File size: 11,797 Bytes
a38d904
 
 
847f6af
aa1a9f2
847f6af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96493ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
847f6af
 
 
 
aa1a9f2
847f6af
aa1a9f2
847f6af
aa1a9f2
847f6af
 
 
 
 
 
 
 
 
 
 
aa1a9f2
 
 
847f6af
 
aa1a9f2
 
 
847f6af
 
 
aa1a9f2
 
 
847f6af
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
---
license: cc-by-nc-4.0
---

# **CloudSEN12  SCRIBBLE**
## **A Benchmark Dataset for Cloud Semantic Understanding**

![CloudSEN12 Images](https://cloudsen12.github.io/thumbnails/cloudsen12.gif)

CloudSEN12 is a LARGE dataset (~1 TB) for cloud semantic understanding that consists of 49,400 image patches (IP) that are
evenly spread throughout all continents except Antarctica. Each IP covers 5090 x 5090 meters and contains data from Sentinel-2 
levels 1C and 2A, hand-crafted annotations of thick and thin clouds and cloud shadows, Sentinel-1 Synthetic Aperture Radar (SAR), 
digital elevation model, surface water occurrence, land cover classes, and cloud mask results from six cutting-edge 
cloud detection algorithms.

CloudSEN12 is designed to support both weakly and self-/semi-supervised learning strategies by including three distinct forms of 
hand-crafted labeling data: high-quality, scribble and no-annotation. For more details on how we created the dataset see our 
paper.

Ready to start using **[CloudSEN12](https://cloudsen12.github.io/)**?

**[Download Dataset](https://cloudsen12.github.io/download.html)**

**[Paper - Scientific Data](https://www.nature.com/articles/s41597-022-01878-2)**

**[Inference on a new S2 image](https://colab.research.google.com/github/cloudsen12/examples/blob/master/example02.ipynb)**

**[Enter to cloudApp](https://github.com/cloudsen12/CloudApp)**

**[CloudSEN12 in Google Earth Engine](https://gee-community-catalog.org/projects/cloudsen12/)**


<br>

### **Description**

<br>

| File          | Name            | Scale  | Wavelength                  | Description                                                                                           | Datatype |
|---------------|-----------------|--------|------------------------------|------------------------------------------------------------------------------------------------------|----------|
| L1C_ & L2A_   | B1              | 0.0001 | 443.9nm (S2A) / 442.3nm (S2B)| Aerosols.                                                                                            | np.int16 |
|               | B2              | 0.0001 | 496.6nm (S2A) / 492.1nm (S2B)| Blue.                                                                                                | np.int16 |
|               | B3              | 0.0001 | 560nm (S2A) / 559nm (S2B)    | Green.                                                                                               | np.int16 |
|               | B4              | 0.0001 | 664.5nm (S2A) / 665nm (S2B)  | Red.                                                                                                 | np.int16 |
|               | B5              | 0.0001 | 703.9nm (S2A) / 703.8nm (S2B)| Red Edge 1.                                                                                          | np.int16 |
|               | B6              | 0.0001 | 740.2nm (S2A) / 739.1nm (S2B)| Red Edge 2.                                                                                          | np.int16 |
|               | B7              | 0.0001 | 782.5nm (S2A) / 779.7nm (S2B)| Red Edge 3.                                                                                          | np.int16 |
|               | B8              | 0.0001 | 835.1nm (S2A) / 833nm (S2B)  | NIR.                                                                                                 | np.int16 |
|               | B8A             | 0.0001 | 864.8nm (S2A) / 864nm (S2B)  | Red Edge 4.                                                                                          | np.int16 |
|               | B9              | 0.0001 | 945nm (S2A) / 943.2nm (S2B)  | Water vapor.                                                                                         | np.int16 |
|               | B11             | 0.0001 | 1613.7nm (S2A) / 1610.4nm (S2B)| SWIR 1.                                                                                            | np.int16 |
|               | B12             | 0.0001 | 2202.4nm (S2A) / 2185.7nm (S2B)| SWIR 2.                                                                                            | np.int16 |
| L1C_          | B10             | 0.0001 | 1373.5nm (S2A) / 1376.9nm (S2B)| Cirrus.                                                                                            | np.int16 |
| L2A_          | AOT             | 0.001  | -                            | Aerosol Optical Thickness.                                                                           | np.int16 |
|               | WVP             | 0.001  | -                            | Water Vapor Pressure.                                                                                | np.int16 |
|               | TCI_R           | 1      | -                            | True Color Image, Red.                                                                               | np.int16 |
|               | TCI_G           | 1      | -                            | True Color Image, Green.                                                                             | np.int16 |
|               | TCI_B           | 1      | -                            | True Color Image, Blue.                                                                              | np.int16 |
| S1_           | VV              | 1      | 5.405GHz                     | Dual-band cross-polarization, vertical transmit/horizontal receive.                                  |np.float32|
|               | VH              | 1      | 5.405GHz                     | Single co-polarization, vertical transmit/vertical receive.                                          |np.float32|
|               | angle           | 1      | -                            | Incidence angle generated by interpolating the ‘incidenceAngle’ property.                            |np.float32|
| EXTRA_        | CDI             | 0.0001 | -                            | Cloud Displacement Index.                                                                            | np.int16 |
|               | Shwdirection    | 0.01   | -                            | Azimuth. Values range from 0°- 360°.                                                                 | np.int16 |
|               | elevation       | 1      | -                            | Elevation in meters. Obtained from MERIT Hydro datasets.                                             | np.int16 |
|               | ocurrence       | 1      | -                            | JRC Global Surface Water. The frequency with which water was present.                                | np.int16 |
|               | LC100           | 1      | -                            | Copernicus land cover product. CGLS-LC100 Collection 3.                                              | np.int16 |
|               | LC10            | 1      | -                            | ESA WorldCover 10m v100 product.                                                                     | np.int16 |
| LABEL_        | fmask           | 1      | -                            | Fmask4.0 cloud masking.                                                                              | np.int16 |
|               | QA60            | 1      | -                            | SEN2 Level-1C cloud mask.                                                                            | np.int8  |
|               | s2cloudless     | 1      | -                            | sen2cloudless results.                                                                               | np.int8  |
|               | sen2cor         | 1      | -                            | Scene Classification band. Obtained from SEN2 level 2A.                                              | np.int8  |
|               | cd_fcnn_rgbi    | 1      | -                            | López-Puigdollers et al. results based on RGBI bands.                                                | np.int8  |
|               |cd_fcnn_rgbi_swir| 1      | -                            | López-Puigdollers et al. results based on RGBISWIR bands.                                            | np.int8  |
|               | kappamask_L1C   | 1      | -                            | KappaMask results using SEN2 level L1C as input.                                                     | np.int8  |
|               | kappamask_L2A   | 1      | -                            | KappaMask results using SEN2 level L2A as input.                                                     | np.int8  |
|               | manual_hq       | 1      |                              | High-quality pixel-wise manual annotation.                                                           | np.int8  |
|               | manual_sc       | 1      |                              | Scribble manual annotation.                                                                          | np.int8  |

<br>


### **Label Description**


| **CloudSEN12**   | **KappaMask**     | **Sen2Cor**             | **Fmask**        | **s2cloudless**       | **CD-FCNN**         | **QA60**           |
|------------------|------------------|-------------------------|-----------------|-----------------------|---------------------|--------------------|
| 0 Clear          | 1 Clear           | 4 Vegetation            | 0 Clear land    | 0 Clear               | 0 Clear             | 0 Clear            |
|                  |                  | 2 Dark area pixels      | 1 Clear water   |                       |                     |                    |
|                  |                  | 5 Bare Soils            | 3 Snow          |                       |                     |                    |
|                  |                  | 6 Water                 |                 |                       |                     |                    |
|                  |                  | 11 Snow                 |                 |                       |                     |                    |
| 1 Thick cloud    | 4 Cloud           | 8 Cloud medium probability | 4 Cloud         | 1 Cloud               | 1 Cloud             | 1024 Opaque cloud  |
|                  |                  | 9 Cloud high probability   |                 |                       |                     |                    |
| 2 Thin cloud     | 3 Semi-transparent cloud | 10 Thin cirrus   |                 |                       |                     | 2048 Cirrus cloud  |
| 3 Cloud shadow   | 2 Cloud shadow    | 3 Cloud shadows         | 2 Cloud shadow  |                       |                     |                    |



<br>


### **np.memmap shape information**

<br>

**train shape: (8785, 512, 512)**
<br>
**val shape: (560, 512, 512)**
<br>
**test shape: (655, 512, 512)**

<br>

### **Example**

<br>

```py
import numpy as np

# Read high-quality train
train_shape = (8785, 512, 512)
B4X = np.memmap('train/L1C_B04.dat', dtype='int16', mode='r', shape=train_shape)
y = np.memmap('train/manual_hq.dat', dtype='int8', mode='r', shape=train_shape)

# Read high-quality val
val_shape = (560, 512, 512)
B4X = np.memmap('val/L1C_B04.dat', dtype='int16', mode='r', shape=val_shape)
y = np.memmap('val/manual_hq.dat', dtype='int8', mode='r', shape=val_shape)


# Read high-quality test
test_shape = (655, 512, 512)
B4X = np.memmap('test/L1C_B04.dat', dtype='int16', mode='r', shape=test_shape)
y = np.memmap('test/manual_hq.dat', dtype='int8', mode='r', shape=test_shape)
```
<br>


This work has been partially supported by the Spanish Ministry of Science and Innovation project 
PID2019-109026RB-I00 (MINECO-ERDF) and the Austrian Space Applications Programme within the 
**[SemantiX project](https://austria-in-space.at/en/projects/2019/semantix.php)**.