|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""LexGLUE: A Benchmark Dataset for Legal Language Understanding in English.""" |
|
|
|
import csv |
|
import json |
|
import os |
|
import textwrap |
|
|
|
import datasets |
|
|
|
|
|
MAIN_CITATION = """\ |
|
@article{chalkidis-etal-2021-lexglue, |
|
title={{LexGLUE}: A Benchmark Dataset for Legal Language Understanding in English}, |
|
author={Chalkidis, Ilias and |
|
Jana, Abhik and |
|
Hartung, Dirk and |
|
Bommarito, Michael and |
|
Androutsopoulos, Ion and |
|
Katz, Daniel Martin and |
|
Aletras, Nikolaos}, |
|
year={2021}, |
|
eprint={2110.00976}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL}, |
|
note = {arXiv: 2110.00976}, |
|
}""" |
|
|
|
_DESCRIPTION = """\ |
|
Legal General Language Understanding Evaluation (LexGLUE) benchmark is |
|
a collection of datasets for evaluating model performance across a diverse set of legal NLU tasks |
|
""" |
|
|
|
ECTHR_ARTICLES = ["2", "3", "5", "6", "8", "9", "10", "11", "14", "P1-1"] |
|
|
|
EUROVOC_CONCEPTS = [ |
|
"100163", |
|
"100164", |
|
"100165", |
|
"100166", |
|
"100167", |
|
"100168", |
|
"100169", |
|
"100170", |
|
"100171", |
|
"100172", |
|
"100173", |
|
"100174", |
|
"100175", |
|
"100176", |
|
"100177", |
|
"100178", |
|
"100179", |
|
"100180", |
|
"100181", |
|
"100182", |
|
"100183", |
|
"100184", |
|
"100185", |
|
"100186", |
|
"100187", |
|
"100188", |
|
"100189", |
|
"100190", |
|
"100191", |
|
"100192", |
|
"100193", |
|
"100194", |
|
"100195", |
|
"100196", |
|
"100197", |
|
"100198", |
|
"100199", |
|
"100200", |
|
"100201", |
|
"100202", |
|
"100203", |
|
"100204", |
|
"100205", |
|
"100206", |
|
"100207", |
|
"100208", |
|
"100209", |
|
"100210", |
|
"100211", |
|
"100212", |
|
"100213", |
|
"100214", |
|
"100215", |
|
"100216", |
|
"100217", |
|
"100218", |
|
"100219", |
|
"100220", |
|
"100221", |
|
"100222", |
|
"100223", |
|
"100224", |
|
"100225", |
|
"100226", |
|
"100227", |
|
"100228", |
|
"100229", |
|
"100230", |
|
"100231", |
|
"100232", |
|
"100233", |
|
"100234", |
|
"100235", |
|
"100236", |
|
"100237", |
|
"100238", |
|
"100239", |
|
"100240", |
|
"100241", |
|
"100242", |
|
"100243", |
|
"100244", |
|
"100245", |
|
"100246", |
|
"100247", |
|
"100248", |
|
"100249", |
|
"100250", |
|
"100251", |
|
"100252", |
|
"100253", |
|
"100254", |
|
"100255", |
|
"100256", |
|
"100257", |
|
"100258", |
|
"100259", |
|
"100260", |
|
"100261", |
|
"100262", |
|
"100263", |
|
"100264", |
|
"100265", |
|
"100266", |
|
"100267", |
|
"100268", |
|
"100269", |
|
"100270", |
|
"100271", |
|
"100272", |
|
"100273", |
|
"100274", |
|
"100275", |
|
"100276", |
|
"100277", |
|
"100278", |
|
"100279", |
|
"100280", |
|
"100281", |
|
"100282", |
|
"100283", |
|
"100284", |
|
"100285", |
|
"100286", |
|
"100287", |
|
"100288", |
|
"100289", |
|
] |
|
|
|
LEDGAR_CATEGORIES = [ |
|
"Adjustments", |
|
"Agreements", |
|
"Amendments", |
|
"Anti-Corruption Laws", |
|
"Applicable Laws", |
|
"Approvals", |
|
"Arbitration", |
|
"Assignments", |
|
"Assigns", |
|
"Authority", |
|
"Authorizations", |
|
"Base Salary", |
|
"Benefits", |
|
"Binding Effects", |
|
"Books", |
|
"Brokers", |
|
"Capitalization", |
|
"Change In Control", |
|
"Closings", |
|
"Compliance With Laws", |
|
"Confidentiality", |
|
"Consent To Jurisdiction", |
|
"Consents", |
|
"Construction", |
|
"Cooperation", |
|
"Costs", |
|
"Counterparts", |
|
"Death", |
|
"Defined Terms", |
|
"Definitions", |
|
"Disability", |
|
"Disclosures", |
|
"Duties", |
|
"Effective Dates", |
|
"Effectiveness", |
|
"Employment", |
|
"Enforceability", |
|
"Enforcements", |
|
"Entire Agreements", |
|
"Erisa", |
|
"Existence", |
|
"Expenses", |
|
"Fees", |
|
"Financial Statements", |
|
"Forfeitures", |
|
"Further Assurances", |
|
"General", |
|
"Governing Laws", |
|
"Headings", |
|
"Indemnifications", |
|
"Indemnity", |
|
"Insurances", |
|
"Integration", |
|
"Intellectual Property", |
|
"Interests", |
|
"Interpretations", |
|
"Jurisdictions", |
|
"Liens", |
|
"Litigations", |
|
"Miscellaneous", |
|
"Modifications", |
|
"No Conflicts", |
|
"No Defaults", |
|
"No Waivers", |
|
"Non-Disparagement", |
|
"Notices", |
|
"Organizations", |
|
"Participations", |
|
"Payments", |
|
"Positions", |
|
"Powers", |
|
"Publicity", |
|
"Qualifications", |
|
"Records", |
|
"Releases", |
|
"Remedies", |
|
"Representations", |
|
"Sales", |
|
"Sanctions", |
|
"Severability", |
|
"Solvency", |
|
"Specific Performance", |
|
"Submission To Jurisdiction", |
|
"Subsidiaries", |
|
"Successors", |
|
"Survival", |
|
"Tax Withholdings", |
|
"Taxes", |
|
"Terminations", |
|
"Terms", |
|
"Titles", |
|
"Transactions With Affiliates", |
|
"Use Of Proceeds", |
|
"Vacations", |
|
"Venues", |
|
"Vesting", |
|
"Waiver Of Jury Trials", |
|
"Waivers", |
|
"Warranties", |
|
"Withholdings", |
|
] |
|
|
|
SCDB_ISSUE_AREAS = ["1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "13"] |
|
|
|
UNFAIR_CATEGORIES = [ |
|
"Limitation of liability", |
|
"Unilateral termination", |
|
"Unilateral change", |
|
"Content removal", |
|
"Contract by using", |
|
"Choice of law", |
|
"Jurisdiction", |
|
"Arbitration", |
|
] |
|
|
|
CASEHOLD_LABELS = ["0", "1", "2", "3", "4"] |
|
|
|
|
|
class LexGlueConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for LexGLUE.""" |
|
|
|
def __init__( |
|
self, |
|
text_column, |
|
label_column, |
|
url, |
|
data_url, |
|
data_file, |
|
citation, |
|
label_classes=None, |
|
multi_label=None, |
|
dev_column="dev", |
|
**kwargs, |
|
): |
|
"""BuilderConfig for LexGLUE. |
|
|
|
Args: |
|
text_column: ``string`, name of the column in the jsonl file corresponding |
|
to the text |
|
label_column: `string`, name of the column in the jsonl file corresponding |
|
to the label |
|
url: `string`, url for the original project |
|
data_url: `string`, url to download the zip file from |
|
data_file: `string`, filename for data set |
|
citation: `string`, citation for the data set |
|
url: `string`, url for information about the data set |
|
label_classes: `list[string]`, the list of classes if the label is |
|
categorical. If not provided, then the label will be of type |
|
`datasets.Value('float32')`. |
|
multi_label: `boolean`, True if the task is multi-label |
|
dev_column: `string`, name for the development subset |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super(LexGlueConfig, self).__init__(version=datasets.Version("1.0.0", ""), **kwargs) |
|
self.text_column = text_column |
|
self.label_column = label_column |
|
self.label_classes = label_classes |
|
self.multi_label = multi_label |
|
self.dev_column = dev_column |
|
self.url = url |
|
self.data_url = data_url |
|
self.data_file = data_file |
|
self.citation = citation |
|
|
|
|
|
class LexGLUE(datasets.GeneratorBasedBuilder): |
|
"""LexGLUE: A Benchmark Dataset for Legal Language Understanding in English. Version 1.0""" |
|
|
|
BUILDER_CONFIGS = [ |
|
LexGlueConfig( |
|
name="ecthr_a", |
|
description=textwrap.dedent( |
|
"""\ |
|
The European Court of Human Rights (ECtHR) hears allegations that a state has |
|
breached human rights provisions of the European Convention of Human Rights (ECHR). |
|
For each case, the dataset provides a list of factual paragraphs (facts) from the case description. |
|
Each case is mapped to articles of the ECHR that were violated (if any).""" |
|
), |
|
text_column="facts", |
|
label_column="violated_articles", |
|
label_classes=ECTHR_ARTICLES, |
|
multi_label=True, |
|
dev_column="dev", |
|
data_url="https://zenodo.org/record/5532997/files/ecthr.tar.gz", |
|
data_file="ecthr.jsonl", |
|
url="https://archive.org/details/ECtHR-NAACL2021", |
|
citation=textwrap.dedent( |
|
"""\ |
|
@inproceedings{chalkidis-etal-2021-paragraph, |
|
title = "Paragraph-level Rationale Extraction through Regularization: A case study on {E}uropean Court of Human Rights Cases", |
|
author = "Chalkidis, Ilias and |
|
Fergadiotis, Manos and |
|
Tsarapatsanis, Dimitrios and |
|
Aletras, Nikolaos and |
|
Androutsopoulos, Ion and |
|
Malakasiotis, Prodromos", |
|
booktitle = "Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies", |
|
month = jun, |
|
year = "2021", |
|
address = "Online", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://aclanthology.org/2021.naacl-main.22", |
|
doi = "10.18653/v1/2021.naacl-main.22", |
|
pages = "226--241", |
|
} |
|
}""" |
|
), |
|
), |
|
LexGlueConfig( |
|
name="ecthr_b", |
|
description=textwrap.dedent( |
|
"""\ |
|
The European Court of Human Rights (ECtHR) hears allegations that a state has |
|
breached human rights provisions of the European Convention of Human Rights (ECHR). |
|
For each case, the dataset provides a list of factual paragraphs (facts) from the case description. |
|
Each case is mapped to articles of ECHR that were allegedly violated (considered by the court).""" |
|
), |
|
text_column="facts", |
|
label_column="allegedly_violated_articles", |
|
label_classes=ECTHR_ARTICLES, |
|
multi_label=True, |
|
dev_column="dev", |
|
url="https://archive.org/details/ECtHR-NAACL2021", |
|
data_url="https://zenodo.org/record/5532997/files/ecthr.tar.gz", |
|
data_file="ecthr.jsonl", |
|
citation=textwrap.dedent( |
|
"""\ |
|
@inproceedings{chalkidis-etal-2021-paragraph, |
|
title = "Paragraph-level Rationale Extraction through Regularization: A case study on {E}uropean Court of Human Rights Cases", |
|
author = "Chalkidis, Ilias |
|
and Fergadiotis, Manos |
|
and Tsarapatsanis, Dimitrios |
|
and Aletras, Nikolaos |
|
and Androutsopoulos, Ion |
|
and Malakasiotis, Prodromos", |
|
booktitle = "Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies", |
|
year = "2021", |
|
address = "Online", |
|
url = "https://aclanthology.org/2021.naacl-main.22", |
|
} |
|
}""" |
|
), |
|
), |
|
LexGlueConfig( |
|
name="eurlex", |
|
description=textwrap.dedent( |
|
"""\ |
|
European Union (EU) legislation is published in EUR-Lex portal. |
|
All EU laws are annotated by EU's Publications Office with multiple concepts from the EuroVoc thesaurus, |
|
a multilingual thesaurus maintained by the Publications Office. |
|
The current version of EuroVoc contains more than 7k concepts referring to various activities |
|
of the EU and its Member States (e.g., economics, health-care, trade). |
|
Given a document, the task is to predict its EuroVoc labels (concepts).""" |
|
), |
|
text_column="text", |
|
label_column="labels", |
|
label_classes=EUROVOC_CONCEPTS, |
|
multi_label=True, |
|
dev_column="dev", |
|
url="https://zenodo.org/record/5363165#.YVJOAi8RqaA", |
|
data_url="https://zenodo.org/record/5532997/files/eurlex.tar.gz", |
|
data_file="eurlex.jsonl", |
|
citation=textwrap.dedent( |
|
"""\ |
|
@inproceedings{chalkidis-etal-2021-multieurlex, |
|
author = {Chalkidis, Ilias and |
|
Fergadiotis, Manos and |
|
Androutsopoulos, Ion}, |
|
title = {MultiEURLEX -- A multi-lingual and multi-label legal document |
|
classification dataset for zero-shot cross-lingual transfer}, |
|
booktitle = {Proceedings of the 2021 Conference on Empirical Methods |
|
in Natural Language Processing}, |
|
year = {2021}, |
|
location = {Punta Cana, Dominican Republic}, |
|
} |
|
}""" |
|
), |
|
), |
|
LexGlueConfig( |
|
name="scotus", |
|
description=textwrap.dedent( |
|
"""\ |
|
The US Supreme Court (SCOTUS) is the highest federal court in the United States of America |
|
and generally hears only the most controversial or otherwise complex cases which have not |
|
been sufficiently well solved by lower courts. This is a single-label multi-class classification |
|
task, where given a document (court opinion), the task is to predict the relevant issue areas. |
|
The 14 issue areas cluster 278 issues whose focus is on the subject matter of the controversy (dispute).""" |
|
), |
|
text_column="text", |
|
label_column="issueArea", |
|
label_classes=SCDB_ISSUE_AREAS, |
|
multi_label=False, |
|
dev_column="dev", |
|
url="http://scdb.wustl.edu/data.php", |
|
data_url="https://zenodo.org/record/5532997/files/scotus.tar.gz", |
|
data_file="scotus.jsonl", |
|
citation=textwrap.dedent( |
|
"""\ |
|
@misc{spaeth2020, |
|
author = {Harold J. Spaeth and Lee Epstein and Andrew D. Martin, Jeffrey A. Segal |
|
and Theodore J. Ruger and Sara C. Benesh}, |
|
year = {2020}, |
|
title ={{Supreme Court Database, Version 2020 Release 01}}, |
|
url= {http://Supremecourtdatabase.org}, |
|
howpublished={Washington University Law} |
|
}""" |
|
), |
|
), |
|
LexGlueConfig( |
|
name="ledgar", |
|
description=textwrap.dedent( |
|
"""\ |
|
LEDGAR dataset aims contract provision (paragraph) classification. |
|
The contract provisions come from contracts obtained from the US Securities and Exchange Commission (SEC) |
|
filings, which are publicly available from EDGAR. Each label represents the single main topic |
|
(theme) of the corresponding contract provision.""" |
|
), |
|
text_column="text", |
|
label_column="clause_type", |
|
label_classes=LEDGAR_CATEGORIES, |
|
multi_label=False, |
|
dev_column="dev", |
|
url="https://metatext.io/datasets/ledgar", |
|
data_url="https://zenodo.org/record/5532997/files/ledgar.tar.gz", |
|
data_file="ledgar.jsonl", |
|
citation=textwrap.dedent( |
|
"""\ |
|
@inproceedings{tuggener-etal-2020-ledgar, |
|
title = "{LEDGAR}: A Large-Scale Multi-label Corpus for Text Classification of Legal Provisions in Contracts", |
|
author = {Tuggener, Don and |
|
von D{\"a}niken, Pius and |
|
Peetz, Thomas and |
|
Cieliebak, Mark}, |
|
booktitle = "Proceedings of the 12th Language Resources and Evaluation Conference", |
|
year = "2020", |
|
address = "Marseille, France", |
|
url = "https://aclanthology.org/2020.lrec-1.155", |
|
} |
|
}""" |
|
), |
|
), |
|
LexGlueConfig( |
|
name="unfair_tos", |
|
description=textwrap.dedent( |
|
"""\ |
|
The UNFAIR-ToS dataset contains 50 Terms of Service (ToS) from on-line platforms (e.g., YouTube, |
|
Ebay, Facebook, etc.). The dataset has been annotated on the sentence-level with 8 types of |
|
unfair contractual terms (sentences), meaning terms that potentially violate user rights |
|
according to the European consumer law.""" |
|
), |
|
text_column="text", |
|
label_column="labels", |
|
label_classes=UNFAIR_CATEGORIES, |
|
multi_label=True, |
|
dev_column="val", |
|
url="http://claudette.eui.eu", |
|
data_url="https://zenodo.org/record/5532997/files/unfair_tos.tar.gz", |
|
data_file="unfair_tos.jsonl", |
|
citation=textwrap.dedent( |
|
"""\ |
|
@article{lippi-etal-2019-claudette, |
|
title = "{CLAUDETTE}: an automated detector of potentially unfair clauses in online terms of service", |
|
author = {Lippi, Marco |
|
and Pałka, Przemysław |
|
and Contissa, Giuseppe |
|
and Lagioia, Francesca |
|
and Micklitz, Hans-Wolfgang |
|
and Sartor, Giovanni |
|
and Torroni, Paolo}, |
|
journal = "Artificial Intelligence and Law", |
|
year = "2019", |
|
publisher = "Springer", |
|
url = "https://doi.org/10.1007/s10506-019-09243-2", |
|
pages = "117--139", |
|
}""" |
|
), |
|
), |
|
LexGlueConfig( |
|
name="case_hold", |
|
description=textwrap.dedent( |
|
"""\ |
|
The CaseHOLD (Case Holdings on Legal Decisions) dataset contains approx. 53k multiple choice |
|
questions about holdings of US court cases from the Harvard Law Library case law corpus. |
|
Holdings are short summaries of legal rulings accompany referenced decisions relevant for the present case. |
|
The input consists of an excerpt (or prompt) from a court decision, containing a reference |
|
to a particular case, while the holding statement is masked out. The model must identify |
|
the correct (masked) holding statement from a selection of five choices.""" |
|
), |
|
text_column="text", |
|
label_column="labels", |
|
dev_column="dev", |
|
multi_label=False, |
|
label_classes=CASEHOLD_LABELS, |
|
url="https://github.com/reglab/casehold", |
|
data_url="https://zenodo.org/record/5532997/files/casehold.tar.gz", |
|
data_file="casehold.csv", |
|
citation=textwrap.dedent( |
|
"""\ |
|
@inproceedings{Zheng2021, |
|
author = {Lucia Zheng and |
|
Neel Guha and |
|
Brandon R. Anderson and |
|
Peter Henderson and |
|
Daniel E. Ho}, |
|
title = {When Does Pretraining Help? Assessing Self-Supervised Learning for |
|
Law and the CaseHOLD Dataset}, |
|
year = {2021}, |
|
booktitle = {International Conference on Artificial Intelligence and Law}, |
|
}""" |
|
), |
|
), |
|
] |
|
|
|
def _info(self): |
|
if self.config.name == "case_hold": |
|
features = { |
|
"question": datasets.Value("string"), |
|
"contexts": datasets.features.Sequence(datasets.Value("string")), |
|
"endings": datasets.features.Sequence(datasets.Value("string")), |
|
} |
|
elif "ecthr" in self.config.name: |
|
features = {"text": datasets.features.Sequence(datasets.Value("string"))} |
|
else: |
|
features = {"text": datasets.Value("string")} |
|
if self.config.multi_label: |
|
features["labels"] = datasets.features.Sequence(datasets.ClassLabel(names=self.config.label_classes)) |
|
else: |
|
features["label"] = datasets.ClassLabel(names=self.config.label_classes) |
|
return datasets.DatasetInfo( |
|
description=self.config.description, |
|
features=datasets.Features(features), |
|
homepage=self.config.url, |
|
citation=self.config.citation + "\n" + MAIN_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
data_dir = dl_manager.download_and_extract(self.config.data_url) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
|
|
gen_kwargs={"filepath": os.path.join(data_dir, self.config.data_file), "split": "train"}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
|
|
gen_kwargs={"filepath": os.path.join(data_dir, self.config.data_file), "split": "test"}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
|
|
gen_kwargs={ |
|
"filepath": os.path.join(data_dir, self.config.data_file), |
|
"split": self.config.dev_column, |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath, split): |
|
"""This function returns the examples in the raw (text) form.""" |
|
if self.config.name == "case_hold": |
|
if "dummy" in filepath: |
|
SPLIT_RANGES = {"train": (1, 3), "dev": (3, 5), "test": (5, 7)} |
|
else: |
|
SPLIT_RANGES = {"train": (1, 45001), "dev": (45001, 48901), "test": (48901, 52501)} |
|
with open(filepath, "r", encoding="utf-8") as f: |
|
for id_, row in enumerate(list(csv.reader(f))[SPLIT_RANGES[split][0] : SPLIT_RANGES[split][1]]): |
|
yield id_, { |
|
"context": row[1], |
|
"holdings": [row[2], row[3], row[4], row[5], row[6]], |
|
"label": str(row[12]), |
|
} |
|
elif self.config.multi_label: |
|
with open(filepath, "r", encoding="utf-8") as f: |
|
for id_, row in enumerate(f): |
|
data = json.loads(row) |
|
labels = sorted( |
|
list(set(data[self.config.label_column]).intersection(set(self.config.label_classes))) |
|
) |
|
if data["data_type"] == split: |
|
yield id_, { |
|
"text": data[self.config.text_column], |
|
"labels": labels, |
|
} |
|
else: |
|
with open(filepath, "r", encoding="utf-8") as f: |
|
for id_, row in enumerate(f): |
|
data = json.loads(row) |
|
if data["data_type"] == split: |
|
yield id_, { |
|
"text": data[self.config.text_column], |
|
"label": data[self.config.label_column], |
|
} |
|
|