File size: 10,086 Bytes
a38d904
 
 
847f6af
aa1a9f2
847f6af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa1a9f2
847f6af
aa1a9f2
847f6af
aa1a9f2
847f6af
 
 
 
 
 
 
 
 
 
 
aa1a9f2
 
 
847f6af
 
aa1a9f2
 
 
847f6af
 
 
aa1a9f2
 
 
847f6af
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
---
license: cc-by-nc-4.0
---

# **CloudSEN12  SCRIBBLE**
## **A Benchmark Dataset for Cloud Semantic Understanding**

![CloudSEN12 Images](https://cloudsen12.github.io/thumbnails/cloudsen12.gif)

CloudSEN12 is a LARGE dataset (~1 TB) for cloud semantic understanding that consists of 49,400 image patches (IP) that are
evenly spread throughout all continents except Antarctica. Each IP covers 5090 x 5090 meters and contains data from Sentinel-2 
levels 1C and 2A, hand-crafted annotations of thick and thin clouds and cloud shadows, Sentinel-1 Synthetic Aperture Radar (SAR), 
digital elevation model, surface water occurrence, land cover classes, and cloud mask results from six cutting-edge 
cloud detection algorithms.

CloudSEN12 is designed to support both weakly and self-/semi-supervised learning strategies by including three distinct forms of 
hand-crafted labeling data: high-quality, scribble and no-annotation. For more details on how we created the dataset see our 
paper.

Ready to start using **[CloudSEN12](https://cloudsen12.github.io/)**?

**[Download Dataset](https://cloudsen12.github.io/download.html)**

**[Paper - Scientific Data](https://www.nature.com/articles/s41597-022-01878-2)**

**[Inference on a new S2 image](https://colab.research.google.com/github/cloudsen12/examples/blob/master/example02.ipynb)**

**[Enter to cloudApp](https://github.com/cloudsen12/CloudApp)**

**[CloudSEN12 in Google Earth Engine](https://gee-community-catalog.org/projects/cloudsen12/)**


<br>

### **Description**

<br>

| File          | Name            | Scale  | Wavelength                  | Description                                                                                           | Datatype |
|---------------|-----------------|--------|------------------------------|------------------------------------------------------------------------------------------------------|----------|
| L1C_ & L2A_   | B1              | 0.0001 | 443.9nm (S2A) / 442.3nm (S2B)| Aerosols.                                                                                            | np.int16 |
|               | B2              | 0.0001 | 496.6nm (S2A) / 492.1nm (S2B)| Blue.                                                                                                | np.int16 |
|               | B3              | 0.0001 | 560nm (S2A) / 559nm (S2B)    | Green.                                                                                               | np.int16 |
|               | B4              | 0.0001 | 664.5nm (S2A) / 665nm (S2B)  | Red.                                                                                                 | np.int16 |
|               | B5              | 0.0001 | 703.9nm (S2A) / 703.8nm (S2B)| Red Edge 1.                                                                                          | np.int16 |
|               | B6              | 0.0001 | 740.2nm (S2A) / 739.1nm (S2B)| Red Edge 2.                                                                                          | np.int16 |
|               | B7              | 0.0001 | 782.5nm (S2A) / 779.7nm (S2B)| Red Edge 3.                                                                                          | np.int16 |
|               | B8              | 0.0001 | 835.1nm (S2A) / 833nm (S2B)  | NIR.                                                                                                 | np.int16 |
|               | B8A             | 0.0001 | 864.8nm (S2A) / 864nm (S2B)  | Red Edge 4.                                                                                          | np.int16 |
|               | B9              | 0.0001 | 945nm (S2A) / 943.2nm (S2B)  | Water vapor.                                                                                         | np.int16 |
|               | B11             | 0.0001 | 1613.7nm (S2A) / 1610.4nm (S2B)| SWIR 1.                                                                                            | np.int16 |
|               | B12             | 0.0001 | 2202.4nm (S2A) / 2185.7nm (S2B)| SWIR 2.                                                                                            | np.int16 |
| L1C_          | B10             | 0.0001 | 1373.5nm (S2A) / 1376.9nm (S2B)| Cirrus.                                                                                            | np.int16 |
| L2A_          | AOT             | 0.001  | -                            | Aerosol Optical Thickness.                                                                           | np.int16 |
|               | WVP             | 0.001  | -                            | Water Vapor Pressure.                                                                                | np.int16 |
|               | TCI_R           | 1      | -                            | True Color Image, Red.                                                                               | np.int16 |
|               | TCI_G           | 1      | -                            | True Color Image, Green.                                                                             | np.int16 |
|               | TCI_B           | 1      | -                            | True Color Image, Blue.                                                                              | np.int16 |
| S1_           | VV              | 1      | 5.405GHz                     | Dual-band cross-polarization, vertical transmit/horizontal receive.                                  |np.float32|
|               | VH              | 1      | 5.405GHz                     | Single co-polarization, vertical transmit/vertical receive.                                          |np.float32|
|               | angle           | 1      | -                            | Incidence angle generated by interpolating the ‘incidenceAngle’ property.                            |np.float32|
| EXTRA_        | CDI             | 0.0001 | -                            | Cloud Displacement Index.                                                                            | np.int16 |
|               | Shwdirection    | 0.01   | -                            | Azimuth. Values range from 0°- 360°.                                                                 | np.int16 |
|               | elevation       | 1      | -                            | Elevation in meters. Obtained from MERIT Hydro datasets.                                             | np.int16 |
|               | ocurrence       | 1      | -                            | JRC Global Surface Water. The frequency with which water was present.                                | np.int16 |
|               | LC100           | 1      | -                            | Copernicus land cover product. CGLS-LC100 Collection 3.                                              | np.int16 |
|               | LC10            | 1      | -                            | ESA WorldCover 10m v100 product.                                                                     | np.int16 |
| LABEL_        | fmask           | 1      | -                            | Fmask4.0 cloud masking.                                                                              | np.int16 |
|               | QA60            | 1      | -                            | SEN2 Level-1C cloud mask.                                                                            | np.int8  |
|               | s2cloudless     | 1      | -                            | sen2cloudless results.                                                                               | np.int8  |
|               | sen2cor         | 1      | -                            | Scene Classification band. Obtained from SEN2 level 2A.                                              | np.int8  |
|               | cd_fcnn_rgbi    | 1      | -                            | López-Puigdollers et al. results based on RGBI bands.                                                | np.int8  |
|               |cd_fcnn_rgbi_swir| 1      | -                            | López-Puigdollers et al. results based on RGBISWIR bands.                                            | np.int8  |
|               | kappamask_L1C   | 1      | -                            | KappaMask results using SEN2 level L1C as input.                                                     | np.int8  |
|               | kappamask_L2A   | 1      | -                            | KappaMask results using SEN2 level L2A as input.                                                     | np.int8  |
|               | manual_hq       | 1      |                              | High-quality pixel-wise manual annotation.                                                           | np.int8  |
|               | manual_sc       | 1      |                              | Scribble manual annotation.                                                                          | np.int8  |

<br>


### **np.memmap shape information**

<br>

**train shape: (8785, 512, 512)**
<br>
**val shape: (560, 512, 512)**
<br>
**test shape: (655, 512, 512)**

<br>

### **Example**

<br>

```py
import numpy as np

# Read high-quality train
train_shape = (8785, 512, 512)
B4X = np.memmap('train/L1C_B04.dat', dtype='int16', mode='r', shape=train_shape)
y = np.memmap('train/manual_hq.dat', dtype='int8', mode='r', shape=train_shape)

# Read high-quality val
val_shape = (560, 512, 512)
B4X = np.memmap('val/L1C_B04.dat', dtype='int16', mode='r', shape=val_shape)
y = np.memmap('val/manual_hq.dat', dtype='int8', mode='r', shape=val_shape)


# Read high-quality test
test_shape = (655, 512, 512)
B4X = np.memmap('test/L1C_B04.dat', dtype='int16', mode='r', shape=test_shape)
y = np.memmap('test/manual_hq.dat', dtype='int8', mode='r', shape=test_shape)
```
<br>


This work has been partially supported by the Spanish Ministry of Science and Innovation project 
PID2019-109026RB-I00 (MINECO-ERDF) and the Austrian Space Applications Programme within the 
**[SemantiX project](https://austria-in-space.at/en/projects/2019/semantix.php)**.