Datasets:

Modalities:
Audio
Image
Formats:
arrow
Languages:
English
ArXiv:
Libraries:
Datasets
License:
Search is not available for this dataset
audio
audioduration (s)
1.14
17.9
mel
imagewidth (px)
98
1.54k
label
class label
7 classes
pitch
class label
88 classes
bass_score
float32
2.33
4.23
mid_score
float32
2.5
3.67
treble_score
float32
2.37
4
avg_score
float32
2.41
3.97
2Steinway-T
6D1#/E1b
3.6
3.63
3.67
3.63
6Kawai-G
10G1
3.37
2.97
3.07
3.14
0PearlRiver
78d4#/e4b
2.33
2.53
2.37
2.41
3Hsinghai
36a
3.4
3.27
3.2
3.29
6Kawai-G
26B
3.37
2.97
3.07
3.14
4Kawai
30d#/eb
3.17
2.5
2.93
2.87
5Steinway
27c
4.23
3.67
4
3.97
6Kawai-G
74b3
3.37
2.97
3.07
3.14
6Kawai-G
6D1#/E1b
3.37
2.97
3.07
3.14
0PearlRiver
1A2#/B2b
2.33
2.53
2.37
2.41
4Kawai
2B2
3.17
2.5
2.93
2.87
0PearlRiver
5D1
2.33
2.53
2.37
2.41
4Kawai
45f1#/g1b
3.17
2.5
2.93
2.87
2Steinway-T
48a1
3.6
3.63
3.67
3.63
3Hsinghai
8F1
3.4
3.27
3.2
3.29
1YoungChang
34g
2.53
2.63
2.97
2.71
3Hsinghai
18D#/Eb
3.4
3.27
3.2
3.29
0PearlRiver
28c#/db
2.33
2.53
2.37
2.41
3Hsinghai
35g#/ab
3.4
3.27
3.2
3.29
1YoungChang
38b
2.53
2.63
2.97
2.71
3Hsinghai
67e3
3.4
3.27
3.2
3.29
1YoungChang
21F#/Gb
2.53
2.63
2.97
2.71
6Kawai-G
24A
3.37
2.97
3.07
3.14
3Hsinghai
26B
3.4
3.27
3.2
3.29
5Steinway
43e1
4.23
3.67
4
3.97
1YoungChang
41d1
2.53
2.63
2.97
2.71
0PearlRiver
6D1#/E1b
2.33
2.53
2.37
2.41
2Steinway-T
39c1
3.6
3.63
3.67
3.63
3Hsinghai
19E
3.4
3.27
3.2
3.29
0PearlRiver
61a2#/b2b
2.33
2.53
2.37
2.41
6Kawai-G
35g#/ab
3.37
2.97
3.07
3.14
0PearlRiver
7E1
2.33
2.53
2.37
2.41
0PearlRiver
15C
2.33
2.53
2.37
2.41
4Kawai
28c#/db
3.17
2.5
2.93
2.87
2Steinway-T
10G1
3.6
3.63
3.67
3.63
4Kawai
21F#/Gb
3.17
2.5
2.93
2.87
1YoungChang
28c#/db
2.53
2.63
2.97
2.71
5Steinway
14B1
4.23
3.67
4
3.97
5Steinway
12A1
4.23
3.67
4
3.97
2Steinway-T
74b3
3.6
3.63
3.67
3.63
2Steinway-T
0A2
3.6
3.63
3.67
3.63
4Kawai
84a4
3.17
2.5
2.93
2.87
2Steinway-T
67e3
3.6
3.63
3.67
3.63
0PearlRiver
37a#/bb
2.33
2.53
2.37
2.41
3Hsinghai
11G1#/A1b
3.4
3.27
3.2
3.29
1YoungChang
77d4
2.53
2.63
2.97
2.71
5Steinway
50b1
4.23
3.67
4
3.97
1YoungChang
36a
2.53
2.63
2.97
2.71
3Hsinghai
55e2
3.4
3.27
3.2
3.29
6Kawai-G
81f4#/g4b
3.37
2.97
3.07
3.14
0PearlRiver
50b1
2.33
2.53
2.37
2.41
2Steinway-T
85a4#/b4b
3.6
3.63
3.67
3.63
1YoungChang
64c3#/d3b
2.53
2.63
2.97
2.71
5Steinway
86b4
4.23
3.67
4
3.97
0PearlRiver
17D
2.33
2.53
2.37
2.41
4Kawai
66d3#/e3b
3.17
2.5
2.93
2.87
2Steinway-T
63c3
3.6
3.63
3.67
3.63
3Hsinghai
28c#/db
3.4
3.27
3.2
3.29
5Steinway
62b2
4.23
3.67
4
3.97
3Hsinghai
47g1#/a1b
3.4
3.27
3.2
3.29
0PearlRiver
30d#/eb
2.33
2.53
2.37
2.41
4Kawai
62b2
3.17
2.5
2.93
2.87
1YoungChang
57f2#/g2b
2.53
2.63
2.97
2.71
2Steinway-T
16C#/Db
3.6
3.63
3.67
3.63
2Steinway-T
33f#/gb
3.6
3.63
3.67
3.63
1YoungChang
70g3
2.53
2.63
2.97
2.71
0PearlRiver
75c4
2.33
2.53
2.37
2.41
6Kawai-G
80f4
3.37
2.97
3.07
3.14
6Kawai-G
60a2
3.37
2.97
3.07
3.14
6Kawai-G
42d1#/e1b
3.37
2.97
3.07
3.14
2Steinway-T
23G#/Ab
3.6
3.63
3.67
3.63
1YoungChang
55e2
2.53
2.63
2.97
2.71
2Steinway-T
19E
3.6
3.63
3.67
3.63
0PearlRiver
52c2#/d2b
2.33
2.53
2.37
2.41
6Kawai-G
18D#/Eb
3.37
2.97
3.07
3.14
4Kawai
19E
3.17
2.5
2.93
2.87
0PearlRiver
31e
2.33
2.53
2.37
2.41
4Kawai
17D
3.17
2.5
2.93
2.87
2Steinway-T
7E1
3.6
3.63
3.67
3.63
1YoungChang
24A
2.53
2.63
2.97
2.71
3Hsinghai
46g1
3.4
3.27
3.2
3.29
3Hsinghai
84a4
3.4
3.27
3.2
3.29
1YoungChang
85a4#/b4b
2.53
2.63
2.97
2.71
3Hsinghai
80f4
3.4
3.27
3.2
3.29
0PearlRiver
46g1
2.33
2.53
2.37
2.41
2Steinway-T
56f2
3.6
3.63
3.67
3.63
6Kawai-G
43e1
3.37
2.97
3.07
3.14
6Kawai-G
65d3
3.37
2.97
3.07
3.14
4Kawai
73a3#/b3b
3.17
2.5
2.93
2.87
4Kawai
5D1
3.17
2.5
2.93
2.87
3Hsinghai
24A
3.4
3.27
3.2
3.29
1YoungChang
12A1
2.53
2.63
2.97
2.71
6Kawai-G
13A1#/B1b
3.37
2.97
3.07
3.14
6Kawai-G
16C#/Db
3.37
2.97
3.07
3.14
3Hsinghai
79e4
3.4
3.27
3.2
3.29
1YoungChang
71g3#/a3b
2.53
2.63
2.97
2.71
6Kawai-G
54d2#/e2b
3.37
2.97
3.07
3.14
5Steinway
46g1
4.23
3.67
4
3.97
4Kawai
49a1#/b1b
3.17
2.5
2.93
2.87
5Steinway
82g4
4.23
3.67
4
3.97

Dataset Card for Piano Sound Quality Dataset

The original dataset is sourced from the Piano Sound Quality Dataset, which includes 12 full-range audio files in .wav/.mp3/.m4a format representing seven models of pianos: Kawai upright piano, Kawai grand piano, Young Change upright piano, Hsinghai upright piano, Grand Theatre Steinway piano, Steinway grand piano, and Pearl River upright piano. Additionally, there are 1,320 split monophonic audio files in .wav/.mp3/.m4a format, bringing the total number of files to 1,332. The dataset also includes a score sheet in .xls format containing subjective evaluations of piano sound quality provided by 29 participants with musical backgrounds.

Based on the aforementioned original dataset, after data processing, we constructed the default subset of the current integrated version of the dataset, and its data structure can be viewed in the viewer. Due to the need to increase the dataset size and the absence of a popular piano brand, Yamaha, the default subset is expanded by recording an upright Yamaha piano into the 8_class subset. Since the current dataset has been validated by published articles, based on the 8_class subset, we adopted the data processing method for dataset evaluation from the article and constructed the eval subset, whose result has been shown in pianos. Except for the default subset, the rest of the subsets are not represented in our paper. Below is a brief introduction to the data structure of each subset.

Dataset Structure

https://huggingface.co/datasets/ccmusic-database/pianos/viewer

Data Instances

.zip(.wav, jpg)

Data Fields

1_PearlRiver
2_YoungChang
3_Steinway-T
4_Hsinghai
5_Kawai
6_Steinway
7_Kawai-G
8_Yamaha (For Non-default subset)

Data Splits

Split Default 8_class Eval
train(80%) 461 531 14678
validation(10%) 59 68 1835
test(10%) 60 69 1839
total 580 668 18352
Total duration(s) 2851.6933333333354 3247.941395833335 3247.941395833335

Usage

Default Subset

from datasets import load_dataset

ds = load_dataset("ccmusic-database/pianos", name="default")
for item in ds["train"]:
    print(item)

for item in ds["validation"]:
    print(item)

for item in ds["test"]:
    print(item)

8-class Subset

from datasets import load_dataset

ds = load_dataset("ccmusic-database/pianos", name="8_class")
for item in ds["train"]:
    print(item)

for item in ds["validation"]:
    print(item)

for item in ds["test"]:
    print(item)

Eval Subset

from datasets import load_dataset
# 8-class label
ds = load_dataset("ccmusic-database/pianos", name="eval")
for item in ds["train"]:
    print(item)

for item in ds["validation"]:
    print(item)

for item in ds["test"]:
    print(item)

Maintenance

GIT_LFS_SKIP_SMUDGE=1 git clone git@hf.co:datasets/ccmusic-database/pianos
cd pianos

Mirror

https://www.modelscope.cn/datasets/ccmusic-database/pianos

Dataset Description

Dataset Summary

Due to the need to increase the dataset size and the absence of a popular piano brand, Yamaha, the dataset is expanded by recording an upright Yamaha piano in the future work of [1]. This results in a total of 2,020 audio files. As models used in that article require a larger dataset, data augmentation was performed. The original audio was transformed into Mel spectrograms and sliced into 0.18-second segments, a parameter chosen based on empirical experience. This results in 18,352 spectrogram slices in the eval subset. Although 0.18 seconds may seem narrow, this duration is sufficient for the task at hand, as the classification of piano sound quality does not heavily rely on the temporal characteristics of the audio segments.

Supported Tasks and Leaderboards

Piano Sound Classification, pitch detection

Languages

English

Dataset Creation

Curation Rationale

Lack of a dataset for piano sound quality

Source Data

Initial Data Collection and Normalization

Zhaorui Liu, Shaohua Ji, Monan Zhou

Who are the source language producers?

Students from CCMUSIC & CCOM

Annotations

Annotation process

Students from CCMUSIC recorded different piano sounds and labeled them, and then a subjective survey of sound quality was conducted to score them.

Who are the annotators?

Students from CCMUSIC & CCOM

Personal and Sensitive Information

Piano brands

Considerations for Using the Data

Social Impact of Dataset

Help develop piano sound quality scoring apps

Discussion of Biases

Only for pianos

Other Known Limitations

Lack of black keys for Steinway, data imbalance

Additional Information

Dataset Curators

Zijin Li

Evaluation

[1] Monan Zhou, Shangda Wu, Shaohua Ji, Zijin Li, and Wei Li. A Holistic Evaluation of Piano Sound Quality[C]//Proceedings of the 10th Conference on Sound and Music Technology (CSMT). Springer, Singapore, 2023.
(Note: this paper only uses the first 7 piano classes in the dataset, its future work has finished the 8-class evaluation in [2])
[2] https://huggingface.co/ccmusic-database/pianos

Citation Information

@inproceedings{zhou2023holistic,
  title        = {A holistic evaluation of piano sound quality},
  author       = {Monan Zhou and Shangda Wu and Shaohua Ji and Zijin Li and Wei Li},
  booktitle    = {National Conference on Sound and Music Technology},
  pages        = {3-17},
  year         = {2023},
  organization = {Springer}
}

Contributions

Provide a dataset for piano sound quality

Downloads last month
141

Models trained or fine-tuned on ccmusic-database/pianos

Space using ccmusic-database/pianos 1

Collection including ccmusic-database/pianos