Datasets:
annotations_creators:
- no-annotation
language:
- en
language_creators:
- found
license:
- other
multilinguality:
- monolingual
pretty_name: crello
size_categories:
- 1K<n<10K
source_datasets:
- original
tags:
- graphic design
- design templates
task_categories:
- unconditional-image-generation
task_ids: []
Dataset Card for Crello
Table of Contents
- Dataset Card for Crello
Dataset Description
- Homepage: CanvasVAE github
- Repository:
- Paper: CanvasVAE: Learning to Generate Vector Graphic Documents
- Leaderboard:
- Point of Contact: Kota Yamaguchi
Dataset Summary
The Crello dataset is compiled for the study of vector graphic documents. The dataset contains document meta-data such as canvas size and pre-rendered elements such as images or text boxes. The original templates was collected from crello.com (now create.vista.com) and converted to low-resolution format suitable for machine learning analysis.
Supported Tasks and Leaderboards
CanvasVAE studies unsupervised document generation.
Languages
Almost all design templates use English.
Dataset Structure
Data Instances
Each instance has scalar attributes (canvas) and sequence attributes (elements). Categorical values are stored as integer values. Check ClassLabel
features of the dataset for the list of categorical labels.
{'id': '5bd1c85078e1194aa6186300',
'length': 11,
'group': 4,
'format': 10,
'canvas_width': 40,
'canvas_height': 41,
'category': 1,
'type': [3, 3, 3, 3, 3, 3, 4, 1, 4, 4, 3],
'left': [0.8712766170501709,
0.42127659916877747,
0.14468085765838623,
0.8585106134414673,
0.8819149136543274,
0.043617021292448044,
0.30696335434913635,
0.0010638297535479069,
0.7409376502037048,
0.4813956916332245,
0.30744680762290955],
'top': [0.0,
0.0,
0.874365508556366,
0.6967005133628845,
0.6967005133628845,
0.9060913920402527,
0.8984156250953674,
0.113832488656044,
0.434346079826355,
0.14983975887298584,
0.05710659921169281],
'width': [0.12989361584186554,
0.2329787164926529,
0.42127659916877747,
0.0010638297535479069,
0.0010638297535479069,
0.20425531268119812,
0.2213829755783081,
0.5641489624977112,
0.2148936241865158,
0.2951063811779022,
0.6446808576583862],
'height': [1.0,
0.5164974331855774,
0.06598984450101852,
0.24365481734275818,
0.24365481734275818,
0.0012690355069935322,
0.026649747043848038,
0.7272842526435852,
0.2753807008266449,
0.2842639684677124,
0.7271573543548584],
'opacity': [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
'text': ['',
'',
'',
'',
'',
'',
'Powerful Ways',
'',
'11',
'Powerful Ways\nTo Take Care\nOf Your Skin\nIn Summer',
''],
'font': [0, 0, 0, 0, 0, 0, 24, 0, 24, 189, 0],
'font_size': [0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
21.504981994628906,
0.0,
217.0,
43.18538284301758,
0.0],
'text_align': [0, 0, 0, 0, 0, 0, 2, 0, 2, 2, 0],
'angle': [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
'color': [[236.0, 96.0, 104.0],
[236.0, 96.0, 104.0],
[29.0, 29.0, 27.0],
[29.0, 29.0, 27.0],
[29.0, 29.0, 27.0],
[29.0, 29.0, 27.0],
[0.0, 0.0, 1.0],
[228.0, 148.0, 151.0],
[0.0, 0.0, 1.0],
[0.0, 0.0, 1.0],
[29.0, 29.0, 27.0]],
'image': [<PIL.PngImagePlugin.PngImageFile image mode=RGBA size=256x256>,
<PIL.PngImagePlugin.PngImageFile image mode=RGBA size=256x256>,
<PIL.PngImagePlugin.PngImageFile image mode=RGBA size=256x256>,
<PIL.PngImagePlugin.PngImageFile image mode=RGBA size=256x256>,
<PIL.PngImagePlugin.PngImageFile image mode=RGBA size=256x256>,
<PIL.PngImagePlugin.PngImageFile image mode=RGBA size=256x256>,
<PIL.PngImagePlugin.PngImageFile image mode=RGBA size=256x256>,
<PIL.PngImagePlugin.PngImageFile image mode=RGBA size=256x256>,
<PIL.PngImagePlugin.PngImageFile image mode=RGBA size=256x256>,
<PIL.PngImagePlugin.PngImageFile image mode=RGBA size=256x256>,
<PIL.PngImagePlugin.PngImageFile image mode=RGBA size=256x256>]}
Data Fields
Context features (Canvas attributes)
Field | Type | Shape | Description |
---|---|---|---|
id | string | () | Template ID from crello.com |
group | string | () | Broad design group, such as social media posts or blog headers |
format | string | () | Detailed design format, such as Instagram post or postcard |
category | string | () | Topic category of the design, such as holiday celebration |
canvas_width | int64 | () | Canvas pixel width |
canvas_height | int64 | () | Canvas pixel height |
length | int64 | () | Length of sequence features |
Sequence features (Element attributes)
Field | Type | Shape | Description |
---|---|---|---|
type | string | () | Element type, such as vector shape, image, or text |
left | float32 | () | Element left position normalized to [0, 1] range w.r.t. canvas_width |
top | float32 | () | Element top position normalized to [0, 1] range w.r.t. canvas_height |
width | float32 | () | Element width normalized to [0, 1] range w.r.t. canvas_width |
height | float32 | () | Element height normalized to [0, 1] range w.r.t. canvas_height |
color | int64 | (3,) | Extracted main RGB color of the element |
opacity | float32 | () | Opacity in [0, 1] range |
image_bytes | string | () | Pre-rendered 256x256 preview of the element encoded in PNG format |
text | string | () | Text content in UTF-8 encoding for text element |
font | string | () | Font family name for text element |
font_size | float32 | () | Font size (height) in pixels |
text_align | string | () | Horizontal text alignment, left, center, right for text element |
angle | float32 | () | Element rotation angle (radian) w.r.t. the center of the element |
Note that the color and pre-rendered images are do not necessarily accurately reproduce the original design templates. The original template is accessible at the following URL if still available.
https://create.vista.com/artboard/?template=<template_id>
Data Splits
The Crello dataset has 3 splits: train, validation, and test. The current split is generated such that the same title of the original template shows up in only in one split.
Split | Count |
---|---|
train | 18659 |
validaton | 2391 |
test | 2371 |
Dataset Creation
Curation Rationale
The Crello dataset is compiled for the general study of vector graphic documents, with the goal of producing a dataset that offers complete vector graphic information suitable for neural methodologies.
Source Data
Initial Data Collection and Normalization
The dataset is initially scraped from the former crello.com
, and pre-processed to
Who are the source language producers?
While create.vista.com) owns those templates, the templates seems to be originially created by certain group of design studios.
Personal and Sensitive Information
The dataset does not contain any personal information about the creator, but may contain a picture of people in the design template.
Considerations for Using the Data
Social Impact of Dataset
This dataset was developed for advancing the general study of vector graphic documents, especially for generative systems of graphic design. Successful systems might enable automation of creative workflow that human designers get involved in.
Discussion of Biases
The templates contained in the dataset reflect the biases appearing in the source data, which could present gender biases in specific design categories.
Other Known Limitations
Due to the unknown data specification of the source data, the color and pre-rendered images do not necessarily accurately reproduce the original design templates. The original template is accessible at the following URL if still available.
https://create.vista.com/artboard/?template=<template_id>
Additional Information
Dataset Curators
The Crello dataset was developed by Kota Yamaguchi.
Licensing Information
The origin of the dataset is create.vista.com (formally, crello.com
).
The distributor ("We") do not own the copyrights of the original design templates.
By using Crello dataset, the user of this dataset ("You") must agree to the
VistaCreate License Agreements.
The dataset is distributed under CDLA-Permissive-2.0 license.
Note
We do not re-distribute the original files as we are not allowed by terms.
Citation Information
@article{yamaguchi2021canvasvae,
title={CanvasVAE: Learning to Generate Vector Graphic Documents},
author={Yamaguchi, Kota},
journal={ICCV},
year={2021}
}
Contributions
Thanks to @kyamagu for adding this dataset.