Datasets:
Tasks:
Text Classification
Modalities:
Text
Sub-tasks:
sentiment-classification
Languages:
English
Size:
10K - 100K
ArXiv:
License:
language: | |
- en | |
license: | |
- other | |
multilinguality: | |
- monolingual | |
size_categories: | |
- 1k<10K | |
task_categories: | |
- text-classification | |
task_ids: | |
- sentiment-classification | |
pretty_name: TweetTopicSingle | |
# Dataset Card for "cardiff_nlp/tweet_topic_single" | |
## Dataset Description | |
- **Paper:** TBA | |
- **Dataset:** Tweet Topic Dataset | |
- **Domain:** Twitter | |
- **Number of Class:** 6 | |
### Dataset Summary | |
Topic classification dataset on Twitter with single label per tweet. | |
- Label Types: `arts_&_culture`, `business_&_entrepreneurs`, `pop_culture`, `daily_life`, `sports_&_gaming`, `science_&_technology` | |
## Dataset Structure | |
### Data Instances | |
An example of `train` looks as follows. | |
```python | |
{ | |
"text": "Game day for {{USERNAME}} U18\u2019s against {{USERNAME}} U18\u2019s. Even though it\u2019s a \u2018home\u2019 game for the people that have settled in Mid Wales it\u2019s still a 4 hour round trip for us up to Colwyn Bay. Still enjoy it though!", | |
"date": "2019-09-08", | |
"label": 4, | |
"id": 1170606779568463874, | |
"label_name": "sports_&_gaming" | |
} | |
``` | |
### Label ID | |
The label2id dictionary can be found at [here](https://huggingface.co/datasets/tner/tweet_topic_single/raw/main/dataset/label.single.json). | |
```python | |
{ | |
"arts_&_culture": 0, | |
"business_&_entrepreneurs": 1, | |
"pop_culture": 2, | |
"daily_life": 3, | |
"sports_&_gaming": 4, | |
"science_&_technology": 5 | |
} | |
``` | |
### Data Splits | |
### Citation Information | |
``` | |
TBA | |
``` |