AsyLex / README.md
clairebarale's picture
Update README.md
56b1f0e
|
raw
history blame
9.03 kB
metadata
annotations_creators: []
language:
  - en
language_creators:
  - found
license:
  - cc-by-nc-sa-4.0
multilinguality:
  - monolingual
pretty_name: AsyLex
size_categories:
  - 1M<n<10M
source_datasets: []
tags:
  - legal NLP
  - Refugee Law
task_categories:
  - text-classification
  - token-classification
  - text-retrieval
task_ids:
  - multi-label-classification
  - named-entity-recognition
  - document-retrieval
  - utterance-retrieval
configs:
  - config_name: raw_sentences
    features:
      - name: decisionID
        dtype: string
      - name: Text
        dtype: string
    data_files: all_sentences_anonymized.tar.xz
    num_examples: 4946439
    default: true
  - config_name: raw_documents
    data_files: cases_anonymized_txt_raw.tar.gz
    features:
      - name: case_files
        dtype: string
    num_examples: 59112
  - config_name: all_legal_entities
    data_files: main_and_case_cover_all_entities_inferred.csv
    sep: ;
    features:
      - name: decisionID
        dtype: int64
      - name: Text
        dtype: string
      - name: GPE
        dtype: string
      - name: DATE
        dtype: string
      - name: NORP
        dtype: string
      - name: ORG
        dtype: string
      - name: LAW
        dtype: string
      - name: CLAIMANT_EVENTS
        dtype: string
      - name: CREDIBILITY
        dtype: string
      - name: DETERMINATION
        dtype: string
      - name: CLAIMANT_INFO
        dtype: string
      - name: PROCEDURE
        dtype: string
      - name: DOC_EVIDENCE
        dtype: string
      - name: EXPLANATION
        dtype: string
      - name: LEGAL_GROUND
        dtype: string
      - name: LAW_CASE
        dtype: string
      - name: LAW_REPORT
        dtype: string
      - name: decision_outcome
        dtype:
          class_label:
            names:
              '0': Rejected
              '1': Granted
              '2': Uncertain
      - name: extracted_dates
        dtype: string
      - name: LOC_HEARING
        dtype: string
      - name: TRIBUNAL
        dtype: string
      - name: PUBLIC_PRIVATE_HEARING
        dtype: string
      - name: INCHAMBER_VIRTUAL_HEARING
        dtype: string
      - name: JUDGE
        dtype: string
      - name: text_case_cover
        dtype: string
      - name: DATE_DECISION
        dtype: string
    num_examples: 3067330
  - config_name: casecover_legal_entities
    data_files: case_cover/case_cover_anonymised_extracted_entities.csv
    sep: ','
    features:
      - name: decision_ID
        dtype: int64
      - name: extracted_dates
        dtype: string
      - name: extracted_gpe
        dtype: string
      - name: extracted_org
        dtype: string
      - name: public_private_hearing
        dtype: string
      - name: in_chamber_virtual
        dtype: string
      - name: judge_name
        dtype: string
      - name: date_decision
        dtype: string
      - name: text_case_cover
        dtype: string
    num_examples: 45883
  - config_name: casecover_entities_outcome
    data_files: case_cover/case_cover_entities_and_decision_outcome.csv
    sep: ;
    features:
      - name: decision_ID
        dtype: int64
      - name: extracted_dates
        dtype: string
      - name: LOC_HEARING
        dtype: string
      - name: TRIBUNAL
        dtype: string
      - name: PUBLIC_PRIVATE_HEARING
        dtype: string
      - name: INCHAMBER_VIRTUAL_HEARING
        dtype: string
      - name: JUDGE
        dtype: string
      - name: text_case_cover
        dtype: string
      - name: DATE_DECISION
        dtype: string
      - name: decision_outcome
        dtype:
          class_label:
            names:
              '0': Rejected
              '1': Granted
              '2': Uncertain
    num_examples: 31195
  - config_name: determination_sentences
    data_files: determination_label_extracted_sentences.csv
    sep: ;
    features:
      - name: decisionID
        dtype: int64
      - name: extracted_sentences_determination
        dtype: string
    num_examples: 53977
  - config_name: outcome_classification
    features:
      - name: decisionID
        dtype: float64
      - name: decision_outcome
        dtype:
          class_label:
            names:
              '0': Rejected
              '1': Granted
              '2': Uncertain
    data_files:
      - split: train
        path: outcome_train_test/train_dataset_silver.csv
      - split: test
        path: outcome_train_test/test_dataset_gold.csv
config_names:
  - raw_documents
  - raw_sentences
  - all_legal_entities
  - casecover_legal_entities
  - casecover_entities_outcome
  - determination_sentencess
  - outcome_classification

Dataset Card for AsyLex

The dataset introduces 59,112 documents of refugee status determination in Canada from 1996 to 2022, providing researchers and practitioners with essential material for training and evaluating NLP models for legal research and case review.

AsyLex contains labeled data suited for two NLP tasks: (1) Entity extraction and (2) Legal Judgment Prediction.

Dataset Details

AsyLex includes gold-standard human-labeled annotations for 24 legally relevant entity types curated with the help of legal experts, and 1,682 gold-standard labeled documents for the outcome of the case.

The dataset can be split in two sets:

  • (1) a Case Covers set that consists of semi-structured data and displays meta-information (the first page of each case);
  • (2) a Main Text set that contains the body of each case, in full text.

Dataset Sources

The documents have been collected from the online services of the Canadian Legal Information Institute (CanLII).

Uses

  • License: cc-by-nc-sa-4.0

The dataset must be used for research purposes only. It must not be use for commercial purposes.

Dataset Structure

This dataset contains the following files:

Configuration Files Description
raw_documents cases_anonymized_txt_raw.tar.gz contains the raw text from all documents, by case, with the corresponding case identifier
raw_sentences all_sentences_anonymized.tar.xz contains the raw text from all retrieved documents, split by sentences, with the corresponding case identifier
all_legal_entities main_and_case_cover_all_entities_inferred.csv contains the structured dataset, all extracted entities (one column per entity type), with the corresponding case identifier
casecover_legal_entities case_cover/case_cover_anonymised_extracted_entities.csv contains the structured dataset derived from the case covers only (one column per entity type), with the corresponding case identifier
casecover_entities_outcome case_cover/case_cover_entities_and_decision_outcome.csv same as above, with the addition of the decision outcome of the case
determination_sentences determination_label_extracted_sentences.csv contains all sentences that have been extracted with the Entity Type "determination". All sentences included here should therefore directly state the outcome of the decision, with the correspinding case identifier
outcome_classification outcome_train_test folder containing a train and test set for the task of outcome classificiation. Each set includes the case identifier and the decision outcome (0,1,2). The test set only contains gold-standard manually labeled data.
manual_annotations contains jsonl files of the manually collected annotations for the case cover and the main text

In all files containing the decision outcome, 0 refers to a "reject", 1 to a "granted", and 2 to "uncertain".

Each configuration can be load by passing its name as a second parameter:

 from datasets import load_dataset
 
 outcome_classification_data = load_dataset("clairebarale/AsyLex", "outcome_classification")
 raw_documents_data = load_dataset("clairebarale/AsyLex", "raw_documents")

Personal and Sensitive Information

All documents have been anonymized.

Citation [optional]

Papers:

  • NLLP @EMNLP Publication: tba

  • ACL Publication:

 @inproceedings{barale-etal-2023-automated,
   title = "Automated Refugee Case Analysis: A {NLP} Pipeline for Supporting Legal Practitioners",
   author = "Barale, Claire  and
     Rovatsos, Michael  and
     Bhuta, Nehal",
   booktitle = "Findings of the Association for Computational Linguistics: ACL 2023",
   month = jul,
   year = "2023",
   address = "Toronto, Canada",
   publisher = "Association for Computational Linguistics",
   url = "https://aclanthology.org/2023.findings-acl.187",
   doi = "10.18653/v1/2023.findings-acl.187",
   pages = "2992--3005",
}

Dataset Card Contact

Please contact the authors of the papers.