annotations_creators: []
language_creators:
- found
languages:
- en
licenses:
- unknown
multilinguality:
- monolingual
size_categories:
emoji:
- 100K<n<1M
emotion:
- 1K<n<10K
hate:
- 10K<n<100K
irony:
- 1K<n<10K
offensive:
- 10K<n<100K
sentiment:
- 10K<n<100K
stance_abortion:
- n<1K
stance_atheism:
- n<1K
stance_climate:
- n<1K
stance_feminist:
- n<1K
stance_hillary:
- n<1K
source_datasets:
emoji:
- extended|other-tweet-datasets
emotion:
- extended|other-tweet-datasets
hate:
- extended|other-tweet-datasets
irony:
- extended|other-tweet-datasets
offensive:
- extended|other-tweet-datasets
sentiment:
- extended|other-tweet-datasets
stance_abortion:
- extended|other-tweet-datasets
stance_atheism:
- extended|other-tweet-datasets
stance_climate:
- extended|other-tweet-datasets
stance_feminist:
- extended|other-tweet-datasets
stance_hillary:
- extended|other-tweet-datasets
task_categories:
- text-classification
task_ids:
emoji:
- multi-class-classification
emotion:
- multi-class-classification
- sentiment-classification
hate:
- intent-classification
irony:
- multi-class-classification
offensive:
- intent-classification
sentiment:
- multi-class-classification
- sentiment-classification
stance_abortion:
- intent-classification
- multi-class-classification
stance_atheism:
- intent-classification
- multi-class-classification
stance_climate:
- intent-classification
- multi-class-classification
stance_feminist:
- intent-classification
- multi-class-classification
stance_hillary:
- intent-classification
- multi-class-classification
Dataset Card for tweet_eval
Table of Contents
- Dataset Description
- Dataset Structure
- Dataset Creation
- Considerations for Using the Data
- Additional Information
Dataset Description
- Homepage: [Needs More Information]
- Repository: GitHub
- Paper: EMNLP Paper
- Leaderboard: GitHub Leaderboard
- Point of Contact: [Needs More Information]
Dataset Summary
TweetEval consists of seven heterogenous tasks in Twitter, all framed as multi-class tweet classification. The tasks include - irony, hate, offensive, stance, emoji, emotion, and sentiment. All tasks have been unified into the same benchmark, with each dataset presented in the same format and with fixed training, validation and test splits.
Supported Tasks and Leaderboards
text_classification
: The dataset can be trained using a SentenceClassification model from HuggingFace transformers.
Languages
The text in the dataset is in English, as spoken by Twitter users.
Dataset Structure
Data Instances
An instance from emoji
config:
{'label': 12, 'text': 'Sunday afternoon walking through Venice in the sun with @user οΈ οΈ οΈ @ Abbot Kinney, Venice'}
An instance from emotion
config:
{'label': 2, 'text': "βWorry is a down payment on a problem you may never have'. \xa0Joyce Meyer. #motivation #leadership #worry"}
An instance from hate
config:
{'label': 0, 'text': '@user nice new signage. Are you not concerned by Beatlemania -style hysterical crowds crongregating on youβ¦'}
An instance from irony
config:
{'label': 1, 'text': 'seeing ppl walking w/ crutches makes me really excited for the next 3 weeks of my life'}
An instance from offensive
config:
{'label': 0, 'text': '@user Bono... who cares. Soon people will understand that they gain nothing from following a phony celebrity. Become a Leader of your people instead or help and support your fellow countrymen.'}
An instance from sentiment
config:
{'label': 2, 'text': '"QT @user In the original draft of the 7th book, Remus Lupin survived the Battle of Hogwarts. #HappyBirthdayRemusLupin"'}
An instance from stance_abortion
config:
{'label': 1, 'text': 'we remind ourselves that love means to be willing to give until it hurts - Mother Teresa'}
An instance from stance_atheism
config:
{'label': 1, 'text': '@user Bless Almighty God, Almighty Holy Spirit and the Messiah. #SemST'}
An instance from stance_climate
config:
{'label': 0, 'text': 'Why Is The Pope Upset? via @user #UnzippedTruth #PopeFrancis #SemST'}
An instance from stance_feminist
config:
{'label': 1, 'text': "@user @user is the UK's answer to @user and @user #GamerGate #SemST"}
An instance from stance_hillary
config:
{'label': 1, 'text': "If a man demanded staff to get him an ice tea he'd be called a sexists elitist pig.. Oink oink #Hillary #SemST"}
Data Fields
For emoji
config:
text
: astring
feature containing the tweet.label
: anint
classification label with the following mapping:0
: β€1
: π2
: π3
: π4
: π₯5
: π6
: π7
: β¨8
: π9
: π10
: π·11
: πΊπΈ12
: β13
: π14
: π15
: π―16
: π17
: π18
: πΈ19
: π
For emotion
config:
text
: astring
feature containing the tweet.label
: anint
classification label with the following mapping:0
: anger1
: joy2
: optimism3
: sadness
For hate
config:
text
: astring
feature containing the tweet.label
: anint
classification label with the following mapping:0
: non-hate1
: hate
For irony
config:
text
: astring
feature containing the tweet.label
: anint
classification label with the following mapping:0
: non_irony1
: irony
For offensive
config:
text
: astring
feature containing the tweet.label
: anint
classification label with the following mapping:0
: non-offensive1
: offensive
For sentiment
config:
text
: astring
feature containing the tweet.label
: anint
classification label with the following mapping:0
: negative1
: neutral2
: positive
For stance_abortion
config:
text
: astring
feature containing the tweet.label
: anint
classification label with the following mapping:0
: none1
: against2
: favor
For stance_atheism
config:
text
: astring
feature containing the tweet.label
: anint
classification label with the following mapping:0
: none1
: against2
: favor
For stance_climate
config:
text
: astring
feature containing the tweet.label
: anint
classification label with the following mapping:0
: none1
: against2
: favor
For stance_feminist
config:
text
: astring
feature containing the tweet.label
: anint
classification label with the following mapping:0
: none1
: against2
: favor
For stance_hillary
config:
text
: astring
feature containing the tweet.label
: anint
classification label with the following mapping:0
: none1
: against2
: favor
Data Splits
name | train | validation | test |
---|---|---|---|
emoji | 45000 | 5000 | 50000 |
emotion | 3257 | 374 | 1421 |
hate | 9000 | 1000 | 2970 |
irony | 2862 | 955 | 784 |
offensive | 11916 | 1324 | 860 |
sentiment | 45615 | 2000 | 12284 |
stance_abortion | 587 | 66 | 280 |
stance_atheism | 461 | 52 | 220 |
stance_climate | 355 | 40 | 169 |
stance_feminist | 597 | 67 | 285 |
stance_hillary | 620 | 69 | 295 |
Dataset Creation
Curation Rationale
[Needs More Information]
Source Data
Initial Data Collection and Normalization
[Needs More Information]
Who are the source language producers?
[Needs More Information]
Annotations
Annotation process
[Needs More Information]
Who are the annotators?
[Needs More Information]
Personal and Sensitive Information
[Needs More Information]
Considerations for Using the Data
Social Impact of Dataset
[Needs More Information]
Discussion of Biases
[Needs More Information]
Other Known Limitations
[Needs More Information]
Additional Information
Dataset Curators
Francesco Barbieri, Jose Camacho-Collados, Luis Espiinosa-Anke and Leonardo Neves through Cardiff NLP.
Licensing Information
[Needs More Information]
Citation Information
@inproceedings{barbieri2020tweeteval,
title={{TweetEval:Unified Benchmark and Comparative Evaluation for Tweet Classification}},
author={Barbieri, Francesco and Camacho-Collados, Jose and Espinosa-Anke, Luis and Neves, Leonardo},
booktitle={Proceedings of Findings of EMNLP},
year={2020}
}
Contributions
Thanks to @gchhablani and @abhishekkrthakur for adding this dataset.