KoreanSAT / data /json /2022 /math_15.txt
cfpark00
v1
3a117ca
raw
history blame
2.93 kB
15. 두 점 \( \mathrm{O}_1, \mathrm{O}_2 \)λ₯Ό 각각 μ€‘μ‹¬μœΌλ‘œ ν•˜κ³  λ°˜μ§€λ¦„μ˜ 길이가 \(\overline{\mathrm{O}_1\mathrm{O}_2} \)인 두 원 \( C_1, C_2 \)κ°€ μžˆλ‹€. κ·Έλ¦Όκ³Ό 같이 원 \( C_1 \) μœ„μ˜ μ„œλ‘œ λ‹€λ₯Έ μ„Έ 점 \( \mathrm{A}, \mathrm{B}, \mathrm{C} \)와 원 \( C_2 \) μœ„μ˜ 점 \( \mathrm{D} \)κ°€ μ£Όμ–΄μ Έ 있고, μ„Έ 점 \( \mathrm{A}, \mathrm{O}_1, \mathrm{O}_2 \)와 μ„Έ 점 \( \mathrm{C}, \mathrm{O}_2, \mathrm{D} \)κ°€ 각각 ν•œ 직선 μœ„μ— μžˆλ‹€.
μ΄λ•Œ \(\angle \mathrm{B}\mathrm{O}_1\mathrm{A} = \theta_1\), \(\angle \mathrm{O}_2\mathrm{O}_1\mathrm{C} = \theta_2\), \(\angle \mathrm{O}_1\mathrm{O}_2\mathrm{D} = \theta_3\)이라 ν•˜μž.
λ‹€μŒμ€ \( \overline{\mathrm{A}\mathrm{B}} : \overline{\mathrm{O}_1\mathrm{D}} = 1 : 2\sqrt{2} \)이고 \( \theta_3 = \theta_1 + \theta_2 \)일 λ•Œ, μ„ λΆ„ \( \mathrm{A}\mathrm{B} \)와 μ„ λΆ„ \( \mathrm{C}\mathrm{D} \)의 길이의 λΉ„λ₯Ό κ΅¬ν•˜λŠ” 과정이닀.
\[
\begin{aligned}
&\angle \mathrm{C}\mathrm{O}_2\mathrm{O}_1 + \angle \mathrm{O}_1\mathrm{O}_2\mathrm{D} = \pi \text{μ΄λ―€λ‘œ } \theta_3 = \frac{\pi}{2} + \frac{\theta_2}{2} \text{이고} \\
&\theta_3 = \theta_1 + \theta_2 \text{μ—μ„œ } 2\theta_1 + \theta_2 = \pi \text{μ΄λ―€λ‘œ } \angle \mathrm{C}\mathrm{O}_1\mathrm{B} = \theta_1 \text{이닀.} \\
&\text{μ΄λ•Œ } \angle \mathrm{O}_2\mathrm{O}_1\mathrm{B} = \theta_1 + \theta_2 = \theta_3 \text{μ΄λ―€λ‘œ μ‚Όκ°ν˜• } \mathrm{O}_1\mathrm{O}_2\mathrm{B} \text{와 μ‚Όκ°ν˜• } \mathrm{O}_2\mathrm{O}_1\mathrm{D} \text{λŠ” 합동이닀.} \\
&\overline{\mathrm{A}\mathrm{B}} = k \text{라 ν•  λ•Œ} \\
&\overline{\mathrm{B}\mathrm{O}_2} = \overline{\mathrm{O}_1\mathrm{D}}= 2\sqrt{2}k \text{μ΄λ―€λ‘œ } \overline{\mathrm{A}\mathrm{O}_2} = \text{(κ°€)이고,} \\
&\angle \mathrm{B}\mathrm{O}_2\mathrm{A} = \frac{\theta_1}{2} \text{μ΄λ―€λ‘œ } \cos \frac{\theta_1}{2} = \text{(λ‚˜) 이닀.} \\
&\text{μ‚Όκ°ν˜• } \mathrm{O}_2\mathrm{B}\mathrm{C} \text{μ—μ„œ} \\
&\overline{\mathrm{B}\mathrm{C}} = k, \overline{\mathrm{B}\mathrm{O}_2} = 2\sqrt{2}k, \angle \mathrm{C}\mathrm{O}_2\mathrm{B} = \frac{\theta_1}{2} \text{μ΄λ―€λ‘œ} \\
&\text{코사인법칙에 μ˜ν•˜μ—¬ } \overline{\mathrm{O}_2\mathrm{C}} = \text{(λ‹€) 이닀.} \\
&\overline{\mathrm{C}\mathrm{D}} = \overline{\mathrm{O}_2\mathrm{D}} + \overline{\mathrm{O}_2\mathrm{C}} = \overline{\mathrm{O}_1\mathrm{O}_2} + \overline{\mathrm{O}_2\mathrm{C}} \text{μ΄λ―€λ‘œ} \\
&\overline{\mathrm{A}\mathrm{B}} : \overline{\mathrm{C}\mathrm{D}} = k : \left(\frac{\text{(κ°€)}}{2} + \text{(λ‹€)}\right) \text{이닀.}
\end{aligned}
\]
μœ„μ˜ (κ°€), (λ‹€)에 μ•Œλ§žμ€ 식을 각각 \( f(k), g(k) \)라 ν•˜κ³ , (λ‚˜)에 μ•Œλ§žμ€ 수λ₯Ό \( p \)라 ν•  λ•Œ, \( f(p) \times g(p) \)의 값은? [4점]
\begin{itemize}
\item[1] \(\frac{169}{27}\)
\item[2] \(\frac{56}{9}\)
\item[3] \(\frac{167}{27}\)
\item[4] \(\frac{166}{27}\)
\item[5] \(\frac{55}{9}\)
\end{itemize}