Datasets:

Modalities:
Text
Languages:
English
ArXiv:
Libraries:
Datasets
License:
tweet_topic_single / README.md
asahi417's picture
init
29fd70e
|
raw
history blame
1.46 kB
---
language:
- en
license:
- other
multilinguality:
- monolingual
size_categories:
- 1k<10K
task_categories:
- text-classification
task_ids:
- sentiment-classification
pretty_name: TweetTopicSingle
---
# Dataset Card for "cardiff_nlp/tweet_topic_single"
## Dataset Description
- **Paper:** TBA
- **Dataset:** Tweet Topic Dataset
- **Domain:** Twitter
- **Number of Class:** 6
### Dataset Summary
Topic classification dataset on Twitter with single label per tweet.
- Label Types: `arts_&_culture`, `business_&_entrepreneurs`, `pop_culture`, `daily_life`, `sports_&_gaming`, `science_&_technology`
## Dataset Structure
### Data Instances
An example of `train` looks as follows.
```python
{
"text": "Game day for {{USERNAME}} U18\u2019s against {{USERNAME}} U18\u2019s. Even though it\u2019s a \u2018home\u2019 game for the people that have settled in Mid Wales it\u2019s still a 4 hour round trip for us up to Colwyn Bay. Still enjoy it though!",
"date": "2019-09-08",
"label": 4,
"id": 1170606779568463874,
"label_name": "sports_&_gaming"
}
```
### Label ID
The label2id dictionary can be found at [here](https://huggingface.co/datasets/tner/tweet_topic_single/raw/main/dataset/label.single.json).
```python
{
"arts_&_culture": 0,
"business_&_entrepreneurs": 1,
"pop_culture": 2,
"daily_life": 3,
"sports_&_gaming": 4,
"science_&_technology": 5
}
```
### Data Splits
### Citation Information
```
TBA
```