|
--- |
|
license: other |
|
dataset_info: |
|
features: |
|
- name: subject |
|
dtype: string |
|
- name: subject_id |
|
dtype: int64 |
|
- name: nsd_id |
|
dtype: int64 |
|
- name: image |
|
dtype: image |
|
- name: activity |
|
dtype: image |
|
- name: coco_split |
|
dtype: string |
|
- name: coco_id |
|
dtype: int64 |
|
- name: objects |
|
struct: |
|
- name: area |
|
sequence: int64 |
|
- name: bbox |
|
sequence: |
|
sequence: float64 |
|
- name: category |
|
sequence: string |
|
- name: iscrowd |
|
sequence: int64 |
|
- name: segmentation |
|
list: |
|
- name: counts |
|
dtype: string |
|
- name: poly |
|
sequence: |
|
sequence: float64 |
|
- name: size |
|
sequence: int64 |
|
- name: supercategory |
|
sequence: string |
|
- name: target |
|
sequence: int64 |
|
- name: captions |
|
sequence: string |
|
splits: |
|
- name: train |
|
num_bytes: 26654549442 |
|
num_examples: 195000 |
|
download_size: 12966047661 |
|
dataset_size: 26654549442 |
|
task_categories: |
|
- image-to-image |
|
- object-detection |
|
tags: |
|
- biology |
|
- neuroscience |
|
- fmri |
|
size_categories: |
|
- 100K<n<1M |
|
--- |
|
|
|
# NSD-Flat |
|
[[`GitHub`]](https://github.com/clane9/NSD-Flat) [[🤗 `Hugging Face Hub`]](https://huggingface.co/datasets/clane9/NSD-Flat) |
|
|
|
A Hugging Face dataset of pre-processed brain activity flat maps from the [Natural Scenes Dataset](https://naturalscenesdataset.org/), constrained to a visual cortex region of interest and rendered as PNG images. |
|
|
|
## Load the dataset |
|
|
|
Load the dataset from [Hugging Face Hub](https://huggingface.co/datasets/clane9/NSD-Flat) |
|
|
|
```python |
|
from datasets import load_dataset |
|
|
|
dataset = load_dataset("clane9/NSD-Flat", split="train") |
|
``` |
|
|
|
## Building the dataset |
|
|
|
### 1. Download source data |
|
|
|
Run [`download_data.sh`](download_data.sh) to download the required source data: |
|
|
|
- NSD stimuli images and presentation info |
|
- COCO annotations |
|
- NSD beta activity maps in fsaverge surface space |
|
|
|
```bash |
|
bash download_data.sh |
|
``` |
|
|
|
### 2. Convert the COCO annotations |
|
|
|
Run [`convert_nsd_annotations.py`](convert_nsd_annotations.py) to crop and reorganize the COCO annotations for NSD. |
|
|
|
```bash |
|
python convert_nsd_annotations.py |
|
``` |
|
|
|
### 3. Generate the dataset |
|
|
|
Run [`generate_dataset.py`](generate_dataset.py) to generate the huggingface dataset in Arrow format. |
|
|
|
```bash |
|
python generate_dataset.py --img_size 256 --workers 8 |
|
``` |
|
|
|
## Citation |
|
|
|
If you find this dataset useful, please consider citing: |
|
|
|
``` |
|
@article{allen2022massive, |
|
title = {A massive 7T fMRI dataset to bridge cognitive neuroscience and artificial intelligence}, |
|
author = {Allen, Emily J and St-Yves, Ghislain and Wu, Yihan and Breedlove, Jesse L and Prince, Jacob S and Dowdle, Logan T and Nau, Matthias and Caron, Brad and Pestilli, Franco and Charest, Ian and others}, |
|
journal = {Nature neuroscience}, |
|
volume = {25}, |
|
number = {1}, |
|
pages = {116--126}, |
|
year = {2022}, |
|
publisher = {Nature Publishing Group US New York} |
|
} |
|
``` |
|
|
|
``` |
|
@misc{lane2023nsdflat, |
|
author = {Connor Lane}, |
|
title = {NSD-Flat: Pre-processed brain activity flat maps from the Natural Scenes Dataset}, |
|
howpublished = {\url{https://huggingface.co/datasets/clane9/NSD-Flat}}, |
|
year = {2023}, |
|
} |
|
``` |
|
|
|
## License |
|
|
|
Usage of this dataset constitutes agreement to the [NSD Terms and Conditions](https://cvnlab.slite.page/p/IB6BSeW_7o/Terms-and-Conditions). |