Datasets:
annotations_creators:
- expert-generated
language_creators:
- other
language:
- pl
license:
- mit
multilinguality:
- monolingual
pretty_name: AspectEmo
size_categories:
- 1K
- 1K<n<10K
source_datasets:
- original
task_categories:
- token-classification
task_ids:
- sentiment-classification
AspectEmo
Description
AspectEmo Corpus is an extended version of a publicly available PolEmo 2.0 corpus of Polish customer reviews used in many projects on the use of different methods in sentiment analysis. The AspectEmo corpus consists of four subcorpora, each containing online customer reviews from the following domains: school, medicine, hotels, and products. All documents are annotated at the aspect level with six sentiment categories: strong negative (minus_m), weak negative (minus_s), neutral (zero), weak positive (plus_s), strong positive (plus_m).
Versions
version | config name | description | default | notes |
---|---|---|---|---|
1.0 | "1.0" | The version used in the paper. | YES | |
2.0 | - | Some bugs fixed. | NO | work in progress |
Tasks (input, output and metrics)
Aspect-based sentiment analysis (ABSA) is a text analysis method that categorizes data by aspects and identifies the sentiment assigned to each aspect. It is the sequence tagging task.
Input ('tokens' column): sequence of tokens
Output ('labels' column): sequence of predicted tokens’ classes ("O" + 6 possible classes: strong negative (a_minus_m), weak negative (a_minus_s), neutral (a_zero), weak positive (a_plus_s), strong positive (a_plus_m), ambiguous (a_amb) )
Domain: school, medicine, hotels and products
Measurements:
Example: ['Dużo', 'wymaga', ',', 'ale', 'bardzo', 'uczciwy', 'i', 'przyjazny', 'studentom', '.', 'Warto', 'chodzić', 'na', 'konsultacje', '.', 'Docenia', 'postępy', 'i', 'zaangażowanie', '.', 'Polecam', '.'] → ['O', 'a_plus_s', 'O', 'O', 'O', 'a_plus_m', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'a_zero', 'O', 'a_plus_m', 'O', 'O', 'O', 'O', 'O', 'O']
Data splits
Subset | Cardinality (sentences) |
---|---|
train | 1173 |
val | 0 |
test | 292 |
Class distribution in train
Class | Fraction of tokens |
---|---|
O | 0.879809 |
a_plus_m | 0.043147 |
a_minus_m | 0.036641 |
a_zero | 0.028115 |
a_minus_s | 0.004506 |
a_plus_s | 0.004492 |
a_amb | 0.003289 |
Citation
@misc{11321/849,
title = {{AspectEmo} 1.0: Multi-Domain Corpus of Consumer Reviews for Aspect-Based Sentiment Analysis},
author = {Koco{\'n}, Jan and Radom, Jarema and Kaczmarz-Wawryk, Ewa and Wabnic, Kamil and Zaj{\c a}czkowska, Ada and Za{\'s}ko-Zieli{\'n}ska, Monika},
url = {http://hdl.handle.net/11321/849},
note = {{CLARIN}-{PL} digital repository},
copyright = {The {MIT} License},
year = {2021}
}
License
The MIT License
Links
Examples
Loading
from pprint import pprint
from datasets import load_dataset
dataset = load_dataset("clarin-pl/aspectemo")
pprint(dataset['train'][20])
# {'labels': [0, 4, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 3, 0, 5, 0, 0, 0, 0, 0, 0],
# 'tokens': ['Dużo',
# 'wymaga',
# ',',
# 'ale',
# 'bardzo',
# 'uczciwy',
# 'i',
# 'przyjazny',
# 'studentom',
# '.',
# 'Warto',
# 'chodzić',
# 'na',
# 'konsultacje',
# '.',
# 'Docenia',
# 'postępy',
# 'i',
# 'zaangażowanie',
# '.',
# 'Polecam',
# '.']}
Evaluation
import random
from pprint import pprint
from datasets import load_dataset, load_metric
dataset = load_dataset("clarin-pl/aspectemo")
references = dataset["test"]["labels"]
# generate random predictions
predictions = [
[
random.randrange(dataset["train"].features["labels"].feature.num_classes)
for _ in range(len(labels))
]
for labels in references
]
# transform to original names of labels
references_named = [
[dataset["train"].features["labels"].feature.names[label] for label in labels]
for labels in references
]
predictions_named = [
[dataset["train"].features["labels"].feature.names[label] for label in labels]
for labels in predictions
]
# transform to BILOU scheme
references_named = [
[f"U-{label}" if label != "O" else label for label in labels]
for labels in references_named
]
predictions_named = [
[f"U-{label}" if label != "O" else label for label in labels]
for labels in predictions_named
]
# utilise seqeval to evaluate
seqeval = load_metric("seqeval")
seqeval_score = seqeval.compute(
predictions=predictions_named,
references=references_named,
scheme="BILOU",
mode="strict",
)
pprint(seqeval_score)
# {'a_amb': {'f1': 0.00597237775289287,
# 'number': 91,
# 'precision': 0.003037782418834251,
# 'recall': 0.17582417582417584},
# 'a_minus_m': {'f1': 0.048306148055207034,
# 'number': 1039,
# 'precision': 0.0288551620760727,
# 'recall': 0.1482194417709336},
# 'a_minus_s': {'f1': 0.004682997118155619,
# 'number': 67,
# 'precision': 0.0023701002734731083,
# 'recall': 0.19402985074626866},
# 'a_plus_m': {'f1': 0.045933014354066985,
# 'number': 1015,
# 'precision': 0.027402473834443386,
# 'recall': 0.14187192118226602},
# 'a_plus_s': {'f1': 0.0021750951604132683,
# 'number': 41,
# 'precision': 0.001095690284879474,
# 'recall': 0.14634146341463414},
# 'a_zero': {'f1': 0.025159400310184387,
# 'number': 501,
# 'precision': 0.013768389287061486,
# 'recall': 0.14570858283433133},
# 'overall_accuracy': 0.13970115681233933,
# 'overall_f1': 0.02328248652368391,
# 'overall_precision': 0.012639312620633834,
# 'overall_recall': 0.14742193173565724}