Datasets:

Languages:
Japanese
License:
CAMERA / CAMERA.py
shunk031's picture
Initialize (#1)
fb189c1 unverified
import ast
import os
from typing import Optional
import datasets as ds
import pandas as pd
_CITATION = """\
@inproceedings{mita-et-al:nlp2023,
author = "三田 雅人 and 村上 聡一朗 and 張 培楠",
title = "広告文生成タスクの規定とベンチマーク構築",
booktitle = "言語処理学会 第29回年次大会",
year = 2023,
}
"""
_DESCRIPTION = """\
CAMERA (CyberAgent Multimodal Evaluation for Ad Text GeneRAtion) is the Japanese ad text generation dataset.
"""
_HOMEPAGE = "https://github.com/CyberAgentAILab/camera"
_LICENSE = """\
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
"""
_URLS = {
"without-lp-images": "https://storage.googleapis.com/camera-public/camera-v1-minimal.tar.gz",
"with-lp-images": "https://storage.googleapis.com/camera-public/camera-v1.tar.gz",
}
class CameraDataset(ds.GeneratorBasedBuilder):
VERSION = ds.Version("1.0.0")
BUILDER_CONFIGS = [
ds.BuilderConfig(
name="without-lp-images",
version=VERSION,
description="The CAMERA dataset w/o LP images (ver.1.0.0 | 126.2 MiB)",
),
ds.BuilderConfig(
name="with-lp-images",
version=VERSION,
description="The CAMERA dataset w/ LP images (ver.1.0.0 | 61.5 GiB)",
),
]
def _info(self) -> ds.DatasetInfo:
features = ds.Features(
{
"asset_id": ds.Value("int64"),
"kw": ds.Value("string"),
"lp_meta_description": ds.Value("string"),
"title_org": ds.Value("string"),
"title_ne1": ds.Value("string"),
"title_ne2": ds.Value("string"),
"title_ne3": ds.Value("string"),
"domain": ds.Value("string"),
"parsed_full_text_annotation": ds.Sequence(
{
"text": ds.Value("string"),
"xmax": ds.Value("int64"),
"xmin": ds.Value("int64"),
"ymax": ds.Value("int64"),
"ymin": ds.Value("int64"),
}
),
}
)
if self.config.name == "with-lp-images":
features["lp_image"] = ds.Image()
return ds.DatasetInfo(
description=_DESCRIPTION,
citation=_CITATION,
homepage=_HOMEPAGE,
license=_LICENSE,
features=features,
)
def _split_generators(self, dl_manager: ds.DownloadManager):
base_dir = dl_manager.download_and_extract(_URLS[self.config.name])
lp_image_dir: Optional[str] = None
if self.config.name == "without-lp-images":
camera_dir_name = f"camera-v{self.VERSION.major}-minimal"
elif self.config.name == "with-lp-images":
camera_dir_name = f"camera-v{self.VERSION.major}"
lp_image_dir = os.path.join(base_dir, camera_dir_name, "lp-screenshot")
else:
raise ValueError(f"Invalid config name: {self.config.name}")
tng_path = os.path.join(base_dir, camera_dir_name, "train.csv")
dev_path = os.path.join(base_dir, camera_dir_name, "dev.csv")
tst_path = os.path.join(base_dir, camera_dir_name, "test.csv")
return [
ds.SplitGenerator(
name=ds.Split.TRAIN,
gen_kwargs={"file_path": tng_path, "lp_image_dir": lp_image_dir},
),
ds.SplitGenerator(
name=ds.Split.VALIDATION,
gen_kwargs={"file_path": dev_path, "lp_image_dir": lp_image_dir},
),
ds.SplitGenerator(
name=ds.Split.TEST,
gen_kwargs={"file_path": tst_path, "lp_image_dir": lp_image_dir},
),
]
def _generate_examples(self, file_path: str, lp_image_dir: Optional[str] = None):
df = pd.read_csv(file_path)
for i in range(len(df)):
data_dict = df.iloc[i].to_dict()
asset_id = data_dict["asset_id"]
keywords = data_dict["kw"]
lp_meta_description = data_dict["lp_meta_description"]
domain = data_dict.get("domain", "")
text_anns = ast.literal_eval(data_dict["parsed_full_text_annotation"])
title_org = data_dict["title_org"]
title_ne1 = data_dict.get("title_ne1", "")
title_ne2 = data_dict.get("title_ne2", "")
title_ne3 = data_dict.get("title_ne3", "")
example_dict = {
"asset_id": asset_id,
"kw": keywords,
"lp_meta_description": lp_meta_description,
"title_org": title_org,
"title_ne1": title_ne1,
"title_ne2": title_ne2,
"title_ne3": title_ne3,
"domain": domain,
"parsed_full_text_annotation": text_anns,
}
if self.config.name == "with-lp-images" and lp_image_dir is not None:
lp_image_file_name = f"screen-1200-{asset_id}.png"
example_dict["lp_image"] = os.path.join(
lp_image_dir, lp_image_file_name
)
yield i, example_dict