Datasets:
File size: 10,898 Bytes
37af255 f53e412 37af255 f53e412 37af255 f53e412 37af255 f53e412 37af255 f53e412 37af255 c6d2430 f53e412 37af255 f53e412 37af255 f53e412 37af255 f53e412 37af255 f53e412 37af255 f53e412 37af255 f53e412 37af255 f53e412 37af255 f53e412 37af255 f53e412 37af255 f53e412 37af255 f53e412 37af255 f53e412 37af255 f53e412 37af255 f53e412 37af255 f53e412 37af255 f53e412 37af255 f53e412 37af255 f53e412 37af255 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 |
import datasets
import json
import yaml
import urllib.request
_DESCRIPTION = """\
MegaWika is a multi- and crosslingual text dataset containing 30 million
Wikipedia passages with their scraped and cleaned web citations. The
passages span 50 Wikipedias in 50 languages, and the articles in which
the passages were originally embedded are included for convenience."""
_CITATION = """\
@article{barham2023megawika,
title={MegaWika: Millions of reports and their sources across 50 diverse languages},
author={Barham, Samuel and Weller, Orion and others},
journal={INSERT ARXIV PREPRINT ID HERE},
year={2023}
}"""
_HOMEPAGE = "https://huggingface.co/datasets/conceptofmind/MegaWika"
_LICENSE = "cc-by-sa-4.0"
# Load the file paths for all the splits
file_list_url = "https://huggingface.co/datasets/conceptofmind/MegaWika/raw/main/files.yml"
def get_data_urls():
with urllib.request.urlopen(file_list_url) as f:
try:
fnames = yaml.safe_load(f)
return fnames['fnames']
except yaml.YAMLError as exc:
print("Error loading the file paths for the dataset splits. Aborting.")
return {}
class MegaWikaConfig(datasets.BuilderConfig):
"""BuilderConfig for MegaWika."""
def __init__(self, language=None, **kwargs):
"""BuilderConfig for MegaWika.
Args:
language: The language of the dataset split
**kwargs: Keyword arguments forwarded to super.
"""
super(MegaWikaConfig, self).__init__(**kwargs)
self.language = language
class MegaWika(datasets.GeneratorBasedBuilder):
"""MegaWika dataset."""
# Get available languages from the data URLs
_DATA_URL = get_data_urls()
BUILDER_CONFIGS = [
MegaWikaConfig(
name=lang if lang != "all" else "default",
language=lang,
version=datasets.Version("1.0.0"),
description=f"MegaWika {lang} configuration"
)
for lang in ["all"] + list(_DATA_URL.keys())
]
DEFAULT_CONFIG_NAME = "default" # For the "all" configuration
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"article_title": datasets.Value("string"),
"article_text": datasets.Value("string"),
"entries": datasets.features.Sequence(
{
"id": datasets.Value("string"),
"passage": {
"text": [datasets.Value("string")],
"parse": datasets.Value("string"),
"en_tokens": [datasets.Value("string")],
"lang_tokens": [datasets.Value("string")],
"en_lang_token_map": [[datasets.Value("int32")]]
},
"mt": {
"original": datasets.Value("string"),
"original_sents": [datasets.Value("string")],
"translation": datasets.Value("string"),
"translation_sents": [datasets.Value("string")],
"translation_probs": [[datasets.Value("string")]],
"repetitious_translation": datasets.Value("bool")
},
"source_lang": datasets.Value("string"),
"source_url": datasets.Value("string"),
"source_text": datasets.Value("string"),
"qa_pairs": datasets.Sequence(
{
"question": datasets.Value("string"),
"en_answer": datasets.Value("string"),
"lang_answer": datasets.Value("string"),
"frames": datasets.Sequence(
{
"frame": datasets.Value("string"),
"argument": datasets.Value("string")
}
),
"en_matches_in_source": [[datasets.Value("int32")]],
"en_match_in_passage": [datasets.Value("int32")],
"lang_matches_in_source": [[datasets.Value("int32")]],
"lang_match_in_passage": [datasets.Value("int32")],
"passage": [datasets.Value("string")],
"en_answer_tokens": [datasets.Value("string")],
"match_disambiguated_question": datasets.Value("string"),
}
)
}
)
}
),
supervised_keys=None,
homepage=_HOMEPAGE,
citation=_CITATION,
license=_LICENSE
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
if self.config.language == "all":
data_sources = self._DATA_URL
else:
data_sources = {self.config.language: self._DATA_URL[self.config.language]}
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN, # Using TRAIN as default split
gen_kwargs={
"filepaths": dl_manager.download(data_sources[lang])
}
)
for lang in data_sources
]
def _get_qa_pair_list_features(self, qa_pair, feature_name):
"""Helper method to extract QA pair features."""
if feature_name in qa_pair and qa_pair[feature_name]:
return qa_pair[feature_name]
elif feature_name.startswith('en'):
base_feature = '_'.join(feature_name.split('_')[1:])
if base_feature in qa_pair and qa_pair[base_feature]:
return qa_pair[base_feature]
return []
def _generate_examples(self, filepaths):
"""Yields examples."""
id_ = 0
for filepath in filepaths:
try:
with open(filepath, "r", encoding="utf-8") as f:
for line in f:
if line:
example = json.loads(line)
if example is not None and isinstance(example, dict):
yield id_, {
"article_title": example.get("article_title", ""),
"article_text": example.get("article_text", ""),
"entries": [
{
"id": entry.get("id", "").lower(),
"passage": {
"text": entry['passage'].get("text", []),
"parse": json.dumps(entry['passage'].get("parse", [{}])),
"en_tokens": list(entry['passage'].get("en_tokens", {}).values()),
"lang_tokens": list(entry['passage'].get("lang_tokens", {}).values()),
"en_lang_token_map": [
(int(item[0]), int(item[1]))
for item in entry['passage'].get("en_lang_token_map", {}).items()
]
},
"mt": {
"original": entry.get("original", ""),
"original_sents": entry.get("original_sents", []),
"translation": entry.get("translation", ""),
"translation_sents": entry.get("translation_sents", []),
"translation_probs": entry.get("translation_probs", [[]]),
"repetitious_translation": entry.get("repetitious_translation", False)
},
"source_lang": entry.get("source_lang", ""),
"source_url": entry.get("source_url", ""),
"source_text": entry.get("source_text", ""),
"qa_pairs": [
{
"question": qa_pair.get('question', ""),
"en_answer": qa_pair.get('en_answer', qa_pair.get('answer', "")),
'lang_answer': qa_pair.get('lang_answer', ''),
'frames': qa_pair.get('frames', []),
"en_matches_in_source": self._get_qa_pair_list_features(qa_pair, "en_matches_in_source"),
"en_match_in_passage": self._get_qa_pair_list_features(qa_pair, "en_match_in_passage"),
"lang_matches_in_source": self._get_qa_pair_list_features(qa_pair, "lang_matches_in_source"),
"lang_match_in_passage": self._get_qa_pair_list_features(qa_pair, "lang_match_in_passage"),
"passage": qa_pair.get('passage', []),
"en_answer_tokens": qa_pair.get('en_answer_tokens', qa_pair.get('answer_tokens', [])),
"match_disambiguated_question": qa_pair.get('match_disambiguated_question', ""),
}
for qa_pair in entry.get('qa_pairs', [])
]
}
for entry in example.get("entries", [])
]
}
id_ += 1
except Exception as e:
print(f"Error reading file {filepath}: {str(e)}") |