|
12. μ€μ μ 체μ μ§ν©μμ μ°μμΈ ν¨μ \( f(x) \) κ° λ€μ 쑰건μ λ§μ‘±μν¨λ€. |
|
|
|
\[ |
|
n-1 \leq x < n \text{μΌ λ}, \ |f(x)| = |6(x-n+1)(x-n)| \text{μ΄λ€.} \ (\text{λ¨}, \ n \text{μ μμ°μμ΄λ€.}) |
|
\] |
|
|
|
μ΄λ¦°κ΅¬κ° \( (0, 4) \)μμ μ μλ ν¨μ |
|
|
|
\[ |
|
g(x) = \int_0^x f(t) dt - \int_x^4 f(t) dt |
|
\] |
|
|
|
κ° \( x = 2 \)μμ μ΅μκ° 0μ κ°μ§ λ, \( \int_{\frac{1}{2}}^{4} f(x) dx \) μ κ°μ? [4μ ] |
|
|
|
\begin{itemize} |
|
\item[1] $-\frac{3}{2}$ |
|
\item[2] $-\frac{1}{2}$ |
|
\item[3] $\frac{1}{2}$ |
|
\item[4] $\frac{3}{2}$ |
|
\item[5] $\frac{5}{2}$ |
|
\end{itemize} |