|
15. λ μ \( \mathrm{O}_1, \mathrm{O}_2 \)λ₯Ό κ°κ° μ€μ¬μΌλ‘ νκ³ λ°μ§λ¦μ κΈΈμ΄κ° \(\overline{\mathrm{O}_1\mathrm{O}_2} \)μΈ λ μ \( C_1, C_2 \)κ° μλ€. κ·Έλ¦Όκ³Ό κ°μ΄ μ \( C_1 \) μμ μλ‘ λ€λ₯Έ μΈ μ \( \mathrm{A}, \mathrm{B}, \mathrm{C} \)μ μ \( C_2 \) μμ μ \( \mathrm{D} \)κ° μ£Όμ΄μ Έ μκ³ , μΈ μ \( \mathrm{A}, \mathrm{O}_1, \mathrm{O}_2 \)μ μΈ μ \( \mathrm{C}, \mathrm{O}_2, \mathrm{D} \)κ° κ°κ° ν μ§μ μμ μλ€. |
|
|
|
μ΄λ \(\angle \mathrm{B}\mathrm{O}_1\mathrm{A} = \theta_1\), \(\angle \mathrm{O}_2\mathrm{O}_1\mathrm{C} = \theta_2\), \(\angle \mathrm{O}_1\mathrm{O}_2\mathrm{D} = \theta_3\)μ΄λΌ νμ. |
|
|
|
λ€μμ \( \overline{\mathrm{A}\mathrm{B}} : \overline{\mathrm{O}_1\mathrm{D}} = 1 : 2\sqrt{2} \)μ΄κ³ \( \theta_3 = \theta_1 + \theta_2 \)μΌ λ, μ λΆ \( \mathrm{A}\mathrm{B} \)μ μ λΆ \( \mathrm{C}\mathrm{D} \)μ κΈΈμ΄μ λΉλ₯Ό ꡬνλ κ³Όμ μ΄λ€. |
|
|
|
\[ |
|
\begin{aligned} |
|
&\angle \mathrm{C}\mathrm{O}_2\mathrm{O}_1 + \angle \mathrm{O}_1\mathrm{O}_2\mathrm{D} = \pi \text{μ΄λ―λ‘ } \theta_3 = \frac{\pi}{2} + \frac{\theta_2}{2} \text{μ΄κ³ } \\ |
|
&\theta_3 = \theta_1 + \theta_2 \text{μμ } 2\theta_1 + \theta_2 = \pi \text{μ΄λ―λ‘ } \angle \mathrm{C}\mathrm{O}_1\mathrm{B} = \theta_1 \text{μ΄λ€.} \\ |
|
&\text{μ΄λ } \angle \mathrm{O}_2\mathrm{O}_1\mathrm{B} = \theta_1 + \theta_2 = \theta_3 \text{μ΄λ―λ‘ μΌκ°ν } \mathrm{O}_1\mathrm{O}_2\mathrm{B} \text{μ μΌκ°ν } \mathrm{O}_2\mathrm{O}_1\mathrm{D} \text{λ ν©λμ΄λ€.} \\ |
|
&\overline{\mathrm{A}\mathrm{B}} = k \text{λΌ ν λ} \\ |
|
&\overline{\mathrm{B}\mathrm{O}_2} = \overline{\mathrm{O}_1\mathrm{D}}= 2\sqrt{2}k \text{μ΄λ―λ‘ } \overline{\mathrm{A}\mathrm{O}_2} = \text{(κ°)μ΄κ³ ,} \\ |
|
&\angle \mathrm{B}\mathrm{O}_2\mathrm{A} = \frac{\theta_1}{2} \text{μ΄λ―λ‘ } \cos \frac{\theta_1}{2} = \text{(λ) μ΄λ€.} \\ |
|
&\text{μΌκ°ν } \mathrm{O}_2\mathrm{B}\mathrm{C} \text{μμ} \\ |
|
&\overline{\mathrm{B}\mathrm{C}} = k, \overline{\mathrm{B}\mathrm{O}_2} = 2\sqrt{2}k, \angle \mathrm{C}\mathrm{O}_2\mathrm{B} = \frac{\theta_1}{2} \text{μ΄λ―λ‘} \\ |
|
&\text{μ½μ¬μΈλ²μΉμ μνμ¬ } \overline{\mathrm{O}_2\mathrm{C}} = \text{(λ€) μ΄λ€.} \\ |
|
&\overline{\mathrm{C}\mathrm{D}} = \overline{\mathrm{O}_2\mathrm{D}} + \overline{\mathrm{O}_2\mathrm{C}} = \overline{\mathrm{O}_1\mathrm{O}_2} + \overline{\mathrm{O}_2\mathrm{C}} \text{μ΄λ―λ‘} \\ |
|
&\overline{\mathrm{A}\mathrm{B}} : \overline{\mathrm{C}\mathrm{D}} = k : \left(\frac{\text{(κ°)}}{2} + \text{(λ€)}\right) \text{μ΄λ€.} |
|
\end{aligned} |
|
\] |
|
|
|
μμ (κ°), (λ€)μ μλ§μ μμ κ°κ° \( f(k), g(k) \)λΌ νκ³ , (λ)μ μλ§μ μλ₯Ό \( p \)λΌ ν λ, \( f(p) \times g(p) \)μ κ°μ? [4μ ] |
|
|
|
\begin{itemize} |
|
\item[1] \(\frac{169}{27}\) |
|
\item[2] \(\frac{56}{9}\) |
|
\item[3] \(\frac{167}{27}\) |
|
\item[4] \(\frac{166}{27}\) |
|
\item[5] \(\frac{55}{9}\) |
|
\end{itemize} |