) data_i = np.zeros_like(data_r) wgts = np.zeros_like(data_r) wgtsum = 0.0 for chunk in corr_inds: for fitgrp in chunk: for (i, j) in fitgrp: ap = (ants_map_inv[i], ants_map_inv[j]) bl = (ap + (polarization,)) (dinds1, dinds2, pol_ind) = uvdata._key2inds(bl) if (len(dinds1) > 0): dinds = dinds1 conjugate = False pol_ind = pol_ind[0] else: dinds = dinds2 conjugate = True pol_ind = pol_ind[1] dind = dinds[np.where(np.isclose(uvdata.time_array[dinds], time, rtol=0.0, atol=1e-07))[0][0]] data = uvdata.data_array[dind, 0, :, pol_ind].squeeze() iflags = (~ uvdata.flag_array[dind, 0, :, pol_ind].squeeze()) nsamples = uvdata.nsample_array[dind, 0, :, pol_ind].squeeze() data /= data_scale_factor if conjugate: data = np.conj(data) data_r[(i, j)] = data.real.astype(dtype) data_i[(i, j)] = data.imag.astype(dtype) if (weights is None): wgts[(i, j)] = iflags if nsamples_in_weights: wgts[(i, j)] *= nsamples else: if (ap in weights.get_antpairs()): dinds = weights.antpair2ind(*ap) else: dinds = weights.antpair2ind(*ap[::(- 1)]) dind = dinds[np.where(np.isclose(weights.time_array[dinds], time, atol=1e-07, rtol=0.0))[0][0]] polnum = np.where((weights.polarization_array == uvutils.polstr2num(polarization, x_orientation=weights.x_orientation)))[0][0] wgts[(i, j)] = (weights.weights_array[dind, 0, :, polnum].astype(dtype) * iflags) if nsamples_in_weights: wgts[(i, j)] *= nsamples wgtsum += np.sum(wgts[(i, j)]) data_r = tf.convert_to_tensor(data_r, dtype=dtype) data_i = tf.convert_to_tensor(data_i, dtype=dtype) wgts = tf.convert_to_tensor((wgts / wgtsum), dtype=dtype) nchunks = len(corr_inds) data_r = [tf.gather_nd(data_r, corr_inds[cnum]) for cnum in range(nchunks)] data_i = [tf.gather_nd(data_i, corr_inds[cnum]) for cnum in range(nchunks)] wgts = [tf.gather_nd(wgts, corr_inds[cnum]) for cnum in range(nchunks)] return (data_r, data_i, wgts)
def renormalize(uvdata_reference_model, uvdata_deconv, gains, polarization, time, additional_flags=None): 'Remove arbitrary phase and amplitude from deconvolved model and gains.\n\n Parameters\n ----------\n uvdata_reference_model: UVData object\n Reference model for "true" visibilities.\n uvdata_deconv: UVData object\n "Deconvolved" data solved for in self-cal loop.\n gains: UVCal object\n Gains solved for in self-cal loop.\n polarization: str\n Polarization string to compute phase and amplitude correction for.\n additional_flags: np.ndarray\n Any additional flags you wish to use for excluding data from normalization\n fed as an np.ndarray with same shape as uvdata_reference_model and uvdata_deconv.\n default is None -> Only exclude data in flags from reference model and deconv from\n determinging normalization.\n Returns\n -------\n N/A: Modifies uvdata_deconv and gains in-place.\n ' polnum_data = np.where((uvdata_deconv.polarization_array == uvutils.polstr2num(polarization, x_orientation=uvdata_deconv.x_orientation)))[0][0] bltsel = np.isclose(uvdata_deconv.time_array, time, atol=1e-07, rtol=0.0) selection = ((~ uvdata_deconv.flag_array[bltsel, :, :, polnum_data]) & (~ uvdata_reference_model.flag_array[bltsel, :, :, polnum_data])) if (additional_flags is not None): selection = (selection & (~ additional_flags[bltsel, :, :, polnum_data])) data_ratio = (uvdata_reference_model.data_array[bltsel, :, :, polnum_data][selection] / uvdata_deconv.data_array[bltsel, :, :, polnum_data][selection]) data_ratio[(~ np.isfinite(data_ratio))] = np.nan scale_factor_phase = np.angle(np.nanmean(data_ratio)) scale_factor_abs = np.sqrt(np.nanmean((np.abs(data_ratio) ** 2.0))) scale_factor = scale_factor_abs uvdata_deconv.data_array[bltsel, :, :, polnum_data] *= scale_factor polnum_gains = np.where((gains.jones_array == uvutils.polstr2num(polarization, x_orientation=uvdata_deconv.x_orientation)))[0][0] gindt = np.where(np.isclose(gains.time_array, time, atol=1e-07, rtol=0.0))[0][0] gains.gain_array[:, :, :, gindt, polnum_gains] *= (scale_factor ** (- 0.5))
2,437,212,031,765,043,700
Remove arbitrary phase and amplitude from deconvolved model and gains. Parameters ---------- uvdata_reference_model: UVData object Reference model for "true" visibilities. uvdata_deconv: UVData object "Deconvolved" data solved for in self-cal loop. gains: UVCal object Gains solved for in self-cal loop. polarization: str Polarization string to compute phase and amplitude correction for. additional_flags: np.ndarray Any additional flags you wish to use for excluding data from normalization fed as an np.ndarray with same shape as uvdata_reference_model and uvdata_deconv. default is None -> Only exclude data in flags from reference model and deconv from determinging normalization. Returns ------- N/A: Modifies uvdata_deconv and gains in-place.
calamity/calibration.py
renormalize
aewallwi/calamity
python
def renormalize(uvdata_reference_model, uvdata_deconv, gains, polarization, time, additional_flags=None): 'Remove arbitrary phase and amplitude from deconvolved model and gains.\n\n Parameters\n ----------\n uvdata_reference_model: UVData object\n Reference model for "true" visibilities.\n uvdata_deconv: UVData object\n "Deconvolved" data solved for in self-cal loop.\n gains: UVCal object\n Gains solved for in self-cal loop.\n polarization: str\n Polarization string to compute phase and amplitude correction for.\n additional_flags: np.ndarray\n Any additional flags you wish to use for excluding data from normalization\n fed as an np.ndarray with same shape as uvdata_reference_model and uvdata_deconv.\n default is None -> Only exclude data in flags from reference model and deconv from\n determinging normalization.\n Returns\n -------\n N/A: Modifies uvdata_deconv and gains in-place.\n ' polnum_data = np.where((uvdata_deconv.polarization_array == uvutils.polstr2num(polarization, x_orientation=uvdata_deconv.x_orientation)))[0][0] bltsel = np.isclose(uvdata_deconv.time_array, time, atol=1e-07, rtol=0.0) selection = ((~ uvdata_deconv.flag_array[bltsel, :, :, polnum_data]) & (~ uvdata_reference_model.flag_array[bltsel, :, :, polnum_data])) if (additional_flags is not None): selection = (selection & (~ additional_flags[bltsel, :, :, polnum_data])) data_ratio = (uvdata_reference_model.data_array[bltsel, :, :, polnum_data][selection] / uvdata_deconv.data_array[bltsel, :, :, polnum_data][selection]) data_ratio[(~ np.isfinite(data_ratio))] = np.nan scale_factor_phase = np.angle(np.nanmean(data_ratio)) scale_factor_abs = np.sqrt(np.nanmean((np.abs(data_ratio) ** 2.0))) scale_factor = scale_factor_abs uvdata_deconv.data_array[bltsel, :, :, polnum_data] *= scale_factor polnum_gains = np.where((gains.jones_array == uvutils.polstr2num(polarization, x_orientation=uvdata_deconv.x_orientation)))[0][0] gindt = np.where(np.isclose(gains.time_array, time, atol=1e-07, rtol=0.0))[0][0] gains.gain_array[:, :, :, gindt, polnum_gains] *= (scale_factor ** (- 0.5))
def tensorize_gains(uvcal, polarization, time, dtype=np.float32): 'Helper function to extract gains into fitting tensors.\n\n Parameters\n ----------\n uvcal: UVCal object\n UVCal object holding gain data to tensorize.\n polarization: str\n pol-str of gain to extract.\n time: float\n JD of time to convert to tensor.\n dtype: numpy.dtype\n dtype of tensors to output.\n\n Returns\n -------\n gains_re: tf.Tensor object.\n tensor object holding real component of gains\n for time_index and polarization\n shape is Nant x Nfreq\n gains_im: tf.Tensor object.\n tensor object holding imag component of gains\n for time_index and polarization\n shape is Nant x Nfreq\n\n ' polnum = np.where((uvcal.jones_array == uvutils.polstr2num(polarization, x_orientation=uvcal.x_orientation)))[0][0] gindt = np.where(np.isclose(uvcal.time_array, time, atol=1e-07, rtol=0.0))[0][0] gains_re = tf.convert_to_tensor(uvcal.gain_array[:, 0, :, gindt, polnum].squeeze().real, dtype=dtype) gains_im = tf.convert_to_tensor(uvcal.gain_array[:, 0, :, gindt, polnum].squeeze().imag, dtype=dtype) return (gains_re, gains_im)
933,491,289,463,469,600
Helper function to extract gains into fitting tensors. Parameters ---------- uvcal: UVCal object UVCal object holding gain data to tensorize. polarization: str pol-str of gain to extract. time: float JD of time to convert to tensor. dtype: numpy.dtype dtype of tensors to output. Returns ------- gains_re: tf.Tensor object. tensor object holding real component of gains for time_index and polarization shape is Nant x Nfreq gains_im: tf.Tensor object. tensor object holding imag component of gains for time_index and polarization shape is Nant x Nfreq
calamity/calibration.py
tensorize_gains
aewallwi/calamity
python
def tensorize_gains(uvcal, polarization, time, dtype=np.float32): 'Helper function to extract gains into fitting tensors.\n\n Parameters\n ----------\n uvcal: UVCal object\n UVCal object holding gain data to tensorize.\n polarization: str\n pol-str of gain to extract.\n time: float\n JD of time to convert to tensor.\n dtype: numpy.dtype\n dtype of tensors to output.\n\n Returns\n -------\n gains_re: tf.Tensor object.\n tensor object holding real component of gains\n for time_index and polarization\n shape is Nant x Nfreq\n gains_im: tf.Tensor object.\n tensor object holding imag component of gains\n for time_index and polarization\n shape is Nant x Nfreq\n\n ' polnum = np.where((uvcal.jones_array == uvutils.polstr2num(polarization, x_orientation=uvcal.x_orientation)))[0][0] gindt = np.where(np.isclose(uvcal.time_array, time, atol=1e-07, rtol=0.0))[0][0] gains_re = tf.convert_to_tensor(uvcal.gain_array[:, 0, :, gindt, polnum].squeeze().real, dtype=dtype) gains_im = tf.convert_to_tensor(uvcal.gain_array[:, 0, :, gindt, polnum].squeeze().imag, dtype=dtype) return (gains_re, gains_im)
def yield_fg_model_array(nants, nfreqs, fg_model_comps, fg_coeffs, corr_inds): 'Compute tensor foreground model.\n\n Parameters\n ----------\n nants: int\n number of antennas in data to model.\n freqs: int\n number of frequencies in data to model.\n fg_model_comps: list\n list of fg modeling tf.Tensor objects\n representing foreground modeling vectors.\n Each tensor is (nvecs, ngrps, nbls, nfreqs)\n fg_coeffs: list\n list of fg modeling tf.Tensor objects\n representing foreground modeling coefficients.\n Each tensor is (nvecs, ngrps, 1, 1)\n corr_inds: list\n list of list of lists of 2-tuples. Hierarchy of lists is\n chunk\n group\n baseline - (int 2-tuple)\n\n Returns\n -------\n model: tf.Tensor object\n nants x nants x nfreqs model of the visibility data\n ' model = np.zeros((nants, nants, nfreqs)) nchunks = len(fg_model_comps) for cnum in range(nchunks): ngrps = fg_model_comps[cnum].shape[1] gchunk = tf.reduce_sum((fg_coeffs[cnum] * fg_model_comps[cnum]), axis=0).numpy() for gnum in range(ngrps): for (blnum, (i, j)) in enumerate(corr_inds[cnum][gnum]): model[(i, j)] = gchunk[(gnum, blnum)] return model
-4,389,784,291,805,237,000
Compute tensor foreground model. Parameters ---------- nants: int number of antennas in data to model. freqs: int number of frequencies in data to model. fg_model_comps: list list of fg modeling tf.Tensor objects representing foreground modeling vectors. Each tensor is (nvecs, ngrps, nbls, nfreqs) fg_coeffs: list list of fg modeling tf.Tensor objects representing foreground modeling coefficients. Each tensor is (nvecs, ngrps, 1, 1) corr_inds: list list of list of lists of 2-tuples. Hierarchy of lists is chunk group baseline - (int 2-tuple) Returns ------- model: tf.Tensor object nants x nants x nfreqs model of the visibility data
calamity/calibration.py
yield_fg_model_array
aewallwi/calamity
python
def yield_fg_model_array(nants, nfreqs, fg_model_comps, fg_coeffs, corr_inds): 'Compute tensor foreground model.\n\n Parameters\n ----------\n nants: int\n number of antennas in data to model.\n freqs: int\n number of frequencies in data to model.\n fg_model_comps: list\n list of fg modeling tf.Tensor objects\n representing foreground modeling vectors.\n Each tensor is (nvecs, ngrps, nbls, nfreqs)\n fg_coeffs: list\n list of fg modeling tf.Tensor objects\n representing foreground modeling coefficients.\n Each tensor is (nvecs, ngrps, 1, 1)\n corr_inds: list\n list of list of lists of 2-tuples. Hierarchy of lists is\n chunk\n group\n baseline - (int 2-tuple)\n\n Returns\n -------\n model: tf.Tensor object\n nants x nants x nfreqs model of the visibility data\n ' model = np.zeros((nants, nants, nfreqs)) nchunks = len(fg_model_comps) for cnum in range(nchunks): ngrps = fg_model_comps[cnum].shape[1] gchunk = tf.reduce_sum((fg_coeffs[cnum] * fg_model_comps[cnum]), axis=0).numpy() for gnum in range(ngrps): for (blnum, (i, j)) in enumerate(corr_inds[cnum][gnum]): model[(i, j)] = gchunk[(gnum, blnum)] return model
def fit_gains_and_foregrounds(g_r, g_i, fg_r, fg_i, data_r, data_i, wgts, fg_comps, corr_inds, use_min=False, tol=1e-14, maxsteps=10000, optimizer='Adamax', freeze_model=False, verbose=False, notebook_progressbar=False, dtype=np.float32, graph_mode=False, n_profile_steps=0, profile_log_dir='./logdir', sky_model_r=None, sky_model_i=None, model_regularization=None, graph_args_dict=None, **opt_kwargs): 'Run optimization loop to fit gains and foreground components.\n\n Parameters\n ----------\n g_r: tf.Tensor object.\n tf.Tensor object holding real parts of gains.\n g_i: tf.Tensor object.\n tf.Tensor object holding imag parts of gains.\n fg_r: list\n list of tf.Tensor objects. Each has shape (nvecs, ngrps, 1, 1)\n tf.Tensor object holding foreground coeffs.\n fg_i: list\n list of tf.Tensor objects. Each has shape (nvecs, ngrps, 1, 1)\n tf.Tensor object holding imag coeffs.\n data_r: list\n list of tf.Tensor objects. Each has shape (ngrps, nbls, nfreqs)\n real part of data to fit.\n data_i: list\n list of tf.Tensor objects. Each has shape (ngrps, nbls, nfreqs)\n imag part of data to fit.\n wgts: list\n list of tf.Tensor objects. Each has shape (ngrps, nbls, nfreqs)\n fg_comps: list:\n list of tf.Tensor objects. Each has shape (nvecs, ngrps, nbls, nfreqs)\n represents vectors to be used in modeling visibilities.\n corr_inds: list\n list of list of lists of 2-tuples. Hierarchy of lists is\n chunk\n group\n baseline - (int 2-tuple)\n use_min: bool, optional\n if True, use the value that minimizes the loss function\n regardless of where optimization loop ended up\n (prevents overshooting due to excess momentum)\n tol: float, optional\n halt optimization loop once the loss changes by less then this value.\n default is 1e-14\n maxsteps: int, optional\n maximum number of opt.minimize calls before halting.\n default is 10000\n optimizer: string\n Name of optimizer. See OPTIMIZERS dictionary which contains optimizers described in\n https://www.tensorflow.org/api_docs/python/tf/keras/optimizers\n default is \'Adamax\'\n freeze_model: bool, optional\n Only optimize loss function wrt gain variables. This is effectively traditional model-based calibration\n with sky_model as the model (but projected onto the foreground basis vectors).\n default is False.\n verbose: bool, optional\n lots of text output\n default is False.\n notebook_progressbar: bool, optional\n use progress bar optimized for notebook output.\n default is False.\n graph_mode: bool, optional\n if True, compile gradient update step in graph mode to speed up\n runtime by ~2-3x. I\'ve found that this helps on CPUs but on GPUs\n it actually increases runtime by a similar factor.\n n_profile_steps: bool, optional\n number of steps to run profiling on\n default is 0.\n profile_log_dir: str, optional\n directory to save profile logs to\n default is \'./logdir\'\n sky_model_r: list of tf.Tensor objects, optional\n chunked tensors containing model in same format as data_r\n sky_model_i: list of tf.Tensor objects, optional\n chunked tensors containing model in the same format as data_i\n model_regularization: str, optional\n type of model regularization to perform. Currently support "sum"\n where the sums of real and imaginary parts (across all bls and freqs)\n are constrained to be the same as the sum of real and imag parts\n of data.\n opt_kwargs: kwarg dict\n additional kwargs for tf.opt.Optimizer(). See tensorflow docs.\n\n Returns\n -------\n g_r_opt: tf.Tensor object\n real part of optimized gains.\n g_i_opt: tf.Tensor object\n imag part of optimized gains.\n fg_r_opt: tf.Tensor object\n real part of foreground coeffs.\n fg_i_opt: tf.Tensor object.\n imag part of optimized foreground coeffs.\n fit_history: dict\n dictionary containing fit history for each time-step and polarization in the data with fields:\n \'loss_history\': list of values of the loss function in each minimization iteration.\n ' if (graph_args_dict is None): graph_args_dict = {} echo(f'Using {str(dtype)} precision.') echo(f'{datetime.datetime.now()} Provided the following opt_kwargs') for k in opt_kwargs: echo(f'{k}: {opt_kwargs[k]}') opt = OPTIMIZERS[optimizer](**opt_kwargs) fit_history = {'loss': []} min_loss = 9e+99 nants = g_r.shape[0] nfreqs = g_r.shape[1] ant0_inds = [] ant1_inds = [] nchunks = len(fg_comps) for cnum in range(nchunks): ant0_chunk = [] ant1_chunk = [] ngrps = len(corr_inds[cnum]) for gnum in range(ngrps): ant0_grp = [] ant1_grp = [] for cpair in corr_inds[cnum][gnum]: ant0_grp.append(cpair[0]) ant1_grp.append(cpair[1]) ant0_chunk.append(ant0_grp) ant1_chunk.append(ant1_grp) ant0_inds.append(ant0_chunk) ant1_inds.append(ant1_chunk) g_r = tf.Variable(g_r) g_i = tf.Variable(g_i) if (not freeze_model): fg_r = [tf.Variable(fgr) for fgr in fg_r] fg_i = [tf.Variable(fgi) for fgi in fg_i] vars = (([g_r, g_i] + fg_r) + fg_i) else: vars = [g_r, g_i] echo(f'{datetime.datetime.now()} Performing gradient descent on {np.prod(g_r.shape)} complex gain parameters...', verbose=verbose) if (not freeze_model): echo(f'Performing gradient descent on total of {int(np.sum([(fgr.shape[0] * fgr.shape[1]) for fgr in fg_r]))} complex foreground parameters', verbose=verbose) echo(f"Foreground Parameters grouped into chunks of shape ((nvecs, ngrps): nbls) {[((str(fgr.shape[:2]) + ':') + str(dc.shape[1])) for (fgr, dc) in zip(fg_r, data_r)]}", verbose=verbose) if (model_regularization == 'sum'): prior_r_sum = tf.reduce_sum(tf.stack([tf.reduce_sum((sky_model_r[cnum] * wgts[cnum])) for cnum in range(nchunks)])) prior_i_sum = tf.reduce_sum(tf.stack([tf.reduce_sum((sky_model_i[cnum] * wgts[cnum])) for cnum in range(nchunks)])) def loss_function(): return mse_chunked_sum_regularized(g_r=g_r, g_i=g_i, fg_r=fg_r, fg_i=fg_i, fg_comps=fg_comps, nchunks=nchunks, data_r=data_r, data_i=data_i, wgts=wgts, ant0_inds=ant0_inds, ant1_inds=ant1_inds, dtype=dtype, prior_r_sum=prior_r_sum, prior_i_sum=prior_i_sum) else: def loss_function(): return mse_chunked(g_r=g_r, g_i=g_i, fg_r=fg_r, fg_i=fg_i, fg_comps=fg_comps, nchunks=nchunks, data_r=data_r, data_i=data_i, wgts=wgts, ant0_inds=ant0_inds, ant1_inds=ant1_inds, dtype=dtype) def train_step_code(): with tf.GradientTape() as tape: loss = loss_function() grads = tape.gradient(loss, vars) opt.apply_gradients(zip(grads, vars)) return loss if graph_mode: @tf.function(**graph_args_dict) def train_step(): return train_step_code() else: def train_step(): return train_step_code() if (n_profile_steps > 0): echo(f'{datetime.datetime.now()} Profiling with {n_profile_steps}. And writing output to {profile_log_dir}...') tf.profiler.experimental.start(profile_log_dir) for step in PBARS[notebook_progressbar](range(n_profile_steps)): with tf.profiler.experimental.Trace('train', step_num=step): train_step() tf.profiler.experimental.stop() echo(f'''{datetime.datetime.now()} Building Computational Graph... ''', verbose=verbose) loss = train_step() echo(f'''{datetime.datetime.now()} Performing Gradient Descent. Initial MSE of {loss:.2e}... ''', verbose=verbose) for step in PBARS[notebook_progressbar](range(maxsteps)): loss = train_step() fit_history['loss'].append(loss.numpy()) if (use_min and (fit_history['loss'][(- 1)] < min_loss)): min_loss = fit_history['loss'][(- 1)] g_r_opt = g_r.value() g_i_opt = g_i.value() if (not freeze_model): fg_r_opt = [fgr.value() for fgr in fg_r] fg_i_opt = [fgi.value() for fgi in fg_i] if ((step >= 1) and (np.abs((fit_history['loss'][(- 1)] - fit_history['loss'][(- 2)])) < tol)): echo(f'''Tolerance thresshold met with delta of {np.abs((fit_history['loss'][(- 1)] - fit_history['loss'][(- 2)])):.2e}. Terminating... ''', verbose=verbose) break if (not use_min): min_loss = fit_history['loss'][(- 1)] g_r_opt = g_r.value() g_i_opt = g_i.value() if (not freeze_model): fg_r_opt = [fgr.value() for fgr in fg_r] fg_i_opt = [fgi.value() for fgi in fg_i] else: fg_r_opt = fg_r fg_i_opt = fg_i echo(f'''{datetime.datetime.now()} Finished Gradient Descent. MSE of {min_loss:.2e}... ''', verbose=verbose) return (g_r_opt, g_i_opt, fg_r_opt, fg_i_opt, fit_history)
4,280,224,059,098,685,400
Run optimization loop to fit gains and foreground components. Parameters ---------- g_r: tf.Tensor object. tf.Tensor object holding real parts of gains. g_i: tf.Tensor object. tf.Tensor object holding imag parts of gains. fg_r: list list of tf.Tensor objects. Each has shape (nvecs, ngrps, 1, 1) tf.Tensor object holding foreground coeffs. fg_i: list list of tf.Tensor objects. Each has shape (nvecs, ngrps, 1, 1) tf.Tensor object holding imag coeffs. data_r: list list of tf.Tensor objects. Each has shape (ngrps, nbls, nfreqs) real part of data to fit. data_i: list list of tf.Tensor objects. Each has shape (ngrps, nbls, nfreqs) imag part of data to fit. wgts: list list of tf.Tensor objects. Each has shape (ngrps, nbls, nfreqs) fg_comps: list: list of tf.Tensor objects. Each has shape (nvecs, ngrps, nbls, nfreqs) represents vectors to be used in modeling visibilities. corr_inds: list list of list of lists of 2-tuples. Hierarchy of lists is chunk group baseline - (int 2-tuple) use_min: bool, optional if True, use the value that minimizes the loss function regardless of where optimization loop ended up (prevents overshooting due to excess momentum) tol: float, optional halt optimization loop once the loss changes by less then this value. default is 1e-14 maxsteps: int, optional maximum number of opt.minimize calls before halting. default is 10000 optimizer: string Name of optimizer. See OPTIMIZERS dictionary which contains optimizers described in https://www.tensorflow.org/api_docs/python/tf/keras/optimizers default is 'Adamax' freeze_model: bool, optional Only optimize loss function wrt gain variables. This is effectively traditional model-based calibration with sky_model as the model (but projected onto the foreground basis vectors). default is False. verbose: bool, optional lots of text output default is False. notebook_progressbar: bool, optional use progress bar optimized for notebook output. default is False. graph_mode: bool, optional if True, compile gradient update step in graph mode to speed up runtime by ~2-3x. I've found that this helps on CPUs but on GPUs it actually increases runtime by a similar factor. n_profile_steps: bool, optional number of steps to run profiling on default is 0. profile_log_dir: str, optional directory to save profile logs to default is './logdir' sky_model_r: list of tf.Tensor objects, optional chunked tensors containing model in same format as data_r sky_model_i: list of tf.Tensor objects, optional chunked tensors containing model in the same format as data_i model_regularization: str, optional type of model regularization to perform. Currently support "sum" where the sums of real and imaginary parts (across all bls and freqs) are constrained to be the same as the sum of real and imag parts of data. opt_kwargs: kwarg dict additional kwargs for tf.opt.Optimizer(). See tensorflow docs. Returns ------- g_r_opt: tf.Tensor object real part of optimized gains. g_i_opt: tf.Tensor object imag part of optimized gains. fg_r_opt: tf.Tensor object real part of foreground coeffs. fg_i_opt: tf.Tensor object. imag part of optimized foreground coeffs. fit_history: dict dictionary containing fit history for each time-step and polarization in the data with fields: 'loss_history': list of values of the loss function in each minimization iteration.
calamity/calibration.py
fit_gains_and_foregrounds
aewallwi/calamity
python
def fit_gains_and_foregrounds(g_r, g_i, fg_r, fg_i, data_r, data_i, wgts, fg_comps, corr_inds, use_min=False, tol=1e-14, maxsteps=10000, optimizer='Adamax', freeze_model=False, verbose=False, notebook_progressbar=False, dtype=np.float32, graph_mode=False, n_profile_steps=0, profile_log_dir='./logdir', sky_model_r=None, sky_model_i=None, model_regularization=None, graph_args_dict=None, **opt_kwargs): 'Run optimization loop to fit gains and foreground components.\n\n Parameters\n ----------\n g_r: tf.Tensor object.\n tf.Tensor object holding real parts of gains.\n g_i: tf.Tensor object.\n tf.Tensor object holding imag parts of gains.\n fg_r: list\n list of tf.Tensor objects. Each has shape (nvecs, ngrps, 1, 1)\n tf.Tensor object holding foreground coeffs.\n fg_i: list\n list of tf.Tensor objects. Each has shape (nvecs, ngrps, 1, 1)\n tf.Tensor object holding imag coeffs.\n data_r: list\n list of tf.Tensor objects. Each has shape (ngrps, nbls, nfreqs)\n real part of data to fit.\n data_i: list\n list of tf.Tensor objects. Each has shape (ngrps, nbls, nfreqs)\n imag part of data to fit.\n wgts: list\n list of tf.Tensor objects. Each has shape (ngrps, nbls, nfreqs)\n fg_comps: list:\n list of tf.Tensor objects. Each has shape (nvecs, ngrps, nbls, nfreqs)\n represents vectors to be used in modeling visibilities.\n corr_inds: list\n list of list of lists of 2-tuples. Hierarchy of lists is\n chunk\n group\n baseline - (int 2-tuple)\n use_min: bool, optional\n if True, use the value that minimizes the loss function\n regardless of where optimization loop ended up\n (prevents overshooting due to excess momentum)\n tol: float, optional\n halt optimization loop once the loss changes by less then this value.\n default is 1e-14\n maxsteps: int, optional\n maximum number of opt.minimize calls before halting.\n default is 10000\n optimizer: string\n Name of optimizer. See OPTIMIZERS dictionary which contains optimizers described in\n https://www.tensorflow.org/api_docs/python/tf/keras/optimizers\n default is \'Adamax\'\n freeze_model: bool, optional\n Only optimize loss function wrt gain variables. This is effectively traditional model-based calibration\n with sky_model as the model (but projected onto the foreground basis vectors).\n default is False.\n verbose: bool, optional\n lots of text output\n default is False.\n notebook_progressbar: bool, optional\n use progress bar optimized for notebook output.\n default is False.\n graph_mode: bool, optional\n if True, compile gradient update step in graph mode to speed up\n runtime by ~2-3x. I\'ve found that this helps on CPUs but on GPUs\n it actually increases runtime by a similar factor.\n n_profile_steps: bool, optional\n number of steps to run profiling on\n default is 0.\n profile_log_dir: str, optional\n directory to save profile logs to\n default is \'./logdir\'\n sky_model_r: list of tf.Tensor objects, optional\n chunked tensors containing model in same format as data_r\n sky_model_i: list of tf.Tensor objects, optional\n chunked tensors containing model in the same format as data_i\n model_regularization: str, optional\n type of model regularization to perform. Currently support "sum"\n where the sums of real and imaginary parts (across all bls and freqs)\n are constrained to be the same as the sum of real and imag parts\n of data.\n opt_kwargs: kwarg dict\n additional kwargs for tf.opt.Optimizer(). See tensorflow docs.\n\n Returns\n -------\n g_r_opt: tf.Tensor object\n real part of optimized gains.\n g_i_opt: tf.Tensor object\n imag part of optimized gains.\n fg_r_opt: tf.Tensor object\n real part of foreground coeffs.\n fg_i_opt: tf.Tensor object.\n imag part of optimized foreground coeffs.\n fit_history: dict\n dictionary containing fit history for each time-step and polarization in the data with fields:\n \'loss_history\': list of values of the loss function in each minimization iteration.\n ' if (graph_args_dict is None): graph_args_dict = {} echo(f'Using {str(dtype)} precision.') echo(f'{datetime.datetime.now()} Provided the following opt_kwargs') for k in opt_kwargs: echo(f'{k}: {opt_kwargs[k]}') opt = OPTIMIZERS[optimizer](**opt_kwargs) fit_history = {'loss': []} min_loss = 9e+99 nants = g_r.shape[0] nfreqs = g_r.shape[1] ant0_inds = [] ant1_inds = [] nchunks = len(fg_comps) for cnum in range(nchunks): ant0_chunk = [] ant1_chunk = [] ngrps = len(corr_inds[cnum]) for gnum in range(ngrps): ant0_grp = [] ant1_grp = [] for cpair in corr_inds[cnum][gnum]: ant0_grp.append(cpair[0]) ant1_grp.append(cpair[1]) ant0_chunk.append(ant0_grp) ant1_chunk.append(ant1_grp) ant0_inds.append(ant0_chunk) ant1_inds.append(ant1_chunk) g_r = tf.Variable(g_r) g_i = tf.Variable(g_i) if (not freeze_model): fg_r = [tf.Variable(fgr) for fgr in fg_r] fg_i = [tf.Variable(fgi) for fgi in fg_i] vars = (([g_r, g_i] + fg_r) + fg_i) else: vars = [g_r, g_i] echo(f'{datetime.datetime.now()} Performing gradient descent on {np.prod(g_r.shape)} complex gain parameters...', verbose=verbose) if (not freeze_model): echo(f'Performing gradient descent on total of {int(np.sum([(fgr.shape[0] * fgr.shape[1]) for fgr in fg_r]))} complex foreground parameters', verbose=verbose) echo(f"Foreground Parameters grouped into chunks of shape ((nvecs, ngrps): nbls) {[((str(fgr.shape[:2]) + ':') + str(dc.shape[1])) for (fgr, dc) in zip(fg_r, data_r)]}", verbose=verbose) if (model_regularization == 'sum'): prior_r_sum = tf.reduce_sum(tf.stack([tf.reduce_sum((sky_model_r[cnum] * wgts[cnum])) for cnum in range(nchunks)])) prior_i_sum = tf.reduce_sum(tf.stack([tf.reduce_sum((sky_model_i[cnum] * wgts[cnum])) for cnum in range(nchunks)])) def loss_function(): return mse_chunked_sum_regularized(g_r=g_r, g_i=g_i, fg_r=fg_r, fg_i=fg_i, fg_comps=fg_comps, nchunks=nchunks, data_r=data_r, data_i=data_i, wgts=wgts, ant0_inds=ant0_inds, ant1_inds=ant1_inds, dtype=dtype, prior_r_sum=prior_r_sum, prior_i_sum=prior_i_sum) else: def loss_function(): return mse_chunked(g_r=g_r, g_i=g_i, fg_r=fg_r, fg_i=fg_i, fg_comps=fg_comps, nchunks=nchunks, data_r=data_r, data_i=data_i, wgts=wgts, ant0_inds=ant0_inds, ant1_inds=ant1_inds, dtype=dtype) def train_step_code(): with tf.GradientTape() as tape: loss = loss_function() grads = tape.gradient(loss, vars) opt.apply_gradients(zip(grads, vars)) return loss if graph_mode: @tf.function(**graph_args_dict) def train_step(): return train_step_code() else: def train_step(): return train_step_code() if (n_profile_steps > 0): echo(f'{datetime.datetime.now()} Profiling with {n_profile_steps}. And writing output to {profile_log_dir}...') tf.profiler.experimental.start(profile_log_dir) for step in PBARS[notebook_progressbar](range(n_profile_steps)): with tf.profiler.experimental.Trace('train', step_num=step): train_step() tf.profiler.experimental.stop() echo(f'{datetime.datetime.now()} Building Computational Graph... ', verbose=verbose) loss = train_step() echo(f'{datetime.datetime.now()} Performing Gradient Descent. Initial MSE of {loss:.2e}... ', verbose=verbose) for step in PBARS[notebook_progressbar](range(maxsteps)): loss = train_step() fit_history['loss'].append(loss.numpy()) if (use_min and (fit_history['loss'][(- 1)] < min_loss)): min_loss = fit_history['loss'][(- 1)] g_r_opt = g_r.value() g_i_opt = g_i.value() if (not freeze_model): fg_r_opt = [fgr.value() for fgr in fg_r] fg_i_opt = [fgi.value() for fgi in fg_i] if ((step >= 1) and (np.abs((fit_history['loss'][(- 1)] - fit_history['loss'][(- 2)])) < tol)): echo(f'Tolerance thresshold met with delta of {np.abs((fit_history['loss'][(- 1)] - fit_history['loss'][(- 2)])):.2e}. Terminating... ', verbose=verbose) break if (not use_min): min_loss = fit_history['loss'][(- 1)] g_r_opt = g_r.value() g_i_opt = g_i.value() if (not freeze_model): fg_r_opt = [fgr.value() for fgr in fg_r] fg_i_opt = [fgi.value() for fgi in fg_i] else: fg_r_opt = fg_r fg_i_opt = fg_i echo(f'{datetime.datetime.now()} Finished Gradient Descent. MSE of {min_loss:.2e}... ', verbose=verbose) return (g_r_opt, g_i_opt, fg_r_opt, fg_i_opt, fit_history)
def insert_model_into_uvdata_tensor(uvdata, time, polarization, ants_map, red_grps, model_r, model_i, scale_factor=1.0): 'Insert fitted tensor values back into uvdata object for tensor mode.\n\n Parameters\n ----------\n uvdata: UVData object\n uvdata object to insert model data into.\n time: float\n JD of time to insert.\n polarization: str\n polarization to insert.\n ants_map: dict mapping integers to integers\n map between each antenna number to a unique index between 0 and Nants_data\n (typically the index of each antenna in ants_map)\n red_grps: list of lists of int 2-tuples\n a list of lists of 2-tuples where all antenna pairs within each sublist\n are redundant with eachother. Assumes that conjugates are correctly taken.\n model_r: np.ndarray\n an Nants_data x Nants_data x Nfreqs np.ndarray with real parts of data\n model_i: np.ndarray\n an Nants_data x Nants_data x Nfreqs np.ndarray with imag parts of model\n scale_factor: float, optional\n overall scaling factor to divide tensorized data by.\n default is 1.0\n\n Returns\n -------\n N/A: Modifies uvdata inplace.\n\n ' antpairs_data = uvdata.get_antpairs() polnum = np.where((uvdata.polarization_array == uvutils.polstr2num(polarization, x_orientation=uvdata.x_orientation)))[0][0] for red_grp in red_grps: for ap in red_grp: (i, j) = (ants_map[ap[0]], ants_map[ap[1]]) if (ap in antpairs_data): dinds = uvdata.antpair2ind(ap) dinds = dinds[np.where(np.isclose(time, uvdata.time_array[dinds], atol=1e-07, rtol=0.0))[0][0]] model = (model_r[(i, j)] + (1j * model_i[(i, j)])) else: dinds = uvdata.antpair2ind(ap[::(- 1)]) dinds = dinds[np.where(np.isclose(time, uvdata.time_array[dinds], atol=1e-07, rtol=0.0))[0][0]] model = (model_r[(i, j)] - (1j * model_i[(i, j)])) uvdata.data_array[dinds, 0, :, polnum] = (model * scale_factor)
-9,176,988,501,350,762,000
Insert fitted tensor values back into uvdata object for tensor mode. Parameters ---------- uvdata: UVData object uvdata object to insert model data into. time: float JD of time to insert. polarization: str polarization to insert. ants_map: dict mapping integers to integers map between each antenna number to a unique index between 0 and Nants_data (typically the index of each antenna in ants_map) red_grps: list of lists of int 2-tuples a list of lists of 2-tuples where all antenna pairs within each sublist are redundant with eachother. Assumes that conjugates are correctly taken. model_r: np.ndarray an Nants_data x Nants_data x Nfreqs np.ndarray with real parts of data model_i: np.ndarray an Nants_data x Nants_data x Nfreqs np.ndarray with imag parts of model scale_factor: float, optional overall scaling factor to divide tensorized data by. default is 1.0 Returns ------- N/A: Modifies uvdata inplace.
calamity/calibration.py
insert_model_into_uvdata_tensor
aewallwi/calamity
python
def insert_model_into_uvdata_tensor(uvdata, time, polarization, ants_map, red_grps, model_r, model_i, scale_factor=1.0): 'Insert fitted tensor values back into uvdata object for tensor mode.\n\n Parameters\n ----------\n uvdata: UVData object\n uvdata object to insert model data into.\n time: float\n JD of time to insert.\n polarization: str\n polarization to insert.\n ants_map: dict mapping integers to integers\n map between each antenna number to a unique index between 0 and Nants_data\n (typically the index of each antenna in ants_map)\n red_grps: list of lists of int 2-tuples\n a list of lists of 2-tuples where all antenna pairs within each sublist\n are redundant with eachother. Assumes that conjugates are correctly taken.\n model_r: np.ndarray\n an Nants_data x Nants_data x Nfreqs np.ndarray with real parts of data\n model_i: np.ndarray\n an Nants_data x Nants_data x Nfreqs np.ndarray with imag parts of model\n scale_factor: float, optional\n overall scaling factor to divide tensorized data by.\n default is 1.0\n\n Returns\n -------\n N/A: Modifies uvdata inplace.\n\n ' antpairs_data = uvdata.get_antpairs() polnum = np.where((uvdata.polarization_array == uvutils.polstr2num(polarization, x_orientation=uvdata.x_orientation)))[0][0] for red_grp in red_grps: for ap in red_grp: (i, j) = (ants_map[ap[0]], ants_map[ap[1]]) if (ap in antpairs_data): dinds = uvdata.antpair2ind(ap) dinds = dinds[np.where(np.isclose(time, uvdata.time_array[dinds], atol=1e-07, rtol=0.0))[0][0]] model = (model_r[(i, j)] + (1j * model_i[(i, j)])) else: dinds = uvdata.antpair2ind(ap[::(- 1)]) dinds = dinds[np.where(np.isclose(time, uvdata.time_array[dinds], atol=1e-07, rtol=0.0))[0][0]] model = (model_r[(i, j)] - (1j * model_i[(i, j)])) uvdata.data_array[dinds, 0, :, polnum] = (model * scale_factor)
def insert_gains_into_uvcal(uvcal, time, polarization, gains_re, gains_im): 'Insert tensorized gains back into uvcal object\n\n Parameters\n ----------\n uvdata: UVData object\n uvdata object to insert model data into.\n time: float\n JD of time to insert.\n polarization: str\n polarization to insert.\n gains_re: dict with int keys and tf.Tensor object values\n dictionary mapping i antenna numbers to Nfreq 1d tf.Tensor object\n representing the real component of the complex gain for antenna i.\n gains_im: dict with int keys and tf.Tensor object values\n dictionary mapping j antenna numbers to Nfreq 1d tf.Tensor object\n representing the imag component of the complex gain for antenna j.\n\n Returns\n -------\n N/A: Modifies uvcal inplace.\n ' polnum = np.where((uvcal.jones_array == uvutils.polstr2num(polarization, x_orientation=uvcal.x_orientation)))[0][0] gindt = np.where(np.isclose(uvcal.time_array, time, atol=1e-07, rtol=0.0))[0][0] for ant_index in range(uvcal.Nants_data): uvcal.gain_array[ant_index, 0, :, gindt, polnum] = (gains_re[ant_index].numpy() + (1j * gains_im[ant_index].numpy()))
5,082,459,756,504,565,000
Insert tensorized gains back into uvcal object Parameters ---------- uvdata: UVData object uvdata object to insert model data into. time: float JD of time to insert. polarization: str polarization to insert. gains_re: dict with int keys and tf.Tensor object values dictionary mapping i antenna numbers to Nfreq 1d tf.Tensor object representing the real component of the complex gain for antenna i. gains_im: dict with int keys and tf.Tensor object values dictionary mapping j antenna numbers to Nfreq 1d tf.Tensor object representing the imag component of the complex gain for antenna j. Returns ------- N/A: Modifies uvcal inplace.
calamity/calibration.py
insert_gains_into_uvcal
aewallwi/calamity
python
def insert_gains_into_uvcal(uvcal, time, polarization, gains_re, gains_im): 'Insert tensorized gains back into uvcal object\n\n Parameters\n ----------\n uvdata: UVData object\n uvdata object to insert model data into.\n time: float\n JD of time to insert.\n polarization: str\n polarization to insert.\n gains_re: dict with int keys and tf.Tensor object values\n dictionary mapping i antenna numbers to Nfreq 1d tf.Tensor object\n representing the real component of the complex gain for antenna i.\n gains_im: dict with int keys and tf.Tensor object values\n dictionary mapping j antenna numbers to Nfreq 1d tf.Tensor object\n representing the imag component of the complex gain for antenna j.\n\n Returns\n -------\n N/A: Modifies uvcal inplace.\n ' polnum = np.where((uvcal.jones_array == uvutils.polstr2num(polarization, x_orientation=uvcal.x_orientation)))[0][0] gindt = np.where(np.isclose(uvcal.time_array, time, atol=1e-07, rtol=0.0))[0][0] for ant_index in range(uvcal.Nants_data): uvcal.gain_array[ant_index, 0, :, gindt, polnum] = (gains_re[ant_index].numpy() + (1j * gains_im[ant_index].numpy()))
def tensorize_fg_coeffs(data, wgts, fg_model_comps, notebook_progressbar=False, verbose=False): 'Initialize foreground coefficient tensors from uvdata and modeling component dictionaries.\n\n\n Parameters\n ----------\n data: list\n list of tf.Tensor objects, each with shape (ngrps, nbls, nfreqs)\n representing data\n wgts: list\n list of tf.Tensor objects, each with shape (ngrps, nbls, nfreqs)\n representing weights.\n fg_model_comps: list\n list of fg modeling tf.Tensor objects\n representing foreground modeling vectors.\n Each tensor is (nvecs, ngrps, nbls, nfreqs)\n see description in tensorize_fg_model_comps_dict\n docstring.\n notebook_progressbar: bool, optional\n use progress bar optimized for notebook output.\n default is False.\n verbose: bool, optional\n lots of text output\n default is False.\n Returns\n -------\n fg_coeffs_re: tf.Tensor object\n 1d tensor containing real parts of coeffs for each modeling vector.\n ordering is over foreground modeling vector per redundant group and then\n redundant group in the order of groups appearing in red_grps\n fg_coeffs_im: tf.Tensor object\n 1d tensor containing imag parts of coeffs for each modeling vector.\n ordering is over foreground modeling vector per redundant group and then\n redundant group in the order of groups appearing in red_grps\n ' echo(f'''{datetime.datetime.now()} Computing initial foreground coefficient guesses using linear-leastsq... ''', verbose=verbose) fg_coeffs = [] nchunks = len(data) binary_wgts = [tf.convert_to_tensor((~ np.isclose(wgts[cnum].numpy(), 0.0)), dtype=wgts[cnum].dtype) for cnum in range(nchunks)] for cnum in PBARS[notebook_progressbar](range(nchunks)): fg_coeff_chunk = [] ngrps = data[cnum].shape[0] ndata = (data[cnum].shape[1] * data[cnum].shape[2]) nvecs = fg_model_comps[cnum].shape[0] for gnum in range(ngrps): nonzero_rows = np.where(np.all(np.isclose(fg_model_comps[cnum][:, gnum].numpy().reshape(nvecs, ndata), 0.0), axis=1))[0] if (len(nonzero_rows) > 0): nvecs_nonzero = np.min(nonzero_rows) else: nvecs_nonzero = nvecs fg_coeff_chunk.append(tf.reshape(tf.linalg.lstsq(tf.transpose(tf.reshape(fg_model_comps[cnum][:, gnum], (nvecs, ndata)))[:, :nvecs_nonzero], tf.reshape((data[cnum][gnum] * binary_wgts[cnum][gnum]), (ndata, 1))), (nvecs_nonzero,))) fg_coeff_chunk[(- 1)] = tf.pad(fg_coeff_chunk[(- 1)], [(0, (nvecs - nvecs_nonzero))]) fg_coeff_chunk = tf.reshape(tf.transpose(tf.stack(fg_coeff_chunk)), (nvecs, ngrps, 1, 1)) fg_coeffs.append(fg_coeff_chunk) echo(f'''{datetime.datetime.now()} Finished initial foreground coefficient guesses... ''', verbose=verbose) return fg_coeffs
-1,908,258,831,102,641,400
Initialize foreground coefficient tensors from uvdata and modeling component dictionaries. Parameters ---------- data: list list of tf.Tensor objects, each with shape (ngrps, nbls, nfreqs) representing data wgts: list list of tf.Tensor objects, each with shape (ngrps, nbls, nfreqs) representing weights. fg_model_comps: list list of fg modeling tf.Tensor objects representing foreground modeling vectors. Each tensor is (nvecs, ngrps, nbls, nfreqs) see description in tensorize_fg_model_comps_dict docstring. notebook_progressbar: bool, optional use progress bar optimized for notebook output. default is False. verbose: bool, optional lots of text output default is False. Returns ------- fg_coeffs_re: tf.Tensor object 1d tensor containing real parts of coeffs for each modeling vector. ordering is over foreground modeling vector per redundant group and then redundant group in the order of groups appearing in red_grps fg_coeffs_im: tf.Tensor object 1d tensor containing imag parts of coeffs for each modeling vector. ordering is over foreground modeling vector per redundant group and then redundant group in the order of groups appearing in red_grps
calamity/calibration.py
tensorize_fg_coeffs
aewallwi/calamity
python
def tensorize_fg_coeffs(data, wgts, fg_model_comps, notebook_progressbar=False, verbose=False): 'Initialize foreground coefficient tensors from uvdata and modeling component dictionaries.\n\n\n Parameters\n ----------\n data: list\n list of tf.Tensor objects, each with shape (ngrps, nbls, nfreqs)\n representing data\n wgts: list\n list of tf.Tensor objects, each with shape (ngrps, nbls, nfreqs)\n representing weights.\n fg_model_comps: list\n list of fg modeling tf.Tensor objects\n representing foreground modeling vectors.\n Each tensor is (nvecs, ngrps, nbls, nfreqs)\n see description in tensorize_fg_model_comps_dict\n docstring.\n notebook_progressbar: bool, optional\n use progress bar optimized for notebook output.\n default is False.\n verbose: bool, optional\n lots of text output\n default is False.\n Returns\n -------\n fg_coeffs_re: tf.Tensor object\n 1d tensor containing real parts of coeffs for each modeling vector.\n ordering is over foreground modeling vector per redundant group and then\n redundant group in the order of groups appearing in red_grps\n fg_coeffs_im: tf.Tensor object\n 1d tensor containing imag parts of coeffs for each modeling vector.\n ordering is over foreground modeling vector per redundant group and then\n redundant group in the order of groups appearing in red_grps\n ' echo(f'{datetime.datetime.now()} Computing initial foreground coefficient guesses using linear-leastsq... ', verbose=verbose) fg_coeffs = [] nchunks = len(data) binary_wgts = [tf.convert_to_tensor((~ np.isclose(wgts[cnum].numpy(), 0.0)), dtype=wgts[cnum].dtype) for cnum in range(nchunks)] for cnum in PBARS[notebook_progressbar](range(nchunks)): fg_coeff_chunk = [] ngrps = data[cnum].shape[0] ndata = (data[cnum].shape[1] * data[cnum].shape[2]) nvecs = fg_model_comps[cnum].shape[0] for gnum in range(ngrps): nonzero_rows = np.where(np.all(np.isclose(fg_model_comps[cnum][:, gnum].numpy().reshape(nvecs, ndata), 0.0), axis=1))[0] if (len(nonzero_rows) > 0): nvecs_nonzero = np.min(nonzero_rows) else: nvecs_nonzero = nvecs fg_coeff_chunk.append(tf.reshape(tf.linalg.lstsq(tf.transpose(tf.reshape(fg_model_comps[cnum][:, gnum], (nvecs, ndata)))[:, :nvecs_nonzero], tf.reshape((data[cnum][gnum] * binary_wgts[cnum][gnum]), (ndata, 1))), (nvecs_nonzero,))) fg_coeff_chunk[(- 1)] = tf.pad(fg_coeff_chunk[(- 1)], [(0, (nvecs - nvecs_nonzero))]) fg_coeff_chunk = tf.reshape(tf.transpose(tf.stack(fg_coeff_chunk)), (nvecs, ngrps, 1, 1)) fg_coeffs.append(fg_coeff_chunk) echo(f'{datetime.datetime.now()} Finished initial foreground coefficient guesses... ', verbose=verbose) return fg_coeffs
def get_auto_weights(uvdata, delay_extent=25.0): '\n inverse variance weights from interpolated autocorrelation data\n\n Parameters\n ----------\n uvdata: UVData object\n UVData object containing autocorrelation data to use for computing inverse noise weights.\n offset: float, optional\n Fit autocorrelation to delay components with this width.\n\n Returns\n -------\n data_weights: UVFlag object\n UFlag in flag-mode where flags contain original data flags and weights contain autocorr weights.\n ' dpss_components = modeling.yield_dpss_model_comps_bl_grp(0.0, uvdata.freq_array[0], offset=delay_extent) data_weights = UVFlag(uvdata, mode='flag') data_weights.weights_array = np.zeros(uvdata.data_array.shape) auto_fit_dict = {} bls = uvdata.get_antpairpols() for bl in bls: if (bl[0] == bl[1]): d_wf = uvdata.get_data(bl) w_wf = (~ uvdata.get_flags(bl)) auto_fit_dict[bl] = [] for (ds, fs) in zip(d_wf, w_wf): nunflagged = np.count_nonzero(fs) amat = tf.convert_to_tensor(dpss_components[fs]) dvec = tf.reshape(tf.convert_to_tensor(ds[fs].real), (nunflagged, 1)) model = (dpss_components @ tf.linalg.lstsq(amat, dvec).numpy().squeeze()) auto_fit_dict[bl].append(model) auto_fit_dict[bl] = np.atleast_2d(np.asarray(auto_fit_dict[bl])) for bl in bls: smooth_weights = (1.0 / (auto_fit_dict[(bl[0], bl[0], bl[(- 1)])] * auto_fit_dict[(bl[1], bl[1], bl[(- 1)])])) smooth_weights *= (~ uvdata.get_flags(bl)) dinds = data_weights.antpair2ind(*bl[:2]) polnum = np.where((data_weights.polarization_array == uvutils.polstr2num(bl[(- 1)], x_orientation=data_weights.x_orientation)))[0][0] data_weights.weights_array[dinds, 0, :, polnum] = smooth_weights return data_weights
-1,132,488,393,028,415,200
inverse variance weights from interpolated autocorrelation data Parameters ---------- uvdata: UVData object UVData object containing autocorrelation data to use for computing inverse noise weights. offset: float, optional Fit autocorrelation to delay components with this width. Returns ------- data_weights: UVFlag object UFlag in flag-mode where flags contain original data flags and weights contain autocorr weights.
calamity/calibration.py
get_auto_weights
aewallwi/calamity
python
def get_auto_weights(uvdata, delay_extent=25.0): '\n inverse variance weights from interpolated autocorrelation data\n\n Parameters\n ----------\n uvdata: UVData object\n UVData object containing autocorrelation data to use for computing inverse noise weights.\n offset: float, optional\n Fit autocorrelation to delay components with this width.\n\n Returns\n -------\n data_weights: UVFlag object\n UFlag in flag-mode where flags contain original data flags and weights contain autocorr weights.\n ' dpss_components = modeling.yield_dpss_model_comps_bl_grp(0.0, uvdata.freq_array[0], offset=delay_extent) data_weights = UVFlag(uvdata, mode='flag') data_weights.weights_array = np.zeros(uvdata.data_array.shape) auto_fit_dict = {} bls = uvdata.get_antpairpols() for bl in bls: if (bl[0] == bl[1]): d_wf = uvdata.get_data(bl) w_wf = (~ uvdata.get_flags(bl)) auto_fit_dict[bl] = [] for (ds, fs) in zip(d_wf, w_wf): nunflagged = np.count_nonzero(fs) amat = tf.convert_to_tensor(dpss_components[fs]) dvec = tf.reshape(tf.convert_to_tensor(ds[fs].real), (nunflagged, 1)) model = (dpss_components @ tf.linalg.lstsq(amat, dvec).numpy().squeeze()) auto_fit_dict[bl].append(model) auto_fit_dict[bl] = np.atleast_2d(np.asarray(auto_fit_dict[bl])) for bl in bls: smooth_weights = (1.0 / (auto_fit_dict[(bl[0], bl[0], bl[(- 1)])] * auto_fit_dict[(bl[1], bl[1], bl[(- 1)])])) smooth_weights *= (~ uvdata.get_flags(bl)) dinds = data_weights.antpair2ind(*bl[:2]) polnum = np.where((data_weights.polarization_array == uvutils.polstr2num(bl[(- 1)], x_orientation=data_weights.x_orientation)))[0][0] data_weights.weights_array[dinds, 0, :, polnum] = smooth_weights return data_weights
def calibrate_and_model_tensor(uvdata, fg_model_comps_dict, gains=None, freeze_model=False, optimizer='Adamax', tol=1e-14, maxsteps=10000, include_autos=False, verbose=False, sky_model=None, dtype=np.float32, use_min=False, use_redundancy=False, notebook_progressbar=False, correct_resid=False, correct_model=True, weights=None, nsamples_in_weights=True, graph_mode=False, grp_size_threshold=5, n_profile_steps=0, profile_log_dir='./logdir', model_regularization='sum', init_guesses_from_previous_time_step=False, skip_threshold=0.5, use_model_snr_weights=False, **opt_kwargs): "Perform simultaneous calibration and foreground fitting using tensors.\n\n\n Parameters\n ----------\n uvdata: UVData object\n uvdata objet of data to be calibrated.\n fg_model_comps_dict: dictionary\n dictionary with keys that are tuples of tuples of 2-tuples (thats right, 3 levels)\n in the first level, each tuple represents a 'modeling group' visibilities in each\n modeling group are represented by a set of basis vectors that span all baselines in that\n group with elements raveled by baseline and then frequency. Each tuple in the modeling group is a\n 'redundant group' representing visibilities that we will represent with identical component coefficients\n each element of each 'redundant group' is a 2-tuple antenna pair. Our formalism easily accomodates modeling\n visibilities as redundant or non redundant (one simply needs to make each redundant group length 1).\n values are real numpy arrays with size (Ngrp * Nfreqs) * Ncomponents\n gains: UVCal object\n UVCal with initial gain estimates.\n There many smart ways to obtain initial gain estimates\n but this is beyond the scope of calamity (for example, firstcal, logcal, sky-based cal).\n Users can determine initial gains with their favorite established cal algorithm.\n default is None -> start with unity gains.\n WARNING: At the present, the flags in gains are not propagated/used! Make sure flags in uvdata object!\n freeze_model: bool, optional\n Only optimize loss function wrt gain variables. This is effectively traditional model-based calibration\n with sky_model as the model (but projected onto the foreground basis vectors).\n default is False.\n optimizer: string\n Name of optimizer. See OPTIMIZERS dictionary which contains optimizers described in\n https://www.tensorflow.org/api_docs/python/tf/keras/optimizers\n default is 'Adamax'\n tol: float, optional\n halting condition for optimizer loop. Stop loop when the change in the cost function falls\n below tol.\n default is 1e-14\n maxsteps: int, optional\n maximum number of opt.minimize calls before halting.\n default is 10000\n include_autos: bool, optional\n include autocorrelations in fitting.\n default is False.\n verbose: bool, optional\n generate lots of text.\n default is False.\n sky_model: UVData object, optional\n a sky-model to use for initial estimates of foreground coeffs and\n to set overall flux scale and phases.\n Note that this model is not used to obtain initial gain estimates.\n These must be provided through the gains argument.\n dtype: numpy dtype, optional\n the float precision to be used in tensorflow gradient descent.\n runtime scales roughly inversely linear with precision.\n default is np.float32\n use_min: bool, optional\n If True, use the set of parameters that determine minimum as the ML params\n If False, use the last set of parameters visited by the optimization loop.\n use_redundancy: bool, optional\n if true, solve for one set of foreground coeffs per redundant baseline group\n instead of per baseline.\n notebook_progressbar: bool, optional\n use progress bar optimized for notebook output.\n default is False.\n red_tol: float, optional\n tolerance for determining baselines redundant (meters)\n default is 1.0\n correct_resid: bool, optional\n if True, gain correct residual.\n default is False\n correct_model: bool, optional\n if True, gain correct model.\n default is False\n weights: UVFlag object, optional.\n UVFlag weights object containing weights to use for data fitting.\n default is None -> use nsamples * ~flags if nsamples_in_weights\n or ~flags if not nsamples_in_weights\n nsamples_in_weights: bool, optional\n If True and weights is None, generate weights proportional to nsamples.\n default is True.\n graph_mode: bool, optional\n if True, compile gradient update step in graph mode to speed up\n runtime by ~2-3x. I've found that this helps on CPUs but on GPUs\n it actually increases runtime by a similar factor.\n n_profile_steps: bool, optional\n number of steps to run profiling on\n default is 0.\n profile_log_dir: str, optional\n directory to save profile logs to\n default is './logdir'\n model_regularization: str, optional\n option to regularize model\n supported 'post_hoc', 'sum'\n default is 'post_hoc'\n which sets sum of amps equal and sum of phases equal.\n init_guesses_from_previous_time_step: bool, optional\n if True, then use foreground coeffs and gains from previous time-step to\n initialize gains for next time step.\n skip_threshold: float, optional\n if less then this fraction of data is unflagged on a particular poltime,\n flag the entire poltime.\n opt_kwargs: kwarg_dict\n kwargs for tf.optimizers\n\n Returns\n -------\n model: UVData object\n uvdata object containing model of the foregrounds\n resid: UVData object\n uvdata object containing resids which are the data minus\n the model with gains multiplied and then with the gains divided out.\n gains: UVCal object\n uvcal object containing estimates of the gain solutions. These solutions\n are not referenced to any sky model and are likely orders of\n fit_history:\n dictionary containing fit history with fields:\n 'loss_history': list of values of the loss function in each minimization iteration.\n " antpairs_data = uvdata.get_antpairs() if (not include_autos): antpairs_data = set([ap for ap in antpairs_data if (ap[0] != ap[1])]) uvdata = uvdata.select(inplace=False, bls=[ap for ap in antpairs_data]) resid = copy.deepcopy(uvdata) model = copy.deepcopy(uvdata) model.data_array[:] = 0.0 model.flag_array[:] = False red_grps = [] for fit_grp in fg_model_comps_dict.keys(): for red_grp in fit_grp: red_grps.append(red_grp) if (gains is None): echo(f'''{datetime.datetime.now()} Gains are None. Initializing gains starting with unity... ''', verbose=verbose) gains = cal_utils.blank_uvcal_from_uvdata(uvdata) if ((sky_model is None) and (model_regularization is not None)): echo(f'''{datetime.datetime.now()} Sky model is None. Initializing from data... ''', verbose=verbose) sky_model = cal_utils.apply_gains(uvdata, gains) else: sky_model = sky_model.select(inplace=False, bls=[ap for ap in antpairs_data]) fit_history = {} ants_map = {ant: i for (i, ant) in enumerate(gains.ant_array)} (fg_model_comps, corr_inds) = tensorize_fg_model_comps_dict(fg_model_comps_dict=fg_model_comps_dict, ants_map=ants_map, dtype=dtype, nfreqs=sky_model.Nfreqs, verbose=verbose, notebook_progressbar=notebook_progressbar, use_redundancy=use_redundancy, grp_size_threshold=grp_size_threshold) echo(f'''{datetime.datetime.now()}Finished Converting Foreground Modeling Components to Tensors... ''', verbose=verbose) del fg_model_comps_dict for (polnum, pol) in enumerate(uvdata.get_pols()): echo(f'''{datetime.datetime.now()} Working on pol {pol}, {(polnum + 1)} of {uvdata.Npols}... ''', verbose=verbose) fit_history_p = {} first_time = True for (time_index, time) in enumerate(np.unique(uvdata.time_array)): echo(f'''{datetime.datetime.now()} Working on time {(time_index + 1)} of {uvdata.Ntimes}... ''', verbose=verbose) bltsel = np.isclose(uvdata.time_array, time, atol=1e-07, rtol=0.0) frac_unflagged = (np.count_nonzero((~ uvdata.flag_array[bltsel, 0, :, polnum])) / (uvdata.Nbls * uvdata.Nfreqs)) if (frac_unflagged >= skip_threshold): rmsdata = np.sqrt(np.mean((np.abs(uvdata.data_array[bltsel, 0, :, polnum][(~ uvdata.flag_array[bltsel, 0, :, polnum])]) ** 2.0))) echo(f'''{datetime.datetime.now()} Tensorizing data... ''', verbose=verbose) (data_r, data_i, wgts) = tensorize_data(uvdata, corr_inds=corr_inds, ants_map=ants_map, polarization=pol, time=time, data_scale_factor=rmsdata, weights=weights, nsamples_in_weights=nsamples_in_weights, dtype=dtype) if (sky_model is not None): echo(f'''{datetime.datetime.now()} Tensorizing sky model... ''', verbose=verbose) (sky_model_r, sky_model_i, _) = tensorize_data(sky_model, corr_inds=corr_inds, ants_map=ants_map, polarization=pol, time=time, data_scale_factor=rmsdata, weights=weights, dtype=dtype) else: (sky_model_r, sky_model_i) = (None, None) if (first_time or (not init_guesses_from_previous_time_step)): first_time = False echo(f'''{datetime.datetime.now()} Tensorizing Gains... ''', verbose=verbose) (g_r, g_i) = tensorize_gains(gains, dtype=dtype, time=time, polarization=pol) echo(f'''{datetime.datetime.now()} Tensorizing Foreground coeffs... ''', verbose=verbose) fg_r = tensorize_fg_coeffs(data=data_r, wgts=wgts, fg_model_comps=fg_model_comps, verbose=verbose, notebook_progressbar=notebook_progressbar) fg_i = tensorize_fg_coeffs(data=data_i, wgts=wgts, fg_model_comps=fg_model_comps, verbose=verbose, notebook_progressbar=notebook_progressbar) if use_model_snr_weights: wgts_model = [fg_model(fgr, fgi, fgc) for (fgr, fgi, fgc) in zip(fg_r, fg_i, fg_model_comps)] wgts = [((tf.square(wm[0]) + tf.square(wm[1])) * w) for (wm, w) in zip(wgts_model, wgts)] del wgts_model wgts_sum = np.sum([np.sum(w) for w in wgts]) wgts = [(w / wgts_sum) for w in wgts] (g_r, g_i, fg_r, fg_i, fit_history_p[time_index]) = fit_gains_and_foregrounds(g_r=g_r, g_i=g_i, fg_r=fg_r, fg_i=fg_i, data_r=data_r, data_i=data_i, wgts=wgts, fg_comps=fg_model_comps, corr_inds=corr_inds, optimizer=optimizer, use_min=use_min, freeze_model=freeze_model, notebook_progressbar=notebook_progressbar, verbose=verbose, tol=tol, dtype=dtype, maxsteps=maxsteps, graph_mode=graph_mode, n_profile_steps=n_profile_steps, profile_log_dir=profile_log_dir, sky_model_r=sky_model_r, sky_model_i=sky_model_i, model_regularization=model_regularization, **opt_kwargs) insert_model_into_uvdata_tensor(uvdata=model, time=time, polarization=pol, ants_map=ants_map, red_grps=red_grps, model_r=yield_fg_model_array(fg_model_comps=fg_model_comps, fg_coeffs=fg_r, corr_inds=corr_inds, nants=uvdata.Nants_data, nfreqs=uvdata.Nfreqs), model_i=yield_fg_model_array(fg_model_comps=fg_model_comps, fg_coeffs=fg_i, corr_inds=corr_inds, nants=uvdata.Nants_data, nfreqs=uvdata.Nfreqs), scale_factor=rmsdata) insert_gains_into_uvcal(uvcal=gains, time=time, polarization=pol, gains_re=g_r, gains_im=g_i) else: echo(f'''{datetime.datetime.now()}: Only {(frac_unflagged * 100)}-percent of data unflagged. Skipping... ''', verbose=verbose) flag_poltime(resid, time=time, polarization=pol) flag_poltime(gains, time=time, polarization=pol) flag_poltime(model, time=time, polarization=pol) fit_history[polnum] = 'skipped!' if ((not freeze_model) and (model_regularization == 'post_hoc') and np.any((~ model.flag_array[bltsel]))): renormalize(uvdata_reference_model=sky_model, uvdata_deconv=model, gains=gains, polarization=pol, time=time, additional_flags=uvdata.flag_array) fit_history[polnum] = fit_history_p model_with_gains = cal_utils.apply_gains(model, gains, inverse=True) if (not correct_model): model = model_with_gains resid.data_array -= model_with_gains.data_array resid.data_array[model_with_gains.flag_array] = 0.0 resid.data_array[uvdata.flag_array] = 0.0 if correct_resid: resid = cal_utils.apply_gains(resid, gains) return (model, resid, gains, fit_history)
6,425,277,343,294,833,000
Perform simultaneous calibration and foreground fitting using tensors. Parameters ---------- uvdata: UVData object uvdata objet of data to be calibrated. fg_model_comps_dict: dictionary dictionary with keys that are tuples of tuples of 2-tuples (thats right, 3 levels) in the first level, each tuple represents a 'modeling group' visibilities in each modeling group are represented by a set of basis vectors that span all baselines in that group with elements raveled by baseline and then frequency. Each tuple in the modeling group is a 'redundant group' representing visibilities that we will represent with identical component coefficients each element of each 'redundant group' is a 2-tuple antenna pair. Our formalism easily accomodates modeling visibilities as redundant or non redundant (one simply needs to make each redundant group length 1). values are real numpy arrays with size (Ngrp * Nfreqs) * Ncomponents gains: UVCal object UVCal with initial gain estimates. There many smart ways to obtain initial gain estimates but this is beyond the scope of calamity (for example, firstcal, logcal, sky-based cal). Users can determine initial gains with their favorite established cal algorithm. default is None -> start with unity gains. WARNING: At the present, the flags in gains are not propagated/used! Make sure flags in uvdata object! freeze_model: bool, optional Only optimize loss function wrt gain variables. This is effectively traditional model-based calibration with sky_model as the model (but projected onto the foreground basis vectors). default is False. optimizer: string Name of optimizer. See OPTIMIZERS dictionary which contains optimizers described in https://www.tensorflow.org/api_docs/python/tf/keras/optimizers default is 'Adamax' tol: float, optional halting condition for optimizer loop. Stop loop when the change in the cost function falls below tol. default is 1e-14 maxsteps: int, optional maximum number of opt.minimize calls before halting. default is 10000 include_autos: bool, optional include autocorrelations in fitting. default is False. verbose: bool, optional generate lots of text. default is False. sky_model: UVData object, optional a sky-model to use for initial estimates of foreground coeffs and to set overall flux scale and phases. Note that this model is not used to obtain initial gain estimates. These must be provided through the gains argument. dtype: numpy dtype, optional the float precision to be used in tensorflow gradient descent. runtime scales roughly inversely linear with precision. default is np.float32 use_min: bool, optional If True, use the set of parameters that determine minimum as the ML params If False, use the last set of parameters visited by the optimization loop. use_redundancy: bool, optional if true, solve for one set of foreground coeffs per redundant baseline group instead of per baseline. notebook_progressbar: bool, optional use progress bar optimized for notebook output. default is False. red_tol: float, optional tolerance for determining baselines redundant (meters) default is 1.0 correct_resid: bool, optional if True, gain correct residual. default is False correct_model: bool, optional if True, gain correct model. default is False weights: UVFlag object, optional. UVFlag weights object containing weights to use for data fitting. default is None -> use nsamples * ~flags if nsamples_in_weights or ~flags if not nsamples_in_weights nsamples_in_weights: bool, optional If True and weights is None, generate weights proportional to nsamples. default is True. graph_mode: bool, optional if True, compile gradient update step in graph mode to speed up runtime by ~2-3x. I've found that this helps on CPUs but on GPUs it actually increases runtime by a similar factor. n_profile_steps: bool, optional number of steps to run profiling on default is 0. profile_log_dir: str, optional directory to save profile logs to default is './logdir' model_regularization: str, optional option to regularize model supported 'post_hoc', 'sum' default is 'post_hoc' which sets sum of amps equal and sum of phases equal. init_guesses_from_previous_time_step: bool, optional if True, then use foreground coeffs and gains from previous time-step to initialize gains for next time step. skip_threshold: float, optional if less then this fraction of data is unflagged on a particular poltime, flag the entire poltime. opt_kwargs: kwarg_dict kwargs for tf.optimizers Returns ------- model: UVData object uvdata object containing model of the foregrounds resid: UVData object uvdata object containing resids which are the data minus the model with gains multiplied and then with the gains divided out. gains: UVCal object uvcal object containing estimates of the gain solutions. These solutions are not referenced to any sky model and are likely orders of fit_history: dictionary containing fit history with fields: 'loss_history': list of values of the loss function in each minimization iteration.
calamity/calibration.py
calibrate_and_model_tensor
aewallwi/calamity
python
def calibrate_and_model_tensor(uvdata, fg_model_comps_dict, gains=None, freeze_model=False, optimizer='Adamax', tol=1e-14, maxsteps=10000, include_autos=False, verbose=False, sky_model=None, dtype=np.float32, use_min=False, use_redundancy=False, notebook_progressbar=False, correct_resid=False, correct_model=True, weights=None, nsamples_in_weights=True, graph_mode=False, grp_size_threshold=5, n_profile_steps=0, profile_log_dir='./logdir', model_regularization='sum', init_guesses_from_previous_time_step=False, skip_threshold=0.5, use_model_snr_weights=False, **opt_kwargs): "Perform simultaneous calibration and foreground fitting using tensors.\n\n\n Parameters\n ----------\n uvdata: UVData object\n uvdata objet of data to be calibrated.\n fg_model_comps_dict: dictionary\n dictionary with keys that are tuples of tuples of 2-tuples (thats right, 3 levels)\n in the first level, each tuple represents a 'modeling group' visibilities in each\n modeling group are represented by a set of basis vectors that span all baselines in that\n group with elements raveled by baseline and then frequency. Each tuple in the modeling group is a\n 'redundant group' representing visibilities that we will represent with identical component coefficients\n each element of each 'redundant group' is a 2-tuple antenna pair. Our formalism easily accomodates modeling\n visibilities as redundant or non redundant (one simply needs to make each redundant group length 1).\n values are real numpy arrays with size (Ngrp * Nfreqs) * Ncomponents\n gains: UVCal object\n UVCal with initial gain estimates.\n There many smart ways to obtain initial gain estimates\n but this is beyond the scope of calamity (for example, firstcal, logcal, sky-based cal).\n Users can determine initial gains with their favorite established cal algorithm.\n default is None -> start with unity gains.\n WARNING: At the present, the flags in gains are not propagated/used! Make sure flags in uvdata object!\n freeze_model: bool, optional\n Only optimize loss function wrt gain variables. This is effectively traditional model-based calibration\n with sky_model as the model (but projected onto the foreground basis vectors).\n default is False.\n optimizer: string\n Name of optimizer. See OPTIMIZERS dictionary which contains optimizers described in\n https://www.tensorflow.org/api_docs/python/tf/keras/optimizers\n default is 'Adamax'\n tol: float, optional\n halting condition for optimizer loop. Stop loop when the change in the cost function falls\n below tol.\n default is 1e-14\n maxsteps: int, optional\n maximum number of opt.minimize calls before halting.\n default is 10000\n include_autos: bool, optional\n include autocorrelations in fitting.\n default is False.\n verbose: bool, optional\n generate lots of text.\n default is False.\n sky_model: UVData object, optional\n a sky-model to use for initial estimates of foreground coeffs and\n to set overall flux scale and phases.\n Note that this model is not used to obtain initial gain estimates.\n These must be provided through the gains argument.\n dtype: numpy dtype, optional\n the float precision to be used in tensorflow gradient descent.\n runtime scales roughly inversely linear with precision.\n default is np.float32\n use_min: bool, optional\n If True, use the set of parameters that determine minimum as the ML params\n If False, use the last set of parameters visited by the optimization loop.\n use_redundancy: bool, optional\n if true, solve for one set of foreground coeffs per redundant baseline group\n instead of per baseline.\n notebook_progressbar: bool, optional\n use progress bar optimized for notebook output.\n default is False.\n red_tol: float, optional\n tolerance for determining baselines redundant (meters)\n default is 1.0\n correct_resid: bool, optional\n if True, gain correct residual.\n default is False\n correct_model: bool, optional\n if True, gain correct model.\n default is False\n weights: UVFlag object, optional.\n UVFlag weights object containing weights to use for data fitting.\n default is None -> use nsamples * ~flags if nsamples_in_weights\n or ~flags if not nsamples_in_weights\n nsamples_in_weights: bool, optional\n If True and weights is None, generate weights proportional to nsamples.\n default is True.\n graph_mode: bool, optional\n if True, compile gradient update step in graph mode to speed up\n runtime by ~2-3x. I've found that this helps on CPUs but on GPUs\n it actually increases runtime by a similar factor.\n n_profile_steps: bool, optional\n number of steps to run profiling on\n default is 0.\n profile_log_dir: str, optional\n directory to save profile logs to\n default is './logdir'\n model_regularization: str, optional\n option to regularize model\n supported 'post_hoc', 'sum'\n default is 'post_hoc'\n which sets sum of amps equal and sum of phases equal.\n init_guesses_from_previous_time_step: bool, optional\n if True, then use foreground coeffs and gains from previous time-step to\n initialize gains for next time step.\n skip_threshold: float, optional\n if less then this fraction of data is unflagged on a particular poltime,\n flag the entire poltime.\n opt_kwargs: kwarg_dict\n kwargs for tf.optimizers\n\n Returns\n -------\n model: UVData object\n uvdata object containing model of the foregrounds\n resid: UVData object\n uvdata object containing resids which are the data minus\n the model with gains multiplied and then with the gains divided out.\n gains: UVCal object\n uvcal object containing estimates of the gain solutions. These solutions\n are not referenced to any sky model and are likely orders of\n fit_history:\n dictionary containing fit history with fields:\n 'loss_history': list of values of the loss function in each minimization iteration.\n " antpairs_data = uvdata.get_antpairs() if (not include_autos): antpairs_data = set([ap for ap in antpairs_data if (ap[0] != ap[1])]) uvdata = uvdata.select(inplace=False, bls=[ap for ap in antpairs_data]) resid = copy.deepcopy(uvdata) model = copy.deepcopy(uvdata) model.data_array[:] = 0.0 model.flag_array[:] = False red_grps = [] for fit_grp in fg_model_comps_dict.keys(): for red_grp in fit_grp: red_grps.append(red_grp) if (gains is None): echo(f'{datetime.datetime.now()} Gains are None. Initializing gains starting with unity... ', verbose=verbose) gains = cal_utils.blank_uvcal_from_uvdata(uvdata) if ((sky_model is None) and (model_regularization is not None)): echo(f'{datetime.datetime.now()} Sky model is None. Initializing from data... ', verbose=verbose) sky_model = cal_utils.apply_gains(uvdata, gains) else: sky_model = sky_model.select(inplace=False, bls=[ap for ap in antpairs_data]) fit_history = {} ants_map = {ant: i for (i, ant) in enumerate(gains.ant_array)} (fg_model_comps, corr_inds) = tensorize_fg_model_comps_dict(fg_model_comps_dict=fg_model_comps_dict, ants_map=ants_map, dtype=dtype, nfreqs=sky_model.Nfreqs, verbose=verbose, notebook_progressbar=notebook_progressbar, use_redundancy=use_redundancy, grp_size_threshold=grp_size_threshold) echo(f'{datetime.datetime.now()}Finished Converting Foreground Modeling Components to Tensors... ', verbose=verbose) del fg_model_comps_dict for (polnum, pol) in enumerate(uvdata.get_pols()): echo(f'{datetime.datetime.now()} Working on pol {pol}, {(polnum + 1)} of {uvdata.Npols}... ', verbose=verbose) fit_history_p = {} first_time = True for (time_index, time) in enumerate(np.unique(uvdata.time_array)): echo(f'{datetime.datetime.now()} Working on time {(time_index + 1)} of {uvdata.Ntimes}... ', verbose=verbose) bltsel = np.isclose(uvdata.time_array, time, atol=1e-07, rtol=0.0) frac_unflagged = (np.count_nonzero((~ uvdata.flag_array[bltsel, 0, :, polnum])) / (uvdata.Nbls * uvdata.Nfreqs)) if (frac_unflagged >= skip_threshold): rmsdata = np.sqrt(np.mean((np.abs(uvdata.data_array[bltsel, 0, :, polnum][(~ uvdata.flag_array[bltsel, 0, :, polnum])]) ** 2.0))) echo(f'{datetime.datetime.now()} Tensorizing data... ', verbose=verbose) (data_r, data_i, wgts) = tensorize_data(uvdata, corr_inds=corr_inds, ants_map=ants_map, polarization=pol, time=time, data_scale_factor=rmsdata, weights=weights, nsamples_in_weights=nsamples_in_weights, dtype=dtype) if (sky_model is not None): echo(f'{datetime.datetime.now()} Tensorizing sky model... ', verbose=verbose) (sky_model_r, sky_model_i, _) = tensorize_data(sky_model, corr_inds=corr_inds, ants_map=ants_map, polarization=pol, time=time, data_scale_factor=rmsdata, weights=weights, dtype=dtype) else: (sky_model_r, sky_model_i) = (None, None) if (first_time or (not init_guesses_from_previous_time_step)): first_time = False echo(f'{datetime.datetime.now()} Tensorizing Gains... ', verbose=verbose) (g_r, g_i) = tensorize_gains(gains, dtype=dtype, time=time, polarization=pol) echo(f'{datetime.datetime.now()} Tensorizing Foreground coeffs... ', verbose=verbose) fg_r = tensorize_fg_coeffs(data=data_r, wgts=wgts, fg_model_comps=fg_model_comps, verbose=verbose, notebook_progressbar=notebook_progressbar) fg_i = tensorize_fg_coeffs(data=data_i, wgts=wgts, fg_model_comps=fg_model_comps, verbose=verbose, notebook_progressbar=notebook_progressbar) if use_model_snr_weights: wgts_model = [fg_model(fgr, fgi, fgc) for (fgr, fgi, fgc) in zip(fg_r, fg_i, fg_model_comps)] wgts = [((tf.square(wm[0]) + tf.square(wm[1])) * w) for (wm, w) in zip(wgts_model, wgts)] del wgts_model wgts_sum = np.sum([np.sum(w) for w in wgts]) wgts = [(w / wgts_sum) for w in wgts] (g_r, g_i, fg_r, fg_i, fit_history_p[time_index]) = fit_gains_and_foregrounds(g_r=g_r, g_i=g_i, fg_r=fg_r, fg_i=fg_i, data_r=data_r, data_i=data_i, wgts=wgts, fg_comps=fg_model_comps, corr_inds=corr_inds, optimizer=optimizer, use_min=use_min, freeze_model=freeze_model, notebook_progressbar=notebook_progressbar, verbose=verbose, tol=tol, dtype=dtype, maxsteps=maxsteps, graph_mode=graph_mode, n_profile_steps=n_profile_steps, profile_log_dir=profile_log_dir, sky_model_r=sky_model_r, sky_model_i=sky_model_i, model_regularization=model_regularization, **opt_kwargs) insert_model_into_uvdata_tensor(uvdata=model, time=time, polarization=pol, ants_map=ants_map, red_grps=red_grps, model_r=yield_fg_model_array(fg_model_comps=fg_model_comps, fg_coeffs=fg_r, corr_inds=corr_inds, nants=uvdata.Nants_data, nfreqs=uvdata.Nfreqs), model_i=yield_fg_model_array(fg_model_comps=fg_model_comps, fg_coeffs=fg_i, corr_inds=corr_inds, nants=uvdata.Nants_data, nfreqs=uvdata.Nfreqs), scale_factor=rmsdata) insert_gains_into_uvcal(uvcal=gains, time=time, polarization=pol, gains_re=g_r, gains_im=g_i) else: echo(f'{datetime.datetime.now()}: Only {(frac_unflagged * 100)}-percent of data unflagged. Skipping... ', verbose=verbose) flag_poltime(resid, time=time, polarization=pol) flag_poltime(gains, time=time, polarization=pol) flag_poltime(model, time=time, polarization=pol) fit_history[polnum] = 'skipped!' if ((not freeze_model) and (model_regularization == 'post_hoc') and np.any((~ model.flag_array[bltsel]))): renormalize(uvdata_reference_model=sky_model, uvdata_deconv=model, gains=gains, polarization=pol, time=time, additional_flags=uvdata.flag_array) fit_history[polnum] = fit_history_p model_with_gains = cal_utils.apply_gains(model, gains, inverse=True) if (not correct_model): model = model_with_gains resid.data_array -= model_with_gains.data_array resid.data_array[model_with_gains.flag_array] = 0.0 resid.data_array[uvdata.flag_array] = 0.0 if correct_resid: resid = cal_utils.apply_gains(resid, gains) return (model, resid, gains, fit_history)
def calibrate_and_model_mixed(uvdata, horizon=1.0, min_dly=0.0, offset=0.0, ant_dly=0.0, include_autos=False, verbose=False, red_tol=1.0, red_tol_freq=0.5, n_angle_bins=200, notebook_progressbar=False, use_redundancy=False, use_tensorflow_to_derive_modeling_comps=False, eigenval_cutoff=1e-10, dtype_matinv=np.float64, require_exact_angle_match=True, angle_match_tol=0.001, grp_size_threshold=5, model_comps_dict=None, save_dict_to=None, **fitting_kwargs): "Simultaneously solve for gains and model foregrounds with a mix of DPSS vectors\n for baselines with no frequency redundancy and simple_cov components for\n groups of baselines that have some frequency redundancy.\n\n\n Parameters\n ----------\n uvdata: UVData object.\n dataset to calibrate and filter.\n horizon: float, optional\n fraction of baseline delay length to model with dpss modes\n unitless.\n default is 1.\n min_dly: float, optional\n minimum delay to model with dpss models.\n in units of ns.\n default is 0.\n offset: float optional\n offset off of horizon wedge to include in dpss delay range.\n in units of ns.\n default is 0.\n ant_dly: float, optional\n intrinsic chromaticity of each antenna element\n in units of ns.\n default is 0.\n include_autos: bool, optional\n if true, include autocorrelations in fitting.\n default is False.\n verbose: bool, optional\n lots of text output\n default is False.\n red_tol: float, optional\n tolerance for treating baselines as redundant (meters)\n default is 1.0\n red_tol_freq: float, optional\n tolerance for treating two baselines as having some\n frequency redundancy. When frequency redundancy exists, baselines\n will be modeled jointly.\n n_angle_bins: int, optional\n number of angular bins to use between -pi and pi to compare baselines\n default is 200\n notebook_progressbar: bool, optional\n if True, show graphical notebook progress bar that looks good in jupyter.\n default is False.\n use_redundancy: bool, optional\n If True, model all baselines within each redundant group with the same components\n If False, model each baseline within each redundant group with sepearate components.\n default is False.\n use_tensorflow_to_derive_modeling_comps: bool, optional\n Use tensorflow methods to derive multi-baseline modeling components.\n recommended if you have a GPU with enough memory to perform spectral decomposition\n of multi-baseline covariance matrices.\n eigenval_cutoff: float, optional\n threshold of eigenvectors to include in modeling components.\n dtype_matinv: numpy.dtype, optional\n data type to use for deriving modeling components.\n default is np.float64 (need higher precision for cov-mat like calculation)\n grp_size_threshold: int, optional\n groups with number of elements less then this value are split up into single baselines.\n default is 5.\n model_comps_dict: dict, optional\n dictionary mapping fitting groups to numpy.ndarray see modeling.yield_mixed_comps\n for more specifics.\n default is None -> compute fitting groups automatically.\n save_dict_to: str, optional\n save model_comps_dict to hdf5 container if True\n default is False.\n fitting_kwargs: kwarg dict\n additional kwargs for calibrate_and_model_tensor.\n see docstring of calibrate_and_model_tensor.\n\n Returns\n -------\n model: UVData object\n uvdata object containing DPSS model of intrinsic foregrounds.\n resid: UVData object\n uvdata object containing residuals after subtracting model times gains and applying gains.\n gains: UVCal object\n uvcal object containing fitted gains.\n fit_history:\n dictionary containing fit history for each time-step and polarization in the data with fields:\n 'loss_history': list of values of the loss function in each minimization iteration.\n " (fitting_grps, blvecs, _, _) = modeling.get_uv_overlapping_grps_conjugated(uvdata, red_tol=red_tol, include_autos=include_autos, red_tol_freq=red_tol_freq, n_angle_bins=n_angle_bins, notebook_progressbar=notebook_progressbar, require_exact_angle_match=require_exact_angle_match, angle_match_tol=angle_match_tol) if (model_comps_dict is None): model_comps_dict = modeling.yield_mixed_comps(fitting_grps, blvecs, uvdata.freq_array[0], eigenval_cutoff=eigenval_cutoff, use_tensorflow=use_tensorflow_to_derive_modeling_comps, ant_dly=ant_dly, horizon=horizon, offset=offset, min_dly=min_dly, verbose=verbose, dtype=dtype_matinv, notebook_progressbar=notebook_progressbar, grp_size_threshold=grp_size_threshold) if (save_dict_to is not None): np.save(save_dict_to, model_comps_dict) (model, resid, gains, fitted_info) = calibrate_and_model_tensor(uvdata=uvdata, fg_model_comps_dict=model_comps_dict, include_autos=include_autos, verbose=verbose, notebook_progressbar=notebook_progressbar, use_redundancy=use_redundancy, **fitting_kwargs) return (model, resid, gains, fitted_info)
2,490,183,869,147,370,000
Simultaneously solve for gains and model foregrounds with a mix of DPSS vectors for baselines with no frequency redundancy and simple_cov components for groups of baselines that have some frequency redundancy. Parameters ---------- uvdata: UVData object. dataset to calibrate and filter. horizon: float, optional fraction of baseline delay length to model with dpss modes unitless. default is 1. min_dly: float, optional minimum delay to model with dpss models. in units of ns. default is 0. offset: float optional offset off of horizon wedge to include in dpss delay range. in units of ns. default is 0. ant_dly: float, optional intrinsic chromaticity of each antenna element in units of ns. default is 0. include_autos: bool, optional if true, include autocorrelations in fitting. default is False. verbose: bool, optional lots of text output default is False. red_tol: float, optional tolerance for treating baselines as redundant (meters) default is 1.0 red_tol_freq: float, optional tolerance for treating two baselines as having some frequency redundancy. When frequency redundancy exists, baselines will be modeled jointly. n_angle_bins: int, optional number of angular bins to use between -pi and pi to compare baselines default is 200 notebook_progressbar: bool, optional if True, show graphical notebook progress bar that looks good in jupyter. default is False. use_redundancy: bool, optional If True, model all baselines within each redundant group with the same components If False, model each baseline within each redundant group with sepearate components. default is False. use_tensorflow_to_derive_modeling_comps: bool, optional Use tensorflow methods to derive multi-baseline modeling components. recommended if you have a GPU with enough memory to perform spectral decomposition of multi-baseline covariance matrices. eigenval_cutoff: float, optional threshold of eigenvectors to include in modeling components. dtype_matinv: numpy.dtype, optional data type to use for deriving modeling components. default is np.float64 (need higher precision for cov-mat like calculation) grp_size_threshold: int, optional groups with number of elements less then this value are split up into single baselines. default is 5. model_comps_dict: dict, optional dictionary mapping fitting groups to numpy.ndarray see modeling.yield_mixed_comps for more specifics. default is None -> compute fitting groups automatically. save_dict_to: str, optional save model_comps_dict to hdf5 container if True default is False. fitting_kwargs: kwarg dict additional kwargs for calibrate_and_model_tensor. see docstring of calibrate_and_model_tensor. Returns ------- model: UVData object uvdata object containing DPSS model of intrinsic foregrounds. resid: UVData object uvdata object containing residuals after subtracting model times gains and applying gains. gains: UVCal object uvcal object containing fitted gains. fit_history: dictionary containing fit history for each time-step and polarization in the data with fields: 'loss_history': list of values of the loss function in each minimization iteration.
calamity/calibration.py
calibrate_and_model_mixed
aewallwi/calamity
python
def calibrate_and_model_mixed(uvdata, horizon=1.0, min_dly=0.0, offset=0.0, ant_dly=0.0, include_autos=False, verbose=False, red_tol=1.0, red_tol_freq=0.5, n_angle_bins=200, notebook_progressbar=False, use_redundancy=False, use_tensorflow_to_derive_modeling_comps=False, eigenval_cutoff=1e-10, dtype_matinv=np.float64, require_exact_angle_match=True, angle_match_tol=0.001, grp_size_threshold=5, model_comps_dict=None, save_dict_to=None, **fitting_kwargs): "Simultaneously solve for gains and model foregrounds with a mix of DPSS vectors\n for baselines with no frequency redundancy and simple_cov components for\n groups of baselines that have some frequency redundancy.\n\n\n Parameters\n ----------\n uvdata: UVData object.\n dataset to calibrate and filter.\n horizon: float, optional\n fraction of baseline delay length to model with dpss modes\n unitless.\n default is 1.\n min_dly: float, optional\n minimum delay to model with dpss models.\n in units of ns.\n default is 0.\n offset: float optional\n offset off of horizon wedge to include in dpss delay range.\n in units of ns.\n default is 0.\n ant_dly: float, optional\n intrinsic chromaticity of each antenna element\n in units of ns.\n default is 0.\n include_autos: bool, optional\n if true, include autocorrelations in fitting.\n default is False.\n verbose: bool, optional\n lots of text output\n default is False.\n red_tol: float, optional\n tolerance for treating baselines as redundant (meters)\n default is 1.0\n red_tol_freq: float, optional\n tolerance for treating two baselines as having some\n frequency redundancy. When frequency redundancy exists, baselines\n will be modeled jointly.\n n_angle_bins: int, optional\n number of angular bins to use between -pi and pi to compare baselines\n default is 200\n notebook_progressbar: bool, optional\n if True, show graphical notebook progress bar that looks good in jupyter.\n default is False.\n use_redundancy: bool, optional\n If True, model all baselines within each redundant group with the same components\n If False, model each baseline within each redundant group with sepearate components.\n default is False.\n use_tensorflow_to_derive_modeling_comps: bool, optional\n Use tensorflow methods to derive multi-baseline modeling components.\n recommended if you have a GPU with enough memory to perform spectral decomposition\n of multi-baseline covariance matrices.\n eigenval_cutoff: float, optional\n threshold of eigenvectors to include in modeling components.\n dtype_matinv: numpy.dtype, optional\n data type to use for deriving modeling components.\n default is np.float64 (need higher precision for cov-mat like calculation)\n grp_size_threshold: int, optional\n groups with number of elements less then this value are split up into single baselines.\n default is 5.\n model_comps_dict: dict, optional\n dictionary mapping fitting groups to numpy.ndarray see modeling.yield_mixed_comps\n for more specifics.\n default is None -> compute fitting groups automatically.\n save_dict_to: str, optional\n save model_comps_dict to hdf5 container if True\n default is False.\n fitting_kwargs: kwarg dict\n additional kwargs for calibrate_and_model_tensor.\n see docstring of calibrate_and_model_tensor.\n\n Returns\n -------\n model: UVData object\n uvdata object containing DPSS model of intrinsic foregrounds.\n resid: UVData object\n uvdata object containing residuals after subtracting model times gains and applying gains.\n gains: UVCal object\n uvcal object containing fitted gains.\n fit_history:\n dictionary containing fit history for each time-step and polarization in the data with fields:\n 'loss_history': list of values of the loss function in each minimization iteration.\n " (fitting_grps, blvecs, _, _) = modeling.get_uv_overlapping_grps_conjugated(uvdata, red_tol=red_tol, include_autos=include_autos, red_tol_freq=red_tol_freq, n_angle_bins=n_angle_bins, notebook_progressbar=notebook_progressbar, require_exact_angle_match=require_exact_angle_match, angle_match_tol=angle_match_tol) if (model_comps_dict is None): model_comps_dict = modeling.yield_mixed_comps(fitting_grps, blvecs, uvdata.freq_array[0], eigenval_cutoff=eigenval_cutoff, use_tensorflow=use_tensorflow_to_derive_modeling_comps, ant_dly=ant_dly, horizon=horizon, offset=offset, min_dly=min_dly, verbose=verbose, dtype=dtype_matinv, notebook_progressbar=notebook_progressbar, grp_size_threshold=grp_size_threshold) if (save_dict_to is not None): np.save(save_dict_to, model_comps_dict) (model, resid, gains, fitted_info) = calibrate_and_model_tensor(uvdata=uvdata, fg_model_comps_dict=model_comps_dict, include_autos=include_autos, verbose=verbose, notebook_progressbar=notebook_progressbar, use_redundancy=use_redundancy, **fitting_kwargs) return (model, resid, gains, fitted_info)
def calibrate_and_model_dpss(uvdata, horizon=1.0, min_dly=0.0, offset=0.0, include_autos=False, verbose=False, red_tol=1.0, notebook_progressbar=False, fg_model_comps_dict=None, **fitting_kwargs): "Simultaneously solve for gains and model foregrounds with DPSS vectors.\n\n Parameters\n ----------\n uvdata: UVData object.\n dataset to calibrate and filter.\n horizon: float, optional\n fraction of baseline delay length to model with dpss modes\n unitless.\n default is 1.\n min_dly: float, optional\n minimum delay to model with dpss models.\n in units of ns.\n default is 0.\n offset: float optional\n offset off of horizon wedge to include in dpss delay range.\n in units of ns.\n default is 0.\n include_autos: bool, optional\n if true, include autocorrelations in fitting.\n default is False.\n verbose: bool, optional\n lots of text output\n default is False.\n red_tol: float, optional\n tolerance for treating baselines as redundant (meters)\n default is 1.0\n notebook_progressbar: bool, optional\n use progress bar optimized for notebook output.\n default is False.\n fg_model_comps_dict: dict, optional\n dictionary containing precomputed foreground model components.\n Currently only supported if use_redundancy is False.\n fitting_kwargs: kwarg dict\n additional kwargs for calibrate_and_model_pbl.\n see docstring of calibrate_and_model_pbl.\n\n Returns\n -------\n model: UVData object\n uvdata object containing DPSS model of intrinsic foregrounds.\n resid: UVData object\n uvdata object containing residuals after subtracting model times gains and applying gains.\n gains: UVCal object\n uvcal object containing fitted gains.\n fit_history:\n dictionary containing fit history for each time-step and polarization in the data with fields:\n 'loss_history': list of values of the loss function in each minimization iteration.\n " dpss_model_comps_dict = modeling.yield_pbl_dpss_model_comps(uvdata, horizon=horizon, min_dly=min_dly, offset=offset, include_autos=include_autos, red_tol=red_tol, notebook_progressbar=notebook_progressbar, verbose=verbose) (model, resid, gains, fitted_info) = calibrate_and_model_tensor(uvdata=uvdata, fg_model_comps_dict=dpss_model_comps_dict, include_autos=include_autos, verbose=verbose, notebook_progressbar=notebook_progressbar, **fitting_kwargs) return (model, resid, gains, fitted_info)
-4,381,372,808,634,719,000
Simultaneously solve for gains and model foregrounds with DPSS vectors. Parameters ---------- uvdata: UVData object. dataset to calibrate and filter. horizon: float, optional fraction of baseline delay length to model with dpss modes unitless. default is 1. min_dly: float, optional minimum delay to model with dpss models. in units of ns. default is 0. offset: float optional offset off of horizon wedge to include in dpss delay range. in units of ns. default is 0. include_autos: bool, optional if true, include autocorrelations in fitting. default is False. verbose: bool, optional lots of text output default is False. red_tol: float, optional tolerance for treating baselines as redundant (meters) default is 1.0 notebook_progressbar: bool, optional use progress bar optimized for notebook output. default is False. fg_model_comps_dict: dict, optional dictionary containing precomputed foreground model components. Currently only supported if use_redundancy is False. fitting_kwargs: kwarg dict additional kwargs for calibrate_and_model_pbl. see docstring of calibrate_and_model_pbl. Returns ------- model: UVData object uvdata object containing DPSS model of intrinsic foregrounds. resid: UVData object uvdata object containing residuals after subtracting model times gains and applying gains. gains: UVCal object uvcal object containing fitted gains. fit_history: dictionary containing fit history for each time-step and polarization in the data with fields: 'loss_history': list of values of the loss function in each minimization iteration.
calamity/calibration.py
calibrate_and_model_dpss
aewallwi/calamity
python
def calibrate_and_model_dpss(uvdata, horizon=1.0, min_dly=0.0, offset=0.0, include_autos=False, verbose=False, red_tol=1.0, notebook_progressbar=False, fg_model_comps_dict=None, **fitting_kwargs): "Simultaneously solve for gains and model foregrounds with DPSS vectors.\n\n Parameters\n ----------\n uvdata: UVData object.\n dataset to calibrate and filter.\n horizon: float, optional\n fraction of baseline delay length to model with dpss modes\n unitless.\n default is 1.\n min_dly: float, optional\n minimum delay to model with dpss models.\n in units of ns.\n default is 0.\n offset: float optional\n offset off of horizon wedge to include in dpss delay range.\n in units of ns.\n default is 0.\n include_autos: bool, optional\n if true, include autocorrelations in fitting.\n default is False.\n verbose: bool, optional\n lots of text output\n default is False.\n red_tol: float, optional\n tolerance for treating baselines as redundant (meters)\n default is 1.0\n notebook_progressbar: bool, optional\n use progress bar optimized for notebook output.\n default is False.\n fg_model_comps_dict: dict, optional\n dictionary containing precomputed foreground model components.\n Currently only supported if use_redundancy is False.\n fitting_kwargs: kwarg dict\n additional kwargs for calibrate_and_model_pbl.\n see docstring of calibrate_and_model_pbl.\n\n Returns\n -------\n model: UVData object\n uvdata object containing DPSS model of intrinsic foregrounds.\n resid: UVData object\n uvdata object containing residuals after subtracting model times gains and applying gains.\n gains: UVCal object\n uvcal object containing fitted gains.\n fit_history:\n dictionary containing fit history for each time-step and polarization in the data with fields:\n 'loss_history': list of values of the loss function in each minimization iteration.\n " dpss_model_comps_dict = modeling.yield_pbl_dpss_model_comps(uvdata, horizon=horizon, min_dly=min_dly, offset=offset, include_autos=include_autos, red_tol=red_tol, notebook_progressbar=notebook_progressbar, verbose=verbose) (model, resid, gains, fitted_info) = calibrate_and_model_tensor(uvdata=uvdata, fg_model_comps_dict=dpss_model_comps_dict, include_autos=include_autos, verbose=verbose, notebook_progressbar=notebook_progressbar, **fitting_kwargs) return (model, resid, gains, fitted_info)
def read_calibrate_and_model_dpss(input_data_files, input_model_files=None, input_gain_files=None, resid_outfilename=None, gain_outfilename=None, model_outfilename=None, fitted_info_outfilename=None, x_orientation='east', clobber=False, bllen_min=0.0, bllen_max=np.inf, bl_ew_min=0.0, ex_ants=None, select_ants=None, gpu_index=None, gpu_memory_limit=None, precision=32, use_autocorrs_in_weights=False, **calibration_kwargs): "\n Driver function for using calamity with DPSS modeling.\n\n Parameters\n ----------\n input_data_files: list of strings or UVData object.\n list of paths to input files to read in and calibrate.\n input_model_files: list of strings or UVData object, optional\n list of paths to model files for overal phase/amp reference.\n Default is None -> use input files as model for overall\n phase and amplitude calibration.\n input_gain_files: list of strings or UVCal object, optional\n list of paths to gain files to use as initial guesses for calibration.\n resid_outfilename: str, optional\n path for file to write residuals.\n default is None -> don't write out residuals.\n gain_outfilename: str, optional\n path to gain calfits to write fitted gains.\n default is None -> don't write out gains.\n model_outfilename, str, optional\n path to file to write model output.\n default is None -> Don't write model.\n fitting_info_outfilename, str, optional\n string to pickel fitting info to.\n n_output_chunks: int optional\n split up outputs into n_output_chunks chunked by time.\n default is None -> write single output file.\n bllen_min: float, optional\n select all baselines with length greater then this value [meters].\n default is 0.0\n bllen_max: float, optional\n select only baselines with length less then this value [meters].\n default is np.inf.\n bl_ew_min: float, optional\n select all baselines with EW projected length greater then this value [meters].\n default is 0.0\n gpu_index: int, optional\n limit visible GPUs to be the index of this GPU.\n default: None -> all GPUs are visible.\n gpu_memory_limit: float, optional\n GiB of memory on GPU that can be used.\n default None -> all memory available.\n use_autocorrs_in_weights: bool, optional\n if True, use smooth fits to autocorrelations as\n inverse variance weights.\n default is False.\n calibration_kwargs: kwarg dict\n see kwrags for calibration_and_model_dpss()\n Returns\n -------\n\n model_fit: UVData object\n uvdata object containing DPSS model of intrinsic foregrounds.\n resid_fit: UVData object\n uvdata object containing residuals after subtracting model times gains and applying gains.\n gains_fit: UVCal object\n uvcal object containing fitted gains.\n fit_info:\n dictionary containing fit history for each time-step and polarization in the data with fields:\n 'loss_history': list of values of the loss function in each minimization iteration.\n " gpus = tf.config.list_physical_devices('GPU') if (gpu_index is not None): if gpus: if (gpu_memory_limit is None): tf.config.set_visible_devices(gpus[gpu_index], 'GPU') else: tf.config.set_logical_device_configuration(gpus[gpu_index], [tf.config.LogicalDeviceConfiguration(memory_limit=(gpu_memory_limit * 1024))]) logical_gpus = tf.config.list_logical_devices('GPU') print(len(gpus), 'Physical GPUs,', len(logical_gpus), 'Logical GPU') if isinstance(input_data_files, str): input_data_files = [input_data_files] if isinstance(input_data_files, list): uvd = UVData() uvd.read(input_data_files) else: uvd = input_data_files if use_autocorrs_in_weights: weights = get_auto_weights(uvd) else: weights = None utils.select_baselines(uvd, bllen_min=bllen_min, bllen_max=bllen_max, bl_ew_min=bl_ew_min, ex_ants=ex_ants, select_ants=select_ants) if isinstance(input_model_files, str): input_model_files = [input_model_files] if (input_model_files is not None): if isinstance(input_model_files, list): uvd_model = UVData() uvd_model.read(input_model_files) else: uvd_model = input_model_files else: uvd_model = None if (uvd_model is not None): utils.select_baselines(uvd, bllen_min=bllen_min, bllen_max=bllen_max, bl_ew_min=bl_ew_min) if isinstance(input_gain_files, str): input_gain_files = [input_gain_files] if (input_gain_files is not None): if isinstance(input_gain_files, list): uvc = UVCal() uvc.read_calfits(input_gain_files) else: uvc = input_gain_files else: uvc = None dtype = {32: np.float32, 64: np.float64}[precision] if ((gpu_index is not None) and gpus): with tf.device(f'/device:GPU:{gpus[gpu_index].name[(- 1)]}'): (model_fit, resid_fit, gains_fit, fit_info) = calibrate_and_model_dpss(uvdata=uvd, sky_model=uvd_model, gains=uvc, dtype=dtype, weights=weights, **calibration_kwargs) else: (model_fit, resid_fit, gains_fit, fit_info) = calibrate_and_model_dpss(uvdata=uvd, sky_model=uvd_model, gains=uvc, dtype=dtype, weights=weights, **calibration_kwargs) if (resid_outfilename is not None): resid_fit.write_uvh5(resid_outfilename, clobber=clobber) if (gain_outfilename is not None): gains_fit.x_orientation = x_orientation gains_fit.write_calfits(gain_outfilename, clobber=clobber) if (model_outfilename is not None): model_fit.write_uvh5(model_outfilename, clobber=clobber) fit_info['calibration_kwargs'] = calibration_kwargs fit_info['calibration_kwargs']['dtype'] = dtype return (model_fit, resid_fit, gains_fit, fit_info)
-2,364,376,502,582,659,600
Driver function for using calamity with DPSS modeling. Parameters ---------- input_data_files: list of strings or UVData object. list of paths to input files to read in and calibrate. input_model_files: list of strings or UVData object, optional list of paths to model files for overal phase/amp reference. Default is None -> use input files as model for overall phase and amplitude calibration. input_gain_files: list of strings or UVCal object, optional list of paths to gain files to use as initial guesses for calibration. resid_outfilename: str, optional path for file to write residuals. default is None -> don't write out residuals. gain_outfilename: str, optional path to gain calfits to write fitted gains. default is None -> don't write out gains. model_outfilename, str, optional path to file to write model output. default is None -> Don't write model. fitting_info_outfilename, str, optional string to pickel fitting info to. n_output_chunks: int optional split up outputs into n_output_chunks chunked by time. default is None -> write single output file. bllen_min: float, optional select all baselines with length greater then this value [meters]. default is 0.0 bllen_max: float, optional select only baselines with length less then this value [meters]. default is np.inf. bl_ew_min: float, optional select all baselines with EW projected length greater then this value [meters]. default is 0.0 gpu_index: int, optional limit visible GPUs to be the index of this GPU. default: None -> all GPUs are visible. gpu_memory_limit: float, optional GiB of memory on GPU that can be used. default None -> all memory available. use_autocorrs_in_weights: bool, optional if True, use smooth fits to autocorrelations as inverse variance weights. default is False. calibration_kwargs: kwarg dict see kwrags for calibration_and_model_dpss() Returns ------- model_fit: UVData object uvdata object containing DPSS model of intrinsic foregrounds. resid_fit: UVData object uvdata object containing residuals after subtracting model times gains and applying gains. gains_fit: UVCal object uvcal object containing fitted gains. fit_info: dictionary containing fit history for each time-step and polarization in the data with fields: 'loss_history': list of values of the loss function in each minimization iteration.
calamity/calibration.py
read_calibrate_and_model_dpss
aewallwi/calamity
python
def read_calibrate_and_model_dpss(input_data_files, input_model_files=None, input_gain_files=None, resid_outfilename=None, gain_outfilename=None, model_outfilename=None, fitted_info_outfilename=None, x_orientation='east', clobber=False, bllen_min=0.0, bllen_max=np.inf, bl_ew_min=0.0, ex_ants=None, select_ants=None, gpu_index=None, gpu_memory_limit=None, precision=32, use_autocorrs_in_weights=False, **calibration_kwargs): "\n Driver function for using calamity with DPSS modeling.\n\n Parameters\n ----------\n input_data_files: list of strings or UVData object.\n list of paths to input files to read in and calibrate.\n input_model_files: list of strings or UVData object, optional\n list of paths to model files for overal phase/amp reference.\n Default is None -> use input files as model for overall\n phase and amplitude calibration.\n input_gain_files: list of strings or UVCal object, optional\n list of paths to gain files to use as initial guesses for calibration.\n resid_outfilename: str, optional\n path for file to write residuals.\n default is None -> don't write out residuals.\n gain_outfilename: str, optional\n path to gain calfits to write fitted gains.\n default is None -> don't write out gains.\n model_outfilename, str, optional\n path to file to write model output.\n default is None -> Don't write model.\n fitting_info_outfilename, str, optional\n string to pickel fitting info to.\n n_output_chunks: int optional\n split up outputs into n_output_chunks chunked by time.\n default is None -> write single output file.\n bllen_min: float, optional\n select all baselines with length greater then this value [meters].\n default is 0.0\n bllen_max: float, optional\n select only baselines with length less then this value [meters].\n default is np.inf.\n bl_ew_min: float, optional\n select all baselines with EW projected length greater then this value [meters].\n default is 0.0\n gpu_index: int, optional\n limit visible GPUs to be the index of this GPU.\n default: None -> all GPUs are visible.\n gpu_memory_limit: float, optional\n GiB of memory on GPU that can be used.\n default None -> all memory available.\n use_autocorrs_in_weights: bool, optional\n if True, use smooth fits to autocorrelations as\n inverse variance weights.\n default is False.\n calibration_kwargs: kwarg dict\n see kwrags for calibration_and_model_dpss()\n Returns\n -------\n\n model_fit: UVData object\n uvdata object containing DPSS model of intrinsic foregrounds.\n resid_fit: UVData object\n uvdata object containing residuals after subtracting model times gains and applying gains.\n gains_fit: UVCal object\n uvcal object containing fitted gains.\n fit_info:\n dictionary containing fit history for each time-step and polarization in the data with fields:\n 'loss_history': list of values of the loss function in each minimization iteration.\n " gpus = tf.config.list_physical_devices('GPU') if (gpu_index is not None): if gpus: if (gpu_memory_limit is None): tf.config.set_visible_devices(gpus[gpu_index], 'GPU') else: tf.config.set_logical_device_configuration(gpus[gpu_index], [tf.config.LogicalDeviceConfiguration(memory_limit=(gpu_memory_limit * 1024))]) logical_gpus = tf.config.list_logical_devices('GPU') print(len(gpus), 'Physical GPUs,', len(logical_gpus), 'Logical GPU') if isinstance(input_data_files, str): input_data_files = [input_data_files] if isinstance(input_data_files, list): uvd = UVData() uvd.read(input_data_files) else: uvd = input_data_files if use_autocorrs_in_weights: weights = get_auto_weights(uvd) else: weights = None utils.select_baselines(uvd, bllen_min=bllen_min, bllen_max=bllen_max, bl_ew_min=bl_ew_min, ex_ants=ex_ants, select_ants=select_ants) if isinstance(input_model_files, str): input_model_files = [input_model_files] if (input_model_files is not None): if isinstance(input_model_files, list): uvd_model = UVData() uvd_model.read(input_model_files) else: uvd_model = input_model_files else: uvd_model = None if (uvd_model is not None): utils.select_baselines(uvd, bllen_min=bllen_min, bllen_max=bllen_max, bl_ew_min=bl_ew_min) if isinstance(input_gain_files, str): input_gain_files = [input_gain_files] if (input_gain_files is not None): if isinstance(input_gain_files, list): uvc = UVCal() uvc.read_calfits(input_gain_files) else: uvc = input_gain_files else: uvc = None dtype = {32: np.float32, 64: np.float64}[precision] if ((gpu_index is not None) and gpus): with tf.device(f'/device:GPU:{gpus[gpu_index].name[(- 1)]}'): (model_fit, resid_fit, gains_fit, fit_info) = calibrate_and_model_dpss(uvdata=uvd, sky_model=uvd_model, gains=uvc, dtype=dtype, weights=weights, **calibration_kwargs) else: (model_fit, resid_fit, gains_fit, fit_info) = calibrate_and_model_dpss(uvdata=uvd, sky_model=uvd_model, gains=uvc, dtype=dtype, weights=weights, **calibration_kwargs) if (resid_outfilename is not None): resid_fit.write_uvh5(resid_outfilename, clobber=clobber) if (gain_outfilename is not None): gains_fit.x_orientation = x_orientation gains_fit.write_calfits(gain_outfilename, clobber=clobber) if (model_outfilename is not None): model_fit.write_uvh5(model_outfilename, clobber=clobber) fit_info['calibration_kwargs'] = calibration_kwargs fit_info['calibration_kwargs']['dtype'] = dtype return (model_fit, resid_fit, gains_fit, fit_info)
def render_formset(formset, **kwargs): 'Render a formset to a Bootstrap layout.' renderer_cls = get_formset_renderer(**kwargs) return renderer_cls(formset, **kwargs).render()
3,676,325,694,860,855,300
Render a formset to a Bootstrap layout.
src/bootstrap4/forms.py
render_formset
Natureshadow/django-bootstrap4
python
def render_formset(formset, **kwargs): renderer_cls = get_formset_renderer(**kwargs) return renderer_cls(formset, **kwargs).render()
def render_formset_errors(formset, **kwargs): 'Render formset errors to a Bootstrap layout.' renderer_cls = get_formset_renderer(**kwargs) return renderer_cls(formset, **kwargs).render_errors()
-6,894,594,435,518,397,000
Render formset errors to a Bootstrap layout.
src/bootstrap4/forms.py
render_formset_errors
Natureshadow/django-bootstrap4
python
def render_formset_errors(formset, **kwargs): renderer_cls = get_formset_renderer(**kwargs) return renderer_cls(formset, **kwargs).render_errors()
def render_form(form, **kwargs): 'Render a form to a Bootstrap layout.' renderer_cls = get_form_renderer(**kwargs) return renderer_cls(form, **kwargs).render()
-2,290,790,819,255,574,500
Render a form to a Bootstrap layout.
src/bootstrap4/forms.py
render_form
Natureshadow/django-bootstrap4
python
def render_form(form, **kwargs): renderer_cls = get_form_renderer(**kwargs) return renderer_cls(form, **kwargs).render()
def render_form_errors(form, type='all', **kwargs): 'Render form errors to a Bootstrap layout.' renderer_cls = get_form_renderer(**kwargs) return renderer_cls(form, **kwargs).render_errors(type)
-6,262,209,671,540,802,000
Render form errors to a Bootstrap layout.
src/bootstrap4/forms.py
render_form_errors
Natureshadow/django-bootstrap4
python
def render_form_errors(form, type='all', **kwargs): renderer_cls = get_form_renderer(**kwargs) return renderer_cls(form, **kwargs).render_errors(type)
def render_field(field, **kwargs): 'Render a field to a Bootstrap layout.' renderer_cls = get_field_renderer(**kwargs) return renderer_cls(field, **kwargs).render()
212,413,380,482,624,060
Render a field to a Bootstrap layout.
src/bootstrap4/forms.py
render_field
Natureshadow/django-bootstrap4
python
def render_field(field, **kwargs): renderer_cls = get_field_renderer(**kwargs) return renderer_cls(field, **kwargs).render()
def render_label(content, label_for=None, label_class=None, label_title=''): 'Render a label with content.' attrs = {} if label_for: attrs['for'] = label_for if label_class: attrs['class'] = label_class if label_title: attrs['title'] = label_title return render_tag('label', attrs=attrs, content=content)
4,835,622,836,655,177,000
Render a label with content.
src/bootstrap4/forms.py
render_label
Natureshadow/django-bootstrap4
python
def render_label(content, label_for=None, label_class=None, label_title=): attrs = {} if label_for: attrs['for'] = label_for if label_class: attrs['class'] = label_class if label_title: attrs['title'] = label_title return render_tag('label', attrs=attrs, content=content)
def render_button(content, button_type=None, button_class='btn-primary', size='', href='', name=None, value=None, title=None, extra_classes='', id=''): 'Render a button with content.' attrs = {} classes = add_css_class('btn', button_class) size = text_value(size).lower().strip() if (size == 'xs'): classes = add_css_class(classes, 'btn-xs') elif ((size == 'sm') or (size == 'small')): classes = add_css_class(classes, 'btn-sm') elif ((size == 'lg') or (size == 'large')): classes = add_css_class(classes, 'btn-lg') elif ((size == 'md') or (size == 'medium')): pass elif size: raise BootstrapError(f'Parameter "size" should be "xs", "sm", "lg" or empty ("{size}" given).') if button_type: if (button_type not in ('submit', 'reset', 'button', 'link')): raise BootstrapError(f'Parameter "button_type" should be "submit", "reset", "button", "link" or empty ("{button_type}" given).') if (button_type != 'link'): attrs['type'] = button_type classes = add_css_class(classes, extra_classes) attrs['class'] = classes if href: tag = 'a' if (button_type and (button_type != 'link')): raise BootstrapError(f'Button of type "{button_type}" is not allowed a "href" parameter.') attrs['href'] = href attrs.setdefault('role', 'button') else: tag = 'button' if id: attrs['id'] = id if name: attrs['name'] = name if value: attrs['value'] = value if title: attrs['title'] = title return render_tag(tag, attrs=attrs, content=mark_safe(content))
5,598,860,407,885,194,000
Render a button with content.
src/bootstrap4/forms.py
render_button
Natureshadow/django-bootstrap4
python
def render_button(content, button_type=None, button_class='btn-primary', size=, href=, name=None, value=None, title=None, extra_classes=, id=): attrs = {} classes = add_css_class('btn', button_class) size = text_value(size).lower().strip() if (size == 'xs'): classes = add_css_class(classes, 'btn-xs') elif ((size == 'sm') or (size == 'small')): classes = add_css_class(classes, 'btn-sm') elif ((size == 'lg') or (size == 'large')): classes = add_css_class(classes, 'btn-lg') elif ((size == 'md') or (size == 'medium')): pass elif size: raise BootstrapError(f'Parameter "size" should be "xs", "sm", "lg" or empty ("{size}" given).') if button_type: if (button_type not in ('submit', 'reset', 'button', 'link')): raise BootstrapError(f'Parameter "button_type" should be "submit", "reset", "button", "link" or empty ("{button_type}" given).') if (button_type != 'link'): attrs['type'] = button_type classes = add_css_class(classes, extra_classes) attrs['class'] = classes if href: tag = 'a' if (button_type and (button_type != 'link')): raise BootstrapError(f'Button of type "{button_type}" is not allowed a "href" parameter.') attrs['href'] = href attrs.setdefault('role', 'button') else: tag = 'button' if id: attrs['id'] = id if name: attrs['name'] = name if value: attrs['value'] = value if title: attrs['title'] = title return render_tag(tag, attrs=attrs, content=mark_safe(content))
def render_field_and_label(field, label, field_class='', label_for=None, label_class='', layout='', **kwargs): 'Render a field with its label.' if (layout == 'horizontal'): if (not label_class): label_class = get_bootstrap_setting('horizontal_label_class') if (not field_class): field_class = get_bootstrap_setting('horizontal_field_class') if (not label): label = mark_safe('&#160;') label_class = add_css_class(label_class, 'control-label') html = field if field_class: html = f'<div class="{field_class}">{html}</div>' if label: html = (render_label(label, label_for=label_for, label_class=label_class) + html) return html
2,039,437,234,522,795,500
Render a field with its label.
src/bootstrap4/forms.py
render_field_and_label
Natureshadow/django-bootstrap4
python
def render_field_and_label(field, label, field_class=, label_for=None, label_class=, layout=, **kwargs): if (layout == 'horizontal'): if (not label_class): label_class = get_bootstrap_setting('horizontal_label_class') if (not field_class): field_class = get_bootstrap_setting('horizontal_field_class') if (not label): label = mark_safe('&#160;') label_class = add_css_class(label_class, 'control-label') html = field if field_class: html = f'<div class="{field_class}">{html}</div>' if label: html = (render_label(label, label_for=label_for, label_class=label_class) + html) return html
def render_form_group(content, css_class=FORM_GROUP_CLASS): 'Render a Bootstrap form group.' return f'<div class="{css_class}">{content}</div>'
-311,337,625,377,371,400
Render a Bootstrap form group.
src/bootstrap4/forms.py
render_form_group
Natureshadow/django-bootstrap4
python
def render_form_group(content, css_class=FORM_GROUP_CLASS): return f'<div class="{css_class}">{content}</div>'
def is_widget_with_placeholder(widget): '\n Return whether this widget should have a placeholder.\n\n Only text, text area, number, e-mail, url, password, number and derived inputs have placeholders.\n ' return isinstance(widget, (TextInput, Textarea, NumberInput, EmailInput, URLInput, PasswordInput))
119,742,989,659,189,860
Return whether this widget should have a placeholder. Only text, text area, number, e-mail, url, password, number and derived inputs have placeholders.
src/bootstrap4/forms.py
is_widget_with_placeholder
Natureshadow/django-bootstrap4
python
def is_widget_with_placeholder(widget): '\n Return whether this widget should have a placeholder.\n\n Only text, text area, number, e-mail, url, password, number and derived inputs have placeholders.\n ' return isinstance(widget, (TextInput, Textarea, NumberInput, EmailInput, URLInput, PasswordInput))
def _init_features(self): 'Set up the repository of available Data ONTAP features.' self.features = na_utils.Features()
3,182,935,898,800,352,000
Set up the repository of available Data ONTAP features.
cinder/volume/drivers/netapp/dataontap/client/client_base.py
_init_features
sapcc/cinder
python
def _init_features(self): self.features = na_utils.Features()
def get_ontap_version(self, cached=True): 'Gets the ONTAP version.' if cached: return self.connection.get_ontap_version() ontap_version = netapp_api.NaElement('system-get-version') result = self.connection.invoke_successfully(ontap_version, True) version_tuple = (result.get_child_by_name('version-tuple') or netapp_api.NaElement('none')) system_version_tuple = (version_tuple.get_child_by_name('system-version-tuple') or netapp_api.NaElement('none')) generation = system_version_tuple.get_child_content('generation') major = system_version_tuple.get_child_content('major') return ('%(generation)s.%(major)s' % {'generation': generation, 'major': major})
-6,697,713,649,390,994,000
Gets the ONTAP version.
cinder/volume/drivers/netapp/dataontap/client/client_base.py
get_ontap_version
sapcc/cinder
python
def get_ontap_version(self, cached=True): if cached: return self.connection.get_ontap_version() ontap_version = netapp_api.NaElement('system-get-version') result = self.connection.invoke_successfully(ontap_version, True) version_tuple = (result.get_child_by_name('version-tuple') or netapp_api.NaElement('none')) system_version_tuple = (version_tuple.get_child_by_name('system-version-tuple') or netapp_api.NaElement('none')) generation = system_version_tuple.get_child_content('generation') major = system_version_tuple.get_child_content('major') return ('%(generation)s.%(major)s' % {'generation': generation, 'major': major})
def get_ontapi_version(self, cached=True): 'Gets the supported ontapi version.' if cached: return self.connection.get_api_version() ontapi_version = netapp_api.NaElement('system-get-ontapi-version') res = self.connection.invoke_successfully(ontapi_version, False) major = res.get_child_content('major-version') minor = res.get_child_content('minor-version') return (major, minor)
7,650,952,949,425,096,000
Gets the supported ontapi version.
cinder/volume/drivers/netapp/dataontap/client/client_base.py
get_ontapi_version
sapcc/cinder
python
def get_ontapi_version(self, cached=True): if cached: return self.connection.get_api_version() ontapi_version = netapp_api.NaElement('system-get-ontapi-version') res = self.connection.invoke_successfully(ontapi_version, False) major = res.get_child_content('major-version') minor = res.get_child_content('minor-version') return (major, minor)
def check_is_naelement(self, elem): 'Checks if object is instance of NaElement.' if (not isinstance(elem, netapp_api.NaElement)): raise ValueError('Expects NaElement')
2,203,974,980,253,227,500
Checks if object is instance of NaElement.
cinder/volume/drivers/netapp/dataontap/client/client_base.py
check_is_naelement
sapcc/cinder
python
def check_is_naelement(self, elem): if (not isinstance(elem, netapp_api.NaElement)): raise ValueError('Expects NaElement')
def create_lun(self, volume_name, lun_name, size, metadata, qos_policy_group_name=None): 'Issues API request for creating LUN on volume.' path = ('/vol/%s/%s' % (volume_name, lun_name)) space_reservation = metadata['SpaceReserved'] initial_size = size ontap_version = self.get_ontap_version() if (ontap_version < '9.5'): initial_size = MAX_SIZE_FOR_A_LUN space_reservation = 'false' params = {'path': path, 'size': str(initial_size), 'ostype': metadata['OsType'], 'space-reservation-enabled': space_reservation} version = self.get_ontapi_version() if (version >= (1, 110)): params['use-exact-size'] = 'true' lun_create = netapp_api.NaElement.create_node_with_children('lun-create-by-size', **params) if qos_policy_group_name: lun_create.add_new_child('qos-policy-group', qos_policy_group_name) try: self.connection.invoke_successfully(lun_create, True) except netapp_api.NaApiError as ex: with excutils.save_and_reraise_exception(): LOG.error('Error provisioning volume %(lun_name)s on %(volume_name)s. Details: %(ex)s', {'lun_name': lun_name, 'volume_name': volume_name, 'ex': ex}) if (ontap_version < '9.5'): self.do_direct_resize(path, six.text_type(size)) if (metadata['SpaceReserved'] == 'true'): self.set_lun_space_reservation(path, True)
-900,611,365,462,998,100
Issues API request for creating LUN on volume.
cinder/volume/drivers/netapp/dataontap/client/client_base.py
create_lun
sapcc/cinder
python
def create_lun(self, volume_name, lun_name, size, metadata, qos_policy_group_name=None): path = ('/vol/%s/%s' % (volume_name, lun_name)) space_reservation = metadata['SpaceReserved'] initial_size = size ontap_version = self.get_ontap_version() if (ontap_version < '9.5'): initial_size = MAX_SIZE_FOR_A_LUN space_reservation = 'false' params = {'path': path, 'size': str(initial_size), 'ostype': metadata['OsType'], 'space-reservation-enabled': space_reservation} version = self.get_ontapi_version() if (version >= (1, 110)): params['use-exact-size'] = 'true' lun_create = netapp_api.NaElement.create_node_with_children('lun-create-by-size', **params) if qos_policy_group_name: lun_create.add_new_child('qos-policy-group', qos_policy_group_name) try: self.connection.invoke_successfully(lun_create, True) except netapp_api.NaApiError as ex: with excutils.save_and_reraise_exception(): LOG.error('Error provisioning volume %(lun_name)s on %(volume_name)s. Details: %(ex)s', {'lun_name': lun_name, 'volume_name': volume_name, 'ex': ex}) if (ontap_version < '9.5'): self.do_direct_resize(path, six.text_type(size)) if (metadata['SpaceReserved'] == 'true'): self.set_lun_space_reservation(path, True)
def set_lun_space_reservation(self, path, flag): 'Sets the LUN space reservation on ONTAP.' lun_modify_space_reservation = netapp_api.NaElement.create_node_with_children('lun-set-space-reservation-info', **{'path': path, 'enable': str(flag)}) self.connection.invoke_successfully(lun_modify_space_reservation, True)
3,347,695,314,018,310,700
Sets the LUN space reservation on ONTAP.
cinder/volume/drivers/netapp/dataontap/client/client_base.py
set_lun_space_reservation
sapcc/cinder
python
def set_lun_space_reservation(self, path, flag): lun_modify_space_reservation = netapp_api.NaElement.create_node_with_children('lun-set-space-reservation-info', **{'path': path, 'enable': str(flag)}) self.connection.invoke_successfully(lun_modify_space_reservation, True)
def destroy_lun(self, path, force=True): 'Destroys the LUN at the path.' lun_destroy = netapp_api.NaElement.create_node_with_children('lun-destroy', **{'path': path}) if force: lun_destroy.add_new_child('force', 'true') self.connection.invoke_successfully(lun_destroy, True) seg = path.split('/') LOG.debug('Destroyed LUN %s', seg[(- 1)])
7,368,047,698,348,012,000
Destroys the LUN at the path.
cinder/volume/drivers/netapp/dataontap/client/client_base.py
destroy_lun
sapcc/cinder
python
def destroy_lun(self, path, force=True): lun_destroy = netapp_api.NaElement.create_node_with_children('lun-destroy', **{'path': path}) if force: lun_destroy.add_new_child('force', 'true') self.connection.invoke_successfully(lun_destroy, True) seg = path.split('/') LOG.debug('Destroyed LUN %s', seg[(- 1)])
def map_lun(self, path, igroup_name, lun_id=None): 'Maps LUN to the initiator and returns LUN id assigned.' lun_map = netapp_api.NaElement.create_node_with_children('lun-map', **{'path': path, 'initiator-group': igroup_name}) if lun_id: lun_map.add_new_child('lun-id', lun_id) try: result = self.connection.invoke_successfully(lun_map, True) return result.get_child_content('lun-id-assigned') except netapp_api.NaApiError as e: code = e.code message = e.message LOG.warning('Error mapping LUN. Code :%(code)s, Message: %(message)s', {'code': code, 'message': message}) raise
5,147,786,705,441,598,000
Maps LUN to the initiator and returns LUN id assigned.
cinder/volume/drivers/netapp/dataontap/client/client_base.py
map_lun
sapcc/cinder
python
def map_lun(self, path, igroup_name, lun_id=None): lun_map = netapp_api.NaElement.create_node_with_children('lun-map', **{'path': path, 'initiator-group': igroup_name}) if lun_id: lun_map.add_new_child('lun-id', lun_id) try: result = self.connection.invoke_successfully(lun_map, True) return result.get_child_content('lun-id-assigned') except netapp_api.NaApiError as e: code = e.code message = e.message LOG.warning('Error mapping LUN. Code :%(code)s, Message: %(message)s', {'code': code, 'message': message}) raise
def unmap_lun(self, path, igroup_name): 'Unmaps a LUN from given initiator.' lun_unmap = netapp_api.NaElement.create_node_with_children('lun-unmap', **{'path': path, 'initiator-group': igroup_name}) try: self.connection.invoke_successfully(lun_unmap, True) except netapp_api.NaApiError as e: exc_info = sys.exc_info() LOG.warning('Error unmapping LUN. Code :%(code)s, Message: %(message)s', {'code': e.code, 'message': e.message}) if ((e.code == '13115') or (e.code == '9016')): pass else: six.reraise(*exc_info)
682,668,600,462,337,700
Unmaps a LUN from given initiator.
cinder/volume/drivers/netapp/dataontap/client/client_base.py
unmap_lun
sapcc/cinder
python
def unmap_lun(self, path, igroup_name): lun_unmap = netapp_api.NaElement.create_node_with_children('lun-unmap', **{'path': path, 'initiator-group': igroup_name}) try: self.connection.invoke_successfully(lun_unmap, True) except netapp_api.NaApiError as e: exc_info = sys.exc_info() LOG.warning('Error unmapping LUN. Code :%(code)s, Message: %(message)s', {'code': e.code, 'message': e.message}) if ((e.code == '13115') or (e.code == '9016')): pass else: six.reraise(*exc_info)
def create_igroup(self, igroup, igroup_type='iscsi', os_type='default'): 'Creates igroup with specified args.' igroup_create = netapp_api.NaElement.create_node_with_children('igroup-create', **{'initiator-group-name': igroup, 'initiator-group-type': igroup_type, 'os-type': os_type}) self.connection.invoke_successfully(igroup_create, True)
4,476,615,876,935,663,000
Creates igroup with specified args.
cinder/volume/drivers/netapp/dataontap/client/client_base.py
create_igroup
sapcc/cinder
python
def create_igroup(self, igroup, igroup_type='iscsi', os_type='default'): igroup_create = netapp_api.NaElement.create_node_with_children('igroup-create', **{'initiator-group-name': igroup, 'initiator-group-type': igroup_type, 'os-type': os_type}) self.connection.invoke_successfully(igroup_create, True)
def add_igroup_initiator(self, igroup, initiator): 'Adds initiators to the specified igroup.' igroup_add = netapp_api.NaElement.create_node_with_children('igroup-add', **{'initiator-group-name': igroup, 'initiator': initiator}) self.connection.invoke_successfully(igroup_add, True)
-6,145,192,281,599,506,000
Adds initiators to the specified igroup.
cinder/volume/drivers/netapp/dataontap/client/client_base.py
add_igroup_initiator
sapcc/cinder
python
def add_igroup_initiator(self, igroup, initiator): igroup_add = netapp_api.NaElement.create_node_with_children('igroup-add', **{'initiator-group-name': igroup, 'initiator': initiator}) self.connection.invoke_successfully(igroup_add, True)
def do_direct_resize(self, path, new_size_bytes, force=True): 'Resize the LUN.' seg = path.split('/') LOG.info('Resizing LUN %s directly to new size.', seg[(- 1)]) lun_resize = netapp_api.NaElement.create_node_with_children('lun-resize', **{'path': path, 'size': new_size_bytes}) if force: lun_resize.add_new_child('force', 'true') self.connection.invoke_successfully(lun_resize, True)
6,683,164,055,784,541,000
Resize the LUN.
cinder/volume/drivers/netapp/dataontap/client/client_base.py
do_direct_resize
sapcc/cinder
python
def do_direct_resize(self, path, new_size_bytes, force=True): seg = path.split('/') LOG.info('Resizing LUN %s directly to new size.', seg[(- 1)]) lun_resize = netapp_api.NaElement.create_node_with_children('lun-resize', **{'path': path, 'size': new_size_bytes}) if force: lun_resize.add_new_child('force', 'true') self.connection.invoke_successfully(lun_resize, True)
def get_lun_geometry(self, path): 'Gets the LUN geometry.' geometry = {} lun_geo = netapp_api.NaElement('lun-get-geometry') lun_geo.add_new_child('path', path) try: result = self.connection.invoke_successfully(lun_geo, True) geometry['size'] = result.get_child_content('size') geometry['bytes_per_sector'] = result.get_child_content('bytes-per-sector') geometry['sectors_per_track'] = result.get_child_content('sectors-per-track') geometry['tracks_per_cylinder'] = result.get_child_content('tracks-per-cylinder') geometry['cylinders'] = result.get_child_content('cylinders') geometry['max_resize'] = result.get_child_content('max-resize-size') except Exception as e: LOG.error('LUN %(path)s geometry failed. Message - %(msg)s', {'path': path, 'msg': six.text_type(e)}) return geometry
-6,749,439,803,077,511,000
Gets the LUN geometry.
cinder/volume/drivers/netapp/dataontap/client/client_base.py
get_lun_geometry
sapcc/cinder
python
def get_lun_geometry(self, path): geometry = {} lun_geo = netapp_api.NaElement('lun-get-geometry') lun_geo.add_new_child('path', path) try: result = self.connection.invoke_successfully(lun_geo, True) geometry['size'] = result.get_child_content('size') geometry['bytes_per_sector'] = result.get_child_content('bytes-per-sector') geometry['sectors_per_track'] = result.get_child_content('sectors-per-track') geometry['tracks_per_cylinder'] = result.get_child_content('tracks-per-cylinder') geometry['cylinders'] = result.get_child_content('cylinders') geometry['max_resize'] = result.get_child_content('max-resize-size') except Exception as e: LOG.error('LUN %(path)s geometry failed. Message - %(msg)s', {'path': path, 'msg': six.text_type(e)}) return geometry
def get_volume_options(self, volume_name): 'Get the value for the volume option.' opts = [] vol_option_list = netapp_api.NaElement('volume-options-list-info') vol_option_list.add_new_child('volume', volume_name) result = self.connection.invoke_successfully(vol_option_list, True) options = result.get_child_by_name('options') if options: opts = options.get_children() return opts
-4,522,512,593,235,644,400
Get the value for the volume option.
cinder/volume/drivers/netapp/dataontap/client/client_base.py
get_volume_options
sapcc/cinder
python
def get_volume_options(self, volume_name): opts = [] vol_option_list = netapp_api.NaElement('volume-options-list-info') vol_option_list.add_new_child('volume', volume_name) result = self.connection.invoke_successfully(vol_option_list, True) options = result.get_child_by_name('options') if options: opts = options.get_children() return opts
def move_lun(self, path, new_path): 'Moves the LUN at path to new path.' seg = path.split('/') new_seg = new_path.split('/') LOG.debug('Moving LUN %(name)s to %(new_name)s.', {'name': seg[(- 1)], 'new_name': new_seg[(- 1)]}) lun_move = netapp_api.NaElement('lun-move') lun_move.add_new_child('path', path) lun_move.add_new_child('new-path', new_path) self.connection.invoke_successfully(lun_move, True)
-297,760,326,579,492,900
Moves the LUN at path to new path.
cinder/volume/drivers/netapp/dataontap/client/client_base.py
move_lun
sapcc/cinder
python
def move_lun(self, path, new_path): seg = path.split('/') new_seg = new_path.split('/') LOG.debug('Moving LUN %(name)s to %(new_name)s.', {'name': seg[(- 1)], 'new_name': new_seg[(- 1)]}) lun_move = netapp_api.NaElement('lun-move') lun_move.add_new_child('path', path) lun_move.add_new_child('new-path', new_path) self.connection.invoke_successfully(lun_move, True)
def get_iscsi_target_details(self): 'Gets the iSCSI target portal details.' raise NotImplementedError()
5,800,743,555,444,232,000
Gets the iSCSI target portal details.
cinder/volume/drivers/netapp/dataontap/client/client_base.py
get_iscsi_target_details
sapcc/cinder
python
def get_iscsi_target_details(self): raise NotImplementedError()
def get_fc_target_wwpns(self): 'Gets the FC target details.' raise NotImplementedError()
2,441,588,315,056,165,400
Gets the FC target details.
cinder/volume/drivers/netapp/dataontap/client/client_base.py
get_fc_target_wwpns
sapcc/cinder
python
def get_fc_target_wwpns(self): raise NotImplementedError()
def get_iscsi_service_details(self): 'Returns iscsi iqn.' raise NotImplementedError()
-6,930,080,783,860,774,000
Returns iscsi iqn.
cinder/volume/drivers/netapp/dataontap/client/client_base.py
get_iscsi_service_details
sapcc/cinder
python
def get_iscsi_service_details(self): raise NotImplementedError()
def check_iscsi_initiator_exists(self, iqn): 'Returns True if initiator exists.' raise NotImplementedError()
8,060,813,294,559,359,000
Returns True if initiator exists.
cinder/volume/drivers/netapp/dataontap/client/client_base.py
check_iscsi_initiator_exists
sapcc/cinder
python
def check_iscsi_initiator_exists(self, iqn): raise NotImplementedError()
def set_iscsi_chap_authentication(self, iqn, username, password): "Provides NetApp host's CHAP credentials to the backend." raise NotImplementedError()
3,464,418,870,571,428,400
Provides NetApp host's CHAP credentials to the backend.
cinder/volume/drivers/netapp/dataontap/client/client_base.py
set_iscsi_chap_authentication
sapcc/cinder
python
def set_iscsi_chap_authentication(self, iqn, username, password): raise NotImplementedError()
def get_lun_list(self): 'Gets the list of LUNs on filer.' raise NotImplementedError()
5,492,762,630,089,887,000
Gets the list of LUNs on filer.
cinder/volume/drivers/netapp/dataontap/client/client_base.py
get_lun_list
sapcc/cinder
python
def get_lun_list(self): raise NotImplementedError()
def get_igroup_by_initiators(self, initiator_list): 'Get igroups exactly matching a set of initiators.' raise NotImplementedError()
7,145,069,194,903,305,000
Get igroups exactly matching a set of initiators.
cinder/volume/drivers/netapp/dataontap/client/client_base.py
get_igroup_by_initiators
sapcc/cinder
python
def get_igroup_by_initiators(self, initiator_list): raise NotImplementedError()
def _has_luns_mapped_to_initiator(self, initiator): 'Checks whether any LUNs are mapped to the given initiator.' lun_list_api = netapp_api.NaElement('lun-initiator-list-map-info') lun_list_api.add_new_child('initiator', initiator) result = self.connection.invoke_successfully(lun_list_api, True) lun_maps_container = (result.get_child_by_name('lun-maps') or netapp_api.NaElement('none')) return (len(lun_maps_container.get_children()) > 0)
9,150,061,350,151,996,000
Checks whether any LUNs are mapped to the given initiator.
cinder/volume/drivers/netapp/dataontap/client/client_base.py
_has_luns_mapped_to_initiator
sapcc/cinder
python
def _has_luns_mapped_to_initiator(self, initiator): lun_list_api = netapp_api.NaElement('lun-initiator-list-map-info') lun_list_api.add_new_child('initiator', initiator) result = self.connection.invoke_successfully(lun_list_api, True) lun_maps_container = (result.get_child_by_name('lun-maps') or netapp_api.NaElement('none')) return (len(lun_maps_container.get_children()) > 0)
def has_luns_mapped_to_initiators(self, initiator_list): 'Checks whether any LUNs are mapped to the given initiator(s).' for initiator in initiator_list: if self._has_luns_mapped_to_initiator(initiator): return True return False
7,278,811,898,778,940,000
Checks whether any LUNs are mapped to the given initiator(s).
cinder/volume/drivers/netapp/dataontap/client/client_base.py
has_luns_mapped_to_initiators
sapcc/cinder
python
def has_luns_mapped_to_initiators(self, initiator_list): for initiator in initiator_list: if self._has_luns_mapped_to_initiator(initiator): return True return False
def get_lun_by_args(self, **args): 'Retrieves LUNs with specified args.' raise NotImplementedError()
-3,744,136,302,429,453,300
Retrieves LUNs with specified args.
cinder/volume/drivers/netapp/dataontap/client/client_base.py
get_lun_by_args
sapcc/cinder
python
def get_lun_by_args(self, **args): raise NotImplementedError()
def get_performance_counter_info(self, object_name, counter_name): 'Gets info about one or more Data ONTAP performance counters.' api_args = {'objectname': object_name} result = self.connection.send_request('perf-object-counter-list-info', api_args, enable_tunneling=False) counters = (result.get_child_by_name('counters') or netapp_api.NaElement('None')) for counter in counters.get_children(): if (counter.get_child_content('name') == counter_name): labels = [] label_list = (counter.get_child_by_name('labels') or netapp_api.NaElement('None')) for label in label_list.get_children(): labels.extend(label.get_content().split(',')) base_counter = counter.get_child_content('base-counter') return {'name': counter_name, 'labels': labels, 'base-counter': base_counter} else: raise exception.NotFound((_('Counter %s not found') % counter_name))
-1,821,368,557,504,805,400
Gets info about one or more Data ONTAP performance counters.
cinder/volume/drivers/netapp/dataontap/client/client_base.py
get_performance_counter_info
sapcc/cinder
python
def get_performance_counter_info(self, object_name, counter_name): api_args = {'objectname': object_name} result = self.connection.send_request('perf-object-counter-list-info', api_args, enable_tunneling=False) counters = (result.get_child_by_name('counters') or netapp_api.NaElement('None')) for counter in counters.get_children(): if (counter.get_child_content('name') == counter_name): labels = [] label_list = (counter.get_child_by_name('labels') or netapp_api.NaElement('None')) for label in label_list.get_children(): labels.extend(label.get_content().split(',')) base_counter = counter.get_child_content('base-counter') return {'name': counter_name, 'labels': labels, 'base-counter': base_counter} else: raise exception.NotFound((_('Counter %s not found') % counter_name))
def delete_snapshot(self, volume_name, snapshot_name): 'Deletes a volume snapshot.' api_args = {'volume': volume_name, 'snapshot': snapshot_name} self.connection.send_request('snapshot-delete', api_args)
9,135,002,389,939,195,000
Deletes a volume snapshot.
cinder/volume/drivers/netapp/dataontap/client/client_base.py
delete_snapshot
sapcc/cinder
python
def delete_snapshot(self, volume_name, snapshot_name): api_args = {'volume': volume_name, 'snapshot': snapshot_name} self.connection.send_request('snapshot-delete', api_args)
def create_cg_snapshot(self, volume_names, snapshot_name): 'Creates a consistency group snapshot out of one or more flexvols.\n\n ONTAP requires an invocation of cg-start to first fence off the\n flexvols to be included in the snapshot. If cg-start returns\n success, a cg-commit must be executed to finalized the snapshot and\n unfence the flexvols.\n ' cg_id = self._start_cg_snapshot(volume_names, snapshot_name) if (not cg_id): msg = _('Could not start consistency group snapshot %s.') raise exception.VolumeBackendAPIException(data=(msg % snapshot_name)) self._commit_cg_snapshot(cg_id)
-1,963,789,309,185,197,600
Creates a consistency group snapshot out of one or more flexvols. ONTAP requires an invocation of cg-start to first fence off the flexvols to be included in the snapshot. If cg-start returns success, a cg-commit must be executed to finalized the snapshot and unfence the flexvols.
cinder/volume/drivers/netapp/dataontap/client/client_base.py
create_cg_snapshot
sapcc/cinder
python
def create_cg_snapshot(self, volume_names, snapshot_name): 'Creates a consistency group snapshot out of one or more flexvols.\n\n ONTAP requires an invocation of cg-start to first fence off the\n flexvols to be included in the snapshot. If cg-start returns\n success, a cg-commit must be executed to finalized the snapshot and\n unfence the flexvols.\n ' cg_id = self._start_cg_snapshot(volume_names, snapshot_name) if (not cg_id): msg = _('Could not start consistency group snapshot %s.') raise exception.VolumeBackendAPIException(data=(msg % snapshot_name)) self._commit_cg_snapshot(cg_id)
def get_snapshot(self, volume_name, snapshot_name): 'Gets a single snapshot.' raise NotImplementedError()
2,336,373,799,148,635,000
Gets a single snapshot.
cinder/volume/drivers/netapp/dataontap/client/client_base.py
get_snapshot
sapcc/cinder
python
def get_snapshot(self, volume_name, snapshot_name): raise NotImplementedError()