|
import ast |
|
import os |
|
from typing import Optional |
|
|
|
import datasets as ds |
|
import pandas as pd |
|
|
|
_CITATION = """\ |
|
@inproceedings{mita-et-al:nlp2023, |
|
author = "三田 雅人 and 村上 聡一朗 and 張 培楠", |
|
title = "広告文生成タスクの規定とベンチマーク構築", |
|
booktitle = "言語処理学会 第29回年次大会", |
|
year = 2023, |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
CAMERA (CyberAgent Multimodal Evaluation for Ad Text GeneRAtion) is the Japanese ad text generation dataset. |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/CyberAgentAILab/camera" |
|
|
|
_LICENSE = """\ |
|
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. |
|
""" |
|
|
|
_URLS = { |
|
"without-lp-images": "https://storage.googleapis.com/camera-public/camera-v1-minimal.tar.gz", |
|
"with-lp-images": "https://storage.googleapis.com/camera-public/camera-v1.tar.gz", |
|
} |
|
|
|
|
|
class CameraDataset(ds.GeneratorBasedBuilder): |
|
VERSION = ds.Version("1.0.0") |
|
BUILDER_CONFIGS = [ |
|
ds.BuilderConfig( |
|
name="without-lp-images", |
|
version=VERSION, |
|
description="The CAMERA dataset w/o LP images (ver.1.0.0 | 126.2 MiB)", |
|
), |
|
ds.BuilderConfig( |
|
name="with-lp-images", |
|
version=VERSION, |
|
description="The CAMERA dataset w/ LP images (ver.1.0.0 | 61.5 GiB)", |
|
), |
|
] |
|
|
|
def _info(self) -> ds.DatasetInfo: |
|
features = ds.Features( |
|
{ |
|
"asset_id": ds.Value("int64"), |
|
"kw": ds.Value("string"), |
|
"lp_meta_description": ds.Value("string"), |
|
"title_org": ds.Value("string"), |
|
"title_ne1": ds.Value("string"), |
|
"title_ne2": ds.Value("string"), |
|
"title_ne3": ds.Value("string"), |
|
"domain": ds.Value("string"), |
|
"parsed_full_text_annotation": ds.Sequence( |
|
{ |
|
"text": ds.Value("string"), |
|
"xmax": ds.Value("int64"), |
|
"xmin": ds.Value("int64"), |
|
"ymax": ds.Value("int64"), |
|
"ymin": ds.Value("int64"), |
|
} |
|
), |
|
} |
|
) |
|
|
|
if self.config.name == "with-lp-images": |
|
features["lp_image"] = ds.Image() |
|
|
|
return ds.DatasetInfo( |
|
description=_DESCRIPTION, |
|
citation=_CITATION, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
features=features, |
|
) |
|
|
|
def _split_generators(self, dl_manager: ds.DownloadManager): |
|
base_dir = dl_manager.download_and_extract(_URLS[self.config.name]) |
|
lp_image_dir: Optional[str] = None |
|
|
|
if self.config.name == "without-lp-images": |
|
camera_dir_name = f"camera-v{self.VERSION.major}-minimal" |
|
elif self.config.name == "with-lp-images": |
|
camera_dir_name = f"camera-v{self.VERSION.major}" |
|
lp_image_dir = os.path.join(base_dir, camera_dir_name, "lp-screenshot") |
|
else: |
|
raise ValueError(f"Invalid config name: {self.config.name}") |
|
|
|
tng_path = os.path.join(base_dir, camera_dir_name, "train.csv") |
|
dev_path = os.path.join(base_dir, camera_dir_name, "dev.csv") |
|
tst_path = os.path.join(base_dir, camera_dir_name, "test.csv") |
|
|
|
return [ |
|
ds.SplitGenerator( |
|
name=ds.Split.TRAIN, |
|
gen_kwargs={"file_path": tng_path, "lp_image_dir": lp_image_dir}, |
|
), |
|
ds.SplitGenerator( |
|
name=ds.Split.VALIDATION, |
|
gen_kwargs={"file_path": dev_path, "lp_image_dir": lp_image_dir}, |
|
), |
|
ds.SplitGenerator( |
|
name=ds.Split.TEST, |
|
gen_kwargs={"file_path": tst_path, "lp_image_dir": lp_image_dir}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, file_path: str, lp_image_dir: Optional[str] = None): |
|
df = pd.read_csv(file_path) |
|
for i in range(len(df)): |
|
data_dict = df.iloc[i].to_dict() |
|
|
|
asset_id = data_dict["asset_id"] |
|
keywords = data_dict["kw"] |
|
lp_meta_description = data_dict["lp_meta_description"] |
|
domain = data_dict.get("domain", "") |
|
text_anns = ast.literal_eval(data_dict["parsed_full_text_annotation"]) |
|
|
|
title_org = data_dict["title_org"] |
|
title_ne1 = data_dict.get("title_ne1", "") |
|
title_ne2 = data_dict.get("title_ne2", "") |
|
title_ne3 = data_dict.get("title_ne3", "") |
|
|
|
example_dict = { |
|
"asset_id": asset_id, |
|
"kw": keywords, |
|
"lp_meta_description": lp_meta_description, |
|
"title_org": title_org, |
|
"title_ne1": title_ne1, |
|
"title_ne2": title_ne2, |
|
"title_ne3": title_ne3, |
|
"domain": domain, |
|
"parsed_full_text_annotation": text_anns, |
|
} |
|
|
|
if self.config.name == "with-lp-images" and lp_image_dir is not None: |
|
lp_image_file_name = f"screen-1200-{asset_id}.png" |
|
example_dict["lp_image"] = os.path.join( |
|
lp_image_dir, lp_image_file_name |
|
) |
|
|
|
yield i, example_dict |
|
|