Upload results for model nvidia/Llama-3.1-Nemotron-70B-Instruct-HF

#963
data/nvidia/Llama-3.1-Nemotron-70B-Instruct-HF/cot/24-10-17-04:44:21_idx10/nvidia__Llama-3.1-Nemotron-70B-Instruct-HF/results_2024-10-17T06-49-05.842924.json ADDED
@@ -0,0 +1,297 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "sunt-sapiente-3667_logiqa2_cot": {
4
+ "alias": "sunt-sapiente-3667_logiqa2_cot",
5
+ "acc,none": 0.6603053435114504,
6
+ "acc_stderr,none": 0.011948920483739104
7
+ },
8
+ "sunt-sapiente-3667_logiqa_cot": {
9
+ "alias": "sunt-sapiente-3667_logiqa_cot",
10
+ "acc,none": 0.4472843450479233,
11
+ "acc_stderr,none": 0.01988853175970405
12
+ },
13
+ "sunt-sapiente-3667_lsat-ar_cot": {
14
+ "alias": "sunt-sapiente-3667_lsat-ar_cot",
15
+ "acc,none": 0.32608695652173914,
16
+ "acc_stderr,none": 0.030977823685622335
17
+ },
18
+ "sunt-sapiente-3667_lsat-lr_cot": {
19
+ "alias": "sunt-sapiente-3667_lsat-lr_cot",
20
+ "acc,none": 0.7627450980392156,
21
+ "acc_stderr,none": 0.018855515858847982
22
+ },
23
+ "sunt-sapiente-3667_lsat-rc_cot": {
24
+ "alias": "sunt-sapiente-3667_lsat-rc_cot",
25
+ "acc,none": 0.8029739776951673,
26
+ "acc_stderr,none": 0.024296579272126854
27
+ }
28
+ },
29
+ "group_subtasks": {
30
+ "sunt-sapiente-3667_logiqa2_cot": [],
31
+ "sunt-sapiente-3667_logiqa_cot": [],
32
+ "sunt-sapiente-3667_lsat-ar_cot": [],
33
+ "sunt-sapiente-3667_lsat-lr_cot": [],
34
+ "sunt-sapiente-3667_lsat-rc_cot": []
35
+ },
36
+ "configs": {
37
+ "sunt-sapiente-3667_logiqa2_cot": {
38
+ "task": "sunt-sapiente-3667_logiqa2_cot",
39
+ "tag": "logikon-bench",
40
+ "group": "logikon-bench",
41
+ "dataset_path": "cot-leaderboard/cot-eval-traces-2.0",
42
+ "dataset_kwargs": {
43
+ "data_files": {
44
+ "test": "data/nvidia/Llama-3.1-Nemotron-70B-Instruct-HF/sunt-sapiente-3667-logiqa2.parquet"
45
+ }
46
+ },
47
+ "test_split": "test",
48
+ "doc_to_text": "def doc_to_text_cot(doc) -> str:\n \"\"\"\n Answer the following question about the given passage. [Base your answer on the reasoning below.]\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n [Reasoning: <reasoning>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage. Base your answer on the reasoning below.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Reasoning: \" + doc[\"reasoning_trace\"] + \"\\n\\n\" \n prompt += \"Answer:\"\n return prompt\n",
49
+ "doc_to_target": "{{answer}}",
50
+ "doc_to_choice": "{{options}}",
51
+ "description": "",
52
+ "target_delimiter": " ",
53
+ "fewshot_delimiter": "\n\n",
54
+ "num_fewshot": 0,
55
+ "metric_list": [
56
+ {
57
+ "metric": "acc",
58
+ "aggregation": "mean",
59
+ "higher_is_better": true
60
+ }
61
+ ],
62
+ "output_type": "multiple_choice",
63
+ "repeats": 1,
64
+ "should_decontaminate": false,
65
+ "metadata": {
66
+ "version": 0.0
67
+ }
68
+ },
69
+ "sunt-sapiente-3667_logiqa_cot": {
70
+ "task": "sunt-sapiente-3667_logiqa_cot",
71
+ "tag": "logikon-bench",
72
+ "group": "logikon-bench",
73
+ "dataset_path": "cot-leaderboard/cot-eval-traces-2.0",
74
+ "dataset_kwargs": {
75
+ "data_files": {
76
+ "test": "data/nvidia/Llama-3.1-Nemotron-70B-Instruct-HF/sunt-sapiente-3667-logiqa.parquet"
77
+ }
78
+ },
79
+ "test_split": "test",
80
+ "doc_to_text": "def doc_to_text_cot(doc) -> str:\n \"\"\"\n Answer the following question about the given passage. [Base your answer on the reasoning below.]\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n [Reasoning: <reasoning>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage. Base your answer on the reasoning below.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Reasoning: \" + doc[\"reasoning_trace\"] + \"\\n\\n\" \n prompt += \"Answer:\"\n return prompt\n",
81
+ "doc_to_target": "{{answer}}",
82
+ "doc_to_choice": "{{options}}",
83
+ "description": "",
84
+ "target_delimiter": " ",
85
+ "fewshot_delimiter": "\n\n",
86
+ "num_fewshot": 0,
87
+ "metric_list": [
88
+ {
89
+ "metric": "acc",
90
+ "aggregation": "mean",
91
+ "higher_is_better": true
92
+ }
93
+ ],
94
+ "output_type": "multiple_choice",
95
+ "repeats": 1,
96
+ "should_decontaminate": false,
97
+ "metadata": {
98
+ "version": 0.0
99
+ }
100
+ },
101
+ "sunt-sapiente-3667_lsat-ar_cot": {
102
+ "task": "sunt-sapiente-3667_lsat-ar_cot",
103
+ "tag": "logikon-bench",
104
+ "group": "logikon-bench",
105
+ "dataset_path": "cot-leaderboard/cot-eval-traces-2.0",
106
+ "dataset_kwargs": {
107
+ "data_files": {
108
+ "test": "data/nvidia/Llama-3.1-Nemotron-70B-Instruct-HF/sunt-sapiente-3667-lsat-ar.parquet"
109
+ }
110
+ },
111
+ "test_split": "test",
112
+ "doc_to_text": "def doc_to_text_cot(doc) -> str:\n \"\"\"\n Answer the following question about the given passage. [Base your answer on the reasoning below.]\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n [Reasoning: <reasoning>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage. Base your answer on the reasoning below.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Reasoning: \" + doc[\"reasoning_trace\"] + \"\\n\\n\" \n prompt += \"Answer:\"\n return prompt\n",
113
+ "doc_to_target": "{{answer}}",
114
+ "doc_to_choice": "{{options}}",
115
+ "description": "",
116
+ "target_delimiter": " ",
117
+ "fewshot_delimiter": "\n\n",
118
+ "num_fewshot": 0,
119
+ "metric_list": [
120
+ {
121
+ "metric": "acc",
122
+ "aggregation": "mean",
123
+ "higher_is_better": true
124
+ }
125
+ ],
126
+ "output_type": "multiple_choice",
127
+ "repeats": 1,
128
+ "should_decontaminate": false,
129
+ "metadata": {
130
+ "version": 0.0
131
+ }
132
+ },
133
+ "sunt-sapiente-3667_lsat-lr_cot": {
134
+ "task": "sunt-sapiente-3667_lsat-lr_cot",
135
+ "tag": "logikon-bench",
136
+ "group": "logikon-bench",
137
+ "dataset_path": "cot-leaderboard/cot-eval-traces-2.0",
138
+ "dataset_kwargs": {
139
+ "data_files": {
140
+ "test": "data/nvidia/Llama-3.1-Nemotron-70B-Instruct-HF/sunt-sapiente-3667-lsat-lr.parquet"
141
+ }
142
+ },
143
+ "test_split": "test",
144
+ "doc_to_text": "def doc_to_text_cot(doc) -> str:\n \"\"\"\n Answer the following question about the given passage. [Base your answer on the reasoning below.]\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n [Reasoning: <reasoning>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage. Base your answer on the reasoning below.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Reasoning: \" + doc[\"reasoning_trace\"] + \"\\n\\n\" \n prompt += \"Answer:\"\n return prompt\n",
145
+ "doc_to_target": "{{answer}}",
146
+ "doc_to_choice": "{{options}}",
147
+ "description": "",
148
+ "target_delimiter": " ",
149
+ "fewshot_delimiter": "\n\n",
150
+ "num_fewshot": 0,
151
+ "metric_list": [
152
+ {
153
+ "metric": "acc",
154
+ "aggregation": "mean",
155
+ "higher_is_better": true
156
+ }
157
+ ],
158
+ "output_type": "multiple_choice",
159
+ "repeats": 1,
160
+ "should_decontaminate": false,
161
+ "metadata": {
162
+ "version": 0.0
163
+ }
164
+ },
165
+ "sunt-sapiente-3667_lsat-rc_cot": {
166
+ "task": "sunt-sapiente-3667_lsat-rc_cot",
167
+ "tag": "logikon-bench",
168
+ "group": "logikon-bench",
169
+ "dataset_path": "cot-leaderboard/cot-eval-traces-2.0",
170
+ "dataset_kwargs": {
171
+ "data_files": {
172
+ "test": "data/nvidia/Llama-3.1-Nemotron-70B-Instruct-HF/sunt-sapiente-3667-lsat-rc.parquet"
173
+ }
174
+ },
175
+ "test_split": "test",
176
+ "doc_to_text": "def doc_to_text_cot(doc) -> str:\n \"\"\"\n Answer the following question about the given passage. [Base your answer on the reasoning below.]\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n [Reasoning: <reasoning>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage. Base your answer on the reasoning below.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Reasoning: \" + doc[\"reasoning_trace\"] + \"\\n\\n\" \n prompt += \"Answer:\"\n return prompt\n",
177
+ "doc_to_target": "{{answer}}",
178
+ "doc_to_choice": "{{options}}",
179
+ "description": "",
180
+ "target_delimiter": " ",
181
+ "fewshot_delimiter": "\n\n",
182
+ "num_fewshot": 0,
183
+ "metric_list": [
184
+ {
185
+ "metric": "acc",
186
+ "aggregation": "mean",
187
+ "higher_is_better": true
188
+ }
189
+ ],
190
+ "output_type": "multiple_choice",
191
+ "repeats": 1,
192
+ "should_decontaminate": false,
193
+ "metadata": {
194
+ "version": 0.0
195
+ }
196
+ }
197
+ },
198
+ "versions": {
199
+ "sunt-sapiente-3667_logiqa2_cot": 0.0,
200
+ "sunt-sapiente-3667_logiqa_cot": 0.0,
201
+ "sunt-sapiente-3667_lsat-ar_cot": 0.0,
202
+ "sunt-sapiente-3667_lsat-lr_cot": 0.0,
203
+ "sunt-sapiente-3667_lsat-rc_cot": 0.0
204
+ },
205
+ "n-shot": {
206
+ "sunt-sapiente-3667_logiqa2_cot": 0,
207
+ "sunt-sapiente-3667_logiqa_cot": 0,
208
+ "sunt-sapiente-3667_lsat-ar_cot": 0,
209
+ "sunt-sapiente-3667_lsat-lr_cot": 0,
210
+ "sunt-sapiente-3667_lsat-rc_cot": 0
211
+ },
212
+ "higher_is_better": {
213
+ "sunt-sapiente-3667_logiqa2_cot": {
214
+ "acc": true
215
+ },
216
+ "sunt-sapiente-3667_logiqa_cot": {
217
+ "acc": true
218
+ },
219
+ "sunt-sapiente-3667_lsat-ar_cot": {
220
+ "acc": true
221
+ },
222
+ "sunt-sapiente-3667_lsat-lr_cot": {
223
+ "acc": true
224
+ },
225
+ "sunt-sapiente-3667_lsat-rc_cot": {
226
+ "acc": true
227
+ }
228
+ },
229
+ "n-samples": {
230
+ "sunt-sapiente-3667_lsat-rc_cot": {
231
+ "original": 269,
232
+ "effective": 269
233
+ },
234
+ "sunt-sapiente-3667_lsat-lr_cot": {
235
+ "original": 510,
236
+ "effective": 510
237
+ },
238
+ "sunt-sapiente-3667_lsat-ar_cot": {
239
+ "original": 230,
240
+ "effective": 230
241
+ },
242
+ "sunt-sapiente-3667_logiqa_cot": {
243
+ "original": 626,
244
+ "effective": 626
245
+ },
246
+ "sunt-sapiente-3667_logiqa2_cot": {
247
+ "original": 1572,
248
+ "effective": 1572
249
+ }
250
+ },
251
+ "config": {
252
+ "model": "local-completions",
253
+ "model_args": "base_url=http://localhost:8080/v1/completions,num_concurrent=1,max_retries=3,tokenized_requests=False,model=nvidia/Llama-3.1-Nemotron-70B-Instruct-HF,trust_remote_code=True",
254
+ "batch_size": "1",
255
+ "batch_sizes": [],
256
+ "device": null,
257
+ "use_cache": null,
258
+ "limit": null,
259
+ "bootstrap_iters": 100000,
260
+ "gen_kwargs": null,
261
+ "random_seed": 0,
262
+ "numpy_seed": 1234,
263
+ "torch_seed": 1234,
264
+ "fewshot_seed": 1234
265
+ },
266
+ "git_hash": "0a897fa",
267
+ "date": 1729138553.8362505,
268
+ "pretty_env_info": "PyTorch version: 2.4.1+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Red Hat Enterprise Linux release 8.8 (Ootpa) (x86_64)\nGCC version: (GCC) 8.5.0 20210514 (Red Hat 8.5.0-18)\nClang version: Could not collect\nCMake version: version 3.20.2\nLibc version: glibc-2.28\n\nPython version: 3.11.2 (main, Sep 17 2024, 03:17:19) [GCC 8.5.0 20210514 (Red Hat 8.5.0-18)] (64-bit runtime)\nPython platform: Linux-4.18.0-477.70.1.el8_8.x86_64-x86_64-with-glibc2.28\nIs CUDA available: True\nCUDA runtime version: 12.2.140\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA H100\nGPU 1: NVIDIA H100\nGPU 2: NVIDIA H100\nGPU 3: NVIDIA H100\n\nNvidia driver version: 550.54.15\ncuDNN version: Probably one of the following:\n/hkfs/home/software/all/devel/cuda/11.2/targets/x86_64-linux/lib/libcudnn.so.8.1.1\n/hkfs/home/software/all/devel/cuda/11.2/targets/x86_64-linux/lib/libcudnn_adv_infer.so.8.1.1\n/hkfs/home/software/all/devel/cuda/11.2/targets/x86_64-linux/lib/libcudnn_adv_train.so.8.1.1\n/hkfs/home/software/all/devel/cuda/11.2/targets/x86_64-linux/lib/libcudnn_cnn_infer.so.8.1.1\n/hkfs/home/software/all/devel/cuda/11.2/targets/x86_64-linux/lib/libcudnn_cnn_train.so.8.1.1\n/hkfs/home/software/all/devel/cuda/11.2/targets/x86_64-linux/lib/libcudnn_ops_infer.so.8.1.1\n/hkfs/home/software/all/devel/cuda/11.2/targets/x86_64-linux/lib/libcudnn_ops_train.so.8.1.1\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitektur: x86_64\nCPU Operationsmodus: 32-bit, 64-bit\nByte-Reihenfolge: Little Endian\nCPU(s): 128\nListe der Online-CPU(s): 0-127\nThread(s) pro Kern: 2\nKern(e) pro Socket: 32\nSockel: 2\nNUMA-Knoten: 2\nAnbieterkennung: AuthenticAMD\nProzessorfamilie: 25\nModell: 17\nModellname: AMD EPYC 9354 32-Core Processor\nStepping: 1\nCPU MHz: 3800.000\nMaximale Taktfrequenz der CPU: 3800,0000\nMinimale Taktfrequenz der CPU: 400,0000\nBogoMIPS: 6499.96\nVirtualisierung: AMD-V\nL1d Cache: 32K\nL1i Cache: 32K\nL2 Cache: 1024K\nL3 Cache: 32768K\nNUMA-Knoten0 CPU(s): 0-31,64-95\nNUMA-Knoten1 CPU(s): 32-63,96-127\nMarkierungen: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq monitor ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb cat_l3 cdp_l3 invpcid_single hw_pstate ssbd mba perfmon_v2 ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local avx512_bf16 clzero irperf xsaveerptr wbnoinvd amd_ppin cppc arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif v_spec_ctrl avx512vbmi umip pku ospke avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg avx512_vpopcntdq la57 rdpid overflow_recov succor smca fsrm flush_l1d\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] torch==2.4.1\n[pip3] triton==3.0.0\n[conda] Could not collect",
269
+ "transformers_version": "4.45.2",
270
+ "upper_git_hash": null,
271
+ "tokenizer_pad_token": [
272
+ "<|eot_id|>",
273
+ "128009"
274
+ ],
275
+ "tokenizer_eos_token": [
276
+ "<|eot_id|>",
277
+ "128009"
278
+ ],
279
+ "tokenizer_bos_token": [
280
+ "<|begin_of_text|>",
281
+ "128000"
282
+ ],
283
+ "eot_token_id": 128009,
284
+ "max_length": 2047,
285
+ "task_hashes": {},
286
+ "model_source": "local-completions",
287
+ "model_name": "nvidia/Llama-3.1-Nemotron-70B-Instruct-HF",
288
+ "model_name_sanitized": "nvidia__Llama-3.1-Nemotron-70B-Instruct-HF",
289
+ "system_instruction": null,
290
+ "system_instruction_sha": null,
291
+ "fewshot_as_multiturn": false,
292
+ "chat_template": null,
293
+ "chat_template_sha": null,
294
+ "start_time": 1959777.238946719,
295
+ "end_time": 1961772.664180567,
296
+ "total_evaluation_time_seconds": "1995.4252338479273"
297
+ }