wura / README.md
theyorubayesian's picture
Update README.md
1d4bcb8
|
raw
history blame
11.1 kB
metadata
license: apache-2.0
mutilinguality:
  - multilingual
task_categories:
  - text-generation
task_ids:
  - language-modeling
language:
  - afr
  - amh
  - arz
  - eng
  - fra
  - hau
  - ibo
  - kin
  - mlg
  - nya
  - orm
  - por
  - sna
  - som
  - sot
  - swa
  - tir
  - xho
  - yor
  - zul
viewer: true
dataset_info:
  - config_name: afr
    features:
      - name: id
        dtype: string
      - name: headline
        dtype: string
      - name: content
        dtype: string
      - name: category
        dtype: string
      - name: url
        dtype: string
    splits:
      - name: train
        num_bytes: 4549624636
        num_examples: 1042812
      - name: validation
        num_bytes: 504320368
        num_examples: 115868
    download_size: 5124049817
    dataset_size: 5053945004
  - config_name: amh
    features:
      - name: id
        dtype: string
      - name: headline
        dtype: string
      - name: content
        dtype: string
      - name: category
        dtype: string
      - name: url
        dtype: string
    splits:
      - name: train
        num_bytes: 1115662532
        num_examples: 135863
      - name: validation
        num_bytes: 123858179
        num_examples: 15095
    download_size: 1248728162
    dataset_size: 1239520711
  - config_name: arz
    features:
      - name: id
        dtype: string
      - name: headline
        dtype: string
      - name: content
        dtype: string
      - name: category
        dtype: string
      - name: url
        dtype: string
    splits:
      - name: train
        num_bytes: 621073489
        num_examples: 1455662
      - name: validation
        num_bytes: 69342976
        num_examples: 161740
    download_size: 753246622
    dataset_size: 690416465
  - config_name: eng
    features:
      - name: id
        dtype: string
      - name: headline
        dtype: string
      - name: content
        dtype: string
      - name: category
        dtype: string
      - name: url
        dtype: string
    splits:
      - name: train
        num_bytes: 3795223480
        num_examples: 1378555
      - name: validation
        num_bytes: 423622310
        num_examples: 153172
    download_size: 4279723559
    dataset_size: 4218845790
  - config_name: fra
    features:
      - name: id
        dtype: string
      - name: headline
        dtype: string
      - name: content
        dtype: string
      - name: category
        dtype: string
      - name: url
        dtype: string
    splits:
      - name: train
        num_bytes: 3340740638
        num_examples: 1443177
      - name: validation
        num_bytes: 368983958
        num_examples: 160352
    download_size: 3796280757
    dataset_size: 3709724596
  - config_name: hau
    features:
      - name: id
        dtype: string
      - name: headline
        dtype: string
      - name: content
        dtype: string
      - name: category
        dtype: string
      - name: url
        dtype: string
    splits:
      - name: train
        num_bytes: 909342448
        num_examples: 359881
      - name: validation
        num_bytes: 101151882
        num_examples: 39986
    download_size: 1027800797
    dataset_size: 1010494330
  - config_name: ibo
    features:
      - name: id
        dtype: string
      - name: headline
        dtype: string
      - name: content
        dtype: string
      - name: category
        dtype: string
      - name: url
        dtype: string
    splits:
      - name: train
        num_bytes: 193493918
        num_examples: 51386
      - name: validation
        num_bytes: 22265232
        num_examples: 5709
    download_size: 219266571
    dataset_size: 215759150
  - config_name: kin
    features:
      - name: id
        dtype: string
      - name: headline
        dtype: string
      - name: content
        dtype: string
      - name: category
        dtype: string
      - name: url
        dtype: string
    splits:
      - name: train
        num_bytes: 208582172
        num_examples: 97064
      - name: validation
        num_bytes: 10662209
        num_examples: 5831
    download_size: 222938591
    dataset_size: 219244381
  - config_name: mlg
    features:
      - name: id
        dtype: string
      - name: headline
        dtype: string
      - name: content
        dtype: string
      - name: category
        dtype: string
      - name: url
        dtype: string
    splits:
      - name: train
        num_bytes: 561868602
        num_examples: 216210
      - name: validation
        num_bytes: 62280728
        num_examples: 24023
    download_size: 635783521
    dataset_size: 624149330
  - config_name: nya
    features:
      - name: id
        dtype: string
      - name: headline
        dtype: string
      - name: content
        dtype: string
      - name: category
        dtype: string
      - name: url
        dtype: string
    splits:
      - name: train
        num_bytes: 260737793
        num_examples: 39647
      - name: validation
        num_bytes: 29199589
        num_examples: 4405
    download_size: 293880333
    dataset_size: 289937382
  - config_name: orm
    features:
      - name: id
        dtype: string
      - name: headline
        dtype: string
      - name: content
        dtype: string
      - name: category
        dtype: string
      - name: url
        dtype: string
    splits:
      - name: train
        num_bytes: 51725718
        num_examples: 20169
      - name: validation
        num_bytes: 5500617
        num_examples: 2241
    download_size: 58001407
    dataset_size: 57226335
  - config_name: por
    features:
      - name: id
        dtype: string
      - name: headline
        dtype: string
      - name: content
        dtype: string
      - name: category
        dtype: string
      - name: url
        dtype: string
    splits:
      - name: train
        num_bytes: 2191644027
        num_examples: 1089199
      - name: validation
        num_bytes: 245338209
        num_examples: 121022
    download_size: 2498665351
    dataset_size: 2436982236
  - config_name: sna
    features:
      - name: id
        dtype: string
      - name: headline
        dtype: string
      - name: content
        dtype: string
      - name: category
        dtype: string
      - name: url
        dtype: string
    splits:
      - name: train
        num_bytes: 225393219
        num_examples: 60986
      - name: validation
        num_bytes: 25595688
        num_examples: 6776
    download_size: 254964089
    dataset_size: 250988907
  - config_name: som
    features:
      - name: id
        dtype: string
      - name: headline
        dtype: string
      - name: content
        dtype: string
      - name: category
        dtype: string
      - name: url
        dtype: string
    splits:
      - name: train
        num_bytes: 2165910731
        num_examples: 976484
      - name: validation
        num_bytes: 241175779
        num_examples: 108498
    download_size: 2451878912
    dataset_size: 2407086510
  - config_name: sot
    features:
      - name: id
        dtype: string
      - name: headline
        dtype: string
      - name: content
        dtype: string
      - name: category
        dtype: string
      - name: url
        dtype: string
    splits:
      - name: train
        num_bytes: 199386007
        num_examples: 38361
      - name: validation
        num_bytes: 22324957
        num_examples: 4262
    download_size: 224556522
    dataset_size: 221710964
  - config_name: swa
    features:
      - name: id
        dtype: string
      - name: headline
        dtype: string
      - name: content
        dtype: string
      - name: category
        dtype: string
      - name: url
        dtype: string
    splits:
      - name: train
        num_bytes: 3371589021
        num_examples: 1036254
      - name: validation
        num_bytes: 373326029
        num_examples: 115139
    download_size: 3804265021
    dataset_size: 3744915050
  - config_name: tir
    features:
      - name: id
        dtype: string
      - name: headline
        dtype: string
      - name: content
        dtype: string
      - name: category
        dtype: string
      - name: url
        dtype: string
    splits:
      - name: train
        num_bytes: 32026542
        num_examples: 8240
      - name: validation
        num_bytes: 3589604
        num_examples: 915
    download_size: 35955368
    dataset_size: 35616146
  - config_name: xho
    features:
      - name: id
        dtype: string
      - name: headline
        dtype: string
      - name: content
        dtype: string
      - name: category
        dtype: string
      - name: url
        dtype: string
    splits:
      - name: train
        num_bytes: 114450184
        num_examples: 23892
      - name: validation
        num_bytes: 13051255
        num_examples: 2654
    download_size: 129410950
    dataset_size: 127501439
  - config_name: yor
    features:
      - name: id
        dtype: string
      - name: headline
        dtype: string
      - name: content
        dtype: string
      - name: category
        dtype: string
      - name: url
        dtype: string
    splits:
      - name: train
        num_bytes: 192473693
        num_examples: 73473
      - name: validation
        num_bytes: 21123764
        num_examples: 8163
    download_size: 217343993
    dataset_size: 213597457
  - config_name: zul
    features:
      - name: id
        dtype: string
      - name: headline
        dtype: string
      - name: content
        dtype: string
      - name: category
        dtype: string
      - name: url
        dtype: string
    splits:
      - name: train
        num_bytes: 279244495
        num_examples: 65447
      - name: validation
        num_bytes: 30487397
        num_examples: 7271
    download_size: 314070508
    dataset_size: 309731892

Dataset Summary

WURA is a document-level dataset covering 16 African Languages and 4 high-resource languages widely spoken in Africa (English, French, Arabic and Portuguese). This dataset was created by auditing mC4 and crawling additional verified news sources. It was first used to train AfriTeVa V2.

Dataset Structure

>>> from datasets import load_dataset

Although the document-level dataset is loaded by default, you may also optionally load a passage-level dataset as follows

>>> data = load_dataset("castorini/wura, "yor", level="passage", verification_mode="no_checks")

Note that we must pass verification_mode="no_checks to prevent HF from verifying checksums against the document-level checksum infos.

Citation

@inproceedings{oladipo-etal-2023-better,
    title = "Better Quality Pre-training Data and T5 Models for {A}frican Languages",
    author = "Oladipo, Akintunde  and
      Adeyemi, Mofetoluwa  and
      Ahia, Orevaoghene  and
      Owodunni, Abraham  and
      Ogundepo, Odunayo  and
      Adelani, David  and
      Lin, Jimmy",
    editor = "Bouamor, Houda  and
      Pino, Juan  and
      Bali, Kalika",
    booktitle = "Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing",
    month = dec,
    year = "2023",
    address = "Singapore",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2023.emnlp-main.11",
    pages = "158--168",
    abstract = "In this study, we highlight the importance of enhancing the quality of pretraining data in multilingual language models. Existing web crawls have demonstrated quality issues, particularly in the context of low-resource languages. Consequently, we introduce a new multilingual pretraining corpus for 16 African languages, designed by carefully auditing existing pretraining corpora to understand and rectify prevalent quality issues. To compile this dataset, we undertake a rigorous examination of current data sources for thirteen languages within one of the most extensive multilingual web crawls, mC4, and extract cleaner data through meticulous auditing and improved web crawling strategies. Subsequently, we pretrain a new T5-based model on this dataset and evaluate its performance on multiple downstream tasks. Our model demonstrates better downstream effectiveness over existing pretrained models across four NLP tasks, underscoring the critical role data quality plays in pretraining language models in low-resource scenarios. Specifically, on cross-lingual QA evaluation, our new model is more than twice as effective as multilingual T5. All code, data and models are publicly available at https://github.com/castorini/AfriTeVa-keji.",
}