The viewer is disabled because this dataset repo requires arbitrary Python code execution. Please consider removing the loading script and relying on automated data support (you can use convert_to_parquet from the datasets library). If this is not possible, please open a discussion for direct help.

GitHub Code Dataset

Dataset Description

The GitHub Code dataset consists of 115M code files from GitHub in 32 programming languages with 60 extensions totaling in 1TB of data. The dataset was created from the public GitHub dataset on Google BiqQuery.

How to use it

The GitHub Code dataset is a very large dataset so for most use cases it is recommended to make use of the streaming API of datasets. You can load and iterate through the dataset with the following two lines of code:

from datasets import load_dataset

ds = load_dataset("codeparrot/github-code", streaming=True, split="train")
print(next(iter(ds)))

#OUTPUT:
{
 'code': "import mod189 from './mod189';\nvar value=mod189+1;\nexport default value;\n",
 'repo_name': 'MirekSz/webpack-es6-ts',
 'path': 'app/mods/mod190.js',
 'language': 'JavaScript',
 'license': 'isc',
 'size': 73
}

You can see that besides the code, repo name, and path also the programming language, license, and the size of the file are part of the dataset. You can also filter the dataset for any subset of the 30 included languages (see the full list below) in the dataset. Just pass the list of languages as a list. E.g. if your dream is to build a Codex model for Dockerfiles use the following configuration:

ds = load_dataset("codeparrot/github-code", streaming=True, split="train", languages=["Dockerfile"])
print(next(iter(ds))["code"])

#OUTPUT:
"""\
FROM rockyluke/ubuntu:precise

ENV DEBIAN_FRONTEND="noninteractive" \
    TZ="Europe/Amsterdam"
...
"""

We also have access to the license of the origin repo of a file so we can filter for licenses in the same way we filtered for languages:

ds = load_dataset("codeparrot/github-code", streaming=True, split="train", licenses=["mit", "isc"])

licenses = []
for element in iter(ds).take(10_000):
    licenses.append(element["license"])
print(Counter(licenses))

#OUTPUT:
Counter({'mit': 9896, 'isc': 104})

Naturally, you can also download the full dataset. Note that this will download ~300GB compressed text data and the uncompressed dataset will take up ~1TB of storage:

ds = load_dataset("codeparrot/github-code", split="train")

Data Structure

Data Instances

{
 'code': "import mod189 from './mod189';\nvar value=mod189+1;\nexport default value;\n",
 'repo_name': 'MirekSz/webpack-es6-ts',
 'path': 'app/mods/mod190.js',
 'language': 'JavaScript',
 'license': 'isc',
 'size': 73
}

Data Fields

Field Type Description
code string content of source file
repo_name string name of the GitHub repository
path string path of file in GitHub repository
language string programming language as inferred by extension
license string license of GitHub repository
size int size of source file in bytes

Data Splits

The dataset only contains a train split.

Languages

The dataset contains 30 programming languages with over 60 extensions:

{
    "Assembly": [".asm"],
    "Batchfile": [".bat", ".cmd"],
    "C": [".c", ".h"],
    "C#": [".cs"],
    "C++": [".cpp", ".hpp", ".c++", ".h++", ".cc", ".hh", ".C", ".H"],
    "CMake": [".cmake"],
    "CSS": [".css"],
    "Dockerfile": [".dockerfile", "Dockerfile"],
    "FORTRAN": ['.f90', '.f', '.f03', '.f08', '.f77', '.f95', '.for', '.fpp'],
    "GO": [".go"],
    "Haskell": [".hs"],
    "HTML":[".html"],
    "Java": [".java"],
    "JavaScript": [".js"],
    "Julia": [".jl"],
    "Lua": [".lua"],
    "Makefile": ["Makefile"],
    "Markdown": [".md", ".markdown"],
    "PHP": [".php", ".php3", ".php4", ".php5", ".phps", ".phpt"],
    "Perl": [".pl", ".pm", ".pod", ".perl"],
    "PowerShell": ['.ps1', '.psd1', '.psm1'],
    "Python": [".py"],
    "Ruby": [".rb"],
    "Rust": [".rs"],
    "SQL": [".sql"],
    "Scala": [".scala"],
    "Shell": [".sh", ".bash", ".command", ".zsh"],
    "TypeScript": [".ts", ".tsx"],
    "TeX": [".tex"],
    "Visual Basic": [".vb"]
}

Licenses

Each example is also annotated with the license of the associated repository. There are in total 15 licenses:

[
  'mit',
  'apache-2.0',
  'gpl-3.0',
  'gpl-2.0',
  'bsd-3-clause',
  'agpl-3.0',
  'lgpl-3.0',
  'lgpl-2.1',
  'bsd-2-clause',
  'cc0-1.0',
  'epl-1.0',
  'mpl-2.0',
  'unlicense',
  'isc',
  'artistic-2.0'
 ]

Dataset Statistics

The dataset contains 115M files and the sum of all the source code file sizes is 873 GB (note that the size of the dataset is larger due to the extra fields). A breakdown per language is given in the plot and table below:

dataset-statistics

Language File Count Size (GB)
0 Java 19548190 107.70
1 C 14143113 183.83
2 JavaScript 11839883 87.82
3 HTML 11178557 118.12
4 PHP 11177610 61.41
5 Markdown 8464626 23.09
6 C++ 7380520 87.73
7 Python 7226626 52.03
8 C# 6811652 36.83
9 Ruby 4473331 10.95
10 GO 2265436 19.28
11 TypeScript 1940406 24.59
12 CSS 1734406 22.67
13 Shell 1385648 3.01
14 Scala 835755 3.87
15 Makefile 679430 2.92
16 SQL 656671 5.67
17 Lua 578554 2.81
18 Perl 497949 4.70
19 Dockerfile 366505 0.71
20 Haskell 340623 1.85
21 Rust 322431 2.68
22 TeX 251015 2.15
23 Batchfile 236945 0.70
24 CMake 175282 0.54
25 Visual Basic 155652 1.91
26 FORTRAN 142038 1.62
27 PowerShell 136846 0.69
28 Assembly 82905 0.78
29 Julia 58317 0.29

Dataset Creation

The dataset was created in two steps:

  1. Files of with the extensions given in the list above were retrieved from the GitHub dataset on BigQuery (full query here). The query was executed on Mar 16, 2022, 6:23:39 PM UTC+1.
  2. Files with lines longer than 1000 characters and duplicates (exact duplicates ignoring whitespaces) were dropped (full preprocessing script here).

Considerations for Using the Data

The dataset consists of source code from a wide range of repositories. As such they can potentially include harmful or biased code as well as sensitive information like passwords or usernames.

Releases

You can load any older version of the dataset with the revision argument:

ds = load_dataset("codeparrot/github-code", revision="v1.0")

v1.0

  • Initial release of dataset
  • The query was executed on Feb 14, 2022, 12:03:16 PM UTC+1

v1.1

  • Fix missing Scala/TypeScript
  • Fix deduplication issue with inconsistent Python hash
  • The query was executed on Mar 16, 2022, 6:23:39 PM UTC+1
Downloads last month
13,055

Models trained or fine-tuned on codeparrot/github-code

Spaces using codeparrot/github-code 2