Convert dataset to Parquet
#2
by
albertvillanova
HF staff
- opened
- README.md +23 -8
- cail2018.py +0 -116
- data/exercise_contest_test-00000-of-00001.parquet +3 -0
- data/exercise_contest_train-00000-of-00001.parquet +3 -0
- data/exercise_contest_valid-00000-of-00001.parquet +3 -0
- data/final_test-00000-of-00001.parquet +3 -0
- data/first_stage_test-00000-of-00001.parquet +3 -0
- data/first_stage_train-00000-of-00004.parquet +3 -0
- data/first_stage_train-00001-of-00004.parquet +3 -0
- data/first_stage_train-00002-of-00004.parquet +3 -0
- data/first_stage_train-00003-of-00004.parquet +3 -0
- dataset_infos.json +0 -1
README.md
CHANGED
@@ -40,25 +40,40 @@ dataset_info:
|
|
40 |
dtype: bool
|
41 |
splits:
|
42 |
- name: exercise_contest_train
|
43 |
-
num_bytes:
|
44 |
num_examples: 154592
|
45 |
- name: exercise_contest_valid
|
46 |
-
num_bytes:
|
47 |
num_examples: 17131
|
48 |
- name: exercise_contest_test
|
49 |
-
num_bytes:
|
50 |
num_examples: 32508
|
51 |
- name: first_stage_train
|
52 |
-
num_bytes:
|
53 |
num_examples: 1710856
|
54 |
- name: first_stage_test
|
55 |
-
num_bytes:
|
56 |
num_examples: 217016
|
57 |
- name: final_test
|
58 |
-
num_bytes:
|
59 |
num_examples: 35922
|
60 |
-
download_size:
|
61 |
-
dataset_size:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
---
|
63 |
---
|
64 |
# Dataset Card for CAIL 2018
|
|
|
40 |
dtype: bool
|
41 |
splits:
|
42 |
- name: exercise_contest_train
|
43 |
+
num_bytes: 220112348
|
44 |
num_examples: 154592
|
45 |
- name: exercise_contest_valid
|
46 |
+
num_bytes: 21702109
|
47 |
num_examples: 17131
|
48 |
- name: exercise_contest_test
|
49 |
+
num_bytes: 41057538
|
50 |
num_examples: 32508
|
51 |
- name: first_stage_train
|
52 |
+
num_bytes: 1779653382
|
53 |
num_examples: 1710856
|
54 |
- name: first_stage_test
|
55 |
+
num_bytes: 244334666
|
56 |
num_examples: 217016
|
57 |
- name: final_test
|
58 |
+
num_bytes: 44194611
|
59 |
num_examples: 35922
|
60 |
+
download_size: 1167828091
|
61 |
+
dataset_size: 2351054654
|
62 |
+
configs:
|
63 |
+
- config_name: default
|
64 |
+
data_files:
|
65 |
+
- split: exercise_contest_train
|
66 |
+
path: data/exercise_contest_train-*
|
67 |
+
- split: exercise_contest_valid
|
68 |
+
path: data/exercise_contest_valid-*
|
69 |
+
- split: exercise_contest_test
|
70 |
+
path: data/exercise_contest_test-*
|
71 |
+
- split: first_stage_train
|
72 |
+
path: data/first_stage_train-*
|
73 |
+
- split: first_stage_test
|
74 |
+
path: data/first_stage_test-*
|
75 |
+
- split: final_test
|
76 |
+
path: data/final_test-*
|
77 |
---
|
78 |
---
|
79 |
# Dataset Card for CAIL 2018
|
cail2018.py
DELETED
@@ -1,116 +0,0 @@
|
|
1 |
-
import json
|
2 |
-
import os
|
3 |
-
|
4 |
-
import datasets
|
5 |
-
|
6 |
-
|
7 |
-
_CITATION = """\
|
8 |
-
@misc{xiao2018cail2018,
|
9 |
-
title={CAIL2018: A Large-Scale Legal Dataset for Judgment Prediction},
|
10 |
-
author={Chaojun Xiao and Haoxi Zhong and Zhipeng Guo and Cunchao Tu and Zhiyuan Liu and Maosong Sun and Yansong Feng and Xianpei Han and Zhen Hu and Heng Wang and Jianfeng Xu},
|
11 |
-
year={2018},
|
12 |
-
eprint={1807.02478},
|
13 |
-
archivePrefix={arXiv},
|
14 |
-
primaryClass={cs.CL}
|
15 |
-
}
|
16 |
-
"""
|
17 |
-
|
18 |
-
_DESCRIPTION = """\
|
19 |
-
In this paper, we introduce Chinese AI and Law challenge dataset (CAIL2018),
|
20 |
-
the first large-scale Chinese legal dataset for judgment prediction. CAIL contains more than 2.6 million
|
21 |
-
criminal cases published by the Supreme People's Court of China, which are several times larger than other
|
22 |
-
datasets in existing works on judgment prediction. Moreover, the annotations of judgment results are more
|
23 |
-
detailed and rich. It consists of applicable law articles, charges, and prison terms, which are expected
|
24 |
-
to be inferred according to the fact descriptions of cases. For comparison, we implement several conventional
|
25 |
-
text classification baselines for judgment prediction and experimental results show that it is still a
|
26 |
-
challenge for current models to predict the judgment results of legal cases, especially on prison terms.
|
27 |
-
To help the researchers make improvements on legal judgment prediction.
|
28 |
-
"""
|
29 |
-
_URL = "https://cail.oss-cn-qingdao.aliyuncs.com/CAIL2018_ALL_DATA.zip"
|
30 |
-
|
31 |
-
|
32 |
-
class Cail2018(datasets.GeneratorBasedBuilder):
|
33 |
-
VERSION = datasets.Version("1.0.0")
|
34 |
-
|
35 |
-
def _info(self):
|
36 |
-
features = datasets.Features(
|
37 |
-
{
|
38 |
-
"fact": datasets.Value("string"),
|
39 |
-
"relevant_articles": datasets.Sequence(datasets.Value("int32")),
|
40 |
-
"accusation": datasets.Sequence(datasets.Value("string")),
|
41 |
-
"punish_of_money": datasets.Value("float"),
|
42 |
-
"criminals": datasets.Sequence(datasets.Value("string")),
|
43 |
-
"death_penalty": datasets.Value("bool"),
|
44 |
-
"imprisonment": datasets.Value("float"),
|
45 |
-
"life_imprisonment": datasets.Value("bool"),
|
46 |
-
}
|
47 |
-
)
|
48 |
-
return datasets.DatasetInfo(
|
49 |
-
description=_DESCRIPTION,
|
50 |
-
features=features,
|
51 |
-
homepage="https://arxiv.org/abs/1807.02478",
|
52 |
-
citation=_CITATION,
|
53 |
-
)
|
54 |
-
|
55 |
-
def _split_generators(self, dl_manager):
|
56 |
-
"""Returns SplitGenerators."""
|
57 |
-
|
58 |
-
dl_dir = dl_manager.download_and_extract(_URL)
|
59 |
-
|
60 |
-
return [
|
61 |
-
datasets.SplitGenerator(
|
62 |
-
name=datasets.Split("exercise_contest_train"),
|
63 |
-
gen_kwargs={
|
64 |
-
"filepath": os.path.join(dl_dir, "final_all_data/exercise_contest/data_train.json"),
|
65 |
-
"split": "exercise_contest_train",
|
66 |
-
},
|
67 |
-
),
|
68 |
-
datasets.SplitGenerator(
|
69 |
-
name=datasets.Split("exercise_contest_valid"),
|
70 |
-
gen_kwargs={
|
71 |
-
"filepath": os.path.join(dl_dir, "final_all_data/exercise_contest/data_valid.json"),
|
72 |
-
"split": "exercise_contest_valid",
|
73 |
-
},
|
74 |
-
),
|
75 |
-
datasets.SplitGenerator(
|
76 |
-
name=datasets.Split("exercise_contest_test"),
|
77 |
-
gen_kwargs={
|
78 |
-
"filepath": os.path.join(dl_dir, "final_all_data/exercise_contest/data_test.json"),
|
79 |
-
"split": "exercise_contest_test",
|
80 |
-
},
|
81 |
-
),
|
82 |
-
datasets.SplitGenerator(
|
83 |
-
name=datasets.Split("first_stage_train"),
|
84 |
-
gen_kwargs={
|
85 |
-
"filepath": os.path.join(dl_dir, "final_all_data/first_stage/train.json"),
|
86 |
-
"split": "first_stage_train",
|
87 |
-
},
|
88 |
-
),
|
89 |
-
datasets.SplitGenerator(
|
90 |
-
name=datasets.Split("first_stage_test"),
|
91 |
-
gen_kwargs={
|
92 |
-
"filepath": os.path.join(dl_dir, "final_all_data/first_stage/test.json"),
|
93 |
-
"split": "first_stage_test",
|
94 |
-
},
|
95 |
-
),
|
96 |
-
datasets.SplitGenerator(
|
97 |
-
name=datasets.Split("final_test"),
|
98 |
-
gen_kwargs={"filepath": os.path.join(dl_dir, "final_all_data/final_test.json"), "split": "final_test"},
|
99 |
-
),
|
100 |
-
]
|
101 |
-
|
102 |
-
def _generate_examples(self, filepath, split):
|
103 |
-
"""Yields examples."""
|
104 |
-
with open(filepath, encoding="utf-8") as f:
|
105 |
-
for idx, row in enumerate(f):
|
106 |
-
data = json.loads(row)
|
107 |
-
yield idx, {
|
108 |
-
"fact": data["fact"],
|
109 |
-
"relevant_articles": data["meta"]["relevant_articles"],
|
110 |
-
"accusation": data["meta"]["accusation"],
|
111 |
-
"punish_of_money": data["meta"]["punish_of_money"],
|
112 |
-
"criminals": data["meta"]["criminals"],
|
113 |
-
"death_penalty": data["meta"]["term_of_imprisonment"]["death_penalty"],
|
114 |
-
"imprisonment": data["meta"]["term_of_imprisonment"]["imprisonment"],
|
115 |
-
"life_imprisonment": data["meta"]["term_of_imprisonment"]["life_imprisonment"],
|
116 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
data/exercise_contest_test-00000-of-00001.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e077299eeda80a12ee4e529cd1e052101e586d7f239fda8e2782ee5581106350
|
3 |
+
size 21036060
|
data/exercise_contest_train-00000-of-00001.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b1b9803f777e484b22034e1c11fc2ae4449341ce0b78a545c3fe994b3394b5f8
|
3 |
+
size 112387981
|
data/exercise_contest_valid-00000-of-00001.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f0f1c3136c58dc1d84b540bfbbe290dd5d5cccc17512e8d6ef3b1462f90537df
|
3 |
+
size 10851075
|
data/final_test-00000-of-00001.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9874ea0df4835b438fe394cba99efe9d8f65d259f8d8177fc6939bd8f83d073a
|
3 |
+
size 20383366
|
data/first_stage_test-00000-of-00001.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ec710ad1a45d5b2f9a87499fc07d63836c006415a9a2413c4fd6e8bcfa693cae
|
3 |
+
size 120551158
|
data/first_stage_train-00000-of-00004.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c16398cf930e462eca9d2dc8fdc312bd0624758db087629444b276181c0cd9e5
|
3 |
+
size 224570610
|
data/first_stage_train-00001-of-00004.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ca0f9f1aadc756e1947fee58335f2417fe90852bba9e84163a1f7183c3ea2039
|
3 |
+
size 210488513
|
data/first_stage_train-00002-of-00004.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5324ce52cab740e0b4ad29338522ed9811aee451c4dfdbd923e48edbc6232e64
|
3 |
+
size 193101855
|
data/first_stage_train-00003-of-00004.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d52d7b3f96df5d7477145af51ae42d0a37b60c89f9b6c2b6bf73f2d94c7ccc44
|
3 |
+
size 254457473
|
dataset_infos.json
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
{"default": {"description": "In this paper, we introduce Chinese AI and Law challenge dataset (CAIL2018),\nthe first large-scale Chinese legal dataset for judgment prediction. CAIL contains more than 2.6 million\ncriminal cases published by the Supreme People's Court of China, which are several times larger than other\ndatasets in existing works on judgment prediction. Moreover, the annotations of judgment results are more\ndetailed and rich. It consists of applicable law articles, charges, and prison terms, which are expected\nto be inferred according to the fact descriptions of cases. For comparison, we implement several conventional\ntext classification baselines for judgment prediction and experimental results show that it is still a\nchallenge for current models to predict the judgment results of legal cases, especially on prison terms.\nTo help the researchers make improvements on legal judgment prediction.\n", "citation": "@misc{xiao2018cail2018,\n title={CAIL2018: A Large-Scale Legal Dataset for Judgment Prediction}, \n author={Chaojun Xiao and Haoxi Zhong and Zhipeng Guo and Cunchao Tu and Zhiyuan Liu and Maosong Sun and Yansong Feng and Xianpei Han and Zhen Hu and Heng Wang and Jianfeng Xu},\n year={2018},\n eprint={1807.02478},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n", "homepage": "https://arxiv.org/abs/1807.02478", "license": "", "features": {"fact": {"dtype": "string", "id": null, "_type": "Value"}, "relevant_articles": {"feature": {"dtype": "int32", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "accusation": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "punish_of_money": {"dtype": "float32", "id": null, "_type": "Value"}, "criminals": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "death_penalty": {"dtype": "bool", "id": null, "_type": "Value"}, "imprisonment": {"dtype": "float32", "id": null, "_type": "Value"}, "life_imprisonment": {"dtype": "bool", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "cail2018", "config_name": "default", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"exercise_contest_train": {"name": "exercise_contest_train", "num_bytes": 220112732, "num_examples": 154592, "dataset_name": "cail2018"}, "exercise_contest_valid": {"name": "exercise_contest_valid", "num_bytes": 21702157, "num_examples": 17131, "dataset_name": "cail2018"}, "exercise_contest_test": {"name": "exercise_contest_test", "num_bytes": 41057634, "num_examples": 32508, "dataset_name": "cail2018"}, "first_stage_train": {"name": "first_stage_train", "num_bytes": 1779657510, "num_examples": 1710856, "dataset_name": "cail2018"}, "first_stage_test": {"name": "first_stage_test", "num_bytes": 244335194, "num_examples": 217016, "dataset_name": "cail2018"}, "final_test": {"name": "final_test", "num_bytes": 44194707, "num_examples": 35922, "dataset_name": "cail2018"}}, "download_checksums": {"https://cail.oss-cn-qingdao.aliyuncs.com/CAIL2018_ALL_DATA.zip": {"num_bytes": 984551626, "checksum": "3c05dfdade742f8b0d5e782d174475e7769448a5f407bfb7f14f0aed72d61d4a"}}, "download_size": 984551626, "post_processing_size": null, "dataset_size": 2351059934, "size_in_bytes": 3335611560}}
|
|
|
|