NSD-Flat / README.md
clane9's picture
Update README.md
bf9652f
|
raw
history blame
3.37 kB
---
license: other
dataset_info:
features:
- name: subject
dtype: string
- name: subject_id
dtype: int64
- name: nsd_id
dtype: int64
- name: image
dtype: image
- name: activity
dtype: image
- name: coco_split
dtype: string
- name: coco_id
dtype: int64
- name: objects
struct:
- name: area
sequence: int64
- name: bbox
sequence:
sequence: float64
- name: category
sequence: string
- name: iscrowd
sequence: int64
- name: segmentation
list:
- name: counts
dtype: string
- name: poly
sequence:
sequence: float64
- name: size
sequence: int64
- name: supercategory
sequence: string
- name: target
sequence: int64
- name: captions
sequence: string
splits:
- name: train
num_bytes: 26654549442
num_examples: 195000
download_size: 12966047661
dataset_size: 26654549442
task_categories:
- image-to-image
- object-detection
tags:
- biology
- neuroscience
- fmri
size_categories:
- 100K<n<1M
---
# NSD-Flat
[[`GitHub`]](https://github.com/clane9/NSD-Flat) [[🤗 `Hugging Face Hub`]](https://huggingface.co/datasets/clane9/NSD-Flat)
A Hugging Face dataset of pre-processed brain activity flat maps from the [Natural Scenes Dataset](https://naturalscenesdataset.org/), constrained to a visual cortex region of interest and rendered as PNG images.
## Load the dataset
Load the dataset from [Hugging Face Hub](https://huggingface.co/datasets/clane9/NSD-Flat)
```python
from datasets import load_dataset
dataset = load_dataset("clane9/NSD-Flat", split="train")
```
## Building the dataset
### 1. Download source data
Run [`download_data.sh`](download_data.sh) to download the required source data:
- NSD stimuli images and presentation info
- COCO annotations
- NSD beta activity maps in fsaverge surface space
```bash
bash download_data.sh
```
### 2. Convert the COCO annotations
Run [`convert_nsd_annotations.py`](convert_nsd_annotations.py) to crop and reorganize the COCO annotations for NSD.
```bash
python convert_nsd_annotations.py
```
### 3. Generate the dataset
Run [`generate_dataset.py`](generate_dataset.py) to generate the huggingface dataset in Arrow format.
```bash
python generate_dataset.py --img_size 256 --workers 8
```
## Citation
If you find this dataset useful, please consider citing:
```
@article{allen2022massive,
title = {A massive 7T fMRI dataset to bridge cognitive neuroscience and artificial intelligence},
author = {Allen, Emily J and St-Yves, Ghislain and Wu, Yihan and Breedlove, Jesse L and Prince, Jacob S and Dowdle, Logan T and Nau, Matthias and Caron, Brad and Pestilli, Franco and Charest, Ian and others},
journal = {Nature neuroscience},
volume = {25},
number = {1},
pages = {116--126},
year = {2022},
publisher = {Nature Publishing Group US New York}
}
```
```
@misc{lane2023nsdflat,
author = {Connor Lane},
title = {NSD-Flat: Pre-processed brain activity flat maps from the Natural Scenes Dataset},
howpublished = {\url{https://huggingface.co/datasets/clane9/NSD-Flat}},
year = {2023},
}
```
## License
Usage of this dataset constitutes agreement to the [NSD Terms and Conditions](https://cvnlab.slite.page/p/IB6BSeW_7o/Terms-and-Conditions).