Datasets:
annotations_creators:
- expert-generated
language_creators:
- expert-generated
language:
- bg
license:
- unknown
multilinguality:
- monolingual
size_categories:
- 1K<n<10K
source_datasets:
- original
task_categories:
- text-classification
task_ids:
- fact-checking
pretty_name: Clickbait/Fake News in Bulgarian
dataset_info:
features:
- name: fake_news_score
dtype:
class_label:
names:
'0': legitimate
'1': fake
- name: click_bait_score
dtype:
class_label:
names:
'0': normal
'1': clickbait
- name: content_title
dtype: string
- name: content_url
dtype: string
- name: content_published_time
dtype: string
- name: content
dtype: string
splits:
- name: train
num_bytes: 24480386
num_examples: 2815
- name: validation
num_bytes: 6752226
num_examples: 761
download_size: 11831065
dataset_size: 31232612
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: validation
path: data/validation-*
Dataset Card for Clickbait/Fake News in Bulgarian
Table of Contents
- Dataset Description
- Dataset Structure
- Dataset Creation
- Considerations for Using the Data
- Additional Information
Dataset Description
- Homepage: Data Science Society / Case Fake News
- Repository: Data Science Society / Case Fake News / Data
- Paper: This paper uses the dataset.
- Leaderboard:
- Point of Contact:
Dataset Summary
This is a corpus of Bulgarian news over a fixed period of time, whose factuality had been questioned. The news come from 377 different sources from various domains, including politics, interesting facts and tips&tricks.
The dataset was prepared for the Hack the Fake News hackathon. It was provided by the Bulgarian Association of PR Agencies and is available in Gitlab.
The corpus was automatically collected, and then annotated by students of journalism.
The training dataset contains 2,815 examples, where 1,940 (i.e., 69%) are fake news and 1,968 (i.e., 70%) are click-baits; There are 761 testing examples.
There is 98% correlation between fake news and clickbaits.
One important aspect about the training dataset is that it contains many repetitions. This should not be surprising as it attempts to represent a natural distribution of factual vs. fake news on-line over a period of time. As publishers of fake news often have a group of websites that feature the same deceiving content, we should expect some repetition. In particular, the training dataset contains 434 unique articles with duplicates. These articles have three reposts each on average, with the most reposted article appearing 45 times. If we take into account the labels of the reposted articles, we can see that if an article is reposted, it is more likely to be fake news. The number of fake news that have a duplicate in the training dataset are 1018 whereas, the number of articles with genuine content that have a duplicate article in the training set is 322.
(The dataset description is from the following paper.)
Supported Tasks and Leaderboards
[More Information Needed]
Languages
Bulgarian
Dataset Structure
Data Instances
[More Information Needed]
Data Fields
Each entry in the dataset consists of the following elements:
fake_news_score
- a label indicating whether the article is fake or notclick_bait_score
- another label indicating whether it is a click-baitcontent_title
- article headingcontent_url
- URL of the original articlecontent_published_time
- date of publicationcontent
- article content
Data Splits
The training dataset contains 2,815 examples, where 1,940 (i.e., 69%) are fake news and 1,968 (i.e., 70%) are click-baits;
The validation dataset contains 761 testing examples.
Dataset Creation
Curation Rationale
[More Information Needed]
Source Data
Initial Data Collection and Normalization
[More Information Needed]
Who are the source language producers?
[More Information Needed]
Annotations
Annotation process
[More Information Needed]
Who are the annotators?
[More Information Needed]
Personal and Sensitive Information
[More Information Needed]
Considerations for Using the Data
Social Impact of Dataset
[More Information Needed]
Discussion of Biases
[More Information Needed]
Other Known Limitations
[More Information Needed]
Additional Information
Dataset Curators
[More Information Needed]
Licensing Information
[More Information Needed]
Citation Information
[More Information Needed]