File size: 4,368 Bytes
8552d70 af403e5 8552d70 af403e5 8552d70 af403e5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 |
import gzip
import multiprocessing
import os
import shutil
import time
from argparse import Namespace
from collections import Counter
import numpy as np
from datasets import load_dataset, utils
import re
from huggingface_hub import Repository
from multiprocessing import Pool
from tqdm import tqdm
# Settings
config = {
"dataset_name": "./data/github",
"num_workers": 96,
"line_max": 1000,
"out_path": "./data/github-code",
"repo_name": "github-code",
"org": "lvwerra",
"shard_size": 1000 << 20}
args = Namespace(**config)
PATTERN = re.compile(r'\s+')
def hash_func(text):
return hashlib.md5(re.sub(PATTERN, '', text).encode("utf-8")).hexdigest()
def get_hash(example):
"""Get hash of content field."""
return {"hash": hash_func(example["content"])}
def line_stats(example):
"""Calculates mean and max line length of file."""
line_lengths = [len(line) for line in example["content"].splitlines()]
return {"line_mean": np.mean(line_lengths), "line_max": max(line_lengths)}
def alpha_stats(example):
"""Calculates mean and max line length of file."""
alpha_frac = np.mean([c.isalnum() for c in example["content"]])
return {"alpha_frac": alpha_frac}
def check_uniques(example, uniques):
"""Check if current hash is still in set of unique hashes and remove if true."""
if example["hash"] in uniques:
uniques.remove(example["hash"])
return True
else:
return False
def is_autogenerated(example, scan_width=5):
"""Check if file is autogenerated by looking for keywords in the first few lines of the file."""
keywords = ["auto-generated", "autogenerated", "automatically generated"]
lines = example["content"].splitlines()
for _, line in zip(range(scan_width), lines):
for keyword in keywords:
if keyword in line.lower():
return {"autogenerated": True}
else:
return {"autogenerated": False}
def preprocess(example):
"""Chain all preprocessing steps into one function to not fill cache."""
results = dict()
results.update(get_hash(example))
results.update(line_stats(example))
return results
def filter(example, uniques, args):
"""Filter dataset with heuristics."""
if not check_uniques(example, uniques):
return False
elif example["line_max"] > args.line_max:
return False
else:
return True
def save_shard(shard_tuple):
"""Save shard"""
filename, shard = shard_tuple
shard.to_parquet(filename)
# Load dataset
t_start = time.time()
ds = load_dataset(args.dataset_name, split="train", chunksize=40<<20)
print(f"Time to load dataset: {time.time()-t_start:.2f}")
# Run preprocessing
t_start = time.time()
ds = ds.map(preprocess, num_proc=args.num_workers)
print(f"Time to preprocess dataset: {time.time()-t_start:.2f}")
print(ds)
# Deduplicate hashes
uniques = set(ds.unique("hash"))
frac = len(uniques) / len(ds)
print(f"Fraction of duplicates: {1-frac:.2%}")
# Deduplicate data and apply heuristics
t_start = time.time()
ds = ds.filter(filter, fn_kwargs={"uniques": uniques, "args": args})
ds = ds.remove_columns(["line_mean", "line_max", "copies", "hash"])
print(f"Time to filter dataset: {time.time()-t_start:.2f}")
print(f"Size of filtered dataset: {len(ds)}")
# Save dataset in repo
repo = Repository(
local_dir=args.out_path,
clone_from=args.org + "/" + args.repo_name,
repo_type="dataset",
private=True,
use_auth_token=True,
git_user="lvwerra",
git_email="leandro.vonwerra@gmail.com",
)
os.mkdir(args.out_path + "/data")
if ds._indices is not None:
dataset_nbytes = ds.data.nbytes * len(ds._indices) / len(ds.data)
else:
dataset_nbytes = ds.data.nbytes
num_shards = int(dataset_nbytes / args.shard_size) + 1
print(f"Number of shards: {num_shards}")
t_start = time.time()
shards = (ds.shard(num_shards=num_shards, index=i, contiguous=True) for i in range(num_shards))
filenames = (f"{args.out_path}/data/train-{index:05d}-of-{num_shards:05d}.parquet" for index in range(num_shards))
with Pool(16) as p:
list(tqdm(p.imap_unordered(save_shard, zip(filenames, shards), chunksize=4), total=num_shards))
print(f"Time to save dataset: {time.time()-t_start:.2f}")
# To push to hub run `git add/commit/push` inside dataset repo folder |