Upload results for model google/gemma-7b

#435
data/google/gemma-7b/orig/results_24-05-14-06:48:04.json ADDED
@@ -0,0 +1,203 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "lsat-rc_base": {
4
+ "acc,none": 0.17843866171003717,
5
+ "acc_stderr,none": 0.023388215054216312,
6
+ "alias": "lsat-rc_base"
7
+ },
8
+ "lsat-lr_base": {
9
+ "acc,none": 0.15098039215686274,
10
+ "acc_stderr,none": 0.01586939037166258,
11
+ "alias": "lsat-lr_base"
12
+ },
13
+ "lsat-ar_base": {
14
+ "acc,none": 0.20434782608695654,
15
+ "acc_stderr,none": 0.026645808150011344,
16
+ "alias": "lsat-ar_base"
17
+ },
18
+ "logiqa_base": {
19
+ "acc,none": 0.22364217252396165,
20
+ "acc_stderr,none": 0.01666739817453104,
21
+ "alias": "logiqa_base"
22
+ },
23
+ "logiqa2_base": {
24
+ "acc,none": 0.20801526717557253,
25
+ "acc_stderr,none": 0.010240423505992155,
26
+ "alias": "logiqa2_base"
27
+ }
28
+ },
29
+ "group_subtasks": {
30
+ "logiqa2_base": [],
31
+ "logiqa_base": [],
32
+ "lsat-ar_base": [],
33
+ "lsat-lr_base": [],
34
+ "lsat-rc_base": []
35
+ },
36
+ "configs": {
37
+ "logiqa2_base": {
38
+ "task": "logiqa2_base",
39
+ "group": "logikon-bench",
40
+ "dataset_path": "logikon/logikon-bench",
41
+ "dataset_name": "logiqa2",
42
+ "test_split": "test",
43
+ "doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
44
+ "doc_to_target": "{{answer}}",
45
+ "doc_to_choice": "{{options}}",
46
+ "description": "",
47
+ "target_delimiter": " ",
48
+ "fewshot_delimiter": "\n\n",
49
+ "num_fewshot": 0,
50
+ "metric_list": [
51
+ {
52
+ "metric": "acc",
53
+ "aggregation": "mean",
54
+ "higher_is_better": true
55
+ }
56
+ ],
57
+ "output_type": "multiple_choice",
58
+ "repeats": 1,
59
+ "should_decontaminate": false,
60
+ "metadata": {
61
+ "version": 0.0
62
+ }
63
+ },
64
+ "logiqa_base": {
65
+ "task": "logiqa_base",
66
+ "group": "logikon-bench",
67
+ "dataset_path": "logikon/logikon-bench",
68
+ "dataset_name": "logiqa",
69
+ "test_split": "test",
70
+ "doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
71
+ "doc_to_target": "{{answer}}",
72
+ "doc_to_choice": "{{options}}",
73
+ "description": "",
74
+ "target_delimiter": " ",
75
+ "fewshot_delimiter": "\n\n",
76
+ "num_fewshot": 0,
77
+ "metric_list": [
78
+ {
79
+ "metric": "acc",
80
+ "aggregation": "mean",
81
+ "higher_is_better": true
82
+ }
83
+ ],
84
+ "output_type": "multiple_choice",
85
+ "repeats": 1,
86
+ "should_decontaminate": false,
87
+ "metadata": {
88
+ "version": 0.0
89
+ }
90
+ },
91
+ "lsat-ar_base": {
92
+ "task": "lsat-ar_base",
93
+ "group": "logikon-bench",
94
+ "dataset_path": "logikon/logikon-bench",
95
+ "dataset_name": "lsat-ar",
96
+ "test_split": "test",
97
+ "doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
98
+ "doc_to_target": "{{answer}}",
99
+ "doc_to_choice": "{{options}}",
100
+ "description": "",
101
+ "target_delimiter": " ",
102
+ "fewshot_delimiter": "\n\n",
103
+ "num_fewshot": 0,
104
+ "metric_list": [
105
+ {
106
+ "metric": "acc",
107
+ "aggregation": "mean",
108
+ "higher_is_better": true
109
+ }
110
+ ],
111
+ "output_type": "multiple_choice",
112
+ "repeats": 1,
113
+ "should_decontaminate": false,
114
+ "metadata": {
115
+ "version": 0.0
116
+ }
117
+ },
118
+ "lsat-lr_base": {
119
+ "task": "lsat-lr_base",
120
+ "group": "logikon-bench",
121
+ "dataset_path": "logikon/logikon-bench",
122
+ "dataset_name": "lsat-lr",
123
+ "test_split": "test",
124
+ "doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
125
+ "doc_to_target": "{{answer}}",
126
+ "doc_to_choice": "{{options}}",
127
+ "description": "",
128
+ "target_delimiter": " ",
129
+ "fewshot_delimiter": "\n\n",
130
+ "num_fewshot": 0,
131
+ "metric_list": [
132
+ {
133
+ "metric": "acc",
134
+ "aggregation": "mean",
135
+ "higher_is_better": true
136
+ }
137
+ ],
138
+ "output_type": "multiple_choice",
139
+ "repeats": 1,
140
+ "should_decontaminate": false,
141
+ "metadata": {
142
+ "version": 0.0
143
+ }
144
+ },
145
+ "lsat-rc_base": {
146
+ "task": "lsat-rc_base",
147
+ "group": "logikon-bench",
148
+ "dataset_path": "logikon/logikon-bench",
149
+ "dataset_name": "lsat-rc",
150
+ "test_split": "test",
151
+ "doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
152
+ "doc_to_target": "{{answer}}",
153
+ "doc_to_choice": "{{options}}",
154
+ "description": "",
155
+ "target_delimiter": " ",
156
+ "fewshot_delimiter": "\n\n",
157
+ "num_fewshot": 0,
158
+ "metric_list": [
159
+ {
160
+ "metric": "acc",
161
+ "aggregation": "mean",
162
+ "higher_is_better": true
163
+ }
164
+ ],
165
+ "output_type": "multiple_choice",
166
+ "repeats": 1,
167
+ "should_decontaminate": false,
168
+ "metadata": {
169
+ "version": 0.0
170
+ }
171
+ }
172
+ },
173
+ "versions": {
174
+ "logiqa2_base": 0.0,
175
+ "logiqa_base": 0.0,
176
+ "lsat-ar_base": 0.0,
177
+ "lsat-lr_base": 0.0,
178
+ "lsat-rc_base": 0.0
179
+ },
180
+ "n-shot": {
181
+ "logiqa2_base": 0,
182
+ "logiqa_base": 0,
183
+ "lsat-ar_base": 0,
184
+ "lsat-lr_base": 0,
185
+ "lsat-rc_base": 0
186
+ },
187
+ "config": {
188
+ "model": "vllm",
189
+ "model_args": "pretrained=google/gemma-7b,revision=main,dtype=bfloat16,tensor_parallel_size=2,gpu_memory_utilization=0.5,trust_remote_code=true,max_length=2048",
190
+ "batch_size": "auto",
191
+ "batch_sizes": [],
192
+ "device": null,
193
+ "use_cache": null,
194
+ "limit": null,
195
+ "bootstrap_iters": 100000,
196
+ "gen_kwargs": null
197
+ },
198
+ "git_hash": "f3c749c",
199
+ "date": 1715669298.5028002,
200
+ "pretty_env_info": "PyTorch version: 2.1.2+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.3 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: version 3.27.6\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Jun 11 2023, 05:26:28) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-5.15.0-60-generic-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.2.140\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA RTX A6000\nGPU 1: NVIDIA RTX A6000\n\nNvidia driver version: 525.105.17\ncuDNN version: Probably one of the following:\n/usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.5\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.5\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.5\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.5\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.5\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.5\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.5\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 43 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 128\nOn-line CPU(s) list: 0-127\nVendor ID: AuthenticAMD\nModel name: AMD EPYC 7502 32-Core Processor\nCPU family: 23\nModel: 49\nThread(s) per core: 2\nCore(s) per socket: 32\nSocket(s): 2\nStepping: 0\nFrequency boost: enabled\nCPU max MHz: 2500.0000\nCPU min MHz: 1500.0000\nBogoMIPS: 5000.35\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf rapl pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb cat_l3 cdp_l3 hw_pstate ssbd mba ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr rdpru wbnoinvd amd_ppin arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif v_spec_ctrl umip rdpid overflow_recov succor smca sme sev sev_es\nVirtualization: AMD-V\nL1d cache: 2 MiB (64 instances)\nL1i cache: 2 MiB (64 instances)\nL2 cache: 32 MiB (64 instances)\nL3 cache: 256 MiB (16 instances)\nNUMA node(s): 2\nNUMA node0 CPU(s): 0-31,64-95\nNUMA node1 CPU(s): 32-63,96-127\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Not affected\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Not affected\nVulnerability Retbleed: Mitigation; untrained return thunk; SMT enabled with STIBP protection\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Retpolines, IBPB conditional, STIBP always-on, RSB filling, PBRSB-eIBRS Not affected\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Not affected\n\nVersions of relevant libraries:\n[pip3] mypy-extensions==1.0.0\n[pip3] numpy==1.22.2\n[pip3] pytorch-quantization==2.1.2\n[pip3] torch==2.1.2\n[pip3] torch-tensorrt==0.0.0\n[pip3] torchdata==0.7.0a0\n[pip3] torchtext==0.16.0a0\n[pip3] torchvision==0.16.0a0\n[pip3] triton==2.1.0+e621604\n[conda] Could not collect",
201
+ "transformers_version": "4.40.0",
202
+ "upper_git_hash": null
203
+ }