Error loading data
#2
by
ShakilaMT
- opened
Hi,
Is the Semeval 2025 task-8 devset not available yet? When running the below code to load the data, I am getting a "NotImplementedError". Below is the code snippet and the error:
from datasets import load_dataset
semeval_dev_qa = load_dataset("cardiffnlp/databench", name="semeval", split="dev")
Downloading data: 100%|ββββββββββ| 49/49 [00:00<00:00, 24563.27files/s]
Downloading data: 100%|ββββββββββ| 16/16 [00:00<?, ?files/s]
---------------------------------------------------------------------------
NotImplementedError Traceback (most recent call last)
Cell In[5], line 3
1 from datasets import load_dataset
----> 3 semeval_dev_qa = load_dataset("cardiffnlp/databench", name="semeval", split="dev")
File ~\AppData\Local\anaconda3\envs\nlp\Lib\site-packages\datasets\load.py:2609, in load_dataset(path, name, data_dir, data_files, split, cache_dir, features, download_config, download_mode, verification_mode, ignore_verifications, keep_in_memory, save_infos, revision, token, use_auth_token, task, streaming, num_proc, storage_options, trust_remote_code, **config_kwargs)
2606 return builder_instance.as_streaming_dataset(split=split)
2608 # Download and prepare data
-> 2609 builder_instance.download_and_prepare(
2610 download_config=download_config,
2611 download_mode=download_mode,
2612 verification_mode=verification_mode,
2613 num_proc=num_proc,
2614 storage_options=storage_options,
2615 )
2617 # Build dataset for splits
2618 keep_in_memory = (
2619 keep_in_memory if keep_in_memory is not None else is_small_dataset(builder_instance.info.dataset_size)
2620 )
File ~\AppData\Local\anaconda3\envs\nlp\Lib\site-packages\datasets\builder.py:1027, in DatasetBuilder.download_and_prepare(self, output_dir, download_config, download_mode, verification_mode, ignore_verifications, try_from_hf_gcs, dl_manager, base_path, use_auth_token, file_format, max_shard_size, num_proc, storage_options, **download_and_prepare_kwargs)
1025 if num_proc is not None:
1026 prepare_split_kwargs["num_proc"] = num_proc
-> 1027 self._download_and_prepare(
1028 dl_manager=dl_manager,
1029 verification_mode=verification_mode,
1030 **prepare_split_kwargs,
1031 **download_and_prepare_kwargs,
1032 )
1033 # Sync info
1034 self.info.dataset_size = sum(split.num_bytes for split in self.info.splits.values())
File ~\AppData\Local\anaconda3\envs\nlp\Lib\site-packages\datasets\builder.py:1100, in DatasetBuilder._download_and_prepare(self, dl_manager, verification_mode, **prepare_split_kwargs)
1098 split_dict = SplitDict(dataset_name=self.dataset_name)
1099 split_generators_kwargs = self._make_split_generators_kwargs(prepare_split_kwargs)
-> 1100 split_generators = self._split_generators(dl_manager, **split_generators_kwargs)
1102 # Checksums verification
1103 if verification_mode == VerificationMode.ALL_CHECKS and dl_manager.record_checksums:
File ~\AppData\Local\anaconda3\envs\nlp\Lib\site-packages\datasets\packaged_modules\parquet\parquet.py:62, in Parquet._split_generators(self, dl_manager)
60 for file in itertools.chain.from_iterable(files):
61 with open(file, "rb") as f:
---> 62 self.info.features = datasets.Features.from_arrow_schema(pq.read_schema(f))
63 break
64 splits.append(datasets.SplitGenerator(name=split_name, gen_kwargs={"files": files}))
File ~\AppData\Local\anaconda3\envs\nlp\Lib\site-packages\datasets\features\features.py:1718, in Features.from_arrow_schema(cls, pa_schema)
1712 metadata_features = Features.from_dict(metadata["info"]["features"])
1713 metadata_features_schema = metadata_features.arrow_schema
1714 obj = {
1715 field.name: (
1716 metadata_features[field.name]
1717 if field.name in metadata_features and metadata_features_schema.field(field.name) == field
-> 1718 else generate_from_arrow_type(field.type)
1719 )
1720 for field in pa_schema
1721 }
1722 return cls(**obj)
File ~\AppData\Local\anaconda3\envs\nlp\Lib\site-packages\datasets\features\features.py:1430, in generate_from_arrow_type(pa_type)
1428 return array_feature(shape=pa_type.shape, dtype=pa_type.value_type)
1429 elif isinstance(pa_type, pa.DictionaryType):
-> 1430 raise NotImplementedError # TODO(thom) this will need access to the dictionary as well (for labels). I.e. to the py_table
1431 elif isinstance(pa_type, pa.DataType):
1432 return Value(dtype=_arrow_to_datasets_dtype(pa_type))
NotImplementedError:
Appreciate your help.
Kind regards.
jorses
changed discussion status to
closed