text
stringlengths
27
947k
id
stringlengths
10
118
metadata
dict
__index_level_0__
int64
0
80
/*************************************************************************************************** * Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. * SPDX-License-Identifier: BSD-3-Clause * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * **************************************************************************************************/ /*! \file \brief Template for a threadblock-scoped GEMV kernel. */ #pragma once #include "cutlass/cutlass.h" #include "cutlass/array.h" #include "cutlass/numeric_types.h" #include "cutlass/matrix_shape.h" #include "cutlass/gemm/gemm.h" ///////////////////////////////////////////////////////////////////////////////////////////////// namespace cutlass { namespace gemm { namespace threadblock { ///////////////////////////////////////////////////////////////////////////////////////////////// /// Structure to compute the matrix-vector product using SIMT math instructions. template < class Core_ //< GemvCore > class Gemv { public: using Shape = typename Core_::Shape; /// The MMA operator that computes GEMV using Operator = typename Core_::Operator; /// Iterates over A in global memory using IteratorA = typename Core_::IteratorA; /// Iterates over B in global memory using IteratorB = typename Core_::IteratorB; /// Fragment of operand C loaded from global memory using IteratorC = typename Core_::IteratorC; /// Fragment of operand A loaded from global memory using FragmentA = typename IteratorA::Fragment; /// Fragment of operand B loaded from global memory using FragmentB = typename IteratorB::Fragment; /// Fragment of operand accumulator loaded/stored to global memory using FragmentC = typename Operator::FragmentC; /// Shape of the per-thread GEMV operation using ThreadShape = typename Core_::ThreadShape; public: CUTLASS_DEVICE Gemv() { } CUTLASS_DEVICE void operator()( GemmCoord const &problem_size, ///< problem size of batched GEMV FragmentC &accum, ///< destination accumulator tile IteratorA iterator_A, ///< iterator over A operand in global memory IteratorB iterator_B, ///< iterator over B operand in global memory FragmentC const &src_accum) { ///< source accumualtor tile // // Prologue // FragmentA frag_A; FragmentB frag_B; frag_A.clear(); frag_B.clear(); iterator_A.load(frag_A); iterator_B.load(frag_B); ++iterator_A; ++iterator_B; // // Mainloop // Operator thread_mma; int gemm_k = problem_size.k(); if (gemm_k < Shape::kK) { iterator_A.clear_mask(); iterator_B.clear_mask(); } // iterate over K to accumulate result CUTLASS_GEMM_LOOP for (; gemm_k > 0; gemm_k -= Shape::kK) { thread_mma(accum, frag_A, frag_B, accum); iterator_A.load(frag_A); iterator_B.load(frag_B); ++iterator_A; ++iterator_B; if (gemm_k < Shape::kK) { iterator_A.clear_mask(); iterator_B.clear_mask(); } } } }; ///////////////////////////////////////////////////////////////////////////////////////////////// } // namespace threadblock } // namespace gemm } // namespace cutlass
include/cutlass/gemm/threadblock/gemv.h/0
{ "file_path": "include/cutlass/gemm/threadblock/gemv.h", "repo_id": "include", "token_count": 1482 }
40
/*************************************************************************************************** * Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. * SPDX-License-Identifier: BSD-3-Clause * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * **************************************************************************************************/ /*! \file \brief Implements streamk threadblock mapping blockIdx to GEMM problems. */ #pragma once #include "cutlass/cutlass.h" #include "cutlass/fast_math.h" #include "cutlass/layout/matrix.h" #include "cutlass/platform/platform.h" #include "cutlass/gemm/gemm_enumerated_types.h" #include "cutlass/conv/conv2d_problem_size.h" #include "cutlass/conv/conv3d_problem_size.h" #include "cutlass/gemm/threadblock/index_remat.h" #if !defined(__CUDACC_RTC__) #include <iostream> #include "cutlass/core_io.h" #include "cutlass/trace.h" #endif ///////////////////////////////////////////////////////////////////////////////////////////////// namespace cutlass { namespace gemm { namespace threadblock { ///////////////////////////////////////////////////////////////////////////////////////////////// /// Threadblock mapping control for GEMMs struct ThreadblockSwizzleStreamK { /// Advertise StreamkFeature using StreamkFeature = void; /// Kernel traits template <typename GemmKernel> struct KernelTraits {}; /// Reduction strategy enum ReductionStrategy { kNone, // Data-parallel strategy (no seams, fixup, etc.) kAtomic, // Non-deterministic reduction of SK-block partials using atomic aggregation in L2 kMixed, // Deterministic reduction of SK-block partials employing either: // (a) A separate wave of reduction thread blocks" (for scenarios with lots of // SK-blocks per SK-tile) // (b) Turnstile-ordered atomic aggregation in L2 (for scenarios with few // SK-blocks per SK-tile) }; static ReductionStrategy const kReductionStrategy = kMixed; // // Heuristics // /// Data-parallel wave-quantization efficiency threshold (above which we go data-parallel) static float constexpr kDpEfficiencyThreshold = 0.92f; /// Minimum number of MAC-iterations per streamk block static int const kMinItersPerSkBlock = 2; /// Height in CTAs of a grid rasterization cohort static int const kCohortCtasM = 8; /// Width in CTAs of a grid rasterization cohort static int const kCohortCtasN = 4; /// Number of CTAs per cohort static int const kCtasPerCohort = kCohortCtasN * kCohortCtasM; /// Cost-equivalent number of SM-iterations for fixup I/O static int const kFixupStartupIterEquiv = 10; static int const kFixupPeerIterEquiv = 3; // // Member state // /// The 3D value-extents of the GEMM computation volume (m,n,k) GemmCoord problem_size; /// Div/mod accelerators FastDivmod div_mod_tiled_shape_m; FastDivmod div_mod_tiled_shape_n; FastDivmod div_mod_tiled_cohort_shape_n; FastDivmod div_mod_iters_per_tile; /// Whether to perform cohort CTA rasterization bool cohort_raster; // Whether to pad and remap block indices bool remap_block_indices; /// CTA occupancy per SM int sm_occupancy; /// Number of SMs for dispatch heuristics to load-balance using Stream-K CTAs (wave size) int avail_sms; int dp_blocks; /// Number of data-parallel thread blocks in the grid int dp_first_wave_tiles; /// Number of output tiles each CTA in the first DP wave will produce /// Number of reduction blocks in the grid int reduction_blocks; int sk_waves; int sk_tiles; int sk_big_blocks_per_region; int sk_iters_per_region; /// Div/mod accelerators FastDivmod div_mod_sk_iters_per_normal_block; FastDivmod div_mod_sk_iters_per_big_block; FastDivmod div_mod_sk_iters_per_region; FastDivmod div_mod_sk_regions; //!! used in block map FastDivmod div_mod_sk_blocks_per_region; //!! used in block map /// The batch count int batch_count; // // Host+device interface // /// Constructor ThreadblockSwizzleStreamK() = default; /// Returns the GEMM volume in thread block tiles CUTLASS_HOST_DEVICE GemmCoord tiled_shape() const { return GemmCoord( static_cast<int>(div_mod_tiled_shape_m), static_cast<int>(div_mod_tiled_shape_n), batch_count); } /// Number of iterations per output tile CUTLASS_HOST_DEVICE int iters_per_tile() const { return static_cast<int>(div_mod_iters_per_tile); } /// Number of iterations for normal SK-blocks CUTLASS_HOST_DEVICE int sk_iters_per_normal_block() const { return static_cast<int>(div_mod_sk_iters_per_normal_block); } /// Number of SK regions CUTLASS_HOST_DEVICE int sk_regions() const { return static_cast<int>(div_mod_sk_regions); } /// Number of SK blocks per region (splitting factor) CUTLASS_HOST_DEVICE int sk_blocks_per_region() const { return static_cast<int>(div_mod_sk_blocks_per_region); } // // Host-side interface // /// Debug print void Print() { #ifndef __CUDA_ARCH__ auto tiles = tiled_shape().mn().product(); std::cout << "problem_size: (" << problem_size.m() << "," << problem_size.n() << ")" << ", tiled_shape: (" << tiled_shape().m() << "," << tiled_shape().n() << ")" << ", tiles: " << tiles << ", dp_tiles: " << tiles - sk_tiles << ", sk_tiles: " << sk_tiles << ", iters_per_tile: " << iters_per_tile() << ", reduction_blocks: " << reduction_blocks << ", dp_blocks: " << dp_blocks << ", dp_waves: " << dp_blocks / avail_sms << ", dp_first_wave_tiles: " << dp_first_wave_tiles << ", sk_blocks_per_region: " << sk_blocks_per_region() << ", sk_regions: " << sk_regions() << ", sk_waves: " << sk_waves << ", sk_iters_per_normal_block: " << sk_iters_per_normal_block() << ", sk_big_blocks_per_region: " << sk_big_blocks_per_region << ", remap_block_indices: " << remap_block_indices << ", cohort_raster: " << cohort_raster << ", sm_occupancy: " << sm_occupancy << ", avail_sms: " << avail_sms << ", num_blocks: " << get_num_blocks() << "\n\n"; #endif } // Compute sk_blocks to dispatch for a given number of sk_tiles static void get_sk_blocks( int &sk_blocks, /// [out] int &savings_iters, /// [out] int sk_tiles, int iters_per_tile, int avail_sms, int max_sk_occupancy, bool allow_partial_wave) { savings_iters = INT_MIN; sk_blocks = 0; if (sk_tiles == 0) { return; } int sk_iters = sk_tiles * iters_per_tile; int dp_equiv_waves = (sk_tiles + avail_sms - 1) / avail_sms; int dp_equiv_iters = iters_per_tile * dp_equiv_waves; int min_sk_blocks = (allow_partial_wave) ? fast_min(avail_sms, sk_tiles + 1) : avail_sms; int max_sk_blocks = fast_min(avail_sms * max_sk_occupancy, sk_iters / kMinItersPerSkBlock); for (int trial_sk_blocks = min_sk_blocks; trial_sk_blocks <= max_sk_blocks; ++trial_sk_blocks) { int sk_waves = (trial_sk_blocks + avail_sms - 1) / avail_sms; int max_sk_iters_per_block = (sk_iters + trial_sk_blocks - 1) / trial_sk_blocks; int sk_iter_equiv = max_sk_iters_per_block * sk_waves; int num_peers = ((trial_sk_blocks + sk_tiles - 1) / sk_tiles) + 1; // add one for alignment skew float iter_cost = 0.02f * float(num_peers) * float(sk_iter_equiv); if (trial_sk_blocks % sk_tiles == 0) { // aligned num_peers = (trial_sk_blocks / sk_tiles); iter_cost = 0.0f; } float peer_cost = 2.0f * float(num_peers); float base_cost = 2.0f * float(sk_waves); int fixup_iter_equiv = int(base_cost + iter_cost + peer_cost); int trial_savings_iters = dp_equiv_iters - sk_iter_equiv - fixup_iter_equiv; if (trial_savings_iters >= savings_iters) { savings_iters = trial_savings_iters; sk_blocks = trial_sk_blocks; } } } /// Determine the populations of DP and SK blocks to invoke for the given number of output tiles static void get_blocks( int &dp_tiles, /// [out] int &sk_blocks, /// [out] int output_tiles, int iters_per_tile, int avail_sms, int sm_occupancy) { int full_waves = output_tiles / avail_sms; int full_wave_tiles = full_waves * avail_sms; int partial_wave_tiles = output_tiles - full_wave_tiles; int score = -1; dp_tiles = output_tiles; sk_blocks = 0; if (partial_wave_tiles == 0) { // Perfect quantization return; } if (full_waves < sm_occupancy) { // We're less than full GPU occupancy // Form the SK wave from the partial wave to get us up to full GPU occupancy int max_sk_occupancy = sm_occupancy - full_waves; dp_tiles = full_wave_tiles; get_sk_blocks( sk_blocks, score, partial_wave_tiles, iters_per_tile, avail_sms, max_sk_occupancy, true); // we can run with less than a full wave of SK-blocks if (score < 0) { // not profitable sk_blocks = 0; dp_tiles = output_tiles; } return; } // We're at (or greater) than GPU occupancy if ((sm_occupancy > 1 ) && (full_waves % sm_occupancy == sm_occupancy - 1)) { // If occupancy is more than one CTA per SM, form the SK wave from the partial // wave to get us to full GPU occupancy int max_sk_occupancy = 1; dp_tiles = full_wave_tiles; get_sk_blocks( sk_blocks, score, partial_wave_tiles, iters_per_tile, avail_sms, max_sk_occupancy, true); // we can run with less than a full wave of SK-blocks if (score >= 0) { return; } } // Form the SK wave by combining the last full wave and the partial wave // We're less than full GPU occupancy dp_tiles = full_wave_tiles - avail_sms; int max_sk_occupancy = sm_occupancy - ((full_waves - 1) % sm_occupancy); get_sk_blocks( sk_blocks, score, partial_wave_tiles + avail_sms, iters_per_tile, avail_sms, max_sk_occupancy, false); // we cannot run with less than a full wave of SK-blocks if (score < 0) { // not profitable sk_blocks = 0; dp_tiles = output_tiles; } } /// Constructor: *Gemm* problem size (m, n, k) ThreadblockSwizzleStreamK( GemmUniversalMode const mode_, GemmCoord const problem_size_, GemmCoord const tile_size_, int const batch_split_, /// Either (mode == GemmUniversalMode::kBatched) the batch count, or (mode == GemmUniversalMode::kGemm) the tile-splitting factor (1 defaults to StreamK, >1 emulates Split-K) int const sm_occupancy_, int const device_sms_, int const avail_sms_, /// The number of SMs that StreamK dispatch heuristics will attempt to load-balance across (-1 defaults to device width, 1 implies classic data-parallel scheduling) size_t const element_A_bytes_, size_t const element_B_bytes_, size_t const element_C_bytes_, int const epilogue_acc_fragments_) : problem_size(problem_size_), batch_count((mode_ == GemmUniversalMode::kBatched || mode_ == GemmUniversalMode::kArray) ? batch_split_ : 1), reduction_blocks(0), dp_blocks(0), dp_first_wave_tiles(1), // Default: one tile per DP-block in the first wave of DP blocks sk_tiles(0), sk_big_blocks_per_region(0), sk_iters_per_region(0), sk_waves(0), sm_occupancy(sm_occupancy_), remap_block_indices(false), avail_sms(fast_max(1, avail_sms_)), cohort_raster(false) { int gpu_occupancy = device_sms_ * sm_occupancy; int iters_per_tile = (problem_size.k() + tile_size_.k() - 1) / tile_size_.k(); int sk_iters_per_normal_block = 0; int sk_regions = 1; // Default: a single region of iteration space (across all SK tiles) int sk_blocks_per_region = 0; GemmCoord tiled_shape( (problem_size.m() + tile_size_.m() - 1) / tile_size_.m(), (problem_size.n() + tile_size_.n() - 1) / tile_size_.n(), batch_count); size_t problem_bytes = (element_C_bytes_ * problem_size.m() * problem_size.n()) + (element_A_bytes_ * problem_size.m() * problem_size.k()) + (element_B_bytes_ * problem_size.k() * problem_size.n()); size_t problem_flops = size_t(problem_size.m()) * size_t(problem_size.n()) * size_t(problem_size.k()) * 2; [[maybe_unused]] float flops_per_byte = float(problem_flops) / float(problem_bytes); int output_tiles = tiled_shape.m() * tiled_shape.n(); int waves = (output_tiles + avail_sms - 1) / avail_sms; [[maybe_unused]] float dp_efficiency = float(output_tiles) / float(waves * avail_sms); // // Determine dispatch composition of DP-tiles and SK-blocks // // Start with a DP-only configuration int dp_tiles = output_tiles; // Number of data-parallel tiles int sk_blocks = 0; // Number of thread blocks to produce the remaining SK tiles // Only kGemm mode allows for SK load balancing if (mode_ == GemmUniversalMode::kGemm) { int split_factor = batch_split_; if (split_factor > 1) { // Split-K override dp_tiles = 0; sk_blocks = output_tiles * split_factor; } else if ((kReductionStrategy != kNone) && // Load-balancing strategy statically enabled (avail_sms > 1)) // Plurality of SMs to load balance across { // Use heuristics get_blocks( dp_tiles, /// [out] sk_blocks, /// [out] output_tiles, iters_per_tile, avail_sms, sm_occupancy); } } sk_tiles = output_tiles - dp_tiles; // Compute SK block iteration details if (sk_blocks > 0) { sk_waves = (sk_blocks + avail_sms - 1) / avail_sms; int sk_iters = sk_tiles * iters_per_tile; sk_blocks = fast_min(sk_blocks, sk_iters); sk_iters_per_normal_block = sk_iters / sk_blocks; int extra_sk_iters = sk_iters - (sk_iters_per_normal_block * sk_blocks); int sk_big_blocks = extra_sk_iters; if ((sk_blocks > sk_tiles) && (sk_blocks % sk_tiles == 0)) { // Split-K decomposition sk_regions = sk_tiles; } sk_blocks_per_region = sk_blocks / sk_regions; sk_big_blocks_per_region = sk_big_blocks / sk_regions; sk_iters_per_region = sk_iters / sk_regions; // Use a separate reduction wave when all of: // - Non-atomic reduction stratgy // - The number of SK waves won't fully occupy the GPU (Otherwise we don't have // a strong-scaling case for more parallel reduction) // - More than three peers working on an SK tile. (This occurs when the ratio of // SK-blocks to SK-tiles > 2, as a single tile may be covered by four SK-blocks, // e.g.:[partial-block | block | block | partial-block] ). With three or // less peers, the two non-finishing SK-blocks are not expexted to contend. if ((kReductionStrategy == kMixed) && (sk_waves < sm_occupancy) && (sk_blocks > 2 * sk_tiles)) { // Launch a reduction block for every accumulator fragment in each SK-tile reduction_blocks = sk_tiles * epilogue_acc_fragments_; } // When we have a multi-occupancy kernel and at least two waves of active blocks (where // at least one wave is SK blocks), we need to (1) dispatch at least four waves, and (2) // remap the block indices so that we can reliably spread the SK blocks evenly across the // device's first SM occupancy valence. Also see get_num_blocks() and get_block_idx(). remap_block_indices = ( (sm_occupancy > 1) && (device_sms_ == avail_sms) && (get_num_active_blocks() > avail_sms * 2)); // Initialize fast div/mod members related to SK div_mod_sk_iters_per_normal_block = FastDivmod(sk_iters_per_normal_block); div_mod_sk_iters_per_big_block = FastDivmod(sk_iters_per_normal_block + 1); div_mod_sk_iters_per_region = FastDivmod(sk_iters_per_region); div_mod_sk_regions = FastDivmod(sk_regions); div_mod_sk_blocks_per_region = FastDivmod(sk_blocks_per_region); } // // Compute DP blocks // dp_blocks = dp_tiles; cutlass::gemm::GemmCoord tiled_cohort_shape( (tiled_shape.m() + kCohortCtasM - 1) / kCohortCtasM, (tiled_shape.n() + kCohortCtasN - 1) / kCohortCtasN, tiled_shape.k()); int cohort_blocks = (tiled_cohort_shape.m() * tiled_cohort_shape.n()) * kCtasPerCohort; float cohort_efficiency = float(dp_blocks) / float(cohort_blocks); // Check if the SK tiles would be in cohorts that are in-bounds bool sk_in_range = true; if (sk_tiles > 0) { int last_sk_tile = sk_tiles - 1; int cohort_tile_idx = last_sk_tile / kCtasPerCohort; int cohort_grid_m = cohort_tile_idx / tiled_cohort_shape.n(); int cohort_grid_n = (cohort_grid_m > 0) ? tiled_cohort_shape.n() - 1 : cohort_tile_idx % tiled_cohort_shape.n(); if ((((cohort_grid_m + 1) * kCohortCtasM) >= tiled_shape.m()) || (((cohort_grid_n + 1) * kCohortCtasN) >= tiled_shape.n())) { sk_in_range = false; } } // Decide if we're going to be doing cohort raster if (sk_in_range && (dp_blocks >= gpu_occupancy * 2) && (cohort_efficiency > 0.85f)) { cohort_raster = true; dp_blocks = cohort_blocks; } else if (sk_waves > 0) { // Update semi-persistence of first DP wave to ensure full grid wavesets // (Only applies when there's an SK component and we're not doing blocked cohort rasterization) int dp_tile_waves = (dp_tiles + avail_sms - 1) / avail_sms; int full_dp_tile_waves = dp_tiles / avail_sms; int waveset_excess = (sk_waves + dp_tile_waves) % sm_occupancy; if (dp_first_wave_tiles + waveset_excess <= full_dp_tile_waves) { dp_first_wave_tiles += waveset_excess; dp_blocks -= (waveset_excess * avail_sms); } } // Setup fast-div/mod for device-side usage div_mod_tiled_shape_m = FastDivmod(tiled_shape.m()); div_mod_tiled_shape_n = FastDivmod(tiled_shape.n()); div_mod_tiled_cohort_shape_n = FastDivmod(tiled_cohort_shape.n()); div_mod_iters_per_tile = FastDivmod(iters_per_tile); } /// Number of blocks performing useful work int get_num_active_blocks() const { return (sk_waves * avail_sms) + dp_blocks + reduction_blocks; } /// Obtains number of threadblocks per GEMM int get_num_blocks() const { int active_blocks = get_num_active_blocks(); if (remap_block_indices) { // Add padding blocks if we are performing remapping in order to dispatch a grid of at least four waves return fast_max(active_blocks, avail_sms * 4); } return active_blocks; } /// Obtains grid extents in CTAs dim3 get_grid_dims() const { return dim3(get_num_blocks(), 1, batch_count); } // // Device-side interface // /// Obtains number of threadblocks per GEMM CUTLASS_DEVICE int device_num_blocks() const { return gridDim.x; } /// Obtains tile index for the given sk iteration CUTLASS_DEVICE int get_sk_tile_idx(int iter) const { int tile_idx = div_mod_iters_per_tile.div(iter); return tile_idx; } /// Obtains the batch index CUTLASS_DEVICE int get_batch_idx() const { return RematerializeBlockIdxZ(); } /// Obtains the calling threadblock's tiled coordinates for the given tile index CUTLASS_DEVICE GemmCoord get_tile_offset(int tile_idx) const { int m, n; // row-major raster div_mod_tiled_shape_n(m, n, tile_idx); if (tiled_shape().m() < tiled_shape().n()) { // column-major raster div_mod_tiled_shape_m(n, m, tile_idx); } if (cohort_raster) { // tiled cohort raster int cohort_tile_idx = tile_idx / kCtasPerCohort; int cohort_grid_m, cohort_grid_n; div_mod_tiled_cohort_shape_n(cohort_grid_m, cohort_grid_n, cohort_tile_idx); int block_idx_cohort = tile_idx % kCtasPerCohort; int block_cohort_m = block_idx_cohort / kCohortCtasN; int block_cohort_n = block_idx_cohort % kCohortCtasN; m = (cohort_grid_m * kCohortCtasM) + block_cohort_m; n = (cohort_grid_n * kCohortCtasN) + block_cohort_n; } return GemmCoord(m, n, get_batch_idx()); } /// Obtains the calling threadblock's tiled coordinates for the given tile index (row-major rasterization) CUTLASS_DEVICE GemmCoord get_tile_offset_row_major(int tile_idx) const { // row-major raster int m, n; div_mod_tiled_shape_n(m, n, tile_idx); return GemmCoord(m, n, get_batch_idx()); } /// Obtains calling threadblock's linear threadblock index CUTLASS_DEVICE int get_block_idx() const { int block_idx = RematerializeBlockIdxX(); // Remap the block indices for the first two waves of thread blocks if // we have multi-occupancy and the grid constitutes four or more waves if (remap_block_indices && (block_idx < avail_sms * 2)) { int dest_sm = block_idx / 2; int dest_wave = block_idx % 2; int remapped_block_idx = dest_sm + (dest_wave * avail_sms); block_idx = remapped_block_idx; } // Remap block indices to interleave SK regions to limit intra-region waiting if (block_idx < sk_regions() * sk_blocks_per_region()) { int block_in_region; int region; div_mod_sk_regions(block_in_region, region, block_idx); block_idx = (region * sk_blocks_per_region()) + block_in_region; } return block_idx; } /// Obtains calling linear threadblock index of the first block to work on the given tile CUTLASS_DEVICE int get_sk_block_idx(int iter) const { int region_idx; int iter_in_region; div_mod_sk_iters_per_region(region_idx, iter_in_region, iter); int big_block_iters = (sk_big_blocks_per_region * sk_iters_per_normal_block()) + sk_big_blocks_per_region; // number of iterations in the region's big blocks int normal_block_iters = iter_in_region - big_block_iters; // number of iterations in the region's normal blocks int big_block_idx_in_region = div_mod_sk_iters_per_big_block.div(iter_in_region); int normal_block_idx_in_region = sk_big_blocks_per_region + div_mod_sk_iters_per_normal_block.div(normal_block_iters); int block_idx_in_region = (big_block_idx_in_region < sk_big_blocks_per_region) ? big_block_idx_in_region : normal_block_idx_in_region; int owning_block_idx = (sk_blocks_per_region() * region_idx) + block_idx_in_region; return owning_block_idx; } /// Obtains iteration extends for the given SK block index CUTLASS_DEVICE void get_iter_extents( int sk_block_idx, int &block_iter_begin, int &block_iter_end) const { int region_idx; int block_idx_in_region; div_mod_sk_blocks_per_region(region_idx, block_idx_in_region, sk_block_idx); block_iter_begin = (region_idx * sk_iters_per_region) + (block_idx_in_region * sk_iters_per_normal_block()); // Adjust extents for the first "num_big_blocks" blocks that get one extra iteration int block_iters = sk_iters_per_normal_block(); if (block_idx_in_region < sk_big_blocks_per_region) { // This is a +1 iteration block block_iter_begin += block_idx_in_region; block_iters++; } else { // This is a regular block block_iter_begin += sk_big_blocks_per_region; } block_iter_end = block_iter_begin + block_iters; } /// Obtains calling linear threadblock index of the first block to work on the given tile CUTLASS_DEVICE int get_first_block_idx(int tile_idx, int block_idx) const { if (tile_idx >= sk_tiles) { // DP tile return block_idx; } int iter = tile_idx * iters_per_tile(); return get_sk_block_idx(iter); } }; ///////////////////////////////////////////////////////////////////////////////////////////////// } // namespace threadblock } // namespace gemm } // namespace cutlass
include/cutlass/gemm/threadblock/threadblock_swizzle_streamk.h/0
{ "file_path": "include/cutlass/gemm/threadblock/threadblock_swizzle_streamk.h", "repo_id": "include", "token_count": 10734 }
41
/*************************************************************************************************** * Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. * SPDX-License-Identifier: BSD-3-Clause * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * **************************************************************************************************/ /*! \file \brief Templates implementing warp-level matrix multiply-accumulate operations. */ #pragma once #include "cutlass/cutlass.h" #include "cutlass/array.h" #include "cutlass/numeric_types.h" #include "cutlass/matrix_shape.h" #include "cutlass/gemm/gemm.h" #include "cutlass/gemm/warp/mma.h" #include "cutlass/gemm/thread/mma.h" #include "cutlass/gemm/warp/mma_simt_tile_iterator.h" #include "cutlass/gemm/warp/mma_simt_policy.h" ///////////////////////////////////////////////////////////////////////////////////////////////// namespace cutlass { namespace gemm { namespace warp { ///////////////////////////////////////////////////////////////////////////////////////////////// /// Structure to compute the matrix product targeting CUDA cores and SIMT math instructions. template < /// Size of the Gemm problem - concept: gemm::GemmShape<> typename Shape_, /// Data type of A elements typename ElementA_, /// Layout of A matrix (concept: MatrixLayout) typename LayoutA_, /// Data type of B elements typename ElementB_, /// Layout of B matrix (concept: MatrixLayout) typename LayoutB_, /// Element type of C matrix typename ElementC_, /// Layout of C matrix (concept: MatrixLayout) typename LayoutC_, /// Shape of the warp in units of thread (concept: MmaSimtPolicy) typename Policy_, /// Number of partitions along K dimension int PartitionsK = 1, /// Complex transformation on operand A ComplexTransform TransformA = ComplexTransform::kNone, /// Complex transformation on operand B ComplexTransform TransformB = ComplexTransform::kNone, /// Used for partial specialization typename Enable = bool > class MmaSimt { public: /// Shape of warp-level matrix operation (concept: GemmShape) using Shape = Shape_; /// Data type of multiplicand A using ElementA = ElementA_; /// Layout of multiplicand A using LayoutA = LayoutA_; /// Data type of multiplicand B using ElementB = ElementB_; /// Layout of multiplicand B using LayoutB = LayoutB_; /// Data type of accumulator matrix C using ElementC = ElementC_; /// Layout of accumulator matrix C using LayoutC = LayoutC_; /// Shape of the warp in units of thread (concept: MmaLanePolicySimt) using Policy = Policy_; /// Indicates class of matrix operator using OperatorClass = arch::OpClassSimt; /// Hard-coded for now using ArchTag = arch::Sm50; /// Complex transform on A operand static ComplexTransform const kTransformA = TransformA; /// Complex transform on B operand static ComplexTransform const kTransformB = TransformB; /// Layout of threads using ThreadLayoutA = typename platform::conditional< platform::is_same< layout::ColumnMajorInterleaved<4>, LayoutA >::value, layout::ColumnMajor, typename platform::conditional < platform::is_same< layout::RowMajorInterleaved<4>, LayoutA >::value, layout::RowMajor, LayoutA>::type >::type; using ThreadLayoutB = typename platform::conditional< platform::is_same< layout::ColumnMajorInterleaved<4>, LayoutB >::value, layout::ColumnMajor, typename platform::conditional < platform::is_same< layout::RowMajorInterleaved<4>, LayoutB >::value, layout::RowMajor, LayoutB>::type >::type; static constexpr bool use_dp4a = (platform::is_same< layout::ColumnMajorInterleaved<4>, LayoutA>::value || platform::is_same< layout::RowMajorInterleaved<4>, LayoutA >::value) && platform::is_same< ElementA, int8_t >::value && platform::is_same< ElementB, int8_t >::value; using dp4a_type = typename platform::conditional< use_dp4a , int8_t, bool >::type; /// Thread-level matrix multiply accumulate operator using ThreadMma = thread::Mma< GemmShape< Shape::kM / Policy::WarpShape::kRow, Shape::kN / Policy::WarpShape::kColumn, Policy::LaneMmaShape::kK>, ElementA, ThreadLayoutA, ElementB, ThreadLayoutB, ElementC, LayoutC, arch::OpMultiplyAdd, dp4a_type >; /// Underlying matrix multiply operator (concept: arch::Mma) using ArchMmaOperator = typename ThreadMma::ArchMmaOperator; /// Indicates math operator using MathOperator = typename ArchMmaOperator::Operator; /// Shape of the underlying instruction using InstructionShape = GemmShape<1,1,use_dp4a ? 4 : 1>; public: /// Iterates over the A operand in memory using IteratorA = MmaSimtTileIterator< MatrixShape<Shape::kM, Policy::LaneMmaShape::kK>, Operand::kA, ElementA, LayoutA, Policy, PartitionsK, Shape::kK >; /// Storage for A tile using FragmentA = typename IteratorA::Fragment; /// Storage for transformed A tile using TransformedFragmentA = FragmentA; /// Iterates over the B operand in memory using IteratorB = MmaSimtTileIterator< MatrixShape<Policy::LaneMmaShape::kK, Shape::kN>, Operand::kB, ElementB, LayoutB, Policy, PartitionsK, Shape::kK >; /// Storage for B tile using FragmentB = typename IteratorB::Fragment; /// Storage for transformed A tile using TransformedFragmentB = FragmentB; /// Iterates over the C operand in memory using IteratorC = MmaSimtTileIterator< MatrixShape<Shape::kM, Shape::kN>, Operand::kC, ElementC, LayoutC, Policy >; /// Storage for C tile using FragmentC = typename ThreadMma::FragmentC; public: // // Methods // /// Ctor CUTLASS_DEVICE MmaSimt() {} /// Performs a warp-level matrix multiply-accumulate operation CUTLASS_DEVICE void operator()( FragmentC &d, FragmentA a, FragmentB b, FragmentC const &c, int group_idx = 0) const { ThreadMma mma; if (kTransformA == ComplexTransform::kConjugate) { conjugate<FragmentA> conj_a; a = conj_a(a); } if (kTransformB == ComplexTransform::kConjugate) { conjugate<FragmentB> conj_b; b = conj_b(b); } mma(d, a, b, c); } /// Transform the mma operands to the required types CUTLASS_DEVICE void transform(TransformedFragmentA &dst_A, TransformedFragmentB &dst_B, FragmentA const &A, FragmentB const &B) const { dst_A = A; dst_B = B; } }; ///////////////////////////////////////////////////////////////////////////////////////////////// } // namespace warp } // namespace gemm } // namespace cutlass
include/cutlass/gemm/warp/mma_simt.h/0
{ "file_path": "include/cutlass/gemm/warp/mma_simt.h", "repo_id": "include", "token_count": 2843 }
42
/*************************************************************************************************** * Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. * SPDX-License-Identifier: BSD-3-Clause * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * **************************************************************************************************/ /*! \file \brief Templates implementing warp-level matrix multiply-accumulate operations targeting Tensor Cores. */ #pragma once #include "cutlass/cutlass.h" #include "cutlass/array.h" #include "cutlass/platform/platform.h" #include "cutlass/numeric_conversion.h" #include "cutlass/numeric_types.h" #include "cutlass/matrix_shape.h" #include "cutlass/arch/memory_sm75.h" #include "cutlass/arch/mma_sm75.h" #include "cutlass/arch/mma_sm80.h" #include "cutlass/gemm/gemm.h" #include "cutlass/gemm/warp/mma.h" #include "cutlass/gemm/warp/mma_tensor_op_policy.h" #include "cutlass/gemm/warp/mma_tensor_op.h" #include "cutlass/gemm/warp/mma_tensor_op_tile_iterator.h" #include "cutlass/gemm/warp/mma_tensor_op_tile_iterator_sm80.h" ///////////////////////////////////////////////////////////////////////////////////////////////// namespace cutlass { namespace gemm { namespace warp { ///////////////////////////////////////////////////////////////////////////////////////////////// /// Structure to compute the matrix product targeting CUDA cores and SIMT math instructions. template < /// Size of the Gemm problem - concept: gemm::GemmShape<> typename Shape_, /// Data type of A elements typename ElementA_, /// Layout of A matrix (concept: MatrixLayout) typename LayoutA_, /// Data type of B elements typename ElementB_, /// Layout of B matrix (concept: MatrixLayout) typename LayoutB_, /// Element type of C matrix typename ElementC_, /// Layout of C matrix (concept: MatrixLayout) typename LayoutC_, /// Policy describing warp-level MmaTensorOp (concept: MmaTensorOp policy) typename Policy_, /// Reduce operand A or B along K dimension bool ReduceKForA_, /// Number of partitions along K dimension int PartitionsK_ = 1, /// Store the accumulators in row major or column major. Row major is used /// when output layout is interleaved. bool AccumulatorsInRowMajor = false, /// Used for partial specialization typename Enable = bool > class MmaWithReductionTensorOp { public: /// Shape of warp-level matrix operation (concept: GemmShape) using Shape = Shape_; /// Data type of multiplicand A using ElementA = ElementA_; /// Layout of multiplicand A using LayoutA = LayoutA_; /// Data type of multiplicand B using ElementB = ElementB_; /// Layout of multiplicand B using LayoutB = LayoutB_; /// Data type of accumulator matrix C using ElementC = ElementC_; /// Layout of accumulator matrix C using LayoutC = LayoutC_; /// Shape of the warp in units of thread (concept: MmaLanePolicySimt) using Policy = Policy_; /// Underlying matrix multiply operator (concept: arch::Mma) using ArchMmaOperator = typename Policy::Operator; /// Indicates math operator using MathOperator = typename ArchMmaOperator::Operator; /// Architecture tag from underlying instruction using ArchTag = typename ArchMmaOperator::ArchTag; /// Indicates class of matrix operator using OperatorClass = arch::OpClassTensorOp; /// Shape of underlying instruction using InstructionShape = typename ArchMmaOperator::Shape; /// Complex transform on A operand static ComplexTransform const kTransformA = ComplexTransform::kNone; /// Complex transform on B operand static ComplexTransform const kTransformB = ComplexTransform::kNone; /// Number of threads participating in warp-level matrix product static int const kThreadCount = 32; /// Number of partitions along K dimension static int const kPartitionsK = PartitionsK_; static bool const kReduceKForA = ReduceKForA_; static_assert(platform::is_same<ElementA, cutlass::half_t>::value || platform::is_same<ElementA, cutlass::bfloat16_t>::value, "ElementA needs to be fp16 or bf16."); static_assert(platform::is_same<ElementB, cutlass::half_t>::value || platform::is_same<ElementB, cutlass::bfloat16_t>::value, "ElementB needs to be fp16 or bf16."); static_assert(platform::is_same<InstructionShape, cutlass::gemm::GemmShape<16, 8, 16>>::value, "Only supports 16x8x16 tensor core instruction."); static_assert(!AccumulatorsInRowMajor, "Only calls tensor core instructions in column major."); public: /// Iterates over the A operand in memory using IteratorA = MmaTensorOpMultiplicandTileIterator< MatrixShape<Shape::kM, Shape::kK>, Operand::kA, ElementA, LayoutA, MatrixShape<ArchMmaOperator::Shape::kM, ArchMmaOperator::Shape::kK>, Policy::OpDelta::kRow, kThreadCount, kPartitionsK>; /// Storage for A tile using FragmentA = typename IteratorA::Fragment; /// Storage for transformed A tile using TransformedFragmentA = Array<typename ArchMmaOperator::ElementA, FragmentA::kElements>; /// Iterates over the B operand in memory using IteratorB = MmaTensorOpMultiplicandTileIterator< MatrixShape<Shape::kK, Shape::kN>, Operand::kB, ElementB, LayoutB, MatrixShape<ArchMmaOperator::Shape::kK, ArchMmaOperator::Shape::kN>, Policy::OpDelta::kRow, kThreadCount, kPartitionsK>; /// Storage for B tile using FragmentB = typename IteratorB::Fragment; /// Storage for transformed B tile using TransformedFragmentB = Array<typename ArchMmaOperator::ElementB, FragmentB::kElements>; /// Iterates over the C operand in memory using IteratorC = MmaTensorOpAccumulatorTileIterator< MatrixShape<Shape::kM, Shape::kN>, ElementC, LayoutC, typename ArchMmaOperator::Shape, typename Policy::OpDelta>; /// Storage for C tile using FragmentC = typename IteratorC::Fragment; /// Number of mma operations performed using MmaIterations = MatrixShape< (Shape::kM + ArchMmaOperator::Shape::kM - 1) / ArchMmaOperator::Shape::kM, (Shape::kN + ArchMmaOperator::Shape::kN - 1) / ArchMmaOperator::Shape::kN >; using FragmentReduction = Array<ElementC, kReduceKForA ? (Shape::kM / 8) : (Shape::kN / 8)>; public: /// Underlying matrix multiply operator (concept: arch::Mma) ArchMmaOperator mma; public: // // Methods // /// Ctor CUTLASS_DEVICE MmaWithReductionTensorOp() {} /// Performs a warp-level matrix multiply-accumulate operation CUTLASS_DEVICE void operator()( FragmentC &D, TransformedFragmentA const &A, TransformedFragmentB const &B, FragmentC const &C, FragmentReduction &gemm_k_reduction ) const { using MmaOperandA = typename ArchMmaOperator::FragmentA; using MmaOperandB = typename ArchMmaOperator::FragmentB; using MmaOperandC = typename ArchMmaOperator::FragmentC; D = C; [[maybe_unused]] MmaOperandA const *ptr_A = reinterpret_cast<MmaOperandA const *>(&A); [[maybe_unused]] MmaOperandB const *ptr_B = reinterpret_cast<MmaOperandB const *>(&B); [[maybe_unused]] MmaOperandC *ptr_D = reinterpret_cast<MmaOperandC *>(&D); #if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ < 800) assert(0); #elif defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 800) // Serpentine visitation order maximizing reuse of Ra CUTLASS_PRAGMA_UNROLL for (int m = 0; m < MmaIterations::kRow; ++m) { CUTLASS_PRAGMA_UNROLL for (int n = 0; n < MmaIterations::kColumn; ++n) { int n_serpentine = ((m % 2) ? (MmaIterations::kColumn - 1 - n) : n); mma(ptr_D[m + n_serpentine * MmaIterations::kRow], ptr_A[m], ptr_B[n_serpentine], ptr_D[m + n_serpentine * MmaIterations::kRow]); if (!kReduceKForA && m == 0) { #if 0 gemm_k_reduction[n_serpentine] += float(B[n_serpentine * 4]); gemm_k_reduction[n_serpentine] += float(B[n_serpentine * 4 + 1]); gemm_k_reduction[n_serpentine] += float(B[n_serpentine * 4 + 2]); gemm_k_reduction[n_serpentine] += float(B[n_serpentine * 4 + 3]); #else uint32_t const *tmp = reinterpret_cast<uint32_t const *>(&B); if (platform::is_same<ElementB, cutlass::half_t>::value) { asm volatile( "{\n\t" " .reg .f16 low, high;\n\t" " .reg .f32 tmp;\n\t" " mov.b32 {low, high}, %1;\n\t" " cvt.f32.f16 tmp, low;\n\t" " add.f32 %0, tmp, %0;\n\t" " cvt.f32.f16 tmp, high;\n\t" " add.f32 %0, tmp, %0;\n\t" " mov.b32 {low, high}, %2;\n\t" " cvt.f32.f16 tmp, low;\n\t" " add.f32 %0, tmp, %0;\n\t" " cvt.f32.f16 tmp, high;\n\t" " add.f32 %0, tmp, %0;\n\t" "}\n\t" : "+f"(gemm_k_reduction[n_serpentine]) : "r"(tmp[n_serpentine * 2]), "r"(tmp[n_serpentine * 2 + 1])); } else if (platform::is_same<ElementB, cutlass::bfloat16_t>::value) { asm volatile( "{\n\t" " .reg .f32 tmp;\n\t" " shl.b32 tmp, %1, 16;\n\t" " add.f32 %0, tmp, %0;\n\t" " and.b32 tmp, %1, 0xffff0000;\n\t" " add.f32 %0, tmp, %0;\n\t" " shl.b32 tmp, %2, 16;\n\t" " add.f32 %0, tmp, %0;\n\t" " and.b32 tmp, %2, 0xffff0000;\n\t" " add.f32 %0, tmp, %0;\n\t" "}\n\t" : "+f"(gemm_k_reduction[n_serpentine]) : "r"(tmp[n_serpentine * 2]), "r"(tmp[n_serpentine * 2 + 1])); } else { assert(0); } #endif } if (kReduceKForA && (n == 0)) { #if 0 gemm_k_reduction[m * 2] += float(A[m * 8]); gemm_k_reduction[m * 2] += float(A[m * 8 + 1]); gemm_k_reduction[m * 2] += float(A[m * 8 + 4]); gemm_k_reduction[m * 2] += float(A[m * 8 + 5]); gemm_k_reduction[m * 2 + 1] += float(A[m * 8 + 2]); gemm_k_reduction[m * 2 + 1] += float(A[m * 8 + 3]); gemm_k_reduction[m * 2 + 1] += float(A[m * 8 + 6]); gemm_k_reduction[m * 2 + 1] += float(A[m * 8 + 7]); #else uint32_t const *tmp = reinterpret_cast<uint32_t const *>(&A); if (platform::is_same<ElementA, cutlass::half_t>::value) { asm volatile( "{\n\t" " .reg .f16 low, high;\n\t" " .reg .f32 tmp;\n\t" " mov.b32 {low, high}, %2;\n\t" " cvt.f32.f16 tmp, low;\n\t" " add.f32 %0, tmp, %0;\n\t" " cvt.f32.f16 tmp, high;\n\t" " add.f32 %0, tmp, %0;\n\t" " mov.b32 {low, high}, %3;\n\t" " cvt.f32.f16 tmp, low;\n\t" " add.f32 %1, tmp, %1;\n\t" " cvt.f32.f16 tmp, high;\n\t" " add.f32 %1, tmp, %1;\n\t" " mov.b32 {low, high}, %4;\n\t" " cvt.f32.f16 tmp, low;\n\t" " add.f32 %0, tmp, %0;\n\t" " cvt.f32.f16 tmp, high;\n\t" " add.f32 %0, tmp, %0;\n\t" " mov.b32 {low, high}, %5;\n\t" " cvt.f32.f16 tmp, low;\n\t" " add.f32 %1, tmp, %1;\n\t" " cvt.f32.f16 tmp, high;\n\t" " add.f32 %1, tmp, %1;\n\t" "}\n\t" : "+f"(gemm_k_reduction[m * 2]), "+f"(gemm_k_reduction[m * 2 + 1]) : "r"(tmp[m * 4]), "r"(tmp[m * 4 + 1]),"r"(tmp[m * 4 + 2]), "r"(tmp[m * 4 + 3])); } else if (platform::is_same<ElementA, cutlass::bfloat16_t>::value) { asm volatile( "{\n\t" " .reg .f32 tmp;\n\t" " shl.b32 tmp, %2, 16;\n\t" " add.f32 %0, tmp, %0;\n\t" " and.b32 tmp, %2, 0xffff0000;\n\t" " add.f32 %0, tmp, %0;\n\t" " shl.b32 tmp, %3, 16;\n\t" " add.f32 %1, tmp, %1;\n\t" " and.b32 tmp, %3, 0xffff0000;\n\t" " add.f32 %1, tmp, %1;\n\t" " shl.b32 tmp, %4, 16;\n\t" " add.f32 %0, tmp, %0;\n\t" " and.b32 tmp, %4, 0xffff0000;\n\t" " add.f32 %0, tmp, %0;\n\t" " shl.b32 tmp, %5, 16;\n\t" " add.f32 %1, tmp, %1;\n\t" " and.b32 tmp, %5, 0xffff0000;\n\t" " add.f32 %1, tmp, %1;\n\t" "}\n\t" : "+f"(gemm_k_reduction[m * 2]), "+f"(gemm_k_reduction[m * 2 + 1]) : "r"(tmp[m * 4]), "r"(tmp[m * 4 + 1]),"r"(tmp[m * 4 + 2]), "r"(tmp[m * 4 + 3])); } else { assert(0); } #endif } } } #else assert(0); #endif } /// Transform the mma operands to the required types CUTLASS_DEVICE void transform(TransformedFragmentA &dst_A, TransformedFragmentB &dst_B, FragmentA const &A, FragmentB const &B) const { // // Define conversions from source type to instruction type // FloatRoundStyle const kRoundA = PreferredRoundingMode<typename ArchMmaOperator::ElementA, ElementA>::kRound; FloatRoundStyle const kRoundB = PreferredRoundingMode<typename ArchMmaOperator::ElementB, ElementB>::kRound; #if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ < 800) detail::ConvertAndPack<typename ArchMmaOperator::ElementA, ElementA, FragmentA::kElements, kRoundA> convert_A; NumericArrayConverter<typename ArchMmaOperator::ElementB, ElementB, FragmentB::kElements / 2, kRoundB> convert_B; Array<ElementB, FragmentB::kElements / 2> const *ptr_B = reinterpret_cast<Array<ElementB, FragmentB::kElements / 2> const *>(&B); Array<typename ArchMmaOperator::ElementB, FragmentB::kElements / 2> * ptr_dst_B = reinterpret_cast<Array<typename ArchMmaOperator::ElementB, FragmentB::kElements / 2> *>(&dst_B); dst_A = convert_A(A); ptr_dst_B[0] = convert_B(ptr_B[0]); ptr_dst_B[1] = convert_B(ptr_B[1]); #elif defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 800) detail::ConvertAndPack<typename ArchMmaOperator::ElementA, ElementA, FragmentA::kElements / 2, kRoundA> convert_A; NumericArrayConverter<typename ArchMmaOperator::ElementB, ElementB, FragmentB::kElements, kRoundB> convert_B; Array<ElementA, FragmentA::kElements / 2> const *ptr_A = reinterpret_cast<Array<ElementA, FragmentA::kElements / 2> const *>(&A); Array<typename ArchMmaOperator::ElementA, FragmentA::kElements / 2> * ptr_dst_A = reinterpret_cast<Array<typename ArchMmaOperator::ElementA, FragmentA::kElements / 2> *>(&dst_A); dst_B = convert_B(B); ptr_dst_A[0] = convert_A(ptr_A[0]); ptr_dst_A[1] = convert_A(ptr_A[1]); #else assert(0); #endif } }; ///////////////////////////////////////////////////////////////////////////////////////////////// } // namespace warp } // namespace gemm } // namespace cutlass /////////////////////////////////////////////////////////////////////////////////////////////////
include/cutlass/gemm/warp/mma_with_reduction_tensor_op.h/0
{ "file_path": "include/cutlass/gemm/warp/mma_with_reduction_tensor_op.h", "repo_id": "include", "token_count": 7946 }
43
/*************************************************************************************************** * Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. * SPDX-License-Identifier: BSD-3-Clause * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * **************************************************************************************************/ /*! \file \brief */ #pragma once #include "cutlass/cutlass.h" #include "cutlass/coord.h" #include "cutlass/layout/pitch_linear.h" ///////////////////////////////////////////////////////////////////////////////////////////////// namespace cutlass { namespace layout { // template < // int ElementSize, // gemm::Operand Operand // > // struct VoltaTensorOpMultiplicandCongruous; // template < // int ElementSize, // gemm::Operand Operand // > // struct ColumnMajorVoltaTensorOpMultiplicandCongruous; // template < // int ElementSize, // gemm::Operand Operand // > // struct RowMajorVoltaTensorOpMultiplicandCongruous; ///////////////////////////////////////////////////////////////////////////////////////////////// /// Template based on element size (in bits) - defined in terms of pitch-linear memory. template <int ElementSize> struct VoltaTensorOpMultiplicandCongruous { /// Logical rank of tensor static int const kRank = 2; /// Rank of stride vector static int const kStrideRank = 1; /// Index type used for coordinates using Index = int32_t; /// Long index type used for offsets using LongIndex = int64_t; /// Logical coordinate using TensorCoord = PitchLinearCoord; /// Stride vector using Stride = Coord<kStrideRank, Index, LongIndex>; // // Invariants // /// This layout is optimized for 128b accesses static int const kAccessSize = 128; /// Fundamental tile shape in units of vectors using TileShape = PitchLinearShape<8, 4>; /// Fundamental partition shape in units of vectors using PartitionShape = PitchLinearShape<8, 2>; // // Static constants // static int const kElementSize = ElementSize; static int const kElementsPerAccess = kAccessSize / kElementSize; using PartitionCount = PitchLinearShape< TileShape::kContiguous / PartitionShape::kContiguous, TileShape::kStrided / PartitionShape::kStrided >; using AccessCount = PitchLinearShape< PartitionShape::kContiguous, PartitionShape::kStrided >; private: // // Data members // /// Stride data member Stride stride_; public: // // Methods // /// Ctor CUTLASS_HOST_DEVICE VoltaTensorOpMultiplicandCongruous(Index ldm = 0): stride_(ldm) { } /// Ctor CUTLASS_HOST_DEVICE VoltaTensorOpMultiplicandCongruous(Stride stride): stride_(stride) { } /// Helper returns a layout to a tightly packed tensor CUTLASS_HOST_DEVICE static VoltaTensorOpMultiplicandCongruous packed(TensorCoord const &extent) { return VoltaTensorOpMultiplicandCongruous(extent[0]); } /// Returns the offset of a coordinate in linear memory. /// Assumes coordinate has convention (contiguous, strided) CUTLASS_HOST_DEVICE LongIndex operator()(TensorCoord const &coord) const { // First, compute c and s of vector within source (in units of vector accesses) int vec_contiguous_idx = coord.contiguous() / kElementsPerAccess; int vec_strided_idx = coord.strided(); // Compute the fundamental tile being accessed int tile_contiguous_idx = vec_contiguous_idx / TileShape::kContiguous; int tile_strided_idx = vec_strided_idx / TileShape::kStrided; int tile_contiguous_residual = vec_contiguous_idx % TileShape::kContiguous; int tile_strided_residual = vec_strided_idx % TileShape::kStrided; // Then swizzle in a tile // Swizzle pattern is (tid[2:0] << 2)|(tid[4:3] ^ tid[2:1]) int permuted_strided_within_tile = (tile_contiguous_residual >> 1); int permuted_contiguous_within_tile = (tile_strided_residual ^ permuted_strided_within_tile) | ((tile_contiguous_residual & 1) << 2); // Compute final element location int element_contiguous = (tile_contiguous_idx * TileShape::kContiguous + permuted_contiguous_within_tile) * kElementsPerAccess + (coord.contiguous() % kElementsPerAccess); int element_strided = tile_strided_idx * TileShape::kStrided + permuted_strided_within_tile; return element_contiguous + element_strided * stride_[0]; } /// Returns the stride of the layout CUTLASS_HOST_DEVICE Stride stride() const { return stride_; } /// Returns the stride of the layout CUTLASS_HOST_DEVICE Stride & stride() { return stride_; } /// Compute the number of contiguous elements needed to store a tensor with the given size CUTLASS_HOST_DEVICE LongIndex capacity(TensorCoord const &extent) const { return extent[1] * stride_[0]; } }; ///////////////////////////////////////////////////////////////////////////////////////////////// /// Template mapping a column-major view of pitch-linear memory to VoltaTensorOpMultiplicandCongruous template <int ElementSize> struct ColumnMajorVoltaTensorOpMultiplicandCongruous { /// Logical rank of tensor static int const kRank = 2; /// Rank of stride vector static int const kStrideRank = 1; /// Index type used for coordinates using Index = int32_t; /// Long index type used for offsets using LongIndex = int64_t; /// Logical coordinate using TensorCoord = MatrixCoord; /// Stride vector using Stride = Coord<kStrideRank, Index, LongIndex>; // // Invariants // using Base = VoltaTensorOpMultiplicandCongruous<ElementSize>; /// This layout is optimized for 128b accesses static int const kAccessSize = Base::kAccessSize; using TileShape = typename Base::TileShape; using PartitionShape = typename Base::PartitionShape; // // Static constants // static int const kElementSize = Base::kElementSize; static int const kElementsPerAccess = Base::kElementsPerAccess; using PartitionCount = typename Base::PartitionCount; using AccessCount = typename Base::AccessCount; private: // // Data members // Base layout_; public: // // Methods // /// Ctor CUTLASS_HOST_DEVICE ColumnMajorVoltaTensorOpMultiplicandCongruous(Index ldm = 0): layout_(ldm) { } /// Ctor CUTLASS_HOST_DEVICE ColumnMajorVoltaTensorOpMultiplicandCongruous(Stride stride): layout_(stride) { } /// Helper returns a layout to a tightly packed tensor CUTLASS_HOST_DEVICE static ColumnMajorVoltaTensorOpMultiplicandCongruous packed(TensorCoord const &extent) { return ColumnMajorVoltaTensorOpMultiplicandCongruous(extent.row()); } /// Returns the offset of a coordinate in linear memory. /// Assumes coordinate has convention (contiguous, strided) CUTLASS_HOST_DEVICE LongIndex operator()(TensorCoord const &coord) const { return layout_(PitchLinearCoord(coord.row(), coord.column())); } /// Inverse of layout function, mapping linear offset to logical coordinate CUTLASS_HOST_DEVICE TensorCoord inverse(LongIndex offset) const { PitchLinearCoord coord = layout_.inverse(offset); return MatrixCoord(coord.contiguous(), coord.strided()); } /// Returns the stride of the layout CUTLASS_HOST_DEVICE Stride stride() const { return layout_.stride(); } /// Returns the stride of the layout CUTLASS_HOST_DEVICE Stride & stride() { return layout_.stride(); } /// Compute the number of contiguous elements needed to store a tensor with the given size CUTLASS_HOST_DEVICE LongIndex capacity(TensorCoord const &extent) const { return layout_.capacity(PitchLinearCoord(extent.row(), extent.column())); } }; /// Template mapping a row-major view of pitch-linear memory to VoltaTensorOpMultiplicandCongruous template <int ElementSize> struct RowMajorVoltaTensorOpMultiplicandCongruous { /// Logical rank of tensor static int const kRank = 2; /// Rank of stride vector static int const kStrideRank = 1; /// Index type used for coordinates using Index = int32_t; /// Long index type used for offsets using LongIndex = int64_t; /// Logical coordinate using TensorCoord = MatrixCoord; /// Stride vector using Stride = Coord<kStrideRank, Index, LongIndex>; // // Invariants // using Base = VoltaTensorOpMultiplicandCongruous<ElementSize>; /// This layout is optimized for 128b accesses static int const kAccessSize = Base::kAccessSize; using TileShape = typename Base::TileShape; using PartitionShape = typename Base::PartitionShape; // // Static constants // static int const kElementSize = Base::kElementSize; static int const kElementsPerAccess = Base::kElementsPerAccess; using PartitionCount = typename Base::PartitionCount; using AccessCount = typename Base::AccessCount; private: // // Data members // Base layout_; public: // // Methods // /// Ctor CUTLASS_HOST_DEVICE RowMajorVoltaTensorOpMultiplicandCongruous(Index ldm = 0): layout_(ldm) { } /// Ctor CUTLASS_HOST_DEVICE RowMajorVoltaTensorOpMultiplicandCongruous(Stride stride): layout_(stride) { } /// Helper returns a layout to a tightly packed tensor CUTLASS_HOST_DEVICE static RowMajorVoltaTensorOpMultiplicandCongruous packed(TensorCoord const &extent) { return RowMajorVoltaTensorOpMultiplicandCongruous(extent.column()); } /// Returns the offset of a coordinate in linear memory. /// Assumes coordinate has convention (contiguous, strided) CUTLASS_HOST_DEVICE LongIndex operator()(TensorCoord const &coord) const { return layout_(PitchLinearCoord(coord.column(), coord.row())); } /// Inverse of layout function, mapping linear offset to logical coordinate CUTLASS_HOST_DEVICE TensorCoord inverse(LongIndex offset) const { PitchLinearCoord coord = layout_.inverse(offset); return MatrixCoord(coord.strided(), coord.contiguous()); } /// Returns the stride of the layout CUTLASS_HOST_DEVICE Stride stride() const { return layout_.stride(); } /// Returns the stride of the layout CUTLASS_HOST_DEVICE Stride & stride() { return layout_.stride(); } /// Compute the number of contiguous elements needed to store a tensor with the given size CUTLASS_HOST_DEVICE LongIndex capacity(TensorCoord const &extent) const { return layout_.capacity(PitchLinearCoord(extent.column(), extent.row())); } }; /// Template based on element size (in bits) - defined in terms of pitch-linear memory. // template <int ElementSize, Operand Operand> template <int ElementSize> struct VoltaTensorOpMultiplicandBCongruous { /// Logical rank of tensor static int const kRank = 2; /// Rank of stride vector static int const kStrideRank = 1; /// Index type used for coordinates using Index = int32_t; /// Long index type used for offsets using LongIndex = int64_t; /// Logical coordinate using TensorCoord = PitchLinearCoord; /// Stride vector using Stride = Coord<kStrideRank, Index, LongIndex>; // // Invariants // /// This layout is optimized for 128b accesses static int const kAccessSize = 128; /// Fundamental tile shape in units of vectors using TileShape = PitchLinearShape<8, 4>; /// Fundamental partition shape in units of vectors using PartitionShape = PitchLinearShape<4, 4>; // // Static constants // static int const kElementSize = ElementSize; static int const kElementsPerAccess = kAccessSize / kElementSize; using PartitionCount = PitchLinearShape< TileShape::kContiguous / PartitionShape::kContiguous, TileShape::kStrided / PartitionShape::kStrided >; using AccessCount = PitchLinearShape< PartitionShape::kContiguous, PartitionShape::kStrided >; private: // // Data members // /// Stride data member Stride stride_; public: // // Methods // /// Ctor CUTLASS_HOST_DEVICE VoltaTensorOpMultiplicandBCongruous(Index ldm = 0): stride_(ldm) { } /// Ctor CUTLASS_HOST_DEVICE VoltaTensorOpMultiplicandBCongruous(Stride stride): stride_(stride) { } /// Helper returns a layout to a tightly packed tensor CUTLASS_HOST_DEVICE static VoltaTensorOpMultiplicandBCongruous packed(TensorCoord const &extent) { return VoltaTensorOpMultiplicandBCongruous(extent[0]); } /// Returns the offset of a coordinate in linear memory. /// Assumes coordinate has convention (contiguous, strided) CUTLASS_HOST_DEVICE LongIndex operator()(TensorCoord const &coord) const { // First, compute c and s of vector within source (in units of vector accesses) int vec_contiguous_idx = coord.contiguous() / kElementsPerAccess; int vec_strided_idx = coord.strided(); // Compute the fundamental tile being accessed int tile_contiguous_idx = vec_contiguous_idx / TileShape::kContiguous; int tile_strided_idx = vec_strided_idx / TileShape::kStrided; int tile_contiguous_residual = vec_contiguous_idx % TileShape::kContiguous; int tile_strided_residual = vec_strided_idx % TileShape::kStrided; // Then swizzle in a tile // Swizzle pattern is (tid[1:0] << 3)|(tid & 0x4)|(tid[1:0]) int permuted_strided_within_tile = (tile_contiguous_residual & 0x3); int permuted_contiguous_within_tile = (tile_strided_residual ^ permuted_strided_within_tile) | (tile_contiguous_residual & 0x4); // Compute final element location int element_contiguous = (tile_contiguous_idx * TileShape::kContiguous + permuted_contiguous_within_tile) * kElementsPerAccess + (coord.contiguous() % kElementsPerAccess); int element_strided = tile_strided_idx * TileShape::kStrided + permuted_strided_within_tile; return element_contiguous + element_strided * stride_[0]; } /// Returns the stride of the layout CUTLASS_HOST_DEVICE Stride stride() const { return stride_; } /// Returns the stride of the layout CUTLASS_HOST_DEVICE Stride & stride() { return stride_; } /// Compute the number of contiguous elements needed to store a tensor with the given size CUTLASS_HOST_DEVICE LongIndex capacity(TensorCoord const &extent) const { return extent[1] * stride_[0]; } }; ///////////////////////////////////////////////////////////////////////////////////////////////// /// Template mapping a column-major view of pitch-linear memory to VoltaTensorOpMultiplicandCongruous template <int ElementSize> struct ColumnMajorVoltaTensorOpMultiplicandBCongruous { /// Logical rank of tensor static int const kRank = 2; /// Rank of stride vector static int const kStrideRank = 1; /// Index type used for coordinates using Index = int32_t; /// Long index type used for offsets using LongIndex = int64_t; /// Logical coordinate using TensorCoord = MatrixCoord; /// Stride vector using Stride = Coord<kStrideRank, Index, LongIndex>; // // Invariants // using Base = VoltaTensorOpMultiplicandBCongruous<ElementSize>; /// This layout is optimized for 128b accesses static int const kAccessSize = Base::kAccessSize; using TileShape = typename Base::TileShape; using PartitionShape = typename Base::PartitionShape; // // Static constants // static int const kElementSize = Base::kElementSize; static int const kElementsPerAccess = Base::kElementsPerAccess; using PartitionCount = typename Base::PartitionCount; using AccessCount = typename Base::AccessCount; private: // // Data members // Base layout_; public: // // Methods // /// Ctor CUTLASS_HOST_DEVICE ColumnMajorVoltaTensorOpMultiplicandBCongruous(Index ldm = 0): layout_(ldm) { } /// Ctor CUTLASS_HOST_DEVICE ColumnMajorVoltaTensorOpMultiplicandBCongruous(Stride stride): layout_(stride) { } /// Helper returns a layout to a tightly packed tensor CUTLASS_HOST_DEVICE static ColumnMajorVoltaTensorOpMultiplicandBCongruous packed(TensorCoord const &extent) { return ColumnMajorVoltaTensorOpMultiplicandBCongruous(extent.row()); } /// Returns the offset of a coordinate in linear memory. /// Assumes coordinate has convention (contiguous, strided) CUTLASS_HOST_DEVICE LongIndex operator()(TensorCoord const &coord) const { return layout_(PitchLinearCoord(coord.row(), coord.column())); } /// Inverse of layout function, mapping linear offset to logical coordinate CUTLASS_HOST_DEVICE TensorCoord inverse(LongIndex offset) const { PitchLinearCoord coord = layout_.inverse(offset); return MatrixCoord(coord.contiguous(), coord.strided()); } /// Returns the stride of the layout CUTLASS_HOST_DEVICE Stride stride() const { return layout_.stride(); } /// Returns the stride of the layout CUTLASS_HOST_DEVICE Stride & stride() { return layout_.stride(); } /// Compute the number of contiguous elements needed to store a tensor with the given size CUTLASS_HOST_DEVICE LongIndex capacity(TensorCoord const &extent) const { return layout_.capacity(PitchLinearCoord(extent.row(), extent.column())); } }; /// Template mapping a row-major view of pitch-linear memory to VoltaTensorOpMultiplicandCongruous template <int ElementSize> struct RowMajorVoltaTensorOpMultiplicandBCongruous { /// Logical rank of tensor static int const kRank = 2; /// Rank of stride vector static int const kStrideRank = 1; /// Index type used for coordinates using Index = int32_t; /// Long index type used for offsets using LongIndex = int64_t; /// Logical coordinate using TensorCoord = MatrixCoord; /// Stride vector using Stride = Coord<kStrideRank, Index, LongIndex>; // // Invariants // using Base = VoltaTensorOpMultiplicandBCongruous<ElementSize>; /// This layout is optimized for 128b accesses static int const kAccessSize = Base::kAccessSize; using TileShape = typename Base::TileShape; using PartitionShape = typename Base::PartitionShape; // // Static constants // static int const kElementSize = Base::kElementSize; static int const kElementsPerAccess = Base::kElementsPerAccess; using PartitionCount = typename Base::PartitionCount; using AccessCount = typename Base::AccessCount; private: // // Data members // Base layout_; public: // // Methods // /// Ctor CUTLASS_HOST_DEVICE RowMajorVoltaTensorOpMultiplicandBCongruous(Index ldm = 0): layout_(ldm) { } /// Ctor CUTLASS_HOST_DEVICE RowMajorVoltaTensorOpMultiplicandBCongruous(Stride stride): layout_(stride) { } /// Helper returns a layout to a tightly packed tensor CUTLASS_HOST_DEVICE static RowMajorVoltaTensorOpMultiplicandBCongruous packed(TensorCoord const &extent) { return RowMajorVoltaTensorOpMultiplicandBCongruous(extent.column()); } /// Returns the offset of a coordinate in linear memory. /// Assumes coordinate has convention (contiguous, strided) CUTLASS_HOST_DEVICE LongIndex operator()(TensorCoord const &coord) const { return layout_(PitchLinearCoord(coord.column(), coord.row())); } /// Inverse of layout function, mapping linear offset to logical coordinate CUTLASS_HOST_DEVICE TensorCoord inverse(LongIndex offset) const { PitchLinearCoord coord = layout_.inverse(offset); return MatrixCoord(coord.strided(), coord.contiguous()); } /// Returns the stride of the layout CUTLASS_HOST_DEVICE Stride stride() const { return layout_.stride(); } /// Returns the stride of the layout CUTLASS_HOST_DEVICE Stride & stride() { return layout_.stride(); } /// Compute the number of contiguous elements needed to store a tensor with the given size CUTLASS_HOST_DEVICE LongIndex capacity(TensorCoord const &extent) const { return layout_.capacity(PitchLinearCoord(extent.column(), extent.row())); } }; /// Template based on element size (in bits) - defined in terms of pitch-linear /// memory and KBlock size (in elements). template <int ElementSize, int KBlock> struct VoltaTensorOpMultiplicandCrosswise { /// Logical rank of tensor static int const kRank = 2; /// Rank of stride vector static int const kStrideRank = 1; /// Index type used for coordinates using Index = int32_t; /// Long index type used for offsets using LongIndex = int64_t; /// Logical coordinate using TensorCoord = PitchLinearCoord; /// Stride vector using Stride = Coord<kStrideRank, Index, LongIndex>; // // Invariants // /// This layout is optimized for 64b accesses static int const kAccessSize = 64; // // Static constants // static int const kElementSize = ElementSize; static int const kElementsPerAccess = kAccessSize / kElementSize; static int const kKBlock = KBlock; private: // // Data members // /// Stride data member. For GEMM, it equals to KBlock x stage. Stride stride_; public: // // Methods // /// Ctor CUTLASS_HOST_DEVICE VoltaTensorOpMultiplicandCrosswise(Index ldm = 0) : stride_(ldm) {} /// Ctor CUTLASS_HOST_DEVICE VoltaTensorOpMultiplicandCrosswise(Stride stride) : stride_(stride) {} /// Helper returns a layout to a tightly packed tensor CUTLASS_HOST_DEVICE static VoltaTensorOpMultiplicandCrosswise packed(TensorCoord const &extent) { return VoltaTensorOpMultiplicandCrosswise(extent[1]); } /// Returns the offset of a coordinate in linear memory. /// Assumes coordinate has convention (contiguous, strided) CUTLASS_HOST_DEVICE LongIndex operator()(TensorCoord const &coord) const { // // First, compute c and s of vector within source (in units of vector // accesses) // int vec_contiguous_idx = coord.contiguous() / kElementsPerAccess; int vec_strided_idx = coord.strided(); // // Then swizzle // The mapping is like this: // id[1:0]|(id[3]^id[4])|id[2] int vec_strided_within_tile = vec_contiguous_idx & 0x7; int permuted_vec_contiguous = (vec_strided_idx & (~0xF)) + (vec_strided_idx & 0x3) * 4 + (((vec_strided_idx >> 2) ^ ((vec_strided_idx & 0x10) >> 3)) & 0x3); permuted_vec_contiguous ^= ((vec_strided_within_tile >> 1) & 0x3); int permuted_vec_strided = vec_contiguous_idx; // // Compute final element location // int element_contiguous = permuted_vec_contiguous * kElementsPerAccess + (coord.contiguous() % kElementsPerAccess); return element_contiguous + permuted_vec_strided * (stride_[0] * kElementsPerAccess); } /// Returns the stride of the layout CUTLASS_HOST_DEVICE Stride stride() const { return stride_; } /// Returns the stride of the layout CUTLASS_HOST_DEVICE Stride &stride() { return stride_; } /// Compute the number of contiguous elements needed to store a tensor with /// the given size CUTLASS_HOST_DEVICE LongIndex capacity(TensorCoord const &extent) const { return extent[0] * stride_[0]; } }; /// Template mapping a column-major view of pitch-linear memory to /// VoltaTensorOpMultiplicandCrosswise template <int ElementSize, int KBlock> struct ColumnMajorVoltaTensorOpMultiplicandCrosswise { /// Logical rank of tensor static int const kRank = 2; /// Rank of stride vector static int const kStrideRank = 1; /// Index type used for coordinates using Index = int32_t; /// Long index type used for offsets using LongIndex = int64_t; /// Logical coordinate using TensorCoord = MatrixCoord; /// Stride vector using Stride = Coord<kStrideRank, Index, LongIndex>; // // Invariants // using Base = VoltaTensorOpMultiplicandCrosswise<ElementSize, KBlock>; /// This layout is optimized for 64b accesses static int const kAccessSize = Base::kAccessSize; // // Static constants // static int const kElementSize = Base::kElementSize; static int const kElementsPerAccess = Base::kElementsPerAccess; private: // // Data members // Base layout_; public: // // Methods // /// Ctor CUTLASS_HOST_DEVICE ColumnMajorVoltaTensorOpMultiplicandCrosswise(Index ldm = 0) : layout_(ldm) {} /// Ctor CUTLASS_HOST_DEVICE ColumnMajorVoltaTensorOpMultiplicandCrosswise(Stride stride) : layout_(stride) {} /// Helper returns a layout to a tightly packed tensor CUTLASS_HOST_DEVICE static ColumnMajorVoltaTensorOpMultiplicandCrosswise packed( TensorCoord const &extent) { return ColumnMajorVoltaTensorOpMultiplicandCrosswise(extent.column()); } /// Returns the offset of a coordinate in linear memory. /// Assumes coordinate has convention (contiguous, strided) CUTLASS_HOST_DEVICE LongIndex operator()(TensorCoord const &coord) const { return layout_(PitchLinearCoord(coord.row(), coord.column())); } /// Inverse of layout function, mapping linear offset to logical coordinate CUTLASS_HOST_DEVICE TensorCoord inverse(LongIndex offset) const { PitchLinearCoord coord = layout_.inverse(offset); return MatrixCoord(coord.contiguous(), coord.strided()); } /// Returns the stride of the layout CUTLASS_HOST_DEVICE Stride stride() const { return layout_.stride(); } /// Returns the stride of the layout CUTLASS_HOST_DEVICE Stride &stride() { return layout_.stride(); } /// Compute the number of contiguous elements needed to store a tensor with /// the given size CUTLASS_HOST_DEVICE LongIndex capacity(TensorCoord const &extent) const { return layout_.capacity(PitchLinearCoord(extent.row(), extent.column())); } }; /// Template mapping a row-major view of pitch-linear memory to /// TensorOpMultiplicandCrosswise template <int ElementSize, int KBlock> struct RowMajorVoltaTensorOpMultiplicandCrosswise { /// Logical rank of tensor static int const kRank = 2; /// Rank of stride vector static int const kStrideRank = 1; /// Index type used for coordinates using Index = int32_t; /// Long index type used for offsets using LongIndex = int64_t; /// Logical coordinate using TensorCoord = MatrixCoord; /// Stride vector using Stride = Coord<kStrideRank, Index, LongIndex>; // // Invariants // using Base = VoltaTensorOpMultiplicandCrosswise<ElementSize, KBlock>; /// This layout is optimized for 64b accesses static int const kAccessSize = Base::kAccessSize; // // Static constants // static int const kElementSize = Base::kElementSize; static int const kElementsPerAccess = Base::kElementsPerAccess; private: // // Data members // Base layout_; public: // // Methods // /// Ctor CUTLASS_HOST_DEVICE RowMajorVoltaTensorOpMultiplicandCrosswise(Index ldm = 0) : layout_(ldm) {} /// Ctor CUTLASS_HOST_DEVICE RowMajorVoltaTensorOpMultiplicandCrosswise(Stride stride) : layout_(stride) {} /// Helper returns a layout to a tightly packed tensor CUTLASS_HOST_DEVICE static RowMajorVoltaTensorOpMultiplicandCrosswise packed( TensorCoord const &extent) { return RowMajorVoltaTensorOpMultiplicandCrosswise(extent.row()); } /// Returns the offset of a coordinate in linear memory. /// Assumes coordinate has convention (contiguous, strided) CUTLASS_HOST_DEVICE LongIndex operator()(TensorCoord const &coord) const { return layout_(PitchLinearCoord(coord.column(), coord.row())); } /// Inverse of layout function, mapping linear offset to logical coordinate CUTLASS_HOST_DEVICE TensorCoord inverse(LongIndex offset) const { PitchLinearCoord coord = layout_.inverse(offset); return MatrixCoord(coord.strided(), coord.contiguous()); } /// Returns the stride of the layout CUTLASS_HOST_DEVICE Stride stride() const { return layout_.stride(); } /// Returns the stride of the layout CUTLASS_HOST_DEVICE Stride &stride() { return layout_.stride(); } /// Compute the number of contiguous elements needed to store a tensor with /// the given size CUTLASS_HOST_DEVICE LongIndex capacity(TensorCoord const &extent) const { return layout_.capacity(PitchLinearCoord(extent.column(), extent.row())); } }; } // namespace layout } // namespace cutlass /////////////////////////////////////////////////////////////////////////////////////////////////
include/cutlass/layout/tensor_op_multiplicand_sm70.h/0
{ "file_path": "include/cutlass/layout/tensor_op_multiplicand_sm70.h", "repo_id": "include", "token_count": 9595 }
44
/*************************************************************************************************** * Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. * SPDX-License-Identifier: BSD-3-Clause * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * **************************************************************************************************/ /*! \file \brief Defines a structure containing strides, bounds, and a pointer to tensor data. */ #pragma once #include "cutlass/cutlass.h" #include "cutlass/coord.h" #include "cutlass/platform/platform.h" #include "cutlass/subbyte_reference.h" namespace cutlass { /////////////////////////////////////////////////////////////////////////////////////////////////// /// Default layout function from coordinates in a tensor's index space into the n-D array held /// in memory. /// /// All layout functions must define at least the members shown in IdentityTensorLayout<>. template <int Rank> class IdentityTensorLayout { public: /// Logical rank of tensor static int const kRank = Rank; /// Rank of stride vector static int const kStrideRank = Rank; /// Index type used for coordinates using Index = int32_t; /// Long index type used for offsets using LongIndex = int64_t; /// Logical coordinate using TensorCoord = Coord<kRank, Index>; /// Stride vector using Stride = Coord<kStrideRank, Index>; private: // // Data members // /// Stride data member Stride stride_; public: // // Methods // CUTLASS_HOST_DEVICE IdentityTensorLayout(Stride const &stride = Stride()): stride_(stride) { } /// Returns the offset of a coordinate in linear memory CUTLASS_HOST_DEVICE LongIndex operator()(Coord<Rank> const &coord) const { return coord.dot(stride_); } /// Returns the stride of the layout CUTLASS_HOST_DEVICE Stride stride() const { return stride_; } /// Returns the stride of the layout CUTLASS_HOST_DEVICE Stride & stride() { return stride_; } /// Compute the number of contiguous elements needed to store a tensor with the given size CUTLASS_HOST_DEVICE LongIndex capacity(TensorCoord const &size) const { int idx = stride_.max_dim_index(); return stride_[idx] * size[idx]; } }; /////////////////////////////////////////////////////////////////////////////////////////////////// /* \brief TensorRef is a template for objects pointing to the start of tensors of arbitrary rank and layout within memory. A TensorRef combines a pointer and a Layout concept Examples: (These examples use helpers for matrix layouts defined in cutlass/layout/matrix.h) 1. Column-major matrix may be represented as a rank=2 tensor: TensorRef<float, layout::ColumnMajor> A(ptr_A, ldm); 2. Row-major matrix may be represented as a rank=2 tensor: TensorRef<float, layout::RowMajor> B(ptr_A, ldm); 3. An interleaved matrix may be represented as a rank=2 tensor: TensorRef<int8_t, layout::ColumnMajorInterleaved<32> > C; 4. A helper exists to define a TensorRef for a contiguous matrix whose layout is not known at compile time. int ldm; // leading dimension layout::Matrix kind; // Could be layout::Matrix::kRowMajor or layout::Matrix::kColumnMajor TensorRef<int, layout::ContiguousMatrix> E(ptr_E, {ldm, kind}); */ template < /// Data type of element stored within tensor (concept: NumericType) typename Element_, /// Defines a mapping from logical coordinate to linear memory (concept: Layout) typename Layout_ > class TensorRef { public: /// Data type of individual access using Element = Element_; /// Mapping function from logical coordinate to linear memory using Layout = Layout_; /// Reference type to an element using Reference = typename platform::conditional< sizeof_bits<Element>::value >= 8, Element &, SubbyteReference<Element> >::type; /// Logical rank of tensor index space static int const kRank = Layout::kRank; /// Index type using Index = typename Layout::Index; /// Long index used for pointer offsets using LongIndex = typename Layout::LongIndex; /// Coordinate in logical tensor space using TensorCoord = typename Layout::TensorCoord; /// Layout's stride vector using Stride = typename Layout::Stride; /// TensorRef to constant data using ConstTensorRef = TensorRef< typename platform::remove_const<Element>::type const, Layout>; /// TensorRef to non-constant data using NonConstTensorRef = TensorRef< typename platform::remove_const<Element>::type, Layout>; /// Require at least rank=1. Mathematically, a rank=0 tensor would be considered to be a /// scalar, but degenerate cases such as these are difficult to accommodate without /// extensive C++ metaprogramming or support for zero-length arrays. static_assert(kRank > 0, "Cannot define a zero-rank TensorRef"); private: /// Pointer Element* ptr_; /// Layout object maps logical coordinates to linear offsets Layout layout_; public: // // Methods // /// Constructs a TensorRef with a pointer and layout object. CUTLASS_HOST_DEVICE TensorRef(): ptr_(nullptr) { } /// Constructs a TensorRef with a pointer and layout object. CUTLASS_HOST_DEVICE TensorRef( Element *ptr, ///< pointer to start of tensor Layout const &layout ///< layout object containing stride and mapping function ): ptr_(ptr), layout_(layout) { } /// Converting constructor from TensorRef to non-constant data. template<typename _Magic = int> CUTLASS_HOST_DEVICE TensorRef( NonConstTensorRef const &ref, ///< TensorRef to non-const data ///SFINAE trick to avoid creating a copy-constructor when Element_ is already non-const _Magic magic = (typename platform::enable_if< ! platform::is_same<NonConstTensorRef, TensorRef<Element_, Layout_> >::value, _Magic>::type)0 ): ptr_(ref.data()), layout_(ref.layout()) { } /// Returns a reference to constant-valued tensor. CUTLASS_HOST_DEVICE ConstTensorRef const_ref() const { return ConstTensorRef(ptr_, layout_); } CUTLASS_HOST_DEVICE NonConstTensorRef non_const_ref() const { return NonConstTensorRef(const_cast<typename platform::remove_const<Element>::type *>(ptr_), layout_); } /// Updates only the pointer CUTLASS_HOST_DEVICE void reset(Element* ptr = nullptr) { ptr_ = ptr; } /// Updates the pointer and layout object CUTLASS_HOST_DEVICE void reset(Element* ptr, Layout const &layout) { ptr_ = ptr; layout_ = layout; } /// Returns true if the TensorRef is non-null CUTLASS_HOST_DEVICE bool good() const { return ptr_ != nullptr; } /// Returns the pointer to referenced data CUTLASS_HOST_DEVICE Element * data() const { return ptr_; } /// Returns a reference to the element at a given linear index CUTLASS_HOST_DEVICE Reference data(LongIndex idx) const { return ReferenceFactory<typename platform::remove_const<Element>::type, (sizeof_bits<Element>::value < 8)>::get(ptr_, idx); } /// Returns the layout object CUTLASS_HOST_DEVICE Layout & layout() { return layout_; } /// Returns the layout object CUTLASS_HOST_DEVICE Layout layout() const { return layout_; } /// Returns the layout object's stride vector CUTLASS_HOST_DEVICE Stride stride() const { return layout_.stride(); } /// Returns the layout object's stride vector CUTLASS_HOST_DEVICE Stride & stride() { return layout_.stride(); } /// Returns the layout object's stride in a given physical dimension CUTLASS_HOST_DEVICE typename Layout::Stride::Index stride(int dim) const { return layout_.stride().at(dim); } /// Returns the layout object's stride in a given physical dimension CUTLASS_HOST_DEVICE typename Layout::Stride::Index & stride(int dim) { return layout_.stride().at(dim); } /// Computes the offset of an index from the origin of the tensor CUTLASS_HOST_DEVICE LongIndex offset(TensorCoord const& coord) const { return layout_(coord); } /// Returns a reference to the element at a given Coord CUTLASS_HOST_DEVICE Reference at(TensorCoord const& coord) const { return data(offset(coord)); } /// Returns a reference to the element at a given Coord CUTLASS_HOST_DEVICE Reference operator[](TensorCoord const& coord) const { return data(offset(coord)); } /// Adds an offset to each pointer CUTLASS_HOST_DEVICE TensorRef & add_pointer_offset(LongIndex offset_) { ptr_ += offset_; return *this; } /// Adds an offset to each pointer CUTLASS_HOST_DEVICE TensorRef & add_coord_offset(TensorCoord const &coord) { add_pointer_offset(offset(coord)); return *this; } /// Returns a TensorRef offset by a given amount CUTLASS_HOST_DEVICE TensorRef operator+(TensorCoord const& b) const { TensorRef result(*this); result.add_coord_offset(b); return result; } /// Returns a TensorRef offset by a given amount CUTLASS_HOST_DEVICE TensorRef & operator+=(TensorCoord const& b) { add_coord_offset(b); return *this; } /// Returns a TensorRef offset by a given amount CUTLASS_HOST_DEVICE TensorRef operator-(TensorCoord const& b) const { TensorRef result(*this); result.add_pointer_offset(-offset(b)); return result; } /// Returns a TensorRef offset by a given amount CUTLASS_HOST_DEVICE TensorRef & operator-=(TensorCoord const& b) { add_pointer_offset(-offset(b)); return *this; } }; /// Constructs a TensorRef, deducing types from arguments. template < typename Element, typename Layout > CUTLASS_HOST_DEVICE TensorRef<Element, Layout> make_TensorRef(Element *ptr, Layout const &layout) { return TensorRef<Element, Layout>(ptr, layout); } /////////////////////////////////////////////////////////////////////////////////////////////////// // // Partial specializations to handle degenerate and sub-byte cases. // /////////////////////////////////////////////////////////////////////////////////////////////////// template < typename Element, typename Layout > CUTLASS_HOST_DEVICE bool TensorRef_aligned(TensorRef<Element, Layout> const &ref, int alignment) { int const kStrideRank = Layout::kStrideRank; if (reinterpret_cast<uintptr_t>(ref.data()) % alignment) { return false; } CUTLASS_PRAGMA_UNROLL for (int i = 0; i < kStrideRank; ++i) { if (ref.stride(i) % alignment) { return false; } } return true; } /////////////////////////////////////////////////////////////////////////////////////////////////// } // namespace cutlass
include/cutlass/tensor_ref.h/0
{ "file_path": "include/cutlass/tensor_ref.h", "repo_id": "include", "token_count": 3815 }
45
/*************************************************************************************************** * Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. * SPDX-License-Identifier: BSD-3-Clause * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * **************************************************************************************************/ /*! \file \brief Templates calculating the address and predicates to the load of tiles from pitch-linear rank=2 tensors. This iterator uses masks to guard out-of-bounds accesses. The first tile this iterator visits maybe partial, then the remaining tiles are complete. So, we only need to compute the predicates twice, once before the first tile and once for the remaining full tiles which can share the same predicates. A precomputed "Params" object minimizes the amount of state that must be stored in registers, and integer addition is used to advance the pointer through memory. */ #pragma once #include "cutlass/array.h" #include "cutlass/coord.h" #include "cutlass/cutlass.h" #include "cutlass/layout/matrix.h" #include "cutlass/layout/permute.h" #include "cutlass/layout/pitch_linear.h" #include "cutlass/matrix_shape.h" #include "cutlass/predicate_vector.h" #include "cutlass/tensor_ref.h" #include "cutlass/tensor_view.h" #include "cutlass/transform/threadblock/predicated_tile_access_iterator_params.h" //////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////// namespace cutlass { namespace transform { namespace threadblock { //////////////////////////////////////////////////////////////////////////////// /// PredicatedTileAccessIteratorPredicates /// template <typename Shape_, typename Element_, typename Layout_, int AdvanceRank, typename ThreadMap_, typename AccessType_> class PredicatedTileAccessIteratorPredicates { public: using Shape = Shape_; using Element = Element_; using Layout = Layout_; static int const kAdvanceRank = AdvanceRank; using ThreadMap = ThreadMap_; using AccessType = AccessType_; using Index = typename Layout::Index; using LongIndex = typename Layout::LongIndex; using TensorCoord = typename Layout::TensorCoord; static int const kAccessesPerVector = ThreadMap::kElementsPerAccess / AccessType::kElements; static_assert(!(ThreadMap::kElementsPerAccess % AccessType::kElements), "Vectors implied by the thread map must be divisible by the access type."); static int const kPredicatesPerByte = 4; static int const kPredicatesPerWord = 4 * kPredicatesPerByte; static int const kPredicateCount = ThreadMap::Iterations::kCount * kAccessesPerVector; /// Number of 32b words containing predicates static int const kPredicateByteCount = (kPredicateCount + kPredicatesPerByte - 1) / kPredicatesPerByte; static int const kPredicateWordCount = (kPredicateByteCount + 3) / 4; static unsigned const kPredicateMask = (1u << kPredicatesPerByte) - 1u; static_assert(kPredicateWordCount <= 4, "Too many predicates."); /// Predicate vector stores mask to guard accesses using Mask = Array<uint32_t, kPredicateWordCount>; // private: /// Guard predicates uint32_t predicates_[kPredicateWordCount]; /// Size of tensor TensorCoord extent_; /// Initial offset for each thread TensorCoord thread_offset_; /// Offset to the first steady-state tile TensorCoord residue_offset_; /// Iteration along vectors implied by the thread map int iteration_vector_; /// Iteration in the contiguous dimension int iteration_contiguous_; /// Iteration in the strided dimension int iteration_strided_; public: /// Computes predicates based on internally tracked per-thread offset. CUTLASS_DEVICE void compute_predicates_( /// Extent of the matrix window TensorCoord extent, /// optionally, simplify predicate calculation during 'steady state' phase bool is_steady_state = false) { CUTLASS_PRAGMA_UNROLL for (int i = 0; i < kPredicateWordCount; ++i) { predicates_[i] = 0u; } CUTLASS_PRAGMA_UNROLL for (int access_idx = 0; access_idx < ThreadMap::Iterations::kCount * kAccessesPerVector; ++access_idx) { int s = access_idx / (ThreadMap::Iterations::kContiguous * kAccessesPerVector); int access_residual = access_idx % (ThreadMap::Iterations::kContiguous * kAccessesPerVector); int c = access_residual / kAccessesPerVector; int v = access_residual % kAccessesPerVector; TensorCoord iteration_coord(c * ThreadMap::Delta::kContiguous + v * AccessType::kElements, s * ThreadMap::Delta::kStrided); TensorCoord coord = thread_offset_ + iteration_coord; bool guard; if (is_steady_state) { if (kAdvanceRank == 0) { guard = (coord.strided() < extent.strided()); } else { guard = (coord.contiguous() < extent.contiguous()); } } else { guard = (coord.strided() < extent.strided() && coord.contiguous() < extent.contiguous()); } int pred_idx = v + kAccessesPerVector * (c + ThreadMap::Iterations::kContiguous * s); int word_idx = pred_idx / kPredicatesPerWord; int residual = pred_idx % kPredicatesPerWord; int byte_idx = residual / kPredicatesPerByte; int bit_idx = residual % kPredicatesPerByte; predicates_[word_idx] |= (unsigned(guard) << (byte_idx * 8 + bit_idx)); } } CUTLASS_HOST_DEVICE void set_predicates(int thread_id, TensorCoord const &threadblock_offset) { TensorCoord residue_extent; if (kAdvanceRank) { typename TensorCoord::Index residue_size = (extent_[kAdvanceRank] - threadblock_offset.strided()) % Shape::kStrided; if (!residue_size) { residue_size = Shape::kStrided; } residue_offset_ = make_Coord(0, residue_size); residue_extent = make_Coord( extent_.contiguous(), min(threadblock_offset.strided() + residue_size, extent_.strided()) ); } else { typename TensorCoord::Index residue_size = (extent_[kAdvanceRank] - threadblock_offset.contiguous()) % Shape::kContiguous; if (!residue_size) { residue_size = Shape::kContiguous; } residue_offset_ = make_Coord(residue_size, 0); residue_extent = make_Coord( min(extent_.contiguous(), threadblock_offset.contiguous() + residue_size), extent_.strided() ); } // Per-thread offset in logical coordinates of tensor thread_offset_ = threadblock_offset + ThreadMap::initial_offset(thread_id); compute_predicates_(residue_extent, false); set_iteration_index(0); } /// Default constructor PredicatedTileAccessIteratorPredicates() = default; /// Constructs a TileIterator from its precomputed state, threadblock offset, /// and thread ID CUTLASS_HOST_DEVICE PredicatedTileAccessIteratorPredicates( /// Extent of tensor TensorCoord extent) : extent_(extent) { } /// Overrides the internal iteration index CUTLASS_HOST_DEVICE void set_iteration_index(int index) { iteration_vector_ = index % kAccessesPerVector; int residual_access = index / kAccessesPerVector; iteration_contiguous_ = residual_access % ThreadMap::Iterations::kContiguous; iteration_strided_ = residual_access / ThreadMap::Iterations::kContiguous; } /// Increment and return an instance to self. CUTLASS_HOST_DEVICE PredicatedTileAccessIteratorPredicates &operator++() { return *this; } /// Clears the predicate set efficiently CUTLASS_HOST_DEVICE void clear_mask(bool enable = true) { CUTLASS_PRAGMA_UNROLL for (int i = 0; i < kPredicateWordCount; ++i) { predicates_[i] = enable ? 0u : predicates_[i]; } } /// Clears the predicate set efficiently CUTLASS_HOST_DEVICE void enable_mask() { CUTLASS_PRAGMA_UNROLL for (int i = 0; i < kPredicateWordCount; ++i) { predicates_[i] = 0xffffffff; } } /// Sets the predicate mask, overriding value stored in predicate iterator CUTLASS_HOST_DEVICE void set_mask(Mask const &mask) { CUTLASS_PRAGMA_UNROLL for (int i = 0; i < kPredicateWordCount; ++i) { predicates_[i] = mask[i]; } } /// Gets the mask CUTLASS_HOST_DEVICE void get_mask(Mask &mask) { CUTLASS_PRAGMA_UNROLL for (int i = 0; i < kPredicateWordCount; ++i) { mask[i] = predicates_[i]; } } /// Returns whether access is valid or not CUTLASS_HOST_DEVICE bool valid() const { int pred_idx = iteration_vector_ + kAccessesPerVector * (iteration_contiguous_ + iteration_strided_ * ThreadMap::Iterations::kContiguous); int word_idx = pred_idx / kPredicatesPerWord; int residual = pred_idx % kPredicatesPerWord; int byte_idx = residual / kPredicatesPerByte; int bit_idx = residual % kPredicatesPerByte; bool pred = (predicates_[word_idx] & (1u << (byte_idx * 8 + bit_idx))) != 0; return pred; } }; //////////////////////////////////////////////////////////////////////////////// /// PredicatedTileAccessIterator /// template <typename Shape, typename Element, typename Layout, int AdvanceRank, typename ThreadMap, typename AccessType, bool Gather = false, typename PermuteLayout = layout::NoPermute> class PredicatedTileAccessIterator; //////////////////////////////////////////////////////////////////////////////// /// Specialization of PredicatedTileAccessIterator for pitch-linear data. /// template <typename Shape_, typename Element_, int AdvanceRank, typename ThreadMap_, typename AccessType_, bool Gather, typename PermuteLayout> class PredicatedTileAccessIterator<Shape_, Element_, layout::PitchLinear, AdvanceRank, ThreadMap_, AccessType_, Gather, PermuteLayout> { public: static_assert( AdvanceRank == 0 || AdvanceRank == 1, "Specialization for pitch-linear iterator may along advance along the " "contiguous(rank=0) or strided(rank=1) dimension."); using Shape = Shape_; using Element = Element_; using Layout = layout::PitchLinear; static int const kAdvanceRank = AdvanceRank; using ThreadMap = ThreadMap_; using AccessType = AccessType_; using Index = typename Layout::Index; using LongIndex = typename Layout::LongIndex; using TensorRef = TensorRef<Element, Layout>; using TensorView = TensorView<Element, Layout>; using TensorCoord = typename Layout::TensorCoord; using Pointer = Element *; using NonConstPointer = typename platform::remove_const<Element>::type *; using UnderlyingPredicates = PredicatedTileAccessIteratorPredicates< Shape, Element, Layout, AdvanceRank, ThreadMap, AccessType>; static int const kAccessesPerVector = ThreadMap::kElementsPerAccess / AccessType::kElements; static_assert(!(ThreadMap::kElementsPerAccess % AccessType::kElements), "Vectors implied by the thread map must be divisible by the access type."); static bool constexpr Permute = !platform::is_same<PermuteLayout, layout::NoPermute>::value && !platform::is_same<PermuteLayout, layout::InversePermute<layout::NoPermute>>::value; using Mask = typename UnderlyingPredicates::Mask; /// Uses a non-template class struct Params : PredicatedTileAccessIteratorParams { using Base = PredicatedTileAccessIteratorParams; /// Default constructor Params() = default; /// Construct the Params object given a pitch-linear tensor's layout CUTLASS_HOST_DEVICE Params(Layout const &layout) : Base(layout.stride(0), MakePredicatedTileAccessIteratorDesc<Shape, Element, Layout, kAdvanceRank, ThreadMap>()() ) { } CUTLASS_HOST_DEVICE Params(Base const &base) : Base(base) { } }; private: /// Internal pointer type permits fast address arithmetic using BytePointer = char *; private: // // Data members // UnderlyingPredicates the_predicates; /// Parameters object with precomputed internal state Params params_; /// Internal pointer to first access of tile BytePointer pointer_; /// Used for out-of-order visitation bool is_residue_tile_; /// Below is used when Gather is turned on. We need to record strided_offset /// and contiguous_offset separated to compute the offset by using /// /// offset = contiguous_offset + indices[strided_offset] /// Gather indices int const *indices_; /// Function to perform layout permutation and offset computation PermuteLayout permute_layout_; /// Tracks thread's coordinate offset in the matrix for current tile. /// This is only used in the following cases: /// - when Gather is true, strided coordinate needed to access indices (contiguous offset is tracked via pointer_) /// - when Permute is true, both coordinates are neeeded as input into permutation function (pointer_ is fixed) TensorCoord coord_offset_; private: /// Computes predicates based on internally tracked per-thread offset. CUTLASS_DEVICE void compute_predicates_( /// Extent of the matrix window TensorCoord extent, /// optionally, simplify predicate calculation during 'steady state' phase bool is_steady_state = false) { the_predicates.compute_predicates_(extent, is_steady_state); } public: /// Default constructor PredicatedTileAccessIterator() = default; /// Constructs a TileIterator from its precomputed state, threadblock offset, /// and thread ID CUTLASS_HOST_DEVICE PredicatedTileAccessIterator( /// Precomputed parameters object Params const &params, /// Pointer to start of tensor Pointer pointer, /// Extent of tensor TensorCoord extent, /// ID of each participating thread int thread_id, /// Initial offset of threadblock TensorCoord const &threadblock_offset, /// Gather indices int const *indices = nullptr) : params_(params), pointer_(reinterpret_cast<BytePointer>( const_cast<NonConstPointer>(pointer))), the_predicates(extent), is_residue_tile_(true), indices_(indices), permute_layout_(TensorCoord(extent.contiguous(), extent.strided()), params.stride_) { the_predicates.set_predicates(thread_id, threadblock_offset); if (Gather) { assert(indices_); } // update internal pointers Layout layout(params_.stride_); if (!Gather && !Permute) { add_pointer_offset(layout(the_predicates.thread_offset_)); } else { coord_offset_ = the_predicates.thread_offset_; if (!Permute) { add_pointer_offset(layout(make_Coord(coord_offset_.contiguous(), 0))); } } } /// Construct a PredicatedTileAccessIterator with zero threadblock offset CUTLASS_HOST_DEVICE PredicatedTileAccessIterator( /// Precomputed parameters object Params const &params, /// Pointer to start of tensor Pointer pointer, /// Extent of tensor TensorCoord extent, ///< ID of each participating thread int thread_id) : PredicatedTileAccessIterator(params, pointer, extent, thread_id, make_Coord(0, 0)) {} /// Overrides the internal iteration index CUTLASS_HOST_DEVICE void set_iteration_index(int index) { the_predicates.set_iteration_index(index); } /// Adds a pointer offset in units of Element CUTLASS_HOST_DEVICE void add_pointer_offset(LongIndex pointer_offset) { pointer_ += sizeof_bits<Element>::value * pointer_offset / 8; } /// Advances an iterator along logical dimensions of matrix in units of whole tiles CUTLASS_DEVICE void add_tile_offset( TensorCoord const &tile_offset) { if (is_residue_tile_) { the_predicates.thread_offset_ += the_predicates.residue_offset_; the_predicates.compute_predicates_(the_predicates.extent_, true); Layout layout(params_.stride_); if (!Gather && !Permute) { add_pointer_offset(layout(the_predicates.residue_offset_)); if (kAdvanceRank) { pointer_ += params_.inc_advance_ * LongIndex(tile_offset.strided() - 1); pointer_ += Shape::kContiguous * tile_offset.contiguous() * sizeof_bits<Element>::value / 8; } else { pointer_ += params_.inc_advance_ * LongIndex(tile_offset.contiguous() - 1); pointer_ += Shape::kStrided * tile_offset.strided() * sizeof_bits<Element>::value / 8; } } else { coord_offset_.strided() = the_predicates.thread_offset_.strided() + Shape::kStrided * (tile_offset.strided() - kAdvanceRank); if (!Permute) { add_pointer_offset(layout(make_Coord(the_predicates.residue_offset_.contiguous(), 0))); add_pointer_offset(Shape::kContiguous * (tile_offset.contiguous() - (1 - kAdvanceRank))); } else { coord_offset_.contiguous() = the_predicates.thread_offset_.contiguous() + Shape::kContiguous * (tile_offset.contiguous() - (1 - kAdvanceRank)); } } } else { if (!Gather && !Permute) { if (kAdvanceRank) { pointer_ += params_.inc_advance_ * LongIndex(tile_offset.strided()); pointer_ += Shape::kContiguous * tile_offset.contiguous(); } else { pointer_ += params_.inc_advance_ * LongIndex(tile_offset.contiguous()); pointer_ += Shape::kStrided * tile_offset.strided(); } } else { coord_offset_.strided() += Shape::kStrided * tile_offset.strided(); if (!Permute) { add_pointer_offset(Shape::kContiguous * tile_offset.contiguous()); } else { coord_offset_.contiguous() += Shape::kContiguous * tile_offset.contiguous(); } } } is_residue_tile_ = false; } /// Returns a pointer CUTLASS_HOST_DEVICE AccessType *get() const { if (Gather || Permute) { if (!valid()) { return nullptr; } Index coord_contig = (Permute ? coord_offset_.contiguous() : 0) + the_predicates.iteration_contiguous_ * ThreadMap::Delta::kContiguous + the_predicates.iteration_vector_ * AccessType::kElements; Index coord_strided = coord_offset_.strided() + the_predicates.iteration_strided_ * ThreadMap::Delta::kStrided; if (Gather) { coord_strided = indices_[coord_strided]; } LongIndex offset = Permute ? permute_layout_(TensorCoord(coord_contig, coord_strided)) : (coord_strided * LongIndex(params_.stride_) + coord_contig); return reinterpret_cast<AccessType *>(pointer_ + OffsetBytes<Element>(offset)); } return reinterpret_cast<AccessType *>( pointer_ + the_predicates.iteration_contiguous_ * (ThreadMap::Delta::kContiguous * sizeof_bits<Element>::value) / 8) + the_predicates.iteration_vector_; } /// Increment and return an instance to self. CUTLASS_HOST_DEVICE PredicatedTileAccessIterator &operator++() { the_predicates.operator++(); ++the_predicates.iteration_vector_; if (the_predicates.iteration_vector_ < kAccessesPerVector) { return *this; } the_predicates.iteration_vector_ = 0; ++the_predicates.iteration_contiguous_; if (the_predicates.iteration_contiguous_ < ThreadMap::Iterations::kContiguous) { return *this; } // Enter here only if (iteration_contiguous_ == ThreadMap::Iteration::kContiguous) the_predicates.iteration_contiguous_ = 0; ++the_predicates.iteration_strided_; if (the_predicates.iteration_strided_ < ThreadMap::Iterations::kStrided) { if (!Gather && !Permute) { pointer_ += params_.inc_strided_; } return *this; } // Enter here only if (iteration_stride_ == ThreadMap::Iteration::kStrided) // which means we enter the next tile. the_predicates.iteration_strided_ = 0; if (!Gather && !Permute) { // advance to next tile pointer_ += params_.inc_next_; // now return to start tile - if the iterator is subsequently advanced, this // subtraction as well as the subsequent integer addition are both elided by // the compiler. pointer_ -= params_.inc_advance_; } return *this; } /// Increment and return an instance to self. CUTLASS_HOST_DEVICE PredicatedTileAccessIterator operator++(int) { PredicatedTileAccessIterator self(*this); operator++(); return self; } /// Clears the predicate set efficiently CUTLASS_HOST_DEVICE void clear_mask(bool enable = true) { the_predicates.clear_mask(enable); } /// Clears the predicate set efficiently CUTLASS_HOST_DEVICE void enable_mask() { the_predicates.enable_mask(); } /// Sets the predicate mask, overriding value stored in predicate iterator CUTLASS_HOST_DEVICE void set_mask(Mask const &mask) { the_predicates.set_mask(mask); } /// Gets the mask CUTLASS_HOST_DEVICE void get_mask(Mask &mask) { the_predicates.get_mask(mask); } /// Returns whether access is valid or not CUTLASS_HOST_DEVICE bool valid() const { return the_predicates.valid(); } }; //////////////////////////////////////////////////////////////////////////////// /// Specialization of PredicatedTileAccessIterator for column-major data. /// /// Satisfies: ForwardTileIteratorConcept | /// ReadableContiguousTileIteratorConcept | /// WriteableContiguousTileIteratorConcept | /// MaskedTileIteratorConcept /// template <typename Shape_, typename Element_, int AdvanceRank, typename ThreadMap_, typename AccessType_, bool Gather, typename PermuteLayout> class PredicatedTileAccessIterator<Shape_, Element_, layout::ColumnMajor, AdvanceRank, ThreadMap_, AccessType_, Gather, PermuteLayout> { public: static_assert( AdvanceRank == 0 || AdvanceRank == 1, "Specialization for pitch-linear iterator may along advance along the " "contiguous(rank=0) or strided(rank=1) dimension."); using Shape = Shape_; using Element = Element_; using Layout = layout::ColumnMajor; static int const kAdvanceRank = AdvanceRank; using ThreadMap = ThreadMap_; using AccessType = AccessType_; using Index = typename Layout::Index; using LongIndex = typename Layout::LongIndex; using TensorRef = TensorRef<Element, Layout>; using TensorView = TensorView<Element, Layout>; using TensorCoord = typename Layout::TensorCoord; using Pointer = Element *; using NonConstPointer = typename platform::remove_const<Element>::type *; using UnderlyingIterator = PredicatedTileAccessIterator< layout::PitchLinearShape<Shape::kRow, Shape::kColumn>, Element, layout::PitchLinear, (kAdvanceRank == 0 ? 0 : 1), ThreadMap, AccessType, Gather, PermuteLayout>; /// Predicate vector stores mask to guard accesses using Mask = typename UnderlyingIterator::Mask; static int const kAccessesPerVector = UnderlyingIterator::kAccessesPerVector; /// Parameters object is precomputed state and is host-constructible class Params { private: friend PredicatedTileAccessIterator; /// Parameters object typename UnderlyingIterator::Params params_; public: /// Default constructor Params() = default; /// Construct the Params object given a pitch-linear tensor's layout CUTLASS_HOST_DEVICE Params(Layout const &layout) : params_(layout::PitchLinear(layout.stride(0))){}; /// Construct the Params object given a pitch-linear tensor's layout CUTLASS_HOST_DEVICE Params(typename UnderlyingIterator::Params::Base const &base) : params_(base) {} }; private: // // Data members // /// Underlying pitch-linear tile iterator UnderlyingIterator iterator_; public: /// Default constructor PredicatedTileAccessIterator() = default; /// Constructs a TileIterator from its precomputed state, threadblock offset, /// and thread ID CUTLASS_HOST_DEVICE PredicatedTileAccessIterator( ///< Precomputed parameters object Params const &params, ///< Pointer to start of tensor Pointer pointer, ///< Extent of tensor TensorCoord extent, ///< ID of each participating thread int thread_id, ///< Initial offset of threadblock TensorCoord const &threadblock_offset, int const *indices = nullptr ///< gather/scatter indices, note no support for gather/scatter at this specialization ) : iterator_(params.params_, pointer, layout::PitchLinearCoord(extent.row(), extent.column()), thread_id, layout::PitchLinearCoord(threadblock_offset.row(), threadblock_offset.column()), indices) {} /// Construct a PredicatedTileAccessIterator with zero threadblock offset CUTLASS_HOST_DEVICE PredicatedTileAccessIterator( Params const &params, ///< Precomputed parameters object Pointer pointer, ///< Pointer to start of tensor TensorCoord extent, ///< Extent of tensor int thread_id ///< ID of each participating thread ) : PredicatedTileAccessIterator(params, pointer, extent, thread_id, make_Coord(0, 0)) {} /// Overrides the internal iteration index CUTLASS_HOST_DEVICE void set_iteration_index(int index) { iterator_.set_iteration_index(index); } /// Adds a pointer offset in units of Element CUTLASS_HOST_DEVICE void add_pointer_offset(LongIndex pointer_offset) { iterator_.add_pointer_offset(pointer_offset); } /// Advances an iterator along logical dimensions of matrix in units of whole /// tiles CUTLASS_HOST_DEVICE void add_tile_offset(TensorCoord const &tile_offset) { iterator_.add_tile_offset({tile_offset.row(), tile_offset.column()}); } /// Returns a pointer CUTLASS_HOST_DEVICE AccessType *get() const { return reinterpret_cast<AccessType *>(iterator_.get()); } /// Advances to the next tile in memory. /// /// The first time this method is called, predicates are updated, and the /// iterator's internal pointer is reverted to the first "steady state" tile. /// Subsequent calls are lightweight and must only update the internal /// pointer. CUTLASS_HOST_DEVICE PredicatedTileAccessIterator &operator++() { ++iterator_; return *this; } /// Advances to the next tile in memory. /// /// The first time this method is called, predicates are updated, and the /// iterator's internal pointer is reverted to the first "steady state" tile. /// Subsequent calls are lightweight and must only update the internal /// pointer. CUTLASS_HOST_DEVICE PredicatedTileAccessIterator operator++(int) { PredicatedTileAccessIterator self(*this); operator++(); return self; } /// Clears the predicate set efficiently CUTLASS_HOST_DEVICE void clear_mask(bool enable = true) { iterator_.clear_mask(enable); } /// Clears the predicate set efficiently CUTLASS_HOST_DEVICE void enable_mask() { iterator_.enable_mask(); } /// Sets the predicate mask, overriding value stored in predicate iterator CUTLASS_HOST_DEVICE void set_mask(Mask const &mask) { iterator_.set_mask(mask); } /// Gets the mask CUTLASS_HOST_DEVICE void get_mask(Mask &mask) { iterator_.get_mask(mask); } /// Returns whether access is valid or not CUTLASS_HOST_DEVICE bool valid() { return iterator_.valid(); } }; //////////////////////////////////////////////////////////////////////////////// /// Specialization of PredicatedTileAccessIterator for row-major data. /// /// Satisfies: ForwardTileIteratorConcept | /// ReadableContiguousTileIteratorConcept | /// WriteableContiguousTileIteratorConcept | /// MaskedTileIteratorConcept /// template <typename Shape_, typename Element_, int AdvanceRank, typename ThreadMap_, typename AccessType_, bool Gather, typename PermuteLayout> class PredicatedTileAccessIterator<Shape_, Element_, layout::RowMajor, AdvanceRank, ThreadMap_, AccessType_, Gather, PermuteLayout> { public: static_assert( AdvanceRank == 0 || AdvanceRank == 1, "Specialization for pitch-linear iterator may along advance along the " "contiguous(rank=0) or strided(rank=1) dimension."); using Shape = Shape_; using Element = Element_; using Layout = layout::RowMajor; static int const kAdvanceRank = AdvanceRank; using ThreadMap = ThreadMap_; using AccessType = AccessType_; using Index = typename Layout::Index; using LongIndex = typename Layout::LongIndex; using TensorRef = TensorRef<Element, Layout>; using TensorView = TensorView<Element, Layout>; using TensorCoord = typename Layout::TensorCoord; using Pointer = Element *; using NonConstPointer = typename platform::remove_const<Element>::type *; using UnderlyingIterator = PredicatedTileAccessIterator< layout::PitchLinearShape<Shape::kColumn, Shape::kRow>, Element, layout::PitchLinear, (kAdvanceRank == 0 ? 1 : 0), ThreadMap, AccessType, Gather, PermuteLayout>; static int const kAccessesPerVector = UnderlyingIterator::kAccessesPerVector; /// Predicate vector stores mask to guard accesses using Mask = typename UnderlyingIterator::Mask; /// Parameters object is precomputed state and is host-constructible class Params { private: friend PredicatedTileAccessIterator; /// Parameters object typename UnderlyingIterator::Params params_; public: /// Default constructor Params() = default; /// Construct the Params object given a pitch-linear tensor's layout CUTLASS_HOST_DEVICE Params(Layout const &layout) : params_(layout::PitchLinear(layout.stride(0))){}; /// Construct the Params object given a pitch-linear tensor's layout CUTLASS_HOST_DEVICE Params(typename UnderlyingIterator::Params::Base const &base) : params_(base) {} }; private: // // Data members // /// Underlying pitch-linear tile iterator UnderlyingIterator iterator_; public: /// Default constructor PredicatedTileAccessIterator() = default; /// Constructs a TileIterator from its precomputed state, threadblock offset, /// and thread ID CUTLASS_HOST_DEVICE PredicatedTileAccessIterator( ///< Precomputed parameters object Params const &params, ///< Pointer to start of tensor Pointer pointer, ///< Extent of tensor TensorCoord extent, ///< ID of each participating thread int thread_id, ///< Initial offset of threadblock TensorCoord const &threadblock_offset, /// Gather indices int const *indices = nullptr) : iterator_(params.params_, pointer, layout::PitchLinearCoord(extent.column(), extent.row()), thread_id, layout::PitchLinearCoord(threadblock_offset.column(), threadblock_offset.row()), indices) {} /// Construct a PredicatedTileAccessIterator with zero threadblock offset CUTLASS_HOST_DEVICE PredicatedTileAccessIterator( Params const &params, ///< Precomputed parameters object Pointer pointer, ///< Pointer to start of tensor TensorCoord extent, ///< Extent of tensor int thread_id ///< ID of each participating thread ) : PredicatedTileAccessIterator(params, pointer, extent, thread_id, make_Coord(0, 0)) {} /// Overrides the internal iteration index CUTLASS_HOST_DEVICE void set_iteration_index(int index) { iterator_.set_iteration_index(index); } /// Adds a pointer offset in units of Element CUTLASS_HOST_DEVICE void add_pointer_offset(LongIndex pointer_offset) { iterator_.add_pointer_offset(pointer_offset); } /// Advances an iterator along logical dimensions of matrix in units of whole /// tiles CUTLASS_HOST_DEVICE void add_tile_offset(TensorCoord const &tile_offset) { iterator_.add_tile_offset({tile_offset.column(), tile_offset.row()}); } /// Returns a pointer CUTLASS_HOST_DEVICE AccessType *get() const { return reinterpret_cast<AccessType *>(iterator_.get()); } /// Advances to the next tile in memory. /// /// The first time this method is called, predicates are updated, and the /// iterator's internal pointer is reverted to the first "steady state" tile. /// Subsequent calls are lightweight and must only update the internal /// pointer. CUTLASS_HOST_DEVICE PredicatedTileAccessIterator &operator++() { ++iterator_; return *this; } /// Advances to the next tile in memory. /// /// The first time this method is called, predicates are updated, and the /// iterator's internal pointer is reverted to the first "steady state" tile. /// Subsequent calls are lightweight and must only update the internal /// pointer. CUTLASS_HOST_DEVICE PredicatedTileAccessIterator operator++(int) { PredicatedTileAccessIterator self(*this); operator++(); return self; } /// Clears the predicate set efficiently CUTLASS_HOST_DEVICE void clear_mask(bool enable = true) { iterator_.clear_mask(enable); } /// Clears the predicate set efficiently CUTLASS_HOST_DEVICE void enable_mask() { iterator_.enable_mask(); } /// Sets the predicate mask, overriding value stored in predicate iterator CUTLASS_HOST_DEVICE void set_mask(Mask const &mask) { iterator_.set_mask(mask); } /// Gets the mask CUTLASS_HOST_DEVICE void get_mask(Mask &mask) { iterator_.get_mask(mask); } /// Returns whether access is valid or not CUTLASS_HOST_DEVICE bool valid() { return iterator_.valid(); } }; //////////////////////////////////////////////////////////////////////////////// /// Specialization of PredicatedTileAccessIterator for affine rank 2 data. /// /// Satisfies: ForwardTileIteratorConcept | /// ReadableContiguousTileIteratorConcept | /// WriteableContiguousTileIteratorConcept | /// MaskedTileIteratorConcept /// template <typename Shape_, typename Element_, int AdvanceRank, typename ThreadMap_, typename AccessType_> class PredicatedTileAccessIterator<Shape_, Element_, layout::AffineRankN<2>, AdvanceRank, ThreadMap_, AccessType_, false, layout::NoPermute> { public: static_assert( AdvanceRank == 0 || AdvanceRank == 1, "Specialization for pitch-linear iterator may along advance along the " "contiguous(rank=0) or strided(rank=1) dimension."); using Shape = Shape_; using Element = Element_; using Layout = layout::AffineRankN<2>; static int const kAdvanceRank = AdvanceRank; using ThreadMap = ThreadMap_; using AccessType = AccessType_; using Index = typename Layout::Index; using LongIndex = typename Layout::LongIndex; using TensorRef = TensorRef<Element, Layout>; using TensorView = TensorView<Element, Layout>; using TensorCoord = typename Layout::TensorCoord; using Pointer = Element *; using NonConstPointer = typename platform::remove_const<Element>::type *; using UnderlyingPredicates = PredicatedTileAccessIteratorPredicates< Shape, Element, layout::PitchLinear, AdvanceRank, ThreadMap, AccessType>; static int const kAccessesPerVector = ThreadMap::kElementsPerAccess / AccessType::kElements; static_assert(!(ThreadMap::kElementsPerAccess % AccessType::kElements), "Vectors implied by the thread map must be divisible by the access type."); /// Predicate vector stores mask to guard accesses using Mask = typename UnderlyingPredicates::Mask; /// Parameters object is precomputed state and is host-constructible class Params { public: friend PredicatedTileAccessIterator; private: /// stride of pitch-linear layout (units of Element) Coord<Layout::kStrideRank, Layout::LongIndex> stride_; /// amount (in byte) to increment pointer to move to next access along /// contiguous dimension LongIndex inc_contiguous_; /// amount (in byte) to increment pointer from first access of current /// contiguous dimension to first access of next one. LongIndex inc_strided_; /// amount (in byte) to increment pointer from last access of current /// contiguous dimension to first access of next one. LongIndex inc_next_strided_; /// amount (in byte) to increment pointer from last access to first access /// of next tile LongIndex inc_next_; /// amount (in byte) to increment pointer from first access of current tile /// to first access of next tile LongIndex inc_advance_; public: // Default ctor CUTLASS_HOST_DEVICE Params(): stride_(0), inc_contiguous_(0), inc_strided_(0), inc_next_(0), inc_advance_(0) { } /// Construct the Params object given a pitch-linear tensor's layout CUTLASS_HOST_DEVICE Params(Layout const &layout) : stride_({layout.stride(0), layout.stride(1)}) { inc_contiguous_ = (LongIndex(stride_[0]) * ThreadMap::Delta::kContiguous) * sizeof_bits<Element>::value / 8; inc_strided_ = (LongIndex(stride_[1]) * ThreadMap::Delta::kStrided) * sizeof_bits<Element>::value / 8; inc_next_strided_ = inc_strided_ - LongIndex(ThreadMap::Iterations::kContiguous - 1) * inc_contiguous_; if (kAdvanceRank) { // advance along strided dimension inc_advance_ = Shape::kStrided * LongIndex(stride_[1]) * sizeof_bits<Element>::value / 8; } else { // advance along contiguous dimension inc_advance_ = Shape::kContiguous * stride_[0] * sizeof_bits<Element>::value / 8; } inc_next_ = inc_advance_ - LongIndex(ThreadMap::Iterations::kContiguous - 1) * inc_contiguous_ - LongIndex(ThreadMap::Iterations::kStrided - 1) * inc_strided_; }; }; private: /// Internal pointer type permits fast address arithmetic using BytePointer = char *; // // Data members // /// Parameters object with precomputed internal state Params params_; /// Internal pointer to first access of tile BytePointer pointer_; UnderlyingPredicates the_predicates; /// Used for out-of-order visitation bool is_residue_tile_; private: /// Computes predicates based on internally tracked per-thread offset. CUTLASS_DEVICE void compute_predicates_( /// Extent of the matrix window TensorCoord extent, /// optionally, simplify predicate calculation during 'steady state' phase bool is_steady_state = false) { the_predicates.compute_predicates_(extent, is_steady_state); } public: /// Default constructor PredicatedTileAccessIterator() = default; /// Constructs a TileIterator from its precomputed state, threadblock offset, /// and thread ID CUTLASS_HOST_DEVICE PredicatedTileAccessIterator( ///< Precomputed parameters object Params const &params, ///< Pointer to start of tensor Pointer pointer, ///< Extent of tensor TensorCoord extent, ///< ID of each participating thread int thread_id, ///< Initial offset of threadblock TensorCoord const &threadblock_offset, int const *indices = nullptr ///< gather/scatter indices, note no support for gather/scatter at this specialization ) : params_(params), pointer_(reinterpret_cast<BytePointer>( const_cast<NonConstPointer>(pointer))), the_predicates(extent), is_residue_tile_(true) { the_predicates.set_predicates(thread_id, threadblock_offset); // update internal pointers Layout layout(params_.stride_); add_pointer_offset(layout(the_predicates.thread_offset_)); } /// Construct a PredicatedTileAccessIterator with zero threadblock offset CUTLASS_HOST_DEVICE PredicatedTileAccessIterator( Params const &params, ///< Precomputed parameters object Pointer pointer, ///< Pointer to start of tensor TensorCoord extent, ///< Extent of tensor int thread_id ///< ID of each participating thread ) : PredicatedTileAccessIterator(params, pointer, extent, thread_id, make_Coord(0, 0)) {} /// Overrides the internal iteration index CUTLASS_HOST_DEVICE void set_iteration_index(int index) { the_predicates.set_iteration_index(index); } /// Adds a pointer offset in units of Element CUTLASS_HOST_DEVICE void add_pointer_offset(LongIndex pointer_offset) { pointer_ += sizeof_bits<Element>::value * pointer_offset / 8; } /// Advances an iterator along logical dimensions of matrix in units of whole /// tiles CUTLASS_HOST_DEVICE void add_tile_offset(TensorCoord const &tile_offset) { if (is_residue_tile_) { the_predicates.thread_offset_ += the_predicates.residue_offset_; Layout layout(params_.stride_); add_pointer_offset(layout(the_predicates.residue_offset_)); the_predicates.compute_predicates_(the_predicates.extent_, true); if (kAdvanceRank) { pointer_ += params_.inc_advance_ * LongIndex(tile_offset[1] - 1); pointer_ += Shape::kContiguous * tile_offset[0]; } else { pointer_ += params_.inc_advance_ * LongIndex(tile_offset[0] - 1); pointer_ += Shape::kStrided * tile_offset[1]; } } else { if (kAdvanceRank) { pointer_ += params_.inc_advance_ * LongIndex(tile_offset[1]); pointer_ += Shape::kContiguous * tile_offset[0]; } else { pointer_ += params_.inc_advance_ * LongIndex(tile_offset[0]); pointer_ += Shape::kStrided * tile_offset[1]; } } is_residue_tile_ = false; } /// Returns a pointer CUTLASS_HOST_DEVICE AccessType *get() const { return reinterpret_cast<AccessType *>(pointer_) + the_predicates.iteration_vector_; } /// Advances to the next tile in memory. /// /// The first time this method is called, predicates are updated, and the /// iterator's internal pointer is reverted to the first "steady state" tile. /// Subsequent calls are lightweight and must only update the internal /// pointer. CUTLASS_HOST_DEVICE PredicatedTileAccessIterator &operator++() { the_predicates.operator++(); ++the_predicates.iteration_vector_; if (the_predicates.iteration_vector_ < kAccessesPerVector) { return *this; } the_predicates.iteration_vector_ = 0; ++the_predicates.iteration_contiguous_; if (the_predicates.iteration_contiguous_ < ThreadMap::Iterations::kContiguous) { pointer_ += params_.inc_contiguous_; return *this; } // Enter here only if (iteration_contiguous_ == // ThreadMap::Iteration::kContiguous) the_predicates.iteration_contiguous_ = 0; ++the_predicates.iteration_strided_; if (the_predicates.iteration_strided_ < ThreadMap::Iterations::kStrided) { pointer_ += params_.inc_next_strided_; return *this; } // Enter here only if (iteration_stride_ == ThreadMap::Iteration::kStrided) // which means we enter the next tile. the_predicates.iteration_strided_ = 0; // advance to next tile pointer_ += params_.inc_next_; // now return to start tile - if the iterator is subsequently advanced, this // subtraction as well as the subsequent integer addition are both elided by // the compiler. pointer_ -= params_.inc_advance_; return *this; } /// Advances to the next tile in memory. /// /// The first time this method is called, predicates are updated, and the /// iterator's internal pointer is reverted to the first "steady state" tile. /// Subsequent calls are lightweight and must only update the internal /// pointer. CUTLASS_HOST_DEVICE PredicatedTileAccessIterator operator++(int) { PredicatedTileAccessIterator self(*this); operator++(); return self; } /// Clears the predicate set efficiently CUTLASS_HOST_DEVICE void clear_mask(bool enable = true) { the_predicates.clear_mask(enable); } /// Clears the predicate set efficiently CUTLASS_HOST_DEVICE void enable_mask() { the_predicates.enable_mask(); } /// Sets the predicate mask, overriding value stored in predicate iterator CUTLASS_HOST_DEVICE void set_mask(Mask const &mask) { the_predicates.set_mask(mask); } /// Gets the mask CUTLASS_HOST_DEVICE void get_mask(Mask &mask) { the_predicates.get_mask(mask); } /// Returns whether access is valid or not CUTLASS_HOST_DEVICE bool valid() { return the_predicates.valid(); } }; //////////////////////////////////////////////////////////////////////////////// /// Specialization of PredicatedTileAccessIterator for affine rank 2 column-major data. /// /// Satisfies: ForwardTileIteratorConcept | /// ReadableContiguousTileIteratorConcept | /// WriteableContiguousTileIteratorConcept | /// MaskedTileIteratorConcept /// template <typename Shape_, typename Element_, int AdvanceRank, typename ThreadMap_, typename AccessType_> class PredicatedTileAccessIterator<Shape_, Element_, layout::AffineRank2ColumnMajor, AdvanceRank, ThreadMap_, AccessType_, false, layout::NoPermute> { public: static_assert( AdvanceRank == 0 || AdvanceRank == 1, "Specialization for pitch-linear iterator may along advance along the " "contiguous(rank=0) or strided(rank=1) dimension."); using Shape = Shape_; using Element = Element_; using Layout = layout::AffineRank2ColumnMajor; static int const kAdvanceRank = AdvanceRank; using ThreadMap = ThreadMap_; using AccessType = AccessType_; using Index = typename Layout::Index; using LongIndex = typename Layout::LongIndex; using TensorRef = TensorRef<Element, Layout>; using TensorView = TensorView<Element, Layout>; using TensorCoord = typename Layout::TensorCoord; using Pointer = Element *; using NonConstPointer = typename platform::remove_const<Element>::type *; // Map to the underlying AffineRankN<2> layout using UnderlyingIterator = PredicatedTileAccessIterator< layout::PitchLinearShape<Shape::kRow, Shape::kColumn>, Element, layout::AffineRankN<2>, (kAdvanceRank == 0 ? 0 : 1), ThreadMap, AccessType>; static int const kAccessesPerVector = UnderlyingIterator::kAccessesPerVector; /// Predicate vector stores mask to guard accesses using Mask = typename UnderlyingIterator::Mask; /// Parameters object is precomputed state and is host-constructible class Params { private: friend PredicatedTileAccessIterator; /// Parameters object typename UnderlyingIterator::Params params_; public: /// Default constructor Params() = default; /// Construct the Params object given an AffineRankN<2> tensor's layout CUTLASS_HOST_DEVICE Params(Layout const &layout) : params_(layout::AffineRankN<2>(layout.stride(0), layout.stride(1))){}; }; private: // // Data members // /// Underlying AffineRankN<2> tile iterator UnderlyingIterator iterator_; public: /// Default constructor PredicatedTileAccessIterator() = default; /// Constructs a TileIterator from its precomputed state, threadblock offset, /// and thread ID CUTLASS_HOST_DEVICE PredicatedTileAccessIterator( ///< Precomputed parameters object Params const &params, ///< Pointer to start of tensor Pointer pointer, ///< Extent of tensor TensorCoord extent, ///< ID of each participating thread int thread_id, ///< Initial offset of threadblock TensorCoord const &threadblock_offset, int const *indices = nullptr ///< gather/scatter indices, note no support for gather/scatter at this specialization ) : iterator_(params.params_, pointer, layout::PitchLinearCoord(extent.row(), extent.column()), thread_id, layout::PitchLinearCoord(threadblock_offset.row(), threadblock_offset.column())) {} /// Construct a PredicatedTileAccessIterator with zero threadblock offset CUTLASS_HOST_DEVICE PredicatedTileAccessIterator( Params const &params, ///< Precomputed parameters object Pointer pointer, ///< Pointer to start of tensor TensorCoord extent, ///< Extent of tensor int thread_id ///< ID of each participating thread ) : PredicatedTileAccessIterator(params, pointer, extent, thread_id, make_Coord(0, 0)) {} /// Overrides the internal iteration index CUTLASS_HOST_DEVICE void set_iteration_index(int index) { iterator_.set_iteration_index(index); } /// Adds a pointer offset in units of Element CUTLASS_HOST_DEVICE void add_pointer_offset(LongIndex pointer_offset) { iterator_.add_pointer_offset(pointer_offset); } /// Advances an iterator along logical dimensions of matrix in units of whole /// tiles CUTLASS_HOST_DEVICE void add_tile_offset(TensorCoord const &tile_offset) { iterator_.add_tile_offset(make_Coord(tile_offset.row(), tile_offset.column())); } /// Returns a pointer CUTLASS_HOST_DEVICE AccessType *get() const { return reinterpret_cast<AccessType *>(iterator_.get()); } /// Advances to the next tile in memory. /// /// The first time this method is called, predicates are updated, and the /// iterator's internal pointer is reverted to the first "steady state" tile. /// Subsequent calls are lightweight and must only update the internal /// pointer. CUTLASS_HOST_DEVICE PredicatedTileAccessIterator &operator++() { ++iterator_; return *this; } /// Advances to the next tile in memory. /// /// The first time this method is called, predicates are updated, and the /// iterator's internal pointer is reverted to the first "steady state" tile. /// Subsequent calls are lightweight and must only update the internal /// pointer. CUTLASS_HOST_DEVICE PredicatedTileAccessIterator operator++(int) { PredicatedTileAccessIterator self(*this); operator++(); return self; } /// Clears the predicate set efficiently CUTLASS_HOST_DEVICE void clear_mask(bool enable = true) { iterator_.clear_mask(enable); } /// Clears the predicate set efficiently CUTLASS_HOST_DEVICE void enable_mask() { iterator_.enable_mask(); } /// Sets the predicate mask, overriding value stored in predicate iterator CUTLASS_HOST_DEVICE void set_mask(Mask const &mask) { iterator_.set_mask(mask); } /// Gets the mask CUTLASS_HOST_DEVICE void get_mask(Mask &mask) { iterator_.get_mask(mask); } /// Returns whether access is valid or not CUTLASS_HOST_DEVICE bool valid() { return iterator_.valid(); } }; //////////////////////////////////////////////////////////////////////////////// /// Specialization of PredicatedTileAccessIterator for affine rank-2 row-major data. /// /// Satisfies: ForwardTileIteratorConcept | /// ReadableContiguousTileIteratorConcept | /// WriteableContiguousTileIteratorConcept | /// MaskedTileIteratorConcept /// template <typename Shape_, typename Element_, int AdvanceRank, typename ThreadMap_, typename AccessType_> class PredicatedTileAccessIterator<Shape_, Element_, layout::AffineRank2RowMajor, AdvanceRank, ThreadMap_, AccessType_, false, layout::NoPermute> { public: static_assert( AdvanceRank == 0 || AdvanceRank == 1, "Specialization for pitch-linear iterator may along advance along the " "contiguous(rank=0) or strided(rank=1) dimension."); using Shape = Shape_; using Element = Element_; using Layout = layout::AffineRank2RowMajor; static int const kAdvanceRank = AdvanceRank; using ThreadMap = ThreadMap_; using AccessType = AccessType_; using Index = typename Layout::Index; using LongIndex = typename Layout::LongIndex; using TensorRef = TensorRef<Element, Layout>; using TensorView = TensorView<Element, Layout>; using TensorCoord = typename Layout::TensorCoord; using Pointer = Element *; using NonConstPointer = typename platform::remove_const<Element>::type *; // Map to the underlying AffineRankN<2> layout using UnderlyingIterator = PredicatedTileAccessIterator< layout::PitchLinearShape<Shape::kColumn, Shape::kRow>, Element, layout::AffineRankN<2>, (kAdvanceRank == 0 ? 1 : 0), ThreadMap, AccessType>; static int const kAccessesPerVector = UnderlyingIterator::kAccessesPerVector; /// Predicate vector stores mask to guard accesses using Mask = typename UnderlyingIterator::Mask; /// Parameters object is precomputed state and is host-constructible class Params { private: friend PredicatedTileAccessIterator; /// Parameters object typename UnderlyingIterator::Params params_; public: /// Default constructor Params() = default; /// Construct the Params object given an AffineRankN<2> tensor's layout CUTLASS_HOST_DEVICE Params(Layout const &layout) : params_(layout::AffineRankN<2>(layout.stride(1), layout.stride(0))){}; }; private: // // Data members // /// Underlying AffineRankN<2> tile iterator UnderlyingIterator iterator_; public: /// Default constructor PredicatedTileAccessIterator() = default; /// Constructs a TileIterator from its precomputed state, threadblock offset, /// and thread ID CUTLASS_HOST_DEVICE PredicatedTileAccessIterator( ///< Precomputed parameters object Params const &params, ///< Pointer to start of tensor Pointer pointer, ///< Extent of tensor TensorCoord extent, ///< ID of each participating thread int thread_id, ///< Initial offset of threadblock TensorCoord const &threadblock_offset, int const *indices = nullptr ///< gather/scatter indices, note no support for gather/scatter at this specialization ) : iterator_(params.params_, pointer, layout::PitchLinearCoord(extent.column(), extent.row()), thread_id, layout::PitchLinearCoord(threadblock_offset.column(), threadblock_offset.row())) {} /// Construct a PredicatedTileAccessIterator with zero threadblock offset CUTLASS_HOST_DEVICE PredicatedTileAccessIterator( Params const &params, ///< Precomputed parameters object Pointer pointer, ///< Pointer to start of tensor TensorCoord extent, ///< Extent of tensor int thread_id ///< ID of each participating thread ) : PredicatedTileAccessIterator(params, pointer, extent, thread_id, make_Coord(0, 0)) {} /// Overrides the internal iteration index CUTLASS_HOST_DEVICE void set_iteration_index(int index) { iterator_.set_iteration_index(index); } /// Adds a pointer offset in units of Element CUTLASS_HOST_DEVICE void add_pointer_offset(LongIndex pointer_offset) { iterator_.add_pointer_offset(pointer_offset); } /// Advances an iterator along logical dimensions of matrix in units of whole /// tiles CUTLASS_HOST_DEVICE void add_tile_offset(TensorCoord const &tile_offset) { iterator_.add_tile_offset(make_Coord(tile_offset.column(), tile_offset.row())); } /// Returns a pointer CUTLASS_HOST_DEVICE AccessType *get() const { return reinterpret_cast<AccessType *>(iterator_.get()); } /// Advances to the next tile in memory. /// /// The first time this method is called, predicates are updated, and the /// iterator's internal pointer is reverted to the first "steady state" tile. /// Subsequent calls are lightweight and must only update the internal /// pointer. CUTLASS_HOST_DEVICE PredicatedTileAccessIterator &operator++() { ++iterator_; return *this; } /// Advances to the next tile in memory. /// /// The first time this method is called, predicates are updated, and the /// iterator's internal pointer is reverted to the first "steady state" tile. /// Subsequent calls are lightweight and must only update the internal /// pointer. CUTLASS_HOST_DEVICE PredicatedTileAccessIterator operator++(int) { PredicatedTileAccessIterator self(*this); operator++(); return self; } /// Clears the predicate set efficiently CUTLASS_HOST_DEVICE void clear_mask(bool enable = true) { iterator_.clear_mask(enable); } /// Clears the predicate set efficiently CUTLASS_HOST_DEVICE void enable_mask() { iterator_.enable_mask(); } /// Sets the predicate mask, overriding value stored in predicate iterator CUTLASS_HOST_DEVICE void set_mask(Mask const &mask) { iterator_.set_mask(mask); } /// Gets the mask CUTLASS_HOST_DEVICE void get_mask(Mask &mask) { iterator_.get_mask(mask); } /// Returns whether access is valid or not CUTLASS_HOST_DEVICE bool valid() { return iterator_.valid(); } }; //////////////////////////////////////////////////////////////////////////////// /// Specialization of PredicatedTileAccessIterator for column-major interleaved data. /// It is mapped to the congruous layout. /// /// Satisfies: ForwardTileIteratorConcept | /// ReadableContiguousTileIteratorConcept | /// WriteableContiguousTileIteratorConcept | /// MaskedTileIteratorConcept /// template <typename Shape_, typename Element_, int AdvanceRank, typename ThreadMap_, typename AccessType_, int InterleavedK> class PredicatedTileAccessIterator<Shape_, Element_, layout::ColumnMajorInterleaved<InterleavedK>, AdvanceRank, ThreadMap_, AccessType_, false, layout::NoPermute> { public: static_assert( AdvanceRank == 0 || AdvanceRank == 1, "Specialization for pitch-linear iterator may along advance along the " "contiguous(rank=0) or strided(rank=1) dimension."); using Shape = Shape_; using Element = Element_; static int const kInterleavedK = InterleavedK; using Layout = layout::ColumnMajorInterleaved<kInterleavedK>; static int const kAdvanceRank = AdvanceRank; using ThreadMap = ThreadMap_; using AccessType = AccessType_; using Index = typename Layout::Index; using LongIndex = typename Layout::LongIndex; using TensorRef = TensorRef<Element, Layout>; using TensorView = TensorView<Element, Layout>; using TensorCoord = typename Layout::TensorCoord; using Pointer = Element *; using NonConstPointer = typename platform::remove_const<Element>::type *; using UnderlyingIterator = PredicatedTileAccessIterator< layout::PitchLinearShape<Shape::kRow * kInterleavedK, Shape::kColumn / kInterleavedK>, Element, layout::PitchLinear, (kAdvanceRank == 0 ? 0 : 1), ThreadMap, AccessType>; static int const kAccessesPerVector = UnderlyingIterator::kAccessesPerVector; /// Predicate vector stores mask to guard accesses using Mask = typename UnderlyingIterator::Mask; /// Parameters object is precomputed state and is host-constructible class Params { private: friend PredicatedTileAccessIterator; /// Parameters object typename UnderlyingIterator::Params params_; public: /// Default constructor Params() = default; /// Construct the Params object given a pitch-linear tensor's layout CUTLASS_HOST_DEVICE Params(Layout const &layout) : params_(layout::PitchLinear(layout.stride(0))) {} CUTLASS_HOST_DEVICE Params(typename UnderlyingIterator::Params::Base const &base) : params_(base) {} }; private: // // Data members // /// Underlying pitch-linear tile iterator UnderlyingIterator iterator_; public: /// Default constructor PredicatedTileAccessIterator() = default; /// Constructs a TileIterator from its precomputed state, threadblock offset, /// and thread ID CUTLASS_HOST_DEVICE PredicatedTileAccessIterator( /// Precomputed parameters object Params const &params, /// Pointer to start of tensor Pointer pointer, /// Extent of tensor TensorCoord extent, /// ID of each participating thread int thread_id, /// Initial offset of threadblock TensorCoord const &threadblock_offset, int const *indices = nullptr ///< gather/scatter indices, note no support for gather/scatter at this specialization ) : iterator_(params.params_, pointer, layout::PitchLinearCoord(extent.row() * kInterleavedK, extent.column() / kInterleavedK), thread_id, layout::PitchLinearCoord( threadblock_offset.row() * kInterleavedK, threadblock_offset.column() / kInterleavedK)) {} /// Construct a PredicatedTileAccessIterator with zero threadblock offset CUTLASS_HOST_DEVICE PredicatedTileAccessIterator( Params const &params, ///< Precomputed parameters object Pointer pointer, ///< Pointer to start of tensor TensorCoord extent, ///< Extent of tensor int thread_id ///< ID of each participating thread ) : PredicatedTileAccessIterator(params, pointer, extent, thread_id, make_Coord(0, 0)) {} /// Overrides the internal iteration index CUTLASS_HOST_DEVICE void set_iteration_index(int index) { iterator_.set_iteration_index(index); } /// Adds a pointer offset in units of Element CUTLASS_HOST_DEVICE void add_pointer_offset(LongIndex pointer_offset) { iterator_.add_pointer_offset(pointer_offset); } /// Advances an iterator along logical dimensions of matrix in units of whole /// tiles CUTLASS_HOST_DEVICE void add_tile_offset(TensorCoord const &tile_offset) { iterator_.add_tile_offset({tile_offset.row(), tile_offset.column()}); } /// Returns a pointer CUTLASS_HOST_DEVICE AccessType *get() const { return reinterpret_cast<AccessType *>(iterator_.get()); } /// Advances to the next tile in memory. /// /// The first time this method is called, predicates are updated, and the /// iterator's internal pointer is reverted to the first "steady state" tile. /// Subsequent calls are lightweight and must only update the internal /// pointer. CUTLASS_HOST_DEVICE PredicatedTileAccessIterator &operator++() { ++iterator_; return *this; } /// Advances to the next tile in memory. /// /// The first time this method is called, predicates are updated, and the /// iterator's internal pointer is reverted to the first "steady state" tile. /// Subsequent calls are lightweight and must only update the internal /// pointer. CUTLASS_HOST_DEVICE PredicatedTileAccessIterator operator++(int) { PredicatedTileAccessIterator self(*this); operator++(); return self; } /// Clears the predicate set efficiently CUTLASS_HOST_DEVICE void clear_mask(bool enable = true) { iterator_.clear_mask(enable); } /// Clears the predicate set efficiently CUTLASS_HOST_DEVICE void enable_mask() { iterator_.enable_mask(); } /// Sets the predicate mask, overriding value stored in predicate iterator CUTLASS_HOST_DEVICE void set_mask(Mask const &mask) { iterator_.set_mask(mask); } /// Gets the mask CUTLASS_HOST_DEVICE void get_mask(Mask &mask) { iterator_.get_mask(mask); } /// Returns whether access is valid or not CUTLASS_HOST_DEVICE bool valid() { return iterator_.valid(); } }; //////////////////////////////////////////////////////////////////////////////// /// Specialization of PredicatedTileAccessIterator for row-major interleaved data. // It is mapped to the congruous layout. /// /// Satisfies: ForwardTileIteratorConcept | /// ReadableContiguousTileIteratorConcept | /// WriteableContiguousTileIteratorConcept | /// MaskedTileIteratorConcept /// template <typename Shape_, typename Element_, int AdvanceRank, typename ThreadMap_, typename AccessType_, int InterleavedK> class PredicatedTileAccessIterator<Shape_, Element_, layout::RowMajorInterleaved<InterleavedK>, AdvanceRank, ThreadMap_, AccessType_, false, layout::NoPermute> { public: static_assert( AdvanceRank == 0 || AdvanceRank == 1, "Specialization for pitch-linear iterator may along advance along the " "contiguous(rank=0) or strided(rank=1) dimension."); using Shape = Shape_; using Element = Element_; static int const kInterleavedK = InterleavedK; using Layout = layout::RowMajorInterleaved<kInterleavedK>; static int const kAdvanceRank = AdvanceRank; using ThreadMap = ThreadMap_; using AccessType = AccessType_; using Index = typename Layout::Index; using LongIndex = typename Layout::LongIndex; using TensorRef = TensorRef<Element, Layout>; using TensorView = TensorView<Element, Layout>; using TensorCoord = typename Layout::TensorCoord; using Pointer = Element *; using NonConstPointer = typename platform::remove_const<Element>::type *; using UnderlyingIterator = PredicatedTileAccessIterator< layout::PitchLinearShape<Shape::kColumn * kInterleavedK, Shape::kRow / kInterleavedK>, Element, layout::PitchLinear, (kAdvanceRank == 0 ? 1 : 0), ThreadMap, AccessType>; static int const kAccessesPerVector = UnderlyingIterator::kAccessesPerVector; /// Predicate vector stores mask to guard accesses using Mask = typename UnderlyingIterator::Mask; /// Parameters object is precomputed state and is host-constructible class Params { private: friend PredicatedTileAccessIterator; /// Parameters object typename UnderlyingIterator::Params params_; public: /// Default constructor Params() = default; /// Construct the Params object given a pitch-linear tensor's layout CUTLASS_HOST_DEVICE Params(Layout const &layout) : params_(layout::PitchLinear(layout.stride(0))) {} CUTLASS_HOST_DEVICE Params(typename UnderlyingIterator::Params::Base const &base) : params_(base) {} }; private: // // Data members // /// Underlying pitch-linear tile iterator UnderlyingIterator iterator_; public: /// Default constructor PredicatedTileAccessIterator() = default; /// Constructs a TileIterator from its precomputed state, threadblock offset, /// and thread ID CUTLASS_HOST_DEVICE PredicatedTileAccessIterator( /// Precomputed parameters object Params const &params, /// Pointer to start of tensor Pointer pointer, /// Extent of tensor TensorCoord extent, /// ID of each participating thread int thread_id, /// Initial offset of threadblock TensorCoord const &threadblock_offset, int const *indices = nullptr ///< gather/scatter indices, note no support for gather/scatter at this specialization ) : iterator_(params.params_, pointer, layout::PitchLinearCoord(extent.column() * kInterleavedK, extent.row() / kInterleavedK), thread_id, layout::PitchLinearCoord( threadblock_offset.column() * kInterleavedK, threadblock_offset.row() / kInterleavedK)) {} /// Construct a PredicatedTileAccessIterator with zero threadblock offset CUTLASS_HOST_DEVICE PredicatedTileAccessIterator( Params const &params, ///< Precomputed parameters object Pointer pointer, ///< Pointer to start of tensor TensorCoord extent, ///< Extent of tensor int thread_id ///< ID of each participating thread ) : PredicatedTileAccessIterator(params, pointer, extent, thread_id, make_Coord(0, 0)) {} /// Overrides the internal iteration index CUTLASS_HOST_DEVICE void set_iteration_index(int index) { iterator_.set_iteration_index(index); } /// Adds a pointer offset in units of Element CUTLASS_HOST_DEVICE void add_pointer_offset(LongIndex pointer_offset) { iterator_.add_pointer_offset(pointer_offset); } /// Advances an iterator along logical dimensions of matrix in units of whole /// tiles CUTLASS_HOST_DEVICE void add_tile_offset(TensorCoord const &tile_offset) { iterator_.add_tile_offset({tile_offset.column(), tile_offset.row()}); } /// Returns a pointer CUTLASS_HOST_DEVICE AccessType *get() const { return reinterpret_cast<AccessType *>(iterator_.get()); } /// Advances to the next tile in memory. /// /// The first time this method is called, predicates are updated, and the /// iterator's internal pointer is reverted to the first "steady state" tile. /// Subsequent calls are lightweight and must only update the internal /// pointer. CUTLASS_HOST_DEVICE PredicatedTileAccessIterator &operator++() { ++iterator_; return *this; } /// Advances to the next tile in memory. /// /// The first time this method is called, predicates are updated, and the /// iterator's internal pointer is reverted to the first "steady state" tile. /// Subsequent calls are lightweight and must only update the internal /// pointer. CUTLASS_HOST_DEVICE PredicatedTileAccessIterator operator++(int) { PredicatedTileAccessIterator self(*this); operator++(); return self; } /// Clears the predicate set efficiently CUTLASS_HOST_DEVICE void clear_mask(bool enable = true) { iterator_.clear_mask(enable); } /// Clears the predicate set efficiently CUTLASS_HOST_DEVICE void enable_mask() { iterator_.enable_mask(); } /// Sets the predicate mask, overriding value stored in predicate iterator CUTLASS_HOST_DEVICE void set_mask(Mask const &mask) { iterator_.set_mask(mask); } /// Gets the mask CUTLASS_HOST_DEVICE void get_mask(Mask &mask) { iterator_.get_mask(mask); } /// Returns whether access is valid or not CUTLASS_HOST_DEVICE bool valid() { return iterator_.valid(); } }; //////////////////////////////////////////////////////////////////////////////// } // namespace threadblock } // namespace transform } // namespace cutlass ////////////////////////////////////////////////////////////////////////////////
include/cutlass/transform/threadblock/predicated_tile_access_iterator.h/0
{ "file_path": "include/cutlass/transform/threadblock/predicated_tile_access_iterator.h", "repo_id": "include", "token_count": 25112 }
46
/*************************************************************************************************** * Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. * SPDX-License-Identifier: BSD-3-Clause * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * **************************************************************************************************/ /*! \file \brief Templates implementing loading of tiles from pitch-linear rank=2 tensors. This iterator uses masks to guard out-of-bounds accesses and visits the last "residue" tile first, with the objective of minimizing predicate mask updates during steady-state operation. A precomputed "Params" object minimizes the amount of state that must be stored in registers, and integer addition is used to advance the pointer through memory. */ #pragma once #include "cutlass/cutlass.h" #include "cutlass/tensor_ref.h" #include "cutlass/layout/matrix.h" #include "cutlass/layout/pitch_linear.h" #include "regular_tile_iterator.h" ///////////////////////////////////////////////////////////////////////////////////////////////// namespace cutlass { namespace transform { namespace threadblock { ///////////////////////////////////////////////////////////////////////////////////////////////// template < typename Shape, typename Element, typename Layout, int AdvanceRank, typename ThreadMap, int Alignment = sizeof_bits<Element>::value * ThreadMap::kElementsPerAccess / 8 > class RegularTileIterator2dThreadTile; /// Regular tile iterator specialized for pitch-linear + 2d thread-tiled threadmapping template < typename Shape_, typename Element_, int AdvanceRank, typename ThreadMap_, int Alignment > class RegularTileIterator2dThreadTile<Shape_, Element_, layout::PitchLinear, AdvanceRank, ThreadMap_, Alignment> { public: using Shape = Shape_; using Element = Element_; using Layout = layout::PitchLinear; static int const kAdvanceRank = AdvanceRank; using ThreadMap = ThreadMap_; static int const kAlignment = Alignment; using Index = typename Layout::Index; using LongIndex = typename Layout::LongIndex; using StrideIndex = typename Layout::Stride::Index; using TensorRef = TensorRef<Element, Layout>; using TensorCoord = typename Layout::TensorCoord; using Fragment = Array<Element, ThreadMap::Iterations::kCount * ThreadMap::ThreadAccessShape::kCount>; static_assert(kAdvanceRank == 0 || kAdvanceRank == 1, "Advance rank may only be along the contiguous or strided dimensions."); private: // // Types // using AccessType = AlignedArray<Element, ThreadMap::ThreadAccessShape::kCount, kAlignment>; // // Data members // /// Pointer to memory uint8_t *pointer_; /// Stride quantity StrideIndex stride_; /// Amount to increment pointer along strided dimension LongIndex increment_strided_; /// Amount to advance pointer between tiles LongIndex increment_advance_; public: CUTLASS_DEVICE RegularTileIterator2dThreadTile(): pointer_(nullptr), increment_strided_(0), increment_advance_(0) { } CUTLASS_DEVICE RegularTileIterator2dThreadTile( TensorRef const &ref, int thread_idx, int interleave ){ TensorCoord t = ThreadMap::initial_offset(thread_idx); long int offset = t[0] * interleave + t[1] * ref.stride()[0]/interleave; pointer_ = reinterpret_cast<uint8_t *>(ref.data() + offset); stride_ = ref.stride()[0] / interleave; increment_strided_ = (ref.stride()[0] * sizeof_bits<Element>::value / 8) * ThreadMap::Delta::kStrided / interleave; increment_advance_ = (kAdvanceRank == 0 ? Shape::kContiguous * sizeof_bits<Element>::value / 8 : Shape::kStrided * (ref.stride()[0] * sizeof_bits<Element>::value / 8) / interleave); } /// Loads a fragment CUTLASS_DEVICE void load_with_pointer_offset(Fragment &frag, Index pointer_offset) { AccessType *frag_ptr = reinterpret_cast<AccessType *>(&frag); uint8_t const *byte_pointer = pointer_ + pointer_offset * sizeof_bits<Element>::value / 8; CUTLASS_PRAGMA_UNROLL for (int s = 0; s < ThreadMap::Iterations::kStrided; ++s) { AccessType const *access_ptr = reinterpret_cast<AccessType const *>(byte_pointer); CUTLASS_PRAGMA_UNROLL for (int c = 0; c < ThreadMap::Iterations::kContiguous; ++c) { int idx = c + s * ThreadMap::Iterations::kContiguous; frag_ptr[idx] = access_ptr[c * ThreadMap::Delta::kContiguous / ThreadMap::ThreadAccessShape::kStrided]; } if (s + 1 < ThreadMap::Iterations::kStrided) { byte_pointer += increment_strided_; } } } /// Loads a fragment CUTLASS_HOST_DEVICE void load(Fragment &frag, TensorCoord const & tile_offset) { load_with_pointer_offset( frag, tile_offset.contiguous() * Shape::kContiguous / ThreadMap::kElementsPerAccess + tile_offset.strided() * Shape::kStrided * stride_ ); } /// Loads a fragment CUTLASS_HOST_DEVICE void load(Fragment &frag) { load_with_pointer_offset(frag, 0); } /// Stores a fragment CUTLASS_HOST_DEVICE void store_with_pointer_offset(Fragment const &frag, Index pointer_offset) { AccessType const *frag_ptr = reinterpret_cast<AccessType const*>(&frag); uint8_t *byte_pointer = pointer_ + pointer_offset * sizeof_bits<Element>::value / 8; CUTLASS_PRAGMA_UNROLL for (int s = 0; s < ThreadMap::Iterations::kStrided; ++s) { AccessType *access_ptr = reinterpret_cast<AccessType *>(byte_pointer); CUTLASS_PRAGMA_UNROLL for (int c = 0; c < ThreadMap::Iterations::kContiguous; ++c) { int idx = c + s * ThreadMap::Iterations::kContiguous; access_ptr[c * ThreadMap::Delta::kContiguous / ThreadMap::ThreadAccessShape::kStrided] = frag_ptr[idx]; } if (s + 1 < ThreadMap::Iterations::kStrided) { byte_pointer += increment_strided_; } } } /// Stores a fragment CUTLASS_HOST_DEVICE void store(Fragment const &frag, TensorCoord const & tile_offset) { store_with_pointer_offset( frag, tile_offset.contiguous() * Shape::kContiguous + tile_offset.strided() * Shape::kStrided * stride_ ); } /// Stores a fragment CUTLASS_HOST_DEVICE void store(Fragment const &frag) { store_with_pointer_offset(frag, 0); } /// Advances the pointer CUTLASS_HOST_DEVICE RegularTileIterator2dThreadTile &operator++() { pointer_ += increment_advance_; return *this; } /// Advances the pointer CUTLASS_HOST_DEVICE RegularTileIterator2dThreadTile &operator--() { pointer_ -= increment_advance_; return *this; } /// Adds a pointer offset in units of Element CUTLASS_HOST_DEVICE void add_pointer_offset(LongIndex pointer_offset) { pointer_ += pointer_offset; } /// Adds a tile offset CUTLASS_DEVICE void add_tile_offset(TensorCoord const &coord) { int offset = sizeof_bits<Element>::value * (coord.contiguous() * Shape::kContiguous + coord.strided() * Shape::kStrided * stride_) / 8; add_pointer_offset(offset); } }; ///////////////////////////////////////////////////////////////////////////////////////////////// /// Regular tile iterator specialized for interleaved layout + 2d thread-tiled threadmapping template < typename Shape_, typename Element_, int AdvanceRank, typename ThreadMap_, int Alignment > class RegularTileIterator2dThreadTile<Shape_, Element_, layout::RowMajorInterleaved<4>, AdvanceRank, ThreadMap_, Alignment> { public: using Shape = Shape_; using Element = Element_; using Layout = layout::RowMajorInterleaved<4>; static int const kAdvanceRank = AdvanceRank; using ThreadMap = ThreadMap_; static int const kAlignment = Alignment; using Index = typename Layout::Index; using LongIndex = typename Layout::LongIndex; using TensorRef = TensorRef<Element, Layout>; using TensorCoord = typename Layout::TensorCoord; using Fragment = Array<Element, ThreadMap::Iterations::kCount * ThreadMap::ThreadAccessShape::kCount>; using Underlying = RegularTileIterator2dThreadTile< layout::PitchLinearShape<Shape::kColumn, Shape::kRow>, Element, layout::PitchLinear, (kAdvanceRank == 0 ? 1 : 0), ThreadMap, kAlignment >; static_assert(kAdvanceRank == 0 || kAdvanceRank == 1, "Advance rank may only be along the row or column dimensions."); private: Underlying iterator_; public: CUTLASS_DEVICE RegularTileIterator2dThreadTile() { } CUTLASS_DEVICE RegularTileIterator2dThreadTile( TensorRef const &ref, int thread_idx ): iterator_({ref.data(), ref.stride()}, thread_idx, 4) { } /// Loads a fragment CUTLASS_HOST_DEVICE void load_with_pointer_offset(Fragment &frag, Index pointer_offset) { iterator_.load_with_pointer_offset(frag, pointer_offset); } /// Loads a fragment CUTLASS_HOST_DEVICE void load(Fragment &frag, TensorCoord const & tile_offset) { iterator_.load_with_pointer_offset(frag, {tile_offset.column(), tile_offset.row()}); } /// Loads a fragment CUTLASS_HOST_DEVICE void load(Fragment &frag) { iterator_.load_with_pointer_offset(frag, 0); } /// Stores a fragment CUTLASS_HOST_DEVICE void store_with_pointer_offset(Fragment const &frag, Index pointer_offset) { iterator_.store_with_pointer_offset(frag, pointer_offset); } /// Stores a fragment CUTLASS_HOST_DEVICE void store(Fragment const &frag, TensorCoord const & tile_offset) { iterator_.store_with_pointer_offset(frag, {tile_offset.column(), tile_offset.row()}); } /// Stores a fragment CUTLASS_HOST_DEVICE void store(Fragment const &frag) { iterator_.store_with_pointer_offset(frag, 0); } /// Advances the pointer CUTLASS_HOST_DEVICE RegularTileIterator2dThreadTile &operator++() { ++iterator_; return *this; } /// Advances the pointer CUTLASS_HOST_DEVICE RegularTileIterator2dThreadTile &operator--() { --iterator_; return *this; } /// Adds a pointer offset in units of Element CUTLASS_HOST_DEVICE void add_pointer_offset(LongIndex pointer_offset) { iterator_.add_pointer_offset(pointer_offset); } /// Adds a tile offset CUTLASS_DEVICE void add_tile_offset(TensorCoord const &coord) { iterator_.add_tile_offset({coord.column(), coord.row()}); } }; ///////////////////////////////////////////////////////////////////////////////////////////////// /// Regular tile iterator specialized for interleaved layout + 2d thread-tiled threadmapping template < typename Shape_, typename Element_, int AdvanceRank, typename ThreadMap_, int Alignment > class RegularTileIterator2dThreadTile<Shape_, Element_, layout::ColumnMajorInterleaved<4>, AdvanceRank, ThreadMap_, Alignment> { public: using Shape = Shape_; using Element = Element_; using Layout = layout::ColumnMajorInterleaved<4>; static int const kAdvanceRank = AdvanceRank; using ThreadMap = ThreadMap_; static int const kAlignment = Alignment; using Index = typename Layout::Index; using LongIndex = typename Layout::LongIndex; using TensorRef = TensorRef<Element, Layout>; using TensorCoord = typename Layout::TensorCoord; using Fragment = Array<Element, ThreadMap::Iterations::kCount * ThreadMap::ThreadAccessShape::kCount>; using PitchLinearThreadMap = PitchLinearStripminedThreadMap< layout::PitchLinearShape<Shape::kRow, Shape::kColumn>, ThreadMap::kThreads, ThreadMap::ThreadAccessShape::kCount >; using Underlying = RegularTileIterator2dThreadTile< layout::PitchLinearShape<Shape::kRow, Shape::kColumn>, Element, layout::PitchLinear, (kAdvanceRank == 0 ? 0 : 1), ThreadMap >; static_assert(kAdvanceRank == 0 || kAdvanceRank == 1, "Advance rank may only be along the row or column dimensions."); private: Underlying iterator_; public: CUTLASS_DEVICE RegularTileIterator2dThreadTile() { } CUTLASS_DEVICE RegularTileIterator2dThreadTile( TensorRef const &ref, int thread_idx ): iterator_({ref.data(), ref.stride()}, thread_idx, 4) { } /// Loads a fragment CUTLASS_HOST_DEVICE void load_with_pointer_offset(Fragment &frag, Index pointer_offset) { iterator_.load_with_pointer_offset(frag, pointer_offset); } /// Loads a fragment CUTLASS_HOST_DEVICE void load(Fragment &frag, TensorCoord const & tile_offset) { iterator_.load_with_pointer_offset(frag, {tile_offset.row(), tile_offset.column()}); } /// Loads a fragment CUTLASS_HOST_DEVICE void load(Fragment &frag) { iterator_.load_with_pointer_offset(frag, 0); } /// Stores a fragment CUTLASS_HOST_DEVICE void store_with_pointer_offset(Fragment const &frag, Index pointer_offset) { iterator_.store_with_pointer_offset(frag, pointer_offset); } /// Stores a fragment CUTLASS_HOST_DEVICE void store(Fragment const &frag, TensorCoord const & tile_offset) { iterator_.store_with_pointer_offset(frag, {tile_offset.row(), tile_offset.column()}); } /// Stores a fragment CUTLASS_HOST_DEVICE void store(Fragment const &frag) { iterator_.store_with_pointer_offset(frag, 0); } /// Advances the pointer CUTLASS_HOST_DEVICE RegularTileIterator2dThreadTile &operator++() { ++iterator_; return *this; } /// Advances the pointer CUTLASS_HOST_DEVICE RegularTileIterator2dThreadTile &operator--() { --iterator_; return *this; } /// Adds a pointer offset in units of Element CUTLASS_HOST_DEVICE void add_pointer_offset(LongIndex pointer_offset) { iterator_.add_pointer_offset(pointer_offset); } /// Adds a tile offset CUTLASS_DEVICE void add_tile_offset(TensorCoord const &coord) { iterator_.add_tile_offset({coord.row(), coord.column()}); } }; ///////////////////////////////////////////////////////////////////////////////////////////////// } // namespace threadblock } // namespace transform } // namespace cutlass
include/cutlass/transform/threadblock/regular_tile_iterator_pitch_linear_2dthreadtile.h/0
{ "file_path": "include/cutlass/transform/threadblock/regular_tile_iterator_pitch_linear_2dthreadtile.h", "repo_id": "include", "token_count": 5171 }
47
# CuTe Tensor algorithms This section summarizes the interfaces and implementations of common numerical algorithms performed on `Tensor`s. The implementation of these algorithms may be found in the [include/cute/algorithm/](../../../include/cute/algorithm/) directory. ## `copy` CuTe's `copy` algorithm copies the elements of a source `Tensor` into the elements of a destination `Tensor`. The various overloads of `copy` can be found in [`include/cute/algorithm/copy.hpp`](../../../include/cute/algorithm/copy.hpp). ### Interface and specialization opportunities A `Tensor` encapsulates the data type, data location, and possibly also the shape and stride of the tensor at compile time. As a result, `copy` can and does dispatch, based on the types of its arguments, to use any of various synchronous or asynchronous hardware copy instructions. The `copy` algorithm has two main overloads. The first just takes the source `Tensor` and the destination `Tensor`. ```c++ template <class SrcEngine, class SrcLayout, class DstEngine, class DstLayout> CUTE_HOST_DEVICE void copy(Tensor<SrcEngine, SrcLayout> const& src, Tensor<DstEngine, DstLayout> & dst); ``` The second takes those two parameters, plus a `Copy_Atom`. ```c++ template <class... CopyArgs, class SrcEngine, class SrcLayout, class DstEngine, class DstLayout> CUTE_HOST_DEVICE void copy(Copy_Atom<CopyArgs...> const& copy_atom, Tensor<SrcEngine, SrcLayout> const& src, Tensor<DstEngine, DstLayout> & dst); ``` The two-parameter `copy` overload picks a default implementation based only on the types of the two `Tensor` parameters. The `Copy_Atom` overload lets callers override that default by specifying a nondefault `copy` implementation. ### Parallelism and synchronization depend on parameter types Either the default implementation or the implementation selected by a `Copy_Atom` overload may use none or all available parallelism, and may have a variety of synchronization semantics. The behavior depends on `copy`'s parameter types. Users are expected to figure this out based on their knowledge of the architecture on which they are running. (Developers often write a custom optimized kernel for each GPU architecture.) The `copy` algorithm may be sequential per thread, or it may be parallel across some collection of threads (e.g., a block or cluster). If `copy` is parallel, then the collection of participating threads may need synchronization before any thread in the collection may assume that the copy operation has completed. For example, if the participating threads form a thread block, then users must invoke `__syncthreads()` or the Cooperative Groups equivalent before they may use the results of `copy`. The `copy` algorithm may use asynchronous copy instructions, such as `cp.async`, or its C++ interface `memcpy_async`. In that case, users will need to perform the additional synchronization appropriate to that underlying implementation before they may use the results of the `copy` algorithm. [The CuTe GEMM tutorial example](../../../examples/cute/tutorial/) shows one such synchronization method. More optimized GEMM implementations use pipelining techniques to overlap asynchronous `copy` operations with other useful work. ### A generic copy implementation A simple example of a generic `copy` implementation for any two `Tensor`s looks like this. ```c++ template <class TA, class ALayout, class TB, class BLayout> CUTE_HOST_DEVICE void copy(Tensor<TA, ALayout> const& src, // Any logical shape Tensor<TB, BLayout> & dst) // Any logical shape { for (int i = 0; i < size(src); ++i) { dst(i) = src(i); } } ``` This generic `copy` algorithm addresses both `Tensor`s with 1-D logical coordinates, thus traversing both `Tensor`s in a logical column-major order. Some reasonable architecture-independent optimizations would include the following. 1. If the two `Tensor`s have known memory spaces with optimized access instructions (like `cp.async`), then dispatch to the custom instruction. 2. The two `Tensor`s have static layouts and it can be proven that element vectorization is valid -- for example, four `ld.global.b32`s can be combined into a single `ld.global.b128` -- then vectorize the source and destinations tensors. 3. If possible, validate that the copy instruction to be used is appropriate for the source and destination tensors. CuTe's optimized copy implementations can do all of these. ## `copy_if` CuTe's `copy_if` algorithm lives in the same header as `copy`, [`include/cute/algorithm/copy.hpp`](../../../include/cute/algorithm/copy.hpp). The algorithm takes source and destination `Tensor` parameters like `copy`, but it also takes a "predication `Tensor`" with the same shape as the input and output. Elements of the source `Tensor` are only copied if the corresponding predication `Tensor` element is nonzero. For details on why and how to use `copy_if`, please refer to the ["predication" section of the tutorial](./0y_predication.md). ## `gemm` ### What `gemm` computes The `gemm` algorithm takes three `Tensor`s, A, B, and C. What it does depends on the number of modes that its `Tensor` parameters have. We express these modes using letters. * V indicates a "vector," a mode of independent elements. * M and N indicate the number of rows resp. columns of the matrix result C of the BLAS's GEMM routine. * K indicates the "reduction mode" of GEMM, that is, the mode along which GEMM sums. Please see the [GEMM tutorial](./0x_gemm_tutorial.md) for details. We list the modes of the input `Tensor`s A and B, and the output `Tensor` C, using a notation `(...) x (...) => (...)`. The two leftmost `(...)` describe A and B (in that order), and the `(...)` to the right of the `=>` describes C. 1. `(V) x (V) => (V)`. The element-wise product of vectors: C<sub>v</sub> += A<sub>v</sub> B<sub>v</sub>. Dispatches to FMA or MMA. 2. `(M) x (N) => (M,N)`. The outer product of vectors: C<sub>mn</sub> += A<sub>m</sub> B_<sub>n</sub>. Dispatches to (4) with V=1. 3. `(M,K) x (N,K) => (M,N)`. The product of matrices: C<sub>mn</sub> += A<sub>mk</sub> B<sub>nk</sub>. Dispatches to (2) for each K. 4. `(V,M) x (V,N) => (V,M,N)`. The batched outer product of vectors: C<sub>vmn</sub> += A<sub>vm</sub> B<sub>vn</sub>. Optimizes for register reuse and dispatches to (1) for each M, N. 5. `(V,M,K) x (V,N,K) => (V,M,N)`. The batched product of matrices: C<sub>vmn</sub> += A<sub>vmk</sub> B<sub>vnk</sub>. Dispatches to (4) for each K. Please refer to the [GEMM tutorial](./0x_gemm_tutorial.md) for an overview of CuTe's convention for ordering the modes. For example, if K appears, it always appears rightmost ("outermost"). If V appears, it always appears leftmost ("innermost"). ### Dispatch to optimized implementations Just like with `copy`, CuTe's implementations of `gemm` uses its `Tensor` arguments' types to dispatch to an appropriately optimized implementation. Also like `copy`, `gemm` takes an optional `MMA_Atom` parameter that lets callers override the default `FMA` instruction that CuTe would select based on the `Tensor` arguments' types. For more information on `MMA_Atom` and on specialization of `gemm` for different architectures, please refer to the [MMA section of the tutorial](./0t_mma_atom.md). ## `axpby` The `axpby` algorithm lives in the header file [`include/cute/algorithm/axpby.hpp`](../../../include/cute/algorithm/axpby.hpp). It assigns to $y$ the result of $\alpha x + \beta y$, where $\alpha$ and $\beta$ are scalars and $x$ and $y$ are `Tensor`s. The name stands for "Alpha times X Plus Beta times Y," and is a generalization of the original BLAS "AXPY" routine ("Alpha times X Plus Y"). ## `fill` The `fill` algorithm lives in the header file [`include/cute/algorithm/fill.hpp`](../../../include/cute/algorithm/fill.hpp). It overwrites the elements of its `Tensor` output argument with a given scalar value. ## `clear` The `clear` algorithm lives in the header file [`include/cute/algorithm/clear.hpp`](../../../include/cute/algorithm/clear.hpp). It overwrites the elements of its `Tensor` output argument with zeros. ## Other algorithms CuTe provides other algorithms. Their header files can be found in the [`include/cute/algorithm`](../../../include/cute/algorithm) directory.
media/docs/cute/04_algorithms.md/0
{ "file_path": "media/docs/cute/04_algorithms.md", "repo_id": "media", "token_count": 2578 }
48
# Synchronization primitives ## Overview of CUDA's synchronization methods The CUDA programming model provides 3 abstractions: * hierarchical parallelism -- that is, parallel threads grouped into hierarchical units such as blocks and clusters; * shared memory, through which parallel threads that are in the same hierarchical unit can communicate; and * synchronization methods for threads. These abstractions help developers extract both fine-grained and coarse-grained parallelism, by making it possible for them to subdivide problems into independent components, and to insert synchronization at appropriate points. Over the years CUDA has introduced several synchronization primitives that operate at different levels of the hierarchy. These include * [thread block - level](https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#synchronization-functions) synchronization (e.g., `__syncthreads()`); * [warp-level](https://developer.nvidia.com/blog/using-cuda-warp-level-primitives/) synchronization (e.g., `__syncwarp()`); and * [thread-level](https://docs.nvidia.com/cuda/cuda-c-programming-guide/#memory-fence-functions) fence operations. As an extension to this, starting with the Hopper architecture, CUDA added the following improvements: * [thread block clusters](https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#thread-block-clusters) -- a new level in the thread hierarchy representing a group of thread blocks that can coordinate and share data; * synchronization instructions for a thread block cluster and threads within a cluster scope. ## CUTLASS's abstractions for Hopper features CUTLASS now includes abstractions for the following features introduced in Hopper. 1. Thread block cluster - level synchronization and query [APIs](/include/cute/arch/cluster_sm90.hpp) 2. Abstractions for new [barrier instructions](/include/cutlass/arch/barrier.h) which help with efficient synchronization of threads within a thread block cluster. ### Asynchronous pipelines In order to write a performant GEMM Kernel, software pipelining is critical to hide the latency of global memory loads. (Please refer to the [Efficient GEMM](/media/docs/efficient_gemm.md#pipelining) document.) Different threads or groups of threads may have different roles in the pipeline. Some are "producers" that load data or perform computations to satisfy other threads' input data dependencies. The same or different threads may be "consumers" that do other work with those input data dependencies, once they are satisfied. Starting with the Hopper architecture, the presence of hardware-accelerated synchronization instructions make it possible for "producer" and "consumer" threads to communicate with each other efficiently about their data dependencies. Implementing a persistent GEMM algorithm calls for managing dozens of different kinds of asynchronously executing operations that synchronize using multiple barriers organized as a circular list. This complexity is too much for human programmers to manage by hand. As a result, we have developed [asynchronous Pipeline classes](/include/cutlass/pipeline/). These classes help developers orchestrate a pipeline of asynchronous producer and consumer threads, without needing to worry about lower-level hardware details. These classes serve a similar function as the various [pipeline abstractions](https://nvidia.github.io/libcudacxx/extended_api/synchronization_primitives/pipeline.html) in libcu++. #### Pipeline methods ##### Producer acquire The `producer_acquire` method is to be used by asynchronous producer threads before issuing other instructions associated with a particular pipeline stage (e.g., copy or write). This is a blocking instruction which blocks further execution of consumer threads unless the particular stage waiting to be acquired is released by a consumer. We say that a pipeline at its start is "empty" if producer threads are free to produce and do not need to wait for a consumer release -- that is, if an acquire operation is expected to succeed. If the pipeline at its start is empty, then we can either skip performing producer acquire operations during the first pass through the pipeline stages, or use the `make_producer_start_state` method. The latter ensures that the acquire operation will succeed at the start of a pipeline. ##### Producer commit The `producer_commit` method is to be issued by asynchronous producer threads after the instructions associated with a particular stage (e.g., shared memory writes) have completed, in order to notify the waiting asynchronous consumer threads. This is a nonblocking instruction. This API may result in a No-Op in some cases, if the producer instructions also update the barrier stage associated automatically (e.g., TMA_based producer threads using the `PipelineTmaAsync ` class). ##### Consumer wait The `consumer_wait` method is to be used by consumer threads before consuming data from a particular pipeline stage which is expected to be produced by producer threads. This is a blocking instruction. That is, until the producer threads have committed to a particular stage, this instruction is expected to block further execution of consumer threads. ##### Consumer release The `consumer_release` method is to be used by consumer threads to signal waiting producer threads that they have finished consuming data associated with a particular stage of the pipeline. This is a nonblocking instruction. #### Pipeline example ```c++ // 4-stage Pipeline static constexpr int NumStages = 4; using MainloopPipeline = typename cutlass::PipelineAsync<NumStages>; using PipelineState = typename cutlass::PipelineState<NumStages>; // 2 producer threads and 1 consumer thread typename MainloopPipeline::Params params; params.producer_arv_count = 2; params.consumer_arv_count = 1; MainloopPipeline pipeline(shared_storage.storage, params); // Producer threads if (thread_idx == 0 or thread_idx == 1) { PipelineState smem_pipe_write = cutlass::make_producer_start_state<MainloopPipeline>(); for ( ; iter > 0; --iter) { pipeline.producer_acquire(smem_pipe_write); // Producer ops // If any memory operations are involved, then we also need // to guarantee that writes are completed and visible to consumer(s). pipeline.producer_commit(smem_pipe_write); ++smem_pipe_write; } } else if (thread_idx == 2) { PipelineState smem_pipe_read; for (; iter > 0; --iter) { pipeline.consumer_wait(smem_pipe_read); // Consumer ops pipeline.consumer_release(smem_pipe_read); ++smem_pipe_read; } } ``` In this example, we create an instance of the asynchronous pipeline class `PipelineSync`, and then synchronize among 3 asynchronously executing threads: 2 producer threads and 1 consumer thread. Please note that this is a basic example. There are different versions possible, depending on what the producer and consumer threads are doing. Please refer to our [unit tests](/test/unit/pipeline) and the other [pipeline classes](/include/cutlass/pipeline/pipeline.hpp) for more details. # Copyright Copyright (c) 2023 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. SPDX-License-Identifier: BSD-3-Clause ``` Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ```
media/docs/pipeline.md/0
{ "file_path": "media/docs/pipeline.md", "repo_id": "media", "token_count": 2277 }
49
################################################################################################# # # Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################################# import ctypes from cutlass_library import SubstituteTemplate import numpy as np from scipy.special import erf from cutlass_library import DataType, DataTypeTag from cutlass.backend.c_types import MatrixCoord_ from cutlass.backend.frontend import NumpyFrontend from cutlass.backend.library import ActivationOp, ActivationOpTag from cutlass.utils.datatypes import is_numpy_tensor, is_torch_available, is_torch_tensor dtype2ctype = { DataType.f16: ctypes.c_uint16, DataType.f32: ctypes.c_float, DataType.f64: ctypes.c_double, DataType.s8: ctypes.c_int8, DataType.s32: ctypes.c_int32 } if is_torch_available(): import torch import torch.nn.functional as F def get_scalar(value): """ Returns a scalar value from a container (e.g., np.ndarray) """ if is_numpy_tensor(value): if value.size != 1: raise Exception("Scalars used in epilogue must be of size 1") return value.reshape(-1)[0] elif is_torch_tensor(value): if value.size != 1: raise Exception("Scalars used in epilogue must be of size 1") return value.reshape(-1)[0] else: return value def to_ctype_value(value, dtype): """ Converts ``value`` to the corresponding storage needed for the ctype that will store ``value``. """ scalar = get_scalar(value) if dtype == DataType.f16: # Convert f16 value into an integer return int.from_bytes(np.float16(scalar).tobytes(), "little") else: return scalar ################################################################################################# # # Epilogue Functors # ################################################################################################# class EpilogueFunctorBase: """ Base class for thread-level epilogue functors """ def __init__(self) -> None: pass def emit(self, tag, template_argument): template = """${tag}<${arguments}>""" arguments = "" for idx, arg in enumerate(template_argument): arguments += arg if idx < len(template_argument) - 1: arguments += ", " values = { "tag": tag, "arguments": arguments, } return SubstituteTemplate(template, values) class LinearCombination(EpilogueFunctorBase): """ Apply a linear combination operator to an array of elements D = alpha * accumulator + beta * source :param element_output: data type used to load and store tensors :param epilogue_vector_length: number of elements computed per operation. Usually it is 128/sizeof_bits_v<ElementOutput_>, but we use 64 and 32 sometimes when there are not enough data to store :param element_accumulator: Accumulator data type :param element_epilogue: data type used to compute linear combination """ tag = "cutlass::epilogue::thread::LinearCombination" def __init__( self, element_output, epilogue_vector_length, element_accumulator=None, element_epilogue=None) -> None: super().__init__() if element_accumulator is None: element_accumulator = element_output if element_epilogue is None: element_epilogue = element_output self.element_output = element_output self.element_accumulator = element_accumulator self.element_epilogue = element_epilogue self.epilogue_vector_length = epilogue_vector_length self.template_arguments = [ DataTypeTag[element_output], str(epilogue_vector_length), DataTypeTag[element_accumulator], DataTypeTag[element_epilogue], ] c_element_epilogue = dtype2ctype[self.element_epilogue] element_epilogue = self.element_epilogue class _EpilogueOutputOpParamsEVT(ctypes.Structure): """ Epilogue params when using the default linear combination of EVT, which does not currently use {alpha,beta}_ptr_array """ _fields_ = [ ("alpha", c_element_epilogue), ("beta", c_element_epilogue), ("alpha_ptr", ctypes.c_void_p), ("beta_ptr", ctypes.c_void_p), ] def __init__(self, alpha, beta, *args) -> None: self.alpha = to_ctype_value(alpha, element_epilogue) self.beta = to_ctype_value(beta, element_epilogue) class _EpilogueOutputOpParams(ctypes.Structure): _fields_ = [ ("alpha", c_element_epilogue), ("beta", c_element_epilogue), ("alpha_ptr", ctypes.c_void_p), ("beta_ptr", ctypes.c_void_p), ("alpha_ptr_array", ctypes.c_void_p), ("beta_ptr_array", ctypes.c_void_p), ] def __init__(self, alpha, beta, *args) -> None: self.alpha = to_ctype_value(alpha, element_epilogue) self.beta = to_ctype_value(beta, element_epilogue) def to_evt_params(self) -> _EpilogueOutputOpParamsEVT: return _EpilogueOutputOpParamsEVT(self.alpha, self.beta) self.epilogue_type = _EpilogueOutputOpParams self.epilogue_type_evt = _EpilogueOutputOpParamsEVT def emit(self): return super().emit(self.tag, self.template_arguments) class LinearCombinationClamp(LinearCombination): """ Applies a linear combination operator to an array of elements then clamps the output before converting to the output element type. D = alpha * accumulator + beta * source + uniform :param element_output: data type used to load and store tensors :param epilogue_vector_length: number of elements computed per operation. Usually it is 128/sizeof_bits_v<ElementOutput_>, but we use 64 and 32 sometimes when there are not enough data to store :param element_accumulator: Accumulator data type :param element_epilogue: data type used to compute linear combination """ tag = "cutlass::epilogue::thread::LinearCombinationClamp" def __init__( self, element_output, epilogue_vector_length, element_accumulator=None, element_epilogue=None) -> None: # Base constructor super().__init__( element_output, epilogue_vector_length, element_accumulator, element_epilogue, ) c_element_epilogue = dtype2ctype[self.element_epilogue] element_epilogue = self.element_epilogue class _EpilogueOutputOpParams(ctypes.Structure): _fields_ = [ ("alpha", c_element_epilogue), ("beta", c_element_epilogue), ("alpha_ptr", ctypes.c_void_p), ("beta_ptr", ctypes.c_void_p), ] def __init__(self, alpha, beta, *args) -> None: self.alpha = to_ctype_value(alpha, element_epilogue) self.beta = to_ctype_value(beta, element_epilogue) self.epilogue_type = _EpilogueOutputOpParams class FastLinearCombinationClamp(EpilogueFunctorBase): """ Applies a linear combination operator to an array of elements then clamps the output before converting to the output element type. D = alpha * accumulator + beta * source Note: The below method only when problem_size_K <= 256 for signed int8 gemm or problem_size_K <= 128 for unsigned int8 gemm. The default approach is above. :param element_output: data type used to load and store tensors :param epilogue_vector_length: number of elements computed per operation. Usually it is 128/sizeof_bits_v<ElementOutput_>, but we use 64 and 32 sometimes when there are not enough data to store """ tag = "cutlass::epilogue::thread::FastLinearCombinationClamp" def __init__(self, element_output, epilogue_vector_length, *args) -> None: super().__init__() self.template_arguments = [ DataTypeTag[element_output], str(epilogue_vector_length) ] self.element_accumulator = DataType.s32 self.element_epilogue = DataType.f32 # get epilogue output op c_element_epilogue = dtype2ctype[self.element_epilogue] element_epilogue = self.element_epilogue class _EpilogueOutputOpParams(ctypes.Structure): _fields_ = [ ("alpha", c_element_epilogue), ("beta", c_element_epilogue), ("alpha_ptr", ctypes.c_void_p), ("beta_ptr", ctypes.c_void_p), ] def __init__(self, alpha, beta, *args) -> None: self.alpha = to_ctype_value(alpha, element_epilogue) self.beta = to_ctype_value(beta, element_epilogue) self.epilogue_type = _EpilogueOutputOpParams def emit(self): return super().emit(self.tag, self.template_arguments) class LinearCombinationGeneric(LinearCombination): """ Applies a linear combination operator followed by an activation function to an array of elements. D = activation(alpha * accumulator + beta * source) :param activation_functor: input activation functor :param element_output: data type used to load and store tensors :param epilogue_vector_length: number of elements computed per operation. Usually it is 128/sizeof_bits_v<ElementOutput_>, but we use 64 and 32 sometimes when there are not enough data to store :param element_accumulator: Accumulator data type :param element_epilogue: data type used to compute linear combination """ tag = "cutlass::epilogue::thread::LinearCombinationGeneric" def __init__( self, activation_functor, element_output, epilogue_vector_length, element_accumulator=None, element_epilogue=None) -> None: super().__init__( element_output, epilogue_vector_length, element_accumulator, element_epilogue, ) self.template_arguments = [ activation_functor.emit()] + self.template_arguments self.activation_functor = activation_functor self.element_epilogue = element_epilogue # get epilogue output op self.epilogue_type = self.activation_functor.epilogue_output_op(self.element_epilogue) class ActivationFunctor: """ Base class for frequently used activation functions """ @staticmethod def numpy(x: np.ndarray): raise NotImplementedError() @classmethod def emit(cls): return ActivationOpTag[cls.binding_type] @staticmethod def epilogue_output_op(element_epilogue): c_element_epilogue = dtype2ctype[element_epilogue] class _EpilogueOutputOpParams(ctypes.Structure): _fields_ = [ ("alpha", c_element_epilogue), ("beta", c_element_epilogue), ("alpha_ptr", ctypes.c_void_p), ("beta_ptr", ctypes.c_void_p), ] def __init__(self, alpha, beta, *args) -> None: self.alpha = to_ctype_value(alpha, element_epilogue) self.beta = to_ctype_value(beta, element_epilogue) return _EpilogueOutputOpParams class ActivationMeta(type): @classmethod def __call__(cls, x, *args): if is_numpy_tensor(x): return cls.numpy(x, *args) elif is_torch_tensor(x): return cls.torch(x, *args) else: raise NotImplementedError("Unsupported tensor type") @classmethod def numpy(cls, *args): raise NotImplementedError(f"Numpy reference for {cls.__name__[:-4]} is not implemented.") @classmethod def torch(cls, *args): raise NotImplementedError(f"PyTorch reference for {cls.__name__[:-4]} is not implemented.") ############################################################################## # identity operator class identityMeta(ActivationMeta): @classmethod def numpy(cls, x): return x @classmethod def torch(cls, x): return x class identity(ActivationFunctor, metaclass=identityMeta): binding_type = ActivationOp.Identity ############################################################################## # ReLu operator class reluMeta(ActivationMeta): @classmethod def numpy(cls, x): return np.where(x > 0, x, 0) @classmethod def torch(cls, x): return F.relu(x) class relu(ActivationFunctor, metaclass=reluMeta): binding_type = ActivationOp.ReLU ############################################################################## # Leaky ReLu operator class leakyReLUMeta(ActivationMeta): @classmethod def numpy(cls, x, leaky_alpha): return np.maximum(x, 0) + np.minimum(x, 0) * leaky_alpha @classmethod def torch(cls, x, leaky_alpha): return F.leaky_relu(x, leaky_alpha) class leaky_relu(ActivationFunctor, metaclass=leakyReLUMeta): binding_type = ActivationOp.LeakyReLU @staticmethod def epilogue_output_op(element_epilogue): c_element_epilogue = dtype2ctype[element_epilogue] class _EpilogueOutputOpParams(ctypes.Structure): _fields_ = [ ("alpha", c_element_epilogue), ("beta", c_element_epilogue), ("alpha_ptr", ctypes.c_void_p), ("beta_ptr", ctypes.c_void_p), ("leaky_alpha", c_element_epilogue) ] def __init__(self, alpha, beta, leaky_alpha=0.2, *args) -> None: self.alpha = to_ctype_value(alpha, element_epilogue) self.beta = to_ctype_value(beta, element_epilogue) self.alpha_ptr = 0 self.beta_ptr = 0 self.leaky_alpha = to_ctype_value(leaky_alpha, element_epilogue) return _EpilogueOutputOpParams ############################################################################## # Tanh operator class tanhMeta(ActivationMeta): @classmethod def numpy(cls, x): return np.tanh(x) @classmethod def torch(cls, x): return torch.tanh(x) class tanh(ActivationFunctor, metaclass=tanhMeta): binding_type = ActivationOp.Tanh ############################################################################## # Sigmoid operator class sigmoidMeta(ActivationMeta): @classmethod def numpy(cls, x): return 1.0 / (1.0 + np.exp(-x)) @classmethod def torch(cls, x): return F.sigmoid(x) class sigmoid(ActivationFunctor, metaclass=sigmoidMeta): binding_type = ActivationOp.Sigmoid ############################################################################## # SiLu operator class siluMeta(ActivationMeta): @classmethod def numpy(cls, x): return x * sigmoidMeta.numpy() @classmethod def silu(cls, x): return F.silu(x) class silu(ActivationFunctor, metaclass=siluMeta): binding_type = ActivationOp.SiLU ############################################################################## # Hardswish operator class hardswishMeta(ActivationMeta): @classmethod def numpy(cls, x): relu6 = np.minimum(np.maximum(x + 3.0, 0), 6.0) return x * relu6 / 6.0 @classmethod def torch(cls, x): return F.hardswish(x) class hardswish(ActivationFunctor, metaclass=hardswishMeta): binding_type = ActivationOp.HardSwish ############################################################################## # GELU operator class geluMeta(ActivationMeta): @classmethod def numpy(cls, x): return 0.5 * x * (1 + erf(x / np.sqrt(2.0))) @classmethod def torch(cls, x): return F.gelu(x) class gelu(ActivationFunctor, metaclass=geluMeta): binding_type = ActivationOp.Gelu
python/cutlass/backend/epilogue.py/0
{ "file_path": "python/cutlass/backend/epilogue.py", "repo_id": "python", "token_count": 7063 }
50
################################################################################################# # # Copyright (c) 2023 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################################# """ Layout manipulation nodes and implementations The layout Nodes change the layout of intermediate nodes in epilogue visitor graph """ from copy import deepcopy from cutlass_library import LayoutType from pycute import product, flatten import cutlass from cutlass.backend.evt.ir.layout_algorithm import _list_to_tuple, _tuple_to_list from cutlass.backend.evt.ir.node import NodeBase from cutlass.backend.evt.ir.tensor import Tensor class PermutationImpl: """ Detailed implementation and helper functions for permutation """ def __init__(self, node) -> None: assert "indices" in node.kwargs.keys() self.indices = list(node.kwargs["indices"]) self.inverse_indices = self.get_inverse_indices(self.indices) def get_inverse_impl(self): inverse_impl = deepcopy(self) inverse_impl.indices = self.inverse_indices inverse_impl.inverse_indices = self.indices return inverse_impl def update(self, shape): num_dim = len(shape) indices = self.indices num_old_dim = len(indices) # Add offset for i, idx in enumerate(indices): indices[i] = idx + num_dim - num_old_dim # Add broadcast dims for i in range(num_dim - num_old_dim): indices = [i,] + indices self.indices = indices self.inverse_indices = self.get_inverse_indices(self.indices) def get_inverse_indices(self, indices): """ Get the indices for inverse permutation """ num_dim = len(indices) inverse_indices = [0] * num_dim for i in range(num_dim): inverse_indices[indices[i]] = i return inverse_indices def shape_propagation(self, input_node_meta): input_shape = input_node_meta.tensor.shape output_shape = tuple([input_shape[idx] for idx in self.indices]) return output_shape def broadcast(self, shape, node_meta: NodeBase): """ Broadcast the inputs based on current shape """ self.update(shape) inverse_shape = tuple([shape[idx] for idx in self.inverse_indices]) node_meta.tensor.broadcast(inverse_shape) def apply_to_user(self, usr_meta: NodeBase): """ Propagate the permutation to the users of the current nodes """ usr_meta.tensor.permute(self.inverse_indices) if hasattr(usr_meta, "store_tensor"): if usr_meta.store_tensor is not None: usr_meta.store_tensor.permute(self.inverse_indices) def apply_to_input(self, input_meta: NodeBase): """ Propagate the permutation to inputs of the current nodes """ input_meta.tensor.permute(self.indices) if hasattr(input_meta, "store_tensor"): if input_meta.store_tensor is not None: input_meta.store_tensor.permute(self.indices) class ReshapeImpl: """ Detailed implementation and helper functions for reshape """ def __init__(self, node) -> None: self.node = node assert "new_shape" in node.kwargs.keys() self.output_shape = _list_to_tuple(node.kwargs["new_shape"]) def get_inverse_impl(self): inverse_impl = deepcopy(self) inverse_impl.output_shape = self.input_shape inverse_impl.input_shape = self.output_shape return inverse_impl def shape_propagation(self, input_node_meta): self.input_shape = input_node_meta.tensor.shape return _list_to_tuple(self.output_shape) def broadcast(self, shape, node_meta: NodeBase): """ Broadcast the inputs based on current shape. """ # Step 1: infer split flatten_split_shape = self.infer_split(flatten(self.input_shape), flatten(self.output_shape)) split_input_shape = self.infer_merge(flatten_split_shape, self.input_shape) split_output_shape = self.infer_merge(flatten_split_shape, self.output_shape) # broadcast shape -> split_output_shape -> flatten_split_shape if len(shape) - len(split_output_shape) > 0: for _ in range(len(shape) - len(split_output_shape)): split_output_shape = [1,] + split_output_shape flatten_split_shape = [1,] + flatten_split_shape split_input_shape = [1,] + split_input_shape broadcast_factor = [] for dim, old_dim in zip(shape, split_output_shape): if not isinstance(dim, list): dim = [dim,] if not isinstance(old_dim, list): old_dim = [old_dim,] if product(tuple(dim)) == product(tuple(old_dim)): broadcast_factor += [1] * len(old_dim) elif product(tuple(old_dim)) == 1: assert len(dim) == 1 broadcast_factor.append(dim[0]) else: raise NotImplementedError(f"Invalid Broadcast: {old_dim} -> {dim}") # flatten_split_shape -> split_input_shape factor_idx = 0 broadcast_split_input_shape = [] for dim in split_input_shape: if isinstance(dim, list): new_dim = [] for d in dim: new_dim.append(d * broadcast_factor[factor_idx]) factor_idx += 1 broadcast_split_input_shape.append(new_dim) else: broadcast_split_input_shape.append(dim * broadcast_factor[factor_idx]) factor_idx += 1 broadcast_split_input_shape = _list_to_tuple(broadcast_split_input_shape) node_meta.tensor.reshape(_list_to_tuple(split_input_shape)) node_meta.tensor.broadcast(broadcast_split_input_shape) # Last reshape op to clean up broadcast_input_shape = tuple([product(dim) for dim in broadcast_split_input_shape]) node_meta.tensor.reshape(broadcast_input_shape) # Update the input shape and output shape self.input_shape = _list_to_tuple(node_meta.tensor.shape) self.output_shape = _list_to_tuple(shape) def apply_to_user(self, user_meta: NodeBase): """ Propagate the reshape to user nodes """ user_meta.tensor.reshape(tuple(self.input_shape)) if hasattr(user_meta, "store_tensor"): if user_meta.store_tensor is not None: user_meta.store_tensor.reshape(tuple(self.input_shape)) def apply_to_input(self, input_meta: NodeBase): """ Propagate the reshape to input nodes """ input_meta.tensor.reshape(tuple(self.output_shape)) if hasattr(input_meta, "store_tensor"): if input_meta.store_tensor is not None: input_meta.store_tensor.reshape(tuple(self.output_shape)) # # Helper functions # def infer_split(self, input_shape, output_shape): """ Infer the flatten splitted shape that can be merged to both input_shape and output_shape """ input_shape = _tuple_to_list(input_shape) output_shape = _tuple_to_list(output_shape) if len(input_shape) == 0 and len(output_shape) == 0: return [] if len(input_shape) == 0: if product(tuple(output_shape)) != 1: raise ValueError("Invalid reshape size") else: return output_shape if len(output_shape) == 0: if product(tuple(input_shape)) != 1: raise ValueError("Invalid reshape size") else: return input_shape # This is done recursively by only process the last dimension at each time old_dim = input_shape[-1] new_dim = output_shape[-1] # Exact match if old_dim == new_dim: return self.infer_split(input_shape[:-1], output_shape[:-1]) + [new_dim,] # Needs split if old_dim > new_dim and old_dim % new_dim == 0: residual = old_dim // new_dim return self.infer_split(input_shape[:-1] + [residual,], output_shape[:-1]) + [new_dim,] # Needs merge if old_dim < new_dim and new_dim % old_dim == 0: residual = new_dim // old_dim return self.infer_split(input_shape[:-1], output_shape[:-1] + [residual,]) + [old_dim,] raise NotImplementedError(f"Unsupported split: {input_shape} -> {output_shape}") def infer_merge(self, flatten_shape, shape): flatten_shape = _tuple_to_list(flatten_shape) shape = _tuple_to_list(shape) idx_flat = len(flatten_shape) - 1 merged_shape = [] for dim in reversed(shape): # Exact match if dim == flatten_shape[idx_flat]: merged_shape.append(dim) idx_flat -= 1 # need group elif dim > flatten_shape[idx_flat] and dim % flatten_shape[idx_flat] == 0: residual = dim group = [] while(residual > 1): group.append(flatten_shape[idx_flat]) residual = residual // flatten_shape[idx_flat] idx_flat -= 1 merged_shape.append(group[::-1]) else: raise NotImplementedError(f"Unsupported merge: {flatten_shape} -> {shape}") return merged_shape[::-1] class LayoutNode(NodeBase): """ Layout manipulation nodes """ fn_to_impl = { "permute": PermutationImpl, "reshape": ReshapeImpl } def __init__(self, name: str, fn, kwargs: dict) -> None: super().__init__(name) self.op = "layout" self.fn = fn self.kwargs = kwargs self.underlying_impl = self.fn_to_impl[self.fn.__name__](self) def get_inverse_node(self): inverse_node = deepcopy(self) inverse_node.underlying_impl = self.underlying_impl.get_inverse_impl() return inverse_node def shape_propagation(self, input_node_metas): if self._tensor is not None: return assert len(input_node_metas) == 1, "Layout node can only have one input node" output_shape = self.underlying_impl.shape_propagation(input_node_metas[0]) self._tensor = Tensor( element=self.element_output, shape=output_shape, layout_tag=LayoutType.RowMajor ) return super().shape_propagation(input_node_metas) def type_propagation(self, input_node_metas: 'list[NodeBase]'): """ The store nodes has element_output = element_input """ assert len(input_node_metas) == 1, "Layout node can only have one input node" self.element_output = input_node_metas[0].element_output def broadcast_propagation(self, input_node_metas: 'list[NodeBase]'): """ Propagate the broadcast in the reversed topological order """ if self.tensor is None: raise RuntimeError(f"The tensor of node {self.name} is unknown.") shape = self.tensor.shape for child in input_node_metas: self.underlying_impl.broadcast(shape, child) def apply_to_user(self, usr_meta: NodeBase): """ Propagate the permutation to user nodes """ self.underlying_impl.apply_to_user(usr_meta) def apply_to_input(self, input_meta: NodeBase): """ Propagate the permutation to input nodes """ self.underlying_impl.apply_to_input(input_meta)
python/cutlass/backend/evt/ir/layout_nodes.py/0
{ "file_path": "python/cutlass/backend/evt/ir/layout_nodes.py", "repo_id": "python", "token_count": 5691 }
51
################################################################################################# # # Copyright (c) 2023 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################################# """ Compute the shared memory size in bytes """ import cutlass_library from pycute import shape_div, product import cutlass from cutlass.backend.evt.ir import TopoVisitorNode, DAGIR from cutlass.backend.library import DataTypeSize class GetSmemSize: """ Get the size in byte of shared memory used by the kernel """ def __init__(self, dag_ir: DAGIR) -> None: self.dag_ir = dag_ir self.cc = self.dag_ir.cc # # Sm90 epilogue specific # def sm90_epilogue_tile(self, tile_description): # Get the epilogue tile size schedule = tile_description.epilogue_schedule if schedule == cutlass_library.EpilogueScheduleType.TmaWarpSpecialized: epilogue_tile_mn = (64, 32) elif schedule == cutlass_library.EpilogueScheduleType.TmaWarpSpecializedCooperative: if tile_description.threadblock_shape[0] >= 128: epilogue_tile_mn = (128, 32) else: epilogue_tile_mn = (64, 32) else: raise NotImplementedError(f"Unsupported schedule: {schedule}") # Get the pipeline stages stages_d = 2 epi_tiles = product(shape_div(tuple(tile_description.threadblock_shape)[:2], epilogue_tile_mn)) if self.dag_ir.has_node("C"): element_c = self.dag_ir.get_node_meta("C").element else: element_c = None element_d = self.dag_ir.get_node_meta("D").element if element_c == element_d: reuse_smem_c = True else: reuse_smem_c = False stages_c = max(epi_tiles, stages_d + 1) if reuse_smem_c else epi_tiles # Record the epilogue tile self.cta_tile_mnk = tuple(tile_description.threadblock_shape) self.epilogue_tile_mn = epilogue_tile_mn self.epi_tiles = epi_tiles self.stages_c = stages_c self.stages_d = stages_d self.reuse_smem_c = reuse_smem_c self.element_c = element_c self.element_d = element_d self.is_source_supported = element_c is not None def sm90_epilogue_smem_size(self, tile_description): """ Compute the shared memory size of sm90 collective epilogue """ self.sm90_epilogue_tile(tile_description) # Get the Fusion Storage nodes = self.dag_ir.nodes_topological_order() self.smem_types = {} for node in nodes: meta = self.dag_ir.get_node_meta(node) if not meta.disabled: self.smem_types[node] = meta.underlying_impl.get_smem_size( self.cta_tile_mnk, self.epilogue_tile_mn, self.stages_c, self.stages_d, self.epi_tiles) if node == "D": continue if isinstance(meta, TopoVisitorNode): self.get_dag_smem_type(node) else: self.get_evt_smem_type(node) thread_smem_size = self.smem_types[self.dag_ir.get_all_inputs("D")[0]][0] # Get the Tensor Storage tensors = [] if self.is_source_supported: smem_C = DataTypeSize[self.element_c] * product(self.epilogue_tile_mn) * self.stages_c // 8 tensors.append((smem_C, 128)) else: tensors.append((0, 1)) if self.reuse_smem_c: tensors.append((0, 128)) else: smem_D = DataTypeSize[self.element_d] * product(self.epilogue_tile_mn) * self.stages_d // 8 tensors.append((smem_D, 128)) tensors.append((thread_smem_size, 128)) tensor_smem_size = self.get_struct_size(tensors) # Get pipeline storage size # sizeof(uint64_t * stages_c * 2), alignment of uint64_t # 2 is for FullBarrier and EmptyBarrier pipeline_smem_size = (8 * self.stages_c * 2, 8) # get SharedStorage size smem_size = self.get_struct_size([tensor_smem_size, pipeline_smem_size]) return smem_size[0] def __call__(self, tile_description): return getattr(self, f"sm{self.cc}_epilogue_smem_size")(tile_description) # # Helper functions # @staticmethod def get_visitor_size(members: list, ebo: bool): """ Get the size of struct in bytes """ offset = 0 max_alignment = 1 if len(members) > 0: # Get alignment for _, alignment in members: max_alignment = max(max_alignment, alignment) for type_size, _ in members: if type_size != 0: offset = ((offset + max_alignment - 1) // max_alignment) * max_alignment if type_size == 0 and not ebo: offset += 1 else: offset += type_size offset = ((offset + max_alignment - 1) // max_alignment) * max_alignment return (offset, max_alignment) else: # Struct size is at least 1 return (1, 1) def get_struct_size(self, members: list): """ Get the size of struct in bytes """ return self.get_visitor_size(members, False) def get_evt_smem_type(self, node): # Sort the input nodes by edge weight input_types = [self.smem_types[child] for child in self.dag_ir.get_all_inputs(node)] input_types.append(self.smem_types[node]) if len(input_types) > 1: ebo = len(input_types) > 4 self.smem_types[node] = self.get_visitor_size(input_types, ebo) def get_dag_smem_type(self, node): meta = self.dag_ir.get_node_meta(node) subgraph = meta.subgraph subgraph_nodes = subgraph.nodes_topological_order() # Visit the unvisited nodes in subgraph for n in subgraph_nodes: m = subgraph.get_node_meta(n) if m.disabled: continue else: self.smem_types[n] = m.underlying_impl.get_smem_size( self.cta_tile_mnk, self.epilogue_tile_mn, self.stages_c, self.stages_d, self.epi_tiles) input_types = [self.smem_types[child] for child in subgraph_nodes[:-1]] if len(input_types) > 0: ebo = len(input_types) > 4 self.smem_types[node] = self.get_visitor_size(input_types, ebo)
python/cutlass/backend/evt/passes/smem_size_calculator.py/0
{ "file_path": "python/cutlass/backend/evt/passes/smem_size_calculator.py", "repo_id": "python", "token_count": 3585 }
52
################################################################################################# # # Copyright (c) 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################################# """ Utilities for emitting CUTLASS >= 3 convolution kernels """ import enum import os.path import shutil import logging from string import Template try: import builtins if hasattr(builtins, "CUTLASS_IGNORE_PACKAGE") and CUTLASS_IGNORE_PACKAGE == True: raise ImportError("Disabling attempt to import cutlass_library") from cutlass_library.library import * except ImportError: from library import * _LOGGER = logging.getLogger(__name__) ################################################################################################### # # Emits single instances of a CUTLASS device-wide operator # ################################################################################################### class EmitConv3xInstance: def __init__(self): _LOGGER.debug("*** EmitConv3xInstance::__init__") # Define epilogue type first, so that the mainloop type # can use it with StageCountAutoCarveout. self.template = """ // CUTLASS >= 3 convolution ${conv_kind_name} kernel instance "${operation_name}" using ${operation_name}_epilogue = typename cutlass::epilogue::collective::CollectiveBuilder< ${arch}, ${opcode_class_epi}, ${tile_shape}, // tile shape ${cluster_shape}, // cluster shape ${epi_tile_mn}, ${element_accumulator}, ${element_compute}, ${element_c}, ${layout_c}, 128 / cute::sizeof_bits_v<${element_c}>, ${element_d}, ${layout_d}, 128 / cute::sizeof_bits_v<${element_d}>, ${epilogue_schedule} // , class FusionOpOrCallbacks = cutlass::epilogue::fusion::LinearCombination<ElementD,ElementCompute> >::CollectiveOp; using ${operation_name}_mainloop = typename cutlass::conv::collective::CollectiveBuilder< ${arch}, ${opcode_class_main}, ${conv_kind}, // kFprop, kDgrad, or kWgrad ${element_a}, ${layout_a}, 128 / cute::sizeof_bits_v<${element_a}>, ${element_b}, ${layout_b}, 128 / cute::sizeof_bits_v<${element_b}>, ${element_accumulator}, ${tile_shape}, // tile shape ${cluster_shape}, // cluster shape ${stages}, ${kernel_schedule} >::CollectiveOp; // Unit tests call this "ConvKernel". // Conv operator ${operation_name} using ${operation_name}_base = cutlass::conv::kernel::ConvUniversal< ${operation_name}_mainloop, ${operation_name}_epilogue, ${tile_scheduler} >; """ def arch_number_to_type(self, arch: int) -> str: return f"cutlass::arch::Sm{arch}" def tile_shape(self, operation) -> str: # For all three kinds of convolutions, the tile shape's K mode # differs from GEMM in that needs to be wrapped in a Shape. # For Wgrad convolutions specifically, # the N tile shape also needs to be wrapped in a Shape. m_template = 'cute::_${tile_shape_m}' if operation.conv_kind == ConvKind.Wgrad: n_template = 'cute::Shape<cute::_${tile_shape_n}>' else: n_template = 'cute::_${tile_shape_n}' k_template = 'cute::Shape<cute::_${tile_shape_k}>' tile_shape_template = f'cute::Shape<{m_template}, {n_template}, {k_template}>' values = { 'tile_shape_m': operation.tile_description.tile_shape[0], 'tile_shape_n': operation.tile_description.tile_shape[1], 'tile_shape_k': operation.tile_description.tile_shape[2] } return Template(tile_shape_template).substitute(values) def cluster_shape(self, operation) -> str: m_template = 'cute::_${cluster_shape_m}' n_template = 'cute::_${cluster_shape_n}' k_template = 'cute::_${cluster_shape_k}' cluster_shape_template = f'cute::Shape<{m_template}, {n_template}, {k_template}>' values = { 'cluster_shape_m': operation.tile_description.cluster_shape[0], 'cluster_shape_n': operation.tile_description.cluster_shape[1], 'cluster_shape_k': operation.tile_description.cluster_shape[2], } return Template(cluster_shape_template).substitute(values) def stage_count(self, operation) -> str: # stages == 0 tells builder to pick the number of stages automatically namespace_prefix = 'cutlass::conv::collective::' if operation.tile_description.stages > 0: return f"{namespace_prefix}StageCount<{str(operation.tile_description.stages)}>" else: return f"{namespace_prefix}StageCountAutoCarveout<sizeof(typename {operation.procedural_name()}_epilogue::SharedStorage)>" def emit(self, operation) -> str: _LOGGER.debug("*** EmitConv3xInstance::emit") _LOGGER.debug("*** operation: procedural_name()=" + operation.procedural_name()) # Identify the operation as CUTLASS 3 by its is_3x field if (not hasattr(operation, 'is_3x')) or (not operation.is_3x): raise RuntimeError("operation must be a CUTLASS 3 operation") epi_tile_mn = "cutlass::epilogue::collective::EpilogueTileAuto" opcode_class_main = OpcodeClassTag[operation.tile_description.math_instruction.opcode_class] opcode_class_epi = opcode_class_main tile_shape = operation.tile_description.tile_shape warp_count = operation.tile_description.warp_count epilogue_schedule = EpilogueScheduleTag[operation.epilogue_schedule] # KernelScheduleTag and TileSchedulerTag both hard-code the # namespace qualification of KernelScheduleAuto as # "cutlass::gemm::collective::" (unless the tag is 'void'). # # For TileSchedulerTag, this namespace is fine, since CUTLASS 3 # convolutions use the same tile schedulers (from the same # cutlass::gemm::collective namespace) as GEMMs. kernel_schedule = KernelScheduleTag[operation.kernel_schedule].replace('gemm::', 'conv::') tile_scheduler = TileSchedulerTag[operation.tile_scheduler] opcode_class = OpcodeClassTag[operation.tile_description.math_instruction.opcode_class] values = { 'operation_name': operation.procedural_name(), 'conv_kind': ConvKindTag[operation.conv_kind], 'conv_kind_name': ConvKindNames[operation.conv_kind].capitalize(), 'element_a': DataTypeTag[operation.A.element], 'layout_a': LayoutTag[operation.A.layout], 'align_a': int(operation.A.alignment), 'element_b': DataTypeTag[operation.B.element], 'layout_b': LayoutTag[operation.B.layout], 'align_b': int(operation.B.alignment), 'element_c': DataTypeTag[operation.C.element], 'layout_c': LayoutTag[operation.C.layout], 'align_c': int(operation.C.alignment), 'element_d': DataTypeTag[operation.D.element], 'layout_d': LayoutTag[operation.D.layout], 'align_d': int(operation.D.alignment), 'element_accumulator': DataTypeTag[operation.accumulator_type()], 'opcode_class': opcode_class, 'arch': self.arch_number_to_type(operation.arch), 'tile_shape': self.tile_shape(operation), 'cluster_shape': self.cluster_shape(operation), 'opcode_class_epi': opcode_class_epi, 'opcode_class_main': opcode_class_main, 'epi_tile_mn': epi_tile_mn, 'stages': self.stage_count(operation), 'kernel_schedule': kernel_schedule, 'epilogue_schedule': epilogue_schedule, 'tile_scheduler': tile_scheduler, 'element_compute': DataTypeTag[operation.element_compute] } return Template(self.template).substitute(values) class EmitConv3xIncludes: def __init__(self): _LOGGER.debug("*** EmitConv3xIncludes::__init__") self.includes = ['conv_operation_3x.hpp', 'cutlass/conv/device/conv_universal_adapter.hpp', 'cutlass/conv/kernel/conv_universal.hpp', 'cutlass/conv/collective/collective_builder.hpp', 'cutlass/epilogue/collective/collective_builder.hpp'] def emit(self, operation) -> str: _LOGGER.debug("*** EmitConv3xIncludes::emit") return '\n'.join(f"#include \"{incl}\"" for incl in self.includes) + \ "\n\n///////////////////////////////////////////////////////////////////////////////////////////////////"
python/cutlass_library/conv3x_emitter.py/0
{ "file_path": "python/cutlass_library/conv3x_emitter.py", "repo_id": "python", "token_count": 3573 }
53
/* * basic.css * ~~~~~~~~~ * * Sphinx stylesheet -- basic theme. * * :copyright: Copyright 2007-2023 by the Sphinx team, see AUTHORS. * :license: BSD, see LICENSE for details. * */ /* -- main layout ----------------------------------------------------------- */ div.clearer { clear: both; } div.section::after { display: block; content: ''; clear: left; } /* -- relbar ---------------------------------------------------------------- */ div.related { width: 100%; font-size: 90%; } div.related h3 { display: none; } div.related ul { margin: 0; padding: 0 0 0 10px; list-style: none; } div.related li { display: inline; } div.related li.right { float: right; margin-right: 5px; } /* -- sidebar --------------------------------------------------------------- */ div.sphinxsidebarwrapper { padding: 10px 5px 0 10px; } div.sphinxsidebar { float: left; width: 230px; margin-left: -100%; font-size: 90%; word-wrap: break-word; overflow-wrap : break-word; } div.sphinxsidebar ul { list-style: none; } div.sphinxsidebar ul ul, div.sphinxsidebar ul.want-points { margin-left: 20px; list-style: square; } div.sphinxsidebar ul ul { margin-top: 0; margin-bottom: 0; } div.sphinxsidebar form { margin-top: 10px; } div.sphinxsidebar input { border: 1px solid #98dbcc; font-family: sans-serif; font-size: 1em; } div.sphinxsidebar #searchbox form.search { overflow: hidden; } div.sphinxsidebar #searchbox input[type="text"] { float: left; width: 80%; padding: 0.25em; box-sizing: border-box; } div.sphinxsidebar #searchbox input[type="submit"] { float: left; width: 20%; border-left: none; padding: 0.25em; box-sizing: border-box; } img { border: 0; max-width: 100%; } /* -- search page ----------------------------------------------------------- */ ul.search { margin: 10px 0 0 20px; padding: 0; } ul.search li { padding: 5px 0 5px 20px; background-image: url(file.png); background-repeat: no-repeat; background-position: 0 7px; } ul.search li a { font-weight: bold; } ul.search li p.context { color: #888; margin: 2px 0 0 30px; text-align: left; } ul.keywordmatches li.goodmatch a { font-weight: bold; } /* -- index page ------------------------------------------------------------ */ table.contentstable { width: 90%; margin-left: auto; margin-right: auto; } table.contentstable p.biglink { line-height: 150%; } a.biglink { font-size: 1.3em; } span.linkdescr { font-style: italic; padding-top: 5px; font-size: 90%; } /* -- general index --------------------------------------------------------- */ table.indextable { width: 100%; } table.indextable td { text-align: left; vertical-align: top; } table.indextable ul { margin-top: 0; margin-bottom: 0; list-style-type: none; } table.indextable > tbody > tr > td > ul { padding-left: 0em; } table.indextable tr.pcap { height: 10px; } table.indextable tr.cap { margin-top: 10px; background-color: #f2f2f2; } img.toggler { margin-right: 3px; margin-top: 3px; cursor: pointer; } div.modindex-jumpbox { border-top: 1px solid #ddd; border-bottom: 1px solid #ddd; margin: 1em 0 1em 0; padding: 0.4em; } div.genindex-jumpbox { border-top: 1px solid #ddd; border-bottom: 1px solid #ddd; margin: 1em 0 1em 0; padding: 0.4em; } /* -- domain module index --------------------------------------------------- */ table.modindextable td { padding: 2px; border-collapse: collapse; } /* -- general body styles --------------------------------------------------- */ div.body { min-width: 360px; max-width: 800px; } div.body p, div.body dd, div.body li, div.body blockquote { -moz-hyphens: auto; -ms-hyphens: auto; -webkit-hyphens: auto; hyphens: auto; } a.headerlink { visibility: hidden; } h1:hover > a.headerlink, h2:hover > a.headerlink, h3:hover > a.headerlink, h4:hover > a.headerlink, h5:hover > a.headerlink, h6:hover > a.headerlink, dt:hover > a.headerlink, caption:hover > a.headerlink, p.caption:hover > a.headerlink, div.code-block-caption:hover > a.headerlink { visibility: visible; } div.body p.caption { text-align: inherit; } div.body td { text-align: left; } .first { margin-top: 0 !important; } p.rubric { margin-top: 30px; font-weight: bold; } img.align-left, figure.align-left, .figure.align-left, object.align-left { clear: left; float: left; margin-right: 1em; } img.align-right, figure.align-right, .figure.align-right, object.align-right { clear: right; float: right; margin-left: 1em; } img.align-center, figure.align-center, .figure.align-center, object.align-center { display: block; margin-left: auto; margin-right: auto; } img.align-default, figure.align-default, .figure.align-default { display: block; margin-left: auto; margin-right: auto; } .align-left { text-align: left; } .align-center { text-align: center; } .align-default { text-align: center; } .align-right { text-align: right; } /* -- sidebars -------------------------------------------------------------- */ div.sidebar, aside.sidebar { margin: 0 0 0.5em 1em; border: 1px solid #ddb; padding: 7px; background-color: #ffe; width: 40%; float: right; clear: right; overflow-x: auto; } p.sidebar-title { font-weight: bold; } nav.contents, aside.topic, div.admonition, div.topic, blockquote { clear: left; } /* -- topics ---------------------------------------------------------------- */ nav.contents, aside.topic, div.topic { border: 1px solid #ccc; padding: 7px; margin: 10px 0 10px 0; } p.topic-title { font-size: 1.1em; font-weight: bold; margin-top: 10px; } /* -- admonitions ----------------------------------------------------------- */ div.admonition { margin-top: 10px; margin-bottom: 10px; padding: 7px; } div.admonition dt { font-weight: bold; } p.admonition-title { margin: 0px 10px 5px 0px; font-weight: bold; } div.body p.centered { text-align: center; margin-top: 25px; } /* -- content of sidebars/topics/admonitions -------------------------------- */ div.sidebar > :last-child, aside.sidebar > :last-child, nav.contents > :last-child, aside.topic > :last-child, div.topic > :last-child, div.admonition > :last-child { margin-bottom: 0; } div.sidebar::after, aside.sidebar::after, nav.contents::after, aside.topic::after, div.topic::after, div.admonition::after, blockquote::after { display: block; content: ''; clear: both; } /* -- tables ---------------------------------------------------------------- */ table.docutils { margin-top: 10px; margin-bottom: 10px; border: 0; border-collapse: collapse; } table.align-center { margin-left: auto; margin-right: auto; } table.align-default { margin-left: auto; margin-right: auto; } table caption span.caption-number { font-style: italic; } table caption span.caption-text { } table.docutils td, table.docutils th { padding: 1px 8px 1px 5px; border-top: 0; border-left: 0; border-right: 0; border-bottom: 1px solid #aaa; } th { text-align: left; padding-right: 5px; } table.citation { border-left: solid 1px gray; margin-left: 1px; } table.citation td { border-bottom: none; } th > :first-child, td > :first-child { margin-top: 0px; } th > :last-child, td > :last-child { margin-bottom: 0px; } /* -- figures --------------------------------------------------------------- */ div.figure, figure { margin: 0.5em; padding: 0.5em; } div.figure p.caption, figcaption { padding: 0.3em; } div.figure p.caption span.caption-number, figcaption span.caption-number { font-style: italic; } div.figure p.caption span.caption-text, figcaption span.caption-text { } /* -- field list styles ----------------------------------------------------- */ table.field-list td, table.field-list th { border: 0 !important; } .field-list ul { margin: 0; padding-left: 1em; } .field-list p { margin: 0; } .field-name { -moz-hyphens: manual; -ms-hyphens: manual; -webkit-hyphens: manual; hyphens: manual; } /* -- hlist styles ---------------------------------------------------------- */ table.hlist { margin: 1em 0; } table.hlist td { vertical-align: top; } /* -- object description styles --------------------------------------------- */ .sig { font-family: 'Consolas', 'Menlo', 'DejaVu Sans Mono', 'Bitstream Vera Sans Mono', monospace; } .sig-name, code.descname { background-color: transparent; font-weight: bold; } .sig-name { font-size: 1.1em; } code.descname { font-size: 1.2em; } .sig-prename, code.descclassname { background-color: transparent; } .optional { font-size: 1.3em; } .sig-paren { font-size: larger; } .sig-param.n { font-style: italic; } /* C++ specific styling */ .sig-inline.c-texpr, .sig-inline.cpp-texpr { font-family: unset; } .sig.c .k, .sig.c .kt, .sig.cpp .k, .sig.cpp .kt { color: #0033B3; } .sig.c .m, .sig.cpp .m { color: #1750EB; } .sig.c .s, .sig.c .sc, .sig.cpp .s, .sig.cpp .sc { color: #067D17; } /* -- other body styles ----------------------------------------------------- */ ol.arabic { list-style: decimal; } ol.loweralpha { list-style: lower-alpha; } ol.upperalpha { list-style: upper-alpha; } ol.lowerroman { list-style: lower-roman; } ol.upperroman { list-style: upper-roman; } :not(li) > ol > li:first-child > :first-child, :not(li) > ul > li:first-child > :first-child { margin-top: 0px; } :not(li) > ol > li:last-child > :last-child, :not(li) > ul > li:last-child > :last-child { margin-bottom: 0px; } ol.simple ol p, ol.simple ul p, ul.simple ol p, ul.simple ul p { margin-top: 0; } ol.simple > li:not(:first-child) > p, ul.simple > li:not(:first-child) > p { margin-top: 0; } ol.simple p, ul.simple p { margin-bottom: 0; } aside.footnote > span, div.citation > span { float: left; } aside.footnote > span:last-of-type, div.citation > span:last-of-type { padding-right: 0.5em; } aside.footnote > p { margin-left: 2em; } div.citation > p { margin-left: 4em; } aside.footnote > p:last-of-type, div.citation > p:last-of-type { margin-bottom: 0em; } aside.footnote > p:last-of-type:after, div.citation > p:last-of-type:after { content: ""; clear: both; } dl.field-list { display: grid; grid-template-columns: fit-content(30%) auto; } dl.field-list > dt { font-weight: bold; word-break: break-word; padding-left: 0.5em; padding-right: 5px; } dl.field-list > dd { padding-left: 0.5em; margin-top: 0em; margin-left: 0em; margin-bottom: 0em; } dl { margin-bottom: 15px; } dd > :first-child { margin-top: 0px; } dd ul, dd table { margin-bottom: 10px; } dd { margin-top: 3px; margin-bottom: 10px; margin-left: 30px; } dl > dd:last-child, dl > dd:last-child > :last-child { margin-bottom: 0; } dt:target, span.highlighted { background-color: #fbe54e; } rect.highlighted { fill: #fbe54e; } dl.glossary dt { font-weight: bold; font-size: 1.1em; } .versionmodified { font-style: italic; } .system-message { background-color: #fda; padding: 5px; border: 3px solid red; } .footnote:target { background-color: #ffa; } .line-block { display: block; margin-top: 1em; margin-bottom: 1em; } .line-block .line-block { margin-top: 0; margin-bottom: 0; margin-left: 1.5em; } .guilabel, .menuselection { font-family: sans-serif; } .accelerator { text-decoration: underline; } .classifier { font-style: oblique; } .classifier:before { font-style: normal; margin: 0 0.5em; content: ":"; display: inline-block; } abbr, acronym { border-bottom: dotted 1px; cursor: help; } /* -- code displays --------------------------------------------------------- */ pre { overflow: auto; overflow-y: hidden; /* fixes display issues on Chrome browsers */ } pre, div[class*="highlight-"] { clear: both; } span.pre { -moz-hyphens: none; -ms-hyphens: none; -webkit-hyphens: none; hyphens: none; white-space: nowrap; } div[class*="highlight-"] { margin: 1em 0; } td.linenos pre { border: 0; background-color: transparent; color: #aaa; } table.highlighttable { display: block; } table.highlighttable tbody { display: block; } table.highlighttable tr { display: flex; } table.highlighttable td { margin: 0; padding: 0; } table.highlighttable td.linenos { padding-right: 0.5em; } table.highlighttable td.code { flex: 1; overflow: hidden; } .highlight .hll { display: block; } div.highlight pre, table.highlighttable pre { margin: 0; } div.code-block-caption + div { margin-top: 0; } div.code-block-caption { margin-top: 1em; padding: 2px 5px; font-size: small; } div.code-block-caption code { background-color: transparent; } table.highlighttable td.linenos, span.linenos, div.highlight span.gp { /* gp: Generic.Prompt */ user-select: none; -webkit-user-select: text; /* Safari fallback only */ -webkit-user-select: none; /* Chrome/Safari */ -moz-user-select: none; /* Firefox */ -ms-user-select: none; /* IE10+ */ } div.code-block-caption span.caption-number { padding: 0.1em 0.3em; font-style: italic; } div.code-block-caption span.caption-text { } div.literal-block-wrapper { margin: 1em 0; } code.xref, a code { background-color: transparent; font-weight: bold; } h1 code, h2 code, h3 code, h4 code, h5 code, h6 code { background-color: transparent; } .viewcode-link { float: right; } .viewcode-back { float: right; font-family: sans-serif; } div.viewcode-block:target { margin: -1px -10px; padding: 0 10px; } /* -- math display ---------------------------------------------------------- */ img.math { vertical-align: middle; } div.body div.math p { text-align: center; } span.eqno { float: right; } span.eqno a.headerlink { position: absolute; z-index: 1; } div.math:hover a.headerlink { visibility: visible; } /* -- printout stylesheet --------------------------------------------------- */ @media print { div.document, div.documentwrapper, div.bodywrapper { margin: 0 !important; width: 100%; } div.sphinxsidebar, div.related, div.footer, #top-link { display: none; } }
python/docs/_static/basic.css/0
{ "file_path": "python/docs/_static/basic.css", "repo_id": "python", "token_count": 6093 }
54
Operations ========== GEMM ---- .. automodule:: cutlass.op.gemm :members: :undoc-members: :show-inheritance: Grouped GEMM ------------ .. automodule:: cutlass.op.gemm_grouped :members: :undoc-members: :show-inheritance: Operation --------- .. automodule:: cutlass.op.op :members: :undoc-members: :show-inheritance:
python/docs_src/source/cutlass.op.rst/0
{ "file_path": "python/docs_src/source/cutlass.op.rst", "repo_id": "python", "token_count": 146 }
55
################################################################################################# # # Copyright (c) 2023 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################################# """ High-level tests for running batched GEMMs """ from functools import partial import logging from math import prod import unittest import cutlass from cutlass.backend.utils.device import device_cc import torch from utils import LayoutCombination cutlass.set_log_level(logging.WARNING) torch.manual_seed(2023) def pytorch_reference(A, B, C, alpha, beta): # Get the batch count. Assume that any of A, B, and C # with a batch dimension ahve matching batch count. Thus, # we break out of the loop once we have found the first # tensor containing a batch dimension. batch_count = (1,) for tensor in [A, B, C]: if len(tensor.shape) > 2: batch_count = tensor.shape[:-2] break int_batch_count = prod(batch_count) def add_batch(tensor): if len(tensor.shape) == 2: return tensor.unsqueeze(0).repeat(int_batch_count, 1, 1) else: return tensor.reshape(-1, tensor.size(-2), tensor.size(-1)) # Reshape tensors to have batch dimension A = add_batch(A) B = add_batch(B) C = add_batch(C) ret = (torch.bmm(A, B) * alpha) + (C * beta) reshape_vals = batch_count + C.shape[-2:] return ret.reshape(*reshape_vals) def initialize(rows, cols, batch): tensor = torch.randint(-3, 3, size=(rows*cols*prod(batch),), device='cuda').half() if len(batch) > 0 and prod(batch) > 1: reshape_vals = batch + (rows, cols) return tensor.reshape(*reshape_vals) else: return tensor.reshape(rows, cols) class GemmF16Batched(unittest.TestCase): def run_batched(self, batch_count: tuple, batch_A: bool, batch_B: bool, batch_C: bool): M = 512 N = 256 K = 128 alpha = 1. beta = 2. A = initialize(M, K, batch_count if batch_A else (1,)) B = initialize(K, N, batch_count if batch_B else (1,)) C = initialize(M, N, batch_count if batch_C else (1,)) D = initialize(M, N, batch_count) plan = cutlass.op.Gemm(A=A, B=B, C=C, D=D, element_accumulator=cutlass.DataType.f32) plan.run(A, B, C, D, alpha, beta) reference = pytorch_reference(A, B, C, alpha, beta) assert reference.equal(D) def test_batched_ABC(self): self.run_batched((3,), True, True, True) self.run_batched((2, 3), True, True, True) def test_batched_AB(self): self.run_batched((3,), True, True, False) self.run_batched((2, 3), True, True, False) def test_batched_AC(self): self.run_batched((3,), True, False, True) self.run_batched((2, 3), True, False, True) def test_batched_BC(self): self.run_batched((3,), False, True, True) self.run_batched((2, 3), False, True, True) def test_batched_A(self): self.run_batched((3,), True, False, False) self.run_batched((2, 3), True, False, False) def test_batched_B(self): self.run_batched((3,), False, True, False) self.run_batched((2, 3), False, True, False) if __name__ == '__main__': unittest.main()
test/python/cutlass/gemm/gemm_batched.py/0
{ "file_path": "test/python/cutlass/gemm/gemm_batched.py", "repo_id": "test", "token_count": 1824 }
56
################################################################################################# # # Copyright (c) 2023 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################################# """ Tests the high-level GEMM interface """ from math import ceil import unittest import cutlass import cutlass.utils.datatypes as datatypes from cutlass.backend.utils.device import device_cc from utils import ExpectException class GemmEquivalence: """ Helper class for testing the equivalence of different constructions of the Gemm interface """ def __init__(self, element_A, element_B, element_C, element_D, element_accumulator, layout_A, layout_B, layout_C, alignment_A, alignment_B, alignment_C): self.element_A = element_A self.element_B = element_B self.element_C = element_C self.element_D = element_D self.element_accumulator = element_accumulator self.layout_A = layout_A self.layout_B = layout_B self.layout_C = layout_C self.alignment_A = alignment_A self.alignment_B = alignment_B self.alignment_C = alignment_C self.plan = cutlass.op.Gemm(element_A=element_A, element_B=element_B, element_C=element_C, element_D=element_D, element_accumulator=element_accumulator, layout_A=layout_A, layout_B=layout_B, layout_C=layout_C) self.op = self.plan.construct(alignment_A=alignment_A, alignment_B=alignment_B, alignment_C=alignment_C) def _plans_equal(self, other_plan) -> bool: """ Compares whether two plans are equal :param other_plan: plan to compare against the default GEMM :type other_plan: cutlass.op.Gemm :return: whether `other_plan` is equivalent to `self.plan` :rtype: bool """ other_op = other_plan.construct(alignment_A=self.alignment_A, alignment_B=self.alignment_B, alignment_C=self.alignment_C) # Compare whether the operations are equal by comparing the C++ code that would be emitted for them return self.op.rt_module.emit() == other_op.rt_module.emit() def generic_test(self): """ Tests the equivalence of various constructions of the Gemm interface when using CUTLASS data types and layouts for constructing the Gemm interface """ if not datatypes.is_numpy_available(): return # Test when specifying all parameters plan_other = cutlass.op.Gemm(element_A=self.element_A, element_B=self.element_B, element_C=self.element_C, element_D=self.element_D, element_accumulator=self.element_accumulator, layout_A=self.layout_A, layout_B=self.layout_B, layout_C=self.layout_C) assert self._plans_equal(plan_other) # Test when specifying all parameters but A plan_other = cutlass.op.Gemm(element_B=self.element_B, element_C=self.element_C, element_D=self.element_D, element_accumulator=self.element_accumulator, layout_B=self.layout_B, layout_C=self.layout_C, element=self.element_A, layout=self.layout_A) assert self._plans_equal(plan_other) # Test when specifying all parameters but A and B as tensors and using generic element and output # Only run this test if the layouts and types for A and B are equal. if self.element_A == self.element_B and self.layout_A == self.layout_B: plan_other = cutlass.op.Gemm(element_C=self.element_C, element_D=self.element_D, element_accumulator=self.element_accumulator, layout_C=self.layout_C, element=self.element_A, layout=self.layout_A) assert self._plans_equal(plan_other) # Test without explicit accumulator. Only run if the type of C and the accumulator. if self.element_C == self.element_accumulator: plan_other = cutlass.op.Gemm(element_A=self.element_A, element_B=self.element_B, element_C=self.element_C, element_D=self.element_D, layout_A=self.layout_A, layout_B=self.layout_B, layout_C=self.layout_C) assert self._plans_equal(plan_other) # Test with only the generic types and layouts. Only run if types and layouts of A, B, C, and D are the same. if (self.element_A == self.element_B and self.element_A == self.element_C and self.element_A == self.element_D and self.element_A == self.element_accumulator and self.layout_A == self.layout_B and self.layout_A == self.layout_C): plan_other = cutlass.op.Gemm(element=self.element_A, layout=self.layout_A) assert self._plans_equal(plan_other) def numpy_test(self): """ Tests the equivalence of various constructions of the Gemm interface when using numpy as a frontend """ if not datatypes.is_numpy_available(): return import numpy as np type_A = datatypes.numpy_type(self.element_A) type_B = datatypes.numpy_type(self.element_B) type_C = datatypes.numpy_type(self.element_C) type_D = datatypes.numpy_type(self.element_D) type_accum = datatypes.numpy_type(self.element_accumulator) layout_to_order = { cutlass.LayoutType.RowMajor: 'C', cutlass.LayoutType.ColumnMajor: 'F' } size = (2, 2) A = np.zeros(size, order=layout_to_order[self.layout_A], dtype=type_A) B = np.zeros(size, order=layout_to_order[self.layout_B], dtype=type_B) C = np.zeros(size, order=layout_to_order[self.layout_C], dtype=type_C) D = np.zeros(size, order=layout_to_order[self.layout_C], dtype=type_D) # Test when specifying all parameters via tensors plan_np = cutlass.op.Gemm(A=A, B=B, C=C, D=D, element_accumulator=type_accum) assert self._plans_equal(plan_np) # Test when specifying all parameters but A as tensors plan_np = cutlass.op.Gemm(B=B, C=C, D=D, element_accumulator=type_accum, element_A=type_A, layout_A=self.layout_A) assert self._plans_equal(plan_np) # Test when specifying all parameters but A and B as tensors and using generic element and output # Only run this test if the layouts and types for A and B are equal. if type_A == type_B and self.layout_A == self.layout_B: plan_np = cutlass.op.Gemm(C=C, D=D, element_accumulator=type_accum, element=type_A, layout=self.layout_A) assert self._plans_equal(plan_np) # Test without explicit accumulator. Only run if the type of C and the accumulator. if type_C == type_accum: plan_np = cutlass.op.Gemm(A=A, B=B, C=C, D=D) assert self._plans_equal(plan_np) # Test with only the generic types and layouts. Only run if types and layouts of A, B, C, and D are the same. if (type_A == type_B and type_A == type_C and type_A == type_D and type_A == type_accum and self.layout_A == self.layout_B and self.layout_A == self.layout_C): plan_np = cutlass.op.Gemm(element=type_A, layout=self.layout_A) assert self._plans_equal(plan_np) def test_all(self): """ Runs all tests on the Gemm interface """ self.generic_test() self.numpy_test() class GemmEquivalenceTest(unittest.TestCase): """ Tests the equivalence of different constructions of the Gemm interface """ @unittest.skipIf(device_cc() < 70, "Device compute capability is insufficient for FP16 Tensor Core tests.") def test_gemm_equivalence_f16_f16_f16_f16_f16_ttt_8_8_8(self): gemm_eq = GemmEquivalence( element_A=cutlass.DataType.f16, element_B=cutlass.DataType.f16, element_C=cutlass.DataType.f16, element_D=cutlass.DataType.f16, element_accumulator=cutlass.DataType.f16, layout_A=cutlass.LayoutType.RowMajor, layout_B=cutlass.LayoutType.RowMajor, layout_C=cutlass.LayoutType.RowMajor, alignment_A=8, alignment_B=8, alignment_C=8) gemm_eq.test_all() @unittest.skipIf(device_cc() < 70, "Device compute capability is insufficient for FP16 Tensor Core tests.") def test_gemm_equivalence_f16_f16_f16_f16_f32_ntn_8_8_8(self): gemm_eq = GemmEquivalence( element_A=cutlass.DataType.f16, element_B=cutlass.DataType.f16, element_C=cutlass.DataType.f16, element_D=cutlass.DataType.f16, element_accumulator=cutlass.DataType.f32, layout_A=cutlass.LayoutType.ColumnMajor, layout_B=cutlass.LayoutType.RowMajor, layout_C=cutlass.LayoutType.ColumnMajor, alignment_A=8, alignment_B=8, alignment_C=8) gemm_eq.test_all() @unittest.skipIf(device_cc() < 70, "Device compute capability is insufficient for FP16 Tensor Core tests.") def test_gemm_equivalence_f16_f16_f16_f16_f16_ttt_4_4_4(self): gemm_eq = GemmEquivalence( element_A=cutlass.DataType.f16, element_B=cutlass.DataType.f16, element_C=cutlass.DataType.f16, element_D=cutlass.DataType.f16, element_accumulator=cutlass.DataType.f16, layout_A=cutlass.LayoutType.RowMajor, layout_B=cutlass.LayoutType.RowMajor, layout_C=cutlass.LayoutType.RowMajor, alignment_A=8, alignment_B=8, alignment_C=8) gemm_eq.test_all() @unittest.skipIf(device_cc() < 80, "Device compute capability is insufficient for F64 Tensor Core tests.") def test_gemm_equivalence_f64_f64_f64_f64_f64_tnt_1_1_1(self): gemm_eq = GemmEquivalence( element_A=cutlass.DataType.f64, element_B=cutlass.DataType.f64, element_C=cutlass.DataType.f64, element_D=cutlass.DataType.f64, element_accumulator=cutlass.DataType.f64, layout_A=cutlass.LayoutType.RowMajor, layout_B=cutlass.LayoutType.ColumnMajor, layout_C=cutlass.LayoutType.RowMajor, alignment_A=1, alignment_B=1, alignment_C=1) gemm_eq.test_all() class GemmErrorTests(unittest.TestCase): """ Tests various error scenarios that arise with the high-level Gemm interface """ def test_alignment(self): """ Tests case in which the alignment specified is unsupported """ plan = cutlass.op.Gemm(element=cutlass.DataType.f16, layout=cutlass.LayoutType.RowMajor) with ExpectException(True, 'Alignment 16 is not supported for F16. The construction should fail.'): op = plan.construct(alignment_A=16, alignment_B=16, alignment_C=16) def test_tensorop_availability(self): """ Tests case in which only SIMT operations are available but TensorOp is requested """ cc = device_cc() # F64 Tensor Core operations are only avaiable on devices with CC >= 80 supports_tensorop_f64 = cc >= 80 plan = cutlass.op.Gemm(cc=cc, element=cutlass.DataType.f64, layout=cutlass.LayoutType.RowMajor) error_msg = f'Incorrectly raised an exception for availability of TensorOp with F64 operands on SM{cc}' with ExpectException(not supports_tensorop_f64, error_msg): plan.opclass = cutlass.OpcodeClass.TensorOp expected_opclass = cutlass.OpcodeClass.TensorOp if supports_tensorop_f64 else cutlass.OpcodeClass.Simt assert plan.opclass == expected_opclass, f'Expected opclass to be {expected_opclass}, but received {plan.opclass} for SM{cc}' @unittest.skipIf(device_cc() < 70, "Device compute capability is insufficient for F16 Tensor Core tests.") def test_opclass_switch(self): """ Tests cases in which the opcode class in question is switched (e.g., from TensorOp to SIMT) """ plan = cutlass.op.Gemm( element=cutlass.DataType.f16, layout=cutlass.LayoutType.RowMajor) assert plan.opclass == cutlass.OpcodeClass.TensorOp # Ensure that all tile descriptions have opclass of TensorOp for td in plan.tile_descriptions(): assert td.math_instruction.opcode_class == cutlass.OpcodeClass.TensorOp plan.opclass = cutlass.OpcodeClass.Simt # Ensure that all tile descriptions have opclass of Simt for td in plan.tile_descriptions(): assert td.math_instruction.opcode_class == cutlass.OpcodeClass.Simt def test_invalid_tile_description(self): """ Tests scenarios in which an invalid tile description is provided for a given CC """ cc = device_cc() plan = cutlass.op.Gemm(cc=cc, element=cutlass.DataType.f16, layout=cutlass.LayoutType.RowMajor) td = plan.tile_descriptions()[0] stages = td.stages # Zero stage count is valid for SM90+, as this is used to indicate that the builder's auto stage # count should be used with ExpectException(cc < 90, f'Requested zero stages'): td.stages = 0 plan.construct(td) if cc < 90: with ExpectException(cc < 80, f'Requested more than 2 stages on SM{cc}'): td.stages = 3 plan.construct(td) else: original_kschedule = td.kernel_schedule original_eschedule = td.epilogue_schedule with ExpectException(False, f'Incorrectly flagged an error for insufficient shared memory'): td.kernel_schedule = cutlass.KernelScheduleType.TmaWarpSpecializedPingpong td.epilogue_schedule = cutlass.EpilogueScheduleType.NoSmemWarpSpecialized td.stages = 3 plan.construct(td) # Reset schedules td.kernel_schedule = original_kschedule td.epilogue_schedule = original_eschedule with ExpectException(True, f'Requested too many stages'): td.stages = 100 plan.construct(td) # Reset stage count td.stages = stages cluster_shape = td.cluster_shape with ExpectException(cc < 90, f'Requested non-unit cluster shape on SM{cc}'): td.cluster_shape = [2, 1, 1] plan.construct(td) # Reset cluster shape td.cluster_shape = cluster_shape with ExpectException(cc < 90, f'Requested a non-auto schedule on SM{cc}'): td.kernel_schedule = cutlass.KernelScheduleType.TmaWarpSpecializedPingpong td.epilogue_schedule = cutlass.EpilogueScheduleType.TmaWarpSpecialized plan.construct(td) with ExpectException(True, f'Requested a non-auto kernel schedule with an auto epilogue schedule'): td.kernel_schedule = cutlass.KernelScheduleType.TmaWarpSpecializedPingpong td.epilogue_schedule = cutlass.EpilogueScheduleType.ScheduleAuto plan.construct(td) with ExpectException(True, f'Requested an auto kernel schedule with a non-auto epilogue schedule'): td.kernel_schedule = cutlass.KernelScheduleType.ScheduleAuto td.epilogue_schedule = cutlass.EpilogueScheduleType.TmaWarpSpecialized plan.construct(td) with ExpectException(cc < 90, f'Requested a tile scheduler on SM{cc}'): td.kernel_schedule = cutlass.KernelScheduleType.TmaWarpSpecializedCooperative td.epilogue_schedule = cutlass.EpilogueScheduleType.TmaWarpSpecializedCooperative td.tile_scheduler = cutlass.TileSchedulerType.StreamK plan.construct(td) # Ensure that all returned tile descriptions are unique ops = {} for i, td in enumerate(plan.tile_descriptions()): op = plan.construct(td) code_str = op.rt_module.emit() if code_str in ops: conflicting_td = ops[code_str] assert False, f'Multiple tile descriptions emitted {code_str}\nTile descriptions are:\n{td}\n{conflicting_td}' if __name__ == '__main__': unittest.main()
test/python/cutlass/interface/gemm_interface.py/0
{ "file_path": "test/python/cutlass/interface/gemm_interface.py", "repo_id": "test", "token_count": 7400 }
57
/*************************************************************************************************** * Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. * SPDX-License-Identifier: BSD-3-Clause * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * **************************************************************************************************/ /*! \file \brief Helper to construct cached name for */ #pragma once #include <typeinfo> #include <fstream> #include <list> #include <utility> #include <sstream> #include "cutlass/cutlass.h" #include "cutlass/layout/matrix.h" #include "cutlass/conv/convolution.h" #include "cutlass/conv/conv2d_problem_size.h" #include "cutlass/conv/conv3d_problem_size.h" #include "cutlass/core_io.h" #include "cutlass/util/tensor_view_io.h" #include "thrust/universal_vector.h" #ifndef CUTLASS_TEST_ENABLE_CACHED_RESULTS #define CUTLASS_TEST_ENABLE_CACHED_RESULTS false #endif ///////////////////////////////////////////////////////////////////////////////////////////////// namespace test::conv::device { ///////////////////////////////////////////////////////////////////////////////////////////////// /// Result of a test struct CachedTestKey { std::string op; ///< Concatenated string representation of operation performed std::string problem; ///< Concatenated string representation of problem description std::string types; ///< Concatenated string representation of operand types uint32_t A; ///< Hashed result of tensor A uint32_t B; ///< Hashed result of tensor B uint32_t C; ///< Hashed result of tensor C // // Methods // inline CachedTestKey(): A(), B(), C() { } inline CachedTestKey( std::string op, ///< Concatenated string representation of operation performed std::string problem, ///< Concatenated string representation of problem description std::string types, ///< Concatenated string representation of operand types uint32_t A, ///< Hashed result of tensor A uint32_t B, ///< Hashed result of tensor B uint32_t C ///< Hashed result of tensor C ): op(op), problem(problem), types(types), A(A), B(B), C(C) { } /// Checks for equality of the problem bool operator==(CachedTestKey const &rhs) const { return op == rhs.op && problem == rhs.problem && types == rhs.types && A == rhs.A && B == rhs.B && C == rhs.C; } }; ///////////////////////////////////////////////////////////////////////////////////////////////// inline std::istream &operator>>(std::istream &in, CachedTestKey &result) { in >> result.op; in >> result.problem; in >> result.types; in >> result.A; in >> result.B; in >> result.C; return in; } inline std::ostream &operator<<(std::ostream &out, CachedTestKey const &result) { out << result.op << " "; out << result.problem << " "; out << result.types << " "; out << result.A << " "; out << result.B << " "; out << result.C << " "; return out; } ///////////////////////////////////////////////////////////////////////////////////////////////// struct CachedTestResult { uint32_t D; // // Methods // CachedTestResult(): D() { } CachedTestResult(uint32_t D): D(D) { } operator bool() const { return bool(D); } }; ///////////////////////////////////////////////////////////////////////////////////////////////// inline std::istream &operator>>(std::istream &in, CachedTestResult &result) { in >> result.D; return in; } inline std::ostream &operator<<(std::ostream &out, CachedTestResult const &result) { out << result.D; return out; } ///////////////////////////////////////////////////////////////////////////////////////////////// struct CachedTestResultListing { std::list<std::pair<CachedTestKey, CachedTestResult>> results; // // Methods // inline CachedTestResultListing(std::string const &path) { std::ifstream file(path); while (file.good()) { CachedTestKey key; file >> key; CachedTestResult result; file >> result; if (result) { results.push_back(std::make_pair(key, result)); } } } /// Returns the cached result std::pair<bool, CachedTestResult> find(CachedTestKey const &rhs) const { for (auto const & result : results) { if (result.first == rhs) { return std::make_pair(true, result.second); } } return std::make_pair(false, CachedTestResult()); } /// Appends an entry void append(CachedTestKey const &key, CachedTestResult const &result) { if (result) { results.push_back(std::make_pair(key, result)); } } /// Writes the entire listing to a file bool write(std::string const &path) { std::ofstream file(path); if (!file.good()) { return false; } for (auto const &result : results) { file << result.first << result.second << std::endl; } return true; } }; ///////////////////////////////////////////////////////////////////////////////////////////////// template <typename Element> struct ScalarEncoder { Element scalar; ScalarEncoder(Element s): scalar(s) { } std::string str() const { std::stringstream ss; Element s = scalar; if (s < Element()) { s = -s; ss << "n"; } ss << s; return ss.str(); } }; template <typename Element> ScalarEncoder<Element> EncodeScalar(Element a) { return ScalarEncoder<Element>(a); } template <typename Element> struct ScalarEncoder<cutlass::complex<Element>> { cutlass::complex<Element> scalar; ScalarEncoder(cutlass::complex<Element> s): scalar(s) { } std::string str() const { std::stringstream ss; ss << EncodeScalar<Element>(scalar.real()) << "_" << EncodeScalar<Element>(scalar.imag()) << "i"; return ss.str(); } }; template <typename Element> std::ostream &operator<<(std::ostream &out, ScalarEncoder<Element> const &scalar) { out << scalar.str(); return out; } ///////////////////////////////////////////////////////////////////////////////////////////////// inline char const *EncodeOperator(cutlass::conv::Operator conv_op) { switch (conv_op) { case cutlass::conv::Operator::kFprop: return "fprop"; case cutlass::conv::Operator::kDgrad: return "dgrad"; case cutlass::conv::Operator::kWgrad: return "wgrad"; case cutlass::conv::Operator::kDeconv: return "deconv"; } return "conv_unknown"; } ///////////////////////////////////////////////////////////////////////////////////////////////// // Encode GemmCoord (Gemm problem size) inline std::ostream &EncodeProblemSize( std::ostream &out, cutlass::gemm::GemmCoord const &problem) { out << problem.m() << "x" << problem.n() << "x" << problem.k() << "_"; return out; } ///////////////////////////////////////////////////////////////////////////////////////////////// // Encode Conv2dProblemSize inline std::ostream &EncodeProblemSize( std::ostream &out, cutlass::conv::Conv2dProblemSize const &problem) { out << problem.N << "x" << problem.H << "x" << problem.W << "x" << problem.C << "_" << problem.P << "x" << problem.Q << "_" << problem.K << "x" << problem.R << "x" << problem.S << "_"; out << "pad_h" << problem.pad_h << "w" << problem.pad_w << "_"; out << "stride_h" << problem.stride_h << "w" << problem.stride_w << "_"; out << "dil_h" << problem.dilation_h << "w" << problem.dilation_w << "_"; switch (problem.mode) { case cutlass::conv::Mode::kCrossCorrelation: out << "corr"; break; case cutlass::conv::Mode::kConvolution: out << "conv"; break; } return out; } ///////////////////////////////////////////////////////////////////////////////////////////////// // Encode Conv3dProblemSize inline std::ostream &EncodeProblemSize( std::ostream &out, cutlass::conv::Conv3dProblemSize const &problem) { out << problem.N << "x" << problem.D << "x" << problem.H << "x" << problem.W << "x" << problem.C << "_" << problem.Z << problem.P << "x" << problem.Q << "_" << problem.K << "x" << problem.R << "x" << problem.S << "_"; out << "pad_d" << problem.pad_h << "h" << problem.pad_h << "w" << problem.pad_w << "_"; out << "stride_d" << problem.stride_d << "h" << problem.stride_h << "w" << problem.stride_w << "_"; out << "dil_d" << problem.dilation_d << "h" << problem.dilation_h << "w" << problem.dilation_w << "_"; switch (problem.mode) { case cutlass::conv::Mode::kCrossCorrelation: out << "corr"; break; case cutlass::conv::Mode::kConvolution: out << "conv"; break; } return out; } ///////////////////////////////////////////////////////////////////////////////////////////////// // Encode 3.x ConvNd ProblemShape template <class ProblemShape> inline std::ostream &EncodeProblemSize( std::ostream &out, ProblemShape const& problem_shape) { out << problem_shape.shape_A << "_"; out << problem_shape.shape_B << "_"; out << "padl" << problem_shape.lower_padding << "_"; out << "padu" << problem_shape.upper_padding << "_"; out << "str" << problem_shape.traversal_stride << "_"; out << "dil" << problem_shape.dilation << "_"; switch (problem_shape.mode) { case cutlass::conv::Mode::kCrossCorrelation: out << "corr"; break; case cutlass::conv::Mode::kConvolution: out << "conv"; break; } return out; } ///////////////////////////////////////////////////////////////////////////////////////////////// template <typename Element> inline std::string ElementTypeName() { return std::string(typeid(Element).name()); } template <> inline std::string ElementTypeName<cutlass::half_t>() { return "h"; } template <> inline std::string ElementTypeName<cutlass::complex<cutlass::half_t>>() { return "ch"; } template <> inline std::string ElementTypeName<cutlass::bfloat16_t>() { return "bf16"; } template <> inline std::string ElementTypeName<cutlass::complex<cutlass::bfloat16_t>>() { return "cbf16"; } template <> inline std::string ElementTypeName<cutlass::tfloat32_t>() { return "tf32"; } template <> inline std::string ElementTypeName<cutlass::complex<cutlass::tfloat32_t>>() { return "ctf32"; } template <> inline std::string ElementTypeName<cutlass::complex<float>>() { return "c"; } template <> inline std::string ElementTypeName<cutlass::complex<double>>() { return "z"; } template <> inline std::string ElementTypeName<cutlass::Quaternion<float>>() { return "q"; } template <> inline std::string ElementTypeName<int8_t>() { return "s8"; } template <> inline std::string ElementTypeName<uint8_t>() { return "u8"; } template <> inline std::string ElementTypeName<cutlass::int4b_t>() { return "s4"; } template <> inline std::string ElementTypeName<cutlass::uint4b_t>() { return "u4"; } ///////////////////////////////////////////////////////////////////////////////////////////////// template <typename Layout> inline std::string LayoutTypeName() { return std::string(typeid(Layout).name()); } template <> inline std::string LayoutTypeName<cutlass::layout::ColumnMajor>() { return "n"; } template <> inline std::string LayoutTypeName<cutlass::layout::RowMajor>() { return "t"; } template <> inline std::string LayoutTypeName<cutlass::layout::TensorNHWC>() { return "nhwc"; } template <> inline std::string LayoutTypeName<cutlass::layout::TensorNCxHWx<32>>() { return "nc32hw32"; } template <> inline std::string LayoutTypeName<cutlass::layout::TensorNCxHWx<64>>() { return "nc64hw64"; } template <> inline std::string LayoutTypeName<cutlass::layout::TensorCxRSKx<32>>() { return "c32rsk32"; } template <> inline std::string LayoutTypeName<cutlass::layout::TensorCxRSKx<64>>() { return "c64rsk64"; } template <> inline std::string LayoutTypeName<cutlass::layout::TensorNDHWC>() { return "ndhwc"; } ///////////////////////////////////////////////////////////////////////////////////////////////// template <typename Element, typename Layout> inline std::string TensorTypeName() { std::stringstream ss; ss << ElementTypeName<Element>() << LayoutTypeName<Layout>(); return ss.str(); } template <typename Element> inline std::string TensorTypeName() { std::stringstream ss; ss << ElementTypeName<Element>(); return ss.str(); } ///////////////////////////////////////////////////////////////////////////////////////////////// /// Hash function on a byte array struct CRC32 { uint32_t table[256]; // // Methods // CRC32() { uint32_t rem; int i, j; for (i = 0; i < 256; i++) { rem = i; for (j = 0; j < 8; j++) { if (rem & 1) { rem >>= 1; rem ^= 0xedb88320; } else rem >>= 1; } table[i] = rem; } } /// Computes the CRC of an array of bytes uint32_t operator()(void const *start, size_t length, uint32_t crc = uint32_t()) const { uint8_t const *p = static_cast<uint8_t const *>(start); uint8_t const *q = static_cast<uint8_t const *>(start) + length; crc = ~crc; for (; p != q; ++p) { uint8_t octet = *p; crc = (crc >> 8) ^ table[(crc & 0xff) ^ octet]; } return ~crc; } }; ///////////////////////////////////////////////////////////////////////////////////////////////// template < typename Element, typename Layout > uint32_t TensorHash( cutlass::TensorView<Element, Layout> view, CRC32 const &hash = CRC32(), uint32_t crc = uint32_t() ) { return hash(view.data(), view.capacity() * cutlass::sizeof_bits<Element>::value / 8, crc); } template <typename Element> uint32_t TensorHash( thrust::universal_vector<Element>& tensor, CRC32 const &hash = CRC32(), uint32_t crc = uint32_t() ) { return hash(tensor.data().get(), tensor.size() * cutlass::sizeof_bits<Element>::value / 8, crc); } ///////////////////////////////////////////////////////////////////////////////////////////////// template < typename ElementA, typename LayoutA, typename ElementB, typename LayoutB, typename ElementC, typename LayoutC, typename ElementAccumulator, typename ElementCompute > inline std::ostream &EncodeTypes( std::ostream &out ) { out << TensorTypeName<ElementA, LayoutA>() << "_" << TensorTypeName<ElementB, LayoutB>() << "_" << TensorTypeName<ElementC, LayoutC>() << "_" << ElementTypeName<ElementAccumulator>() << "_" << ElementTypeName<ElementCompute>(); return out; } template < typename ElementA, typename ElementB, typename ElementC, typename ElementD > inline std::ostream &EncodeTypes( std::ostream &out ) { out << TensorTypeName<ElementA>() << "_" << TensorTypeName<ElementB>() << "_" << TensorTypeName<ElementC>() << "_" << ElementTypeName<ElementD>(); return out; } ///////////////////////////////////////////////////////////////////////////////////////////////// template < typename ElementA, typename LayoutA, typename ElementB, typename LayoutB, typename ElementC, typename LayoutC, typename ElementAccumulator, typename ElementCompute > inline CachedTestKey CreateCachedGemmTestKey( cutlass::gemm::GemmCoord const &problem, ElementCompute alpha, ElementCompute beta, cutlass::TensorView<ElementA, LayoutA> A, cutlass::TensorView<ElementA, LayoutB> B, cutlass::TensorView<ElementC, LayoutC> C ) { CachedTestKey key; // Encode gemm operator and problem sizes key.op = "gemm"; std::stringstream ss_problem; EncodeProblemSize(ss_problem, problem); ss_problem << "_alpha" << EncodeScalar(alpha) << "_beta" << EncodeScalar(beta); key.problem = ss_problem.str(); // Encode problem data types std::stringstream ss_types; EncodeTypes< ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, ElementAccumulator, ElementCompute>(ss_types); key.types = ss_types.str(); // Encode hash for problem data CRC32 crc_hash; key.A = TensorHash(A, crc_hash); key.B = TensorHash(B, crc_hash); key.C = TensorHash(C, crc_hash); return key; } ///////////////////////////////////////////////////////////////////////////////////////////////// template < typename ElementA, typename LayoutA, typename ElementB, typename LayoutB, typename ElementC, typename LayoutC, typename ElementAccumulator, typename ElementCompute > inline CachedTestKey CreateCachedConv2dTestKey( cutlass::conv::Operator conv_operator, cutlass::conv::Conv2dProblemSize const &problem, ElementCompute alpha, ElementCompute beta, cutlass::TensorView<ElementA, LayoutA> A, cutlass::TensorView<ElementA, LayoutB> B, cutlass::TensorView<ElementC, LayoutC> C ) { CachedTestKey key; // Encode conv2d operator and problem sizes key.op = "conv2d"; std::stringstream ss_problem; ss_problem << EncodeOperator(conv_operator) << "_"; EncodeProblemSize(ss_problem, problem); ss_problem << "_alpha" << EncodeScalar(alpha) << "_beta" << EncodeScalar(beta); key.problem = ss_problem.str(); // Encode problem data types std::stringstream ss_types; EncodeTypes< ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, ElementAccumulator, ElementCompute>(ss_types); key.types = ss_types.str(); // Encode hash for problem data CRC32 crc_hash; key.A = TensorHash(A, crc_hash); key.B = TensorHash(B, crc_hash); key.C = TensorHash(C, crc_hash); return key; } ///////////////////////////////////////////////////////////////////////////////////////////////// template < typename ElementA, typename LayoutA, typename ElementB, typename LayoutB, typename ElementC, typename LayoutC, typename ElementAccumulator, typename ElementCompute > inline CachedTestKey CreateCachedConv2dWithBroadcastTestKey( cutlass::conv::Operator conv_operator, cutlass::conv::Conv2dProblemSize const &problem, ElementCompute alpha, ElementCompute beta, cutlass::TensorView<ElementA, LayoutA> A, cutlass::TensorView<ElementA, LayoutB> B, cutlass::TensorView<ElementC, LayoutC> C ) { CachedTestKey key; // Encode conv2d operator and problem sizes key.op = "conv2d_with_broadcast"; std::stringstream ss_problem; ss_problem << EncodeOperator(conv_operator) << "_"; EncodeProblemSize(ss_problem, problem); ss_problem << "_alpha" << EncodeScalar(alpha) << "_beta" << EncodeScalar(beta); key.problem = ss_problem.str(); // Encode problem data types std::stringstream ss_types; EncodeTypes< ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, ElementAccumulator, ElementCompute>(ss_types); key.types = ss_types.str(); // Encode hash for problem data CRC32 crc_hash; key.A = TensorHash(A, crc_hash); key.B = TensorHash(B, crc_hash); key.C = TensorHash(C, crc_hash); return key; } ///////////////////////////////////////////////////////////////////////////////////////////////// template < typename ElementA, typename LayoutA, typename ElementB, typename LayoutB, typename ElementC, typename LayoutC, typename ElementAccumulator, typename ElementCompute > inline CachedTestKey CreateCachedConv2dWithReductionTestKey( cutlass::conv::Operator conv_operator, cutlass::conv::Conv2dProblemSize const &problem, ElementCompute alpha, ElementCompute beta, cutlass::TensorView<ElementA, LayoutA> A, cutlass::TensorView<ElementA, LayoutB> B, cutlass::TensorView<ElementC, LayoutC> C ) { CachedTestKey key; // Encode conv2d operator and problem sizes key.op = "conv2d_with_reduction"; std::stringstream ss_problem; ss_problem << EncodeOperator(conv_operator) << "_"; EncodeProblemSize(ss_problem, problem); ss_problem << "_alpha" << EncodeScalar(alpha) << "_beta" << EncodeScalar(beta); key.problem = ss_problem.str(); // Encode problem data types std::stringstream ss_types; EncodeTypes< ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, ElementAccumulator, ElementCompute>(ss_types); key.types = ss_types.str(); // Encode hash for problem data CRC32 crc_hash; key.A = TensorHash(A, crc_hash); key.B = TensorHash(B, crc_hash); key.C = TensorHash(C, crc_hash); return key; } ///////////////////////////////////////////////////////////////////////////////////////////////// template < typename ElementA, typename LayoutA, typename ElementB, typename LayoutB, typename ElementC, typename LayoutC, typename ElementAccumulator, typename ElementCompute > inline CachedTestKey CreateCachedConv3dTestKey( cutlass::conv::Operator conv_operator, cutlass::conv::Conv3dProblemSize const &problem, ElementCompute alpha, ElementCompute beta, cutlass::TensorView<ElementA, LayoutA> A, cutlass::TensorView<ElementA, LayoutB> B, cutlass::TensorView<ElementC, LayoutC> C ) { CachedTestKey key; // Encode conv3d operator and problem sizes key.op = "conv3d"; std::stringstream ss_problem; ss_problem << EncodeOperator(conv_operator) << "_"; EncodeProblemSize(ss_problem, problem); ss_problem << "_alpha" << EncodeScalar(alpha) << "_beta" << EncodeScalar(beta); key.problem = ss_problem.str(); // Encode problem data types std::stringstream ss_types; EncodeTypes< ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, ElementAccumulator, ElementCompute>(ss_types); key.types = ss_types.str(); // Encode problem data CRC32 crc_hash; key.A = TensorHash(A, crc_hash); key.B = TensorHash(B, crc_hash); key.C = TensorHash(C, crc_hash); return key; } ///////////////////////////////////////////////////////////////////////////////////////////////// template < class ProblemShape, typename ElementA, typename ElementB, typename ElementC, typename ElementD > inline CachedTestKey CreateCachedConvNd3xTestKey( cutlass::conv::Operator conv_operator, ProblemShape const& problem_shape, double alpha, double beta, thrust::universal_vector<ElementA> A, thrust::universal_vector<ElementB> B, thrust::universal_vector<ElementC> C ) { CachedTestKey key; // Encode convNd operator and problem sizes std::stringstream ss_op; ss_op << "conv" << ProblemShape::RankS << "d"; key.op = ss_op.str(); std::stringstream ss_problem; ss_problem << EncodeOperator(conv_operator) << "_"; EncodeProblemSize(ss_problem, problem_shape); ss_problem << "_alpha" << EncodeScalar(alpha) << "_beta" << EncodeScalar(beta); key.problem = ss_problem.str(); // Encode problem data types std::stringstream ss_types; EncodeTypes< ElementA, ElementB, ElementC, ElementD>(ss_types); key.types = ss_types.str(); // Encode problem data CRC32 crc_hash; key.A = TensorHash(A, crc_hash); key.B = TensorHash(B, crc_hash); key.C = TensorHash(C, crc_hash); return key; } ///////////////////////////////////////////////////////////////////////////////////////////////// } // namespace test::conv::device /////////////////////////////////////////////////////////////////////////////////////////////////
test/unit/conv/cache_testbed_output.h/0
{ "file_path": "test/unit/conv/cache_testbed_output.h", "repo_id": "test", "token_count": 8379 }
58
/*************************************************************************************************** * Copyright (c) 2023 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. * SPDX-License-Identifier: BSD-3-Clause * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * **************************************************************************************************/ /*! \file \brief Unit tests for conversion operators. */ #include "../common/cutlass_unit_test.h" #include "cutlass/numeric_conversion.h" #include "cutlass/layout/matrix.h" #include "cutlass/util/host_tensor.h" ///////////////////////////////////////////////////////////////////////////////////////////////// namespace test { namespace core { namespace kernel { /// Simple conversion function template <typename Destination, typename Source, int Count> __global__ void convert( cutlass::Array<Destination, Count> *destination, cutlass::Array<Source, Count> const *source) { cutlass::FastNumericArrayConverter<Destination, Source, Count> convert; *destination = convert(*source); } ///////////////////////////////////////////////////////////////////////////////////////////////// template <typename Destination, typename Source, int Count> void run_test_integer_range_limited() { const int kN = Count; dim3 grid(1, 1); dim3 block(1, 1); cutlass::HostTensor<Destination, cutlass::layout::RowMajor> destination({1, kN}); cutlass::HostTensor<Source, cutlass::layout::RowMajor> source({1, kN}); for (int i = 0; i < kN; ++i) { source.host_data()[i] = Source(i % 4); } source.sync_device(); convert<Destination, Source, kN><<< grid, block >>>( reinterpret_cast<cutlass::Array<Destination, kN> *>(destination.device_data()), reinterpret_cast<cutlass::Array<Source, kN> const *>(source.device_data()) ); destination.sync_host(); for (int i = 0; i < kN; ++i) { EXPECT_TRUE(float(destination.host_data()[i]) == float(source.host_data()[i])); } } template <typename Destination, typename Source, int Count> void run_test_integer_range_all() { const int kN = Count; dim3 grid(1, 1); dim3 block(1, 1); cutlass::HostTensor<Destination, cutlass::layout::RowMajor> destination({1, kN}); cutlass::HostTensor<Source, cutlass::layout::RowMajor> source({1, kN}); int const kIntSourceMin = std::numeric_limits<Source>::min(); int const kIntSourceMax = std::numeric_limits<Source>::max(); int const kIntRange = kIntSourceMax - kIntSourceMin + 1; for (int i = 0; i < kN; ++i) { source.host_data()[i] = Source(kIntSourceMin + (i % kIntRange)); } source.sync_device(); convert<Destination, Source, kN><<< grid, block >>>( reinterpret_cast<cutlass::Array<Destination, kN> *>(destination.device_data()), reinterpret_cast<cutlass::Array<Source, kN> const *>(source.device_data()) ); destination.sync_host(); // Verify conversion bool passed = true; for (int i = 0; i < kN; ++i) { if(!(float(destination.host_data()[i]) == float(source.host_data()[i]))) { passed = false; break; } } EXPECT_TRUE(passed) << " FastNumericArrayConverter failed"; // Print out results for the failed conversion. if (!passed) { for (int i = 0; i < kN; ++i) { std::cout << "source(" << float(source.host_data()[i]) << ") -> " << "destination ("<< float(destination.host_data()[i]) << ")" << std::endl; } } std::flush(std::cout); } } // namespace kernel } // namespace core } // namespace test ///////////////////////////////////////////////////////////////////////////////////////////////// TEST(FastNumericConversion, s32_to_f32) { int const kN = 4; using Source = int; using Destination = float; test::core::kernel::run_test_integer_range_limited<Destination, Source, kN>(); } TEST(FastNumericConversion, s8_to_f32_array) { int const kN = 256; using Source = int8_t; using Destination = float; test::core::kernel::run_test_integer_range_all<Destination, Source, kN>(); } TEST(FastNumericConversion, u8_to_f32_array) { int const kN = 256; using Source = uint8_t; using Destination = float; test::core::kernel::run_test_integer_range_all<Destination, Source, kN>(); } TEST(FastNumericConversion, s8_to_f16_array) { int const kN = 256; using Source = int8_t; using Destination = cutlass::half_t; test::core::kernel::run_test_integer_range_all<Destination, Source, kN>(); } TEST(FastNumericConversion, u8_to_f16_array) { int const kN = 256; using Source = uint8_t; using Destination = cutlass::half_t; test::core::kernel::run_test_integer_range_all<Destination, Source, kN>(); } TEST(FastNumericConversion, u8_to_bf16_array) { int const kN = 256; using Source = uint8_t; using Destination = cutlass::bfloat16_t; test::core::kernel::run_test_integer_range_all<Destination, Source, kN>(); } TEST(FastNumericConversion, s8_to_bf16_array) { int const kN = 256; using Source = int8_t; using Destination = cutlass::bfloat16_t; test::core::kernel::run_test_integer_range_all<Destination, Source, kN>(); }
test/unit/core/fast_numeric_conversion.cu/0
{ "file_path": "test/unit/core/fast_numeric_conversion.cu", "repo_id": "test", "token_count": 2117 }
59
/*************************************************************************************************** * Copyright (c) 2023 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. * SPDX-License-Identifier: BSD-3-Clause * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * **************************************************************************************************/ #include "cutlass_unit_test.h" #include <cute/layout.hpp> TEST(CuTe_core, WeaklyCongruent) { using namespace cute; auto a = _1{}; auto b = _2{}; EXPECT_TRUE (weakly_congruent(a, a)); EXPECT_TRUE (weakly_congruent(b, b)); EXPECT_TRUE (weakly_congruent(a, b)); auto a0 = Shape<_1>{}; auto b0 = Shape<_2>{}; EXPECT_TRUE (weakly_congruent(a , a0)); EXPECT_TRUE (weakly_congruent(b , b0)); EXPECT_TRUE (weakly_congruent(a , b0)); EXPECT_TRUE (weakly_congruent(b , a0)); EXPECT_FALSE(weakly_congruent(a0, a )); EXPECT_FALSE(weakly_congruent(b0, b )); EXPECT_FALSE(weakly_congruent(a0, b )); EXPECT_FALSE(weakly_congruent(b0, a )); EXPECT_TRUE (weakly_congruent(a0, a0)); EXPECT_TRUE (weakly_congruent(b0, b0)); EXPECT_TRUE (weakly_congruent(a0, b0)); auto a1 = Shape<_1, _1>{}; EXPECT_TRUE (weakly_congruent(a , a1)); EXPECT_FALSE(weakly_congruent(a0, a1)); EXPECT_TRUE (weakly_congruent(a1, a1)); auto a2 = Shape<_1, Shape<_1,_1>>{}; EXPECT_TRUE (weakly_congruent(a , a2)); EXPECT_FALSE(weakly_congruent(a0, a2)); EXPECT_TRUE (weakly_congruent(a1, a2)); auto b1 = Shape<_2, _2>{}; EXPECT_TRUE (weakly_congruent(b , b1)); EXPECT_FALSE(weakly_congruent(b0, b1)); EXPECT_TRUE (weakly_congruent(a1, b1)); auto b2 = Shape<_2, Shape<_2,_2>>{}; EXPECT_FALSE(weakly_congruent(a2, b0)); EXPECT_FALSE(weakly_congruent(a2, a1)); EXPECT_TRUE (weakly_congruent(a2, b2)); auto b3 = Shape<Shape<_2,_2>, Shape<_2,_2>>{}; EXPECT_FALSE(weakly_congruent(a0, b3)); EXPECT_TRUE (weakly_congruent(a1, b3)); EXPECT_TRUE (weakly_congruent(a2, b3)); } TEST(CuTe_core, WeaklyCompatible) { using namespace cute; auto a = _16{}; auto b = _12{}; auto c = _8{}; EXPECT_TRUE (weakly_compatible(a, a)); EXPECT_TRUE (weakly_compatible(b, b)); EXPECT_TRUE (weakly_compatible(c, c)); EXPECT_FALSE(weakly_compatible(a, b)); EXPECT_FALSE(weakly_compatible(a, c)); EXPECT_TRUE (weakly_compatible(c, a)); auto a0 = Shape<_16>{}; EXPECT_TRUE (weakly_compatible(a0, a0)); EXPECT_TRUE (weakly_compatible(a , a0)); EXPECT_FALSE(weakly_compatible(a0, a )); EXPECT_TRUE (weakly_compatible(c , a0)); EXPECT_FALSE(weakly_compatible(a0, c )); EXPECT_FALSE(weakly_compatible(b , a0)); EXPECT_FALSE(weakly_compatible(a0, b )); auto a1 = Shape<_2,_8>{}; EXPECT_TRUE (weakly_compatible(a1, a1)); EXPECT_TRUE (weakly_compatible(a , a1)); EXPECT_FALSE(weakly_compatible(a0, a1)); EXPECT_FALSE(weakly_compatible(a1, a0)); EXPECT_TRUE (weakly_compatible(a1, Shape<_2,Shape<_2,_4>>{})); auto a2 = Shape<Shape<_2,_8>>{}; EXPECT_TRUE (weakly_compatible(a2, a2)); EXPECT_TRUE (weakly_compatible(a , a2)); EXPECT_TRUE (weakly_compatible(c , a2)); EXPECT_TRUE (weakly_compatible(a0, a2)); EXPECT_FALSE(weakly_compatible(a2, a0)); auto a3 = Shape<Shape<_2,Shape<_4,_2>>>{}; EXPECT_TRUE (weakly_compatible(a3, a3)); EXPECT_TRUE (weakly_compatible(a , a3)); EXPECT_TRUE (weakly_compatible(c , a3)); EXPECT_TRUE (weakly_compatible(a0, a3)); EXPECT_FALSE(weakly_compatible(a3, a0)); EXPECT_TRUE (weakly_compatible(a2, a3)); EXPECT_FALSE(weakly_compatible(a3, a2)); }
test/unit/cute/core/int_tuple.cpp/0
{ "file_path": "test/unit/cute/core/int_tuple.cpp", "repo_id": "test", "token_count": 1935 }
60
/*************************************************************************************************** * Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. * SPDX-License-Identifier: BSD-3-Clause * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * **************************************************************************************************/ #include "cutlass_unit_test.h" #include "../hopper/tma_load_testbed.hpp" using namespace cute; using namespace cutlass::test; #if CUDA_12_0_SM90_FEATURES_SUPPORTED template <class T, class TmaType = T, class GMEM_Layout, class SMEM_Layout, class CTA_Tile> auto test_tma_load(GMEM_Layout const& gmem_layout, SMEM_Layout const& smem_layout, CTA_Tile const& cta_tile) { return test_tma_load<T, TmaType>(SM90_TMA_LOAD{}, gmem_layout, smem_layout, cta_tile); } template <class T, class TmaType = T, class GMEM_Layout, class SMEM_Layout> auto test_tma_load(GMEM_Layout const& gmem_layout, SMEM_Layout const& smem_layout) { return test_tma_load<T, TmaType>(gmem_layout, smem_layout, product_each(shape(smem_layout))); } TEST(SM90_CuTe_Hopper, Tma_Load_1D) { { Layout smem_layout = Layout<_256, _1>{}; { Layout gmem_layout = smem_layout; test_tma_load<int8_t>(gmem_layout, smem_layout); test_tma_load<half_t>(gmem_layout, smem_layout); test_tma_load< float>(gmem_layout, smem_layout); test_tma_load<double>(gmem_layout, smem_layout); } { Layout gmem_layout = make_layout(128, GenColMajor{}); test_tma_load<int8_t>(gmem_layout, smem_layout); test_tma_load<half_t>(gmem_layout, smem_layout); test_tma_load< float>(gmem_layout, smem_layout); test_tma_load<double>(gmem_layout, smem_layout); } { Layout gmem_layout = make_layout(384, GenColMajor{}); test_tma_load<int8_t>(gmem_layout, smem_layout); test_tma_load<half_t>(gmem_layout, smem_layout); test_tma_load< float>(gmem_layout, smem_layout); test_tma_load<double>(gmem_layout, smem_layout); } } { Layout smem_layout = Layout<Shape<_8,_8>, Stride<_1,_8>>{}; { Layout gmem_layout = smem_layout; test_tma_load<int8_t>(gmem_layout, smem_layout); test_tma_load<half_t>(gmem_layout, smem_layout); test_tma_load< float>(gmem_layout, smem_layout); test_tma_load<double>(gmem_layout, smem_layout); } // This doesn't result in a 1D TMA, even though it could/should... { Layout gmem_layout = tile_to_shape(smem_layout, Shape<_16,_16>{}); test_tma_load<int8_t>(gmem_layout, smem_layout); test_tma_load<half_t>(gmem_layout, smem_layout); test_tma_load< float>(gmem_layout, smem_layout); test_tma_load<double>(gmem_layout, smem_layout); } } } TEST(SM90_CuTe_Hopper, Tma_Load_32x32_Col) { Layout smem_layout = Layout<Shape<_32,_32>, Stride<_1,_32>>{}; { Layout gmem_layout = smem_layout; test_tma_load<int8_t>(gmem_layout, smem_layout); test_tma_load<half_t>(gmem_layout, smem_layout); test_tma_load< float>(gmem_layout, smem_layout); test_tma_load<double>(gmem_layout, smem_layout); } { Layout gmem_layout = make_layout(make_shape(32,32), GenColMajor{}); test_tma_load<int8_t>(gmem_layout, smem_layout); test_tma_load<half_t>(gmem_layout, smem_layout); test_tma_load< float>(gmem_layout, smem_layout); test_tma_load<double>(gmem_layout, smem_layout); } { Layout gmem_layout = make_layout(make_shape(32,32), make_stride(Int<1>{}, 1024)); test_tma_load<int8_t>(gmem_layout, smem_layout); test_tma_load<half_t>(gmem_layout, smem_layout); test_tma_load< float>(gmem_layout, smem_layout); test_tma_load<double>(gmem_layout, smem_layout); } } TEST(SM90_CuTe_Hopper, Tma_Load_32x32_Row) { Layout smem_layout = Layout<Shape<_32,_32>, Stride<_32,_1>>{}; { Layout gmem_layout = smem_layout; test_tma_load<int8_t>(gmem_layout, smem_layout); test_tma_load<half_t>(gmem_layout, smem_layout); test_tma_load< float>(gmem_layout, smem_layout); test_tma_load<double>(gmem_layout, smem_layout); } { Layout gmem_layout = make_layout(make_shape(32,32), GenRowMajor{}); test_tma_load<int8_t>(gmem_layout, smem_layout); test_tma_load<half_t>(gmem_layout, smem_layout); test_tma_load< float>(gmem_layout, smem_layout); test_tma_load<double>(gmem_layout, smem_layout); } { Layout gmem_layout = make_layout(make_shape(32,32), make_stride(1024, Int<1>{})); test_tma_load<int8_t>(gmem_layout, smem_layout); test_tma_load<half_t>(gmem_layout, smem_layout); test_tma_load< float>(gmem_layout, smem_layout); test_tma_load<double>(gmem_layout, smem_layout); } } template <class T, template <typename> typename SWIZZLE_ATOM> void test_tma_load_swizzle_atom_mn() { auto smem_layout = SWIZZLE_ATOM<T>{}; { // Static gmem //Layout gmem_layout = make_layout(shape(smem_layout), GenColMajor{}); //test_tma_load<T>(gmem_layout, smem_layout); } { // Dynamic gmem Layout gmem_layout = make_layout(make_shape(2*uint32_t(size<0>(smem_layout)), 2*uint32_t(size<1>(smem_layout))), GenColMajor{}); test_tma_load<T>(gmem_layout, smem_layout); } } template <class T, template <typename> typename SWIZZLE_ATOM> void test_tma_load_swizzle_atom_k() { auto smem_layout = SWIZZLE_ATOM<T>{}; { // Static gmem //Layout gmem_layout = make_layout(shape(smem_layout), GenRowMajor{}); //test_tma_load<T>(gmem_layout, smem_layout); } { // Dynamic gmem Layout gmem_layout = make_layout(make_shape(2*uint32_t(size<0>(smem_layout)), 2*uint32_t(size<1>(smem_layout))), GenRowMajor{}); test_tma_load<T>(gmem_layout, smem_layout); } } TEST(SM90_CuTe_Hopper, Tma_Load_Swizzle_Atoms) { test_tma_load_swizzle_atom_mn<int8_t, GMMA::Layout_MN_SW128_Atom>(); test_tma_load_swizzle_atom_mn<half_t, GMMA::Layout_MN_SW128_Atom>(); test_tma_load_swizzle_atom_mn< float, GMMA::Layout_MN_SW128_Atom>(); test_tma_load_swizzle_atom_mn<double, GMMA::Layout_MN_SW128_Atom>(); test_tma_load_swizzle_atom_mn<int8_t, GMMA::Layout_MN_SW64_Atom>(); test_tma_load_swizzle_atom_mn<half_t, GMMA::Layout_MN_SW64_Atom>(); test_tma_load_swizzle_atom_mn< float, GMMA::Layout_MN_SW64_Atom>(); test_tma_load_swizzle_atom_mn<double, GMMA::Layout_MN_SW64_Atom>(); test_tma_load_swizzle_atom_mn<int8_t, GMMA::Layout_MN_SW32_Atom>(); test_tma_load_swizzle_atom_mn<half_t, GMMA::Layout_MN_SW32_Atom>(); test_tma_load_swizzle_atom_mn< float, GMMA::Layout_MN_SW32_Atom>(); test_tma_load_swizzle_atom_mn<double, GMMA::Layout_MN_SW32_Atom>(); test_tma_load_swizzle_atom_mn<int8_t, GMMA::Layout_MN_INTER_Atom>(); test_tma_load_swizzle_atom_mn<half_t, GMMA::Layout_MN_INTER_Atom>(); test_tma_load_swizzle_atom_mn< float, GMMA::Layout_MN_INTER_Atom>(); test_tma_load_swizzle_atom_mn<double, GMMA::Layout_MN_INTER_Atom>(); test_tma_load_swizzle_atom_k<int8_t, GMMA::Layout_K_SW128_Atom>(); test_tma_load_swizzle_atom_k<half_t, GMMA::Layout_K_SW128_Atom>(); test_tma_load_swizzle_atom_k< float, GMMA::Layout_K_SW128_Atom>(); test_tma_load_swizzle_atom_k<double, GMMA::Layout_K_SW128_Atom>(); test_tma_load_swizzle_atom_k<int8_t, GMMA::Layout_K_SW64_Atom>(); test_tma_load_swizzle_atom_k<half_t, GMMA::Layout_K_SW64_Atom>(); test_tma_load_swizzle_atom_k< float, GMMA::Layout_K_SW64_Atom>(); test_tma_load_swizzle_atom_k<double, GMMA::Layout_K_SW64_Atom>(); test_tma_load_swizzle_atom_k<int8_t, GMMA::Layout_K_SW32_Atom>(); test_tma_load_swizzle_atom_k<half_t, GMMA::Layout_K_SW32_Atom>(); test_tma_load_swizzle_atom_k< float, GMMA::Layout_K_SW32_Atom>(); test_tma_load_swizzle_atom_k<double, GMMA::Layout_K_SW32_Atom>(); test_tma_load_swizzle_atom_k<int8_t, GMMA::Layout_K_INTER_Atom>(); test_tma_load_swizzle_atom_k<half_t, GMMA::Layout_K_INTER_Atom>(); test_tma_load_swizzle_atom_k< float, GMMA::Layout_K_INTER_Atom>(); test_tma_load_swizzle_atom_k<double, GMMA::Layout_K_INTER_Atom>(); } template <class T, template <typename> typename SWIZZLE_ATOM> auto test_tma_load_swizzle_tile_mn() { auto smem_layout = tile_to_shape(SWIZZLE_ATOM<T>{}, Shape<_128,_128>{}); Layout gmem_layout = make_layout(make_shape(int(size<0>(smem_layout)), int(size<1>(smem_layout))), GenColMajor{}); return test_tma_load<T>(gmem_layout, smem_layout); } template <class T, template <typename> typename SWIZZLE_ATOM> auto test_tma_load_swizzle_tile_k() { auto smem_layout = tile_to_shape(SWIZZLE_ATOM<T>{}, Shape<_128,_128>{}); Layout gmem_layout = make_layout(make_shape(int(size<0>(smem_layout)), int(size<1>(smem_layout))), GenRowMajor{}); return test_tma_load<T>(gmem_layout, smem_layout); } TEST(SM90_CuTe_Hopper, Tma_Load_Swizzle_Tiles) { // Other T-types use too much smem test_tma_load_swizzle_tile_mn<int8_t, GMMA::Layout_MN_SW128_Atom>(); test_tma_load_swizzle_tile_mn<half_t, GMMA::Layout_MN_SW128_Atom>(); test_tma_load_swizzle_tile_mn<int8_t, GMMA::Layout_MN_SW64_Atom>(); test_tma_load_swizzle_tile_mn<half_t, GMMA::Layout_MN_SW64_Atom>(); test_tma_load_swizzle_tile_mn<int8_t, GMMA::Layout_MN_SW32_Atom>(); test_tma_load_swizzle_tile_mn<half_t, GMMA::Layout_MN_SW32_Atom>(); test_tma_load_swizzle_tile_mn<int8_t, GMMA::Layout_MN_INTER_Atom>(); test_tma_load_swizzle_tile_mn<half_t, GMMA::Layout_MN_INTER_Atom>(); test_tma_load_swizzle_tile_k<int8_t, GMMA::Layout_K_SW128_Atom>(); test_tma_load_swizzle_tile_k<half_t, GMMA::Layout_K_SW128_Atom>(); test_tma_load_swizzle_tile_k<int8_t, GMMA::Layout_K_SW64_Atom>(); test_tma_load_swizzle_tile_k<half_t, GMMA::Layout_K_SW64_Atom>(); test_tma_load_swizzle_tile_k<int8_t, GMMA::Layout_K_SW32_Atom>(); test_tma_load_swizzle_tile_k<half_t, GMMA::Layout_K_SW32_Atom>(); test_tma_load_swizzle_tile_k<int8_t, GMMA::Layout_K_INTER_Atom>(); test_tma_load_swizzle_tile_k<half_t, GMMA::Layout_K_INTER_Atom>(); } // Tensor by-mode TEST(SM90_CuTe_Hopper, Tma_Load_Tensor) { // 3-mode TMA { Layout gmem_layout = make_layout(make_shape(128, 64, 5)); auto cta_tile = Shape<_64, _32>{}; // GMEM Tiling: // Take 64-elem from m // Take 32-elem from k auto smem_layout = make_layout(Shape<_64,_32>{}); test_tma_load<half_t>(gmem_layout, smem_layout, cta_tile); } // 4-mode TMA { Layout gmem_layout = make_layout(make_shape(make_shape(80,40),make_shape(32,12))); auto cta_tile = Shape<Shape<_16,_8>,Shape<_32,_2>>{}; // GMEM Tiling: // Take 16-elem from m0, 8-elem from m1, // Take 32-elem from k0, 2-elem from k1 auto smem_layout = make_layout(Shape<_128,_64>{}); test_tma_load<half_t>(gmem_layout, smem_layout, cta_tile); } // 5-mode TMA { Layout gmem_layout = make_layout(make_shape(make_shape(32,32,32),make_shape(32,12))); auto cta_tile = Shape<Shape<_16,_4,_2>,Shape<_16,_2>>{}; // GMEM Tiling: // Take 4-elem from m0, 4-elem from m1, 5-elem from m2 // Take 32-elem from k0, 2-elem from k1 auto smem_layout = make_layout(Shape<_128,_32>{}); test_tma_load<half_t>(gmem_layout, smem_layout, cta_tile); } } // Tensor Multimode -- TMA with more than 5 modes in GMEM (packs residual modes into last TMA mode) TEST(SM90_CuTe_Hopper, Tma_Load_Tensor_Multimode) { { Layout gmem_layout = make_layout(make_shape(make_shape(32,3,2,2),make_shape(32,4,2))); auto cta_tile = Shape<Shape<_32>, Shape<_32,_2>>{}; // GMEM Tiling: // Take 32-elem from m0 // Take 32-elem from k0, 2-elem from k1 auto smem_layout = make_layout(Shape<_32,_64>{}); test_tma_load<half_t>(gmem_layout, smem_layout, cta_tile); } { Layout gmem_layout = make_layout(make_shape(make_shape(64,3,2,2),make_shape(32,4,2))); auto cta_tile = Shape<Shape<_32,_3>, Shape<_32,_2>>{}; // GMEM Tiling: // Take 32-elem from m0, 3-elem from m1 // Take 32-elem from k0, 2-elem from k1 auto smem_layout = make_layout(Shape<_96,_64>{}); test_tma_load<half_t>(gmem_layout, smem_layout, cta_tile); } { Layout gmem_layout = make_layout(make_shape(make_shape(64,3,2,3,2),make_shape(32,4,2,2))); auto cta_tile = Shape<Shape<_32>, Shape<_16,_2>>{}; // GMEM Tiling: // Take 32-elem from m0 // Take 16-elem from k0, 2-elem from k1 auto smem_layout = make_layout(Shape<_32,_32>{}); test_tma_load<half_t>(gmem_layout, smem_layout, cta_tile); } } TEST(SM90_CuTe_Hopper, Tma_Load_Coalesce) { // Interleaved ColMajor { Layout gmem_layout = make_layout(make_shape ( 128, make_shape (_4{}, 128)), make_stride( _4{}, make_stride(_1{}, 512))); auto smem_layout = make_layout(make_shape (_32{}, make_shape (_4{}, _32{})), make_stride( _4{}, make_stride(_1{}, _128{}))); // By default, uses cta_tile = Shape<_32,_128> auto tma = test_tma_load<int8_t>(gmem_layout, smem_layout); // Check the TMA rank EXPECT_EQ(rank(tma.get_tma_tensor(shape(gmem_layout))(0)), 2); } // Interleaved RowMajor { Layout gmem_layout = make_layout(make_shape (make_shape (_4{}, 128), 128), make_stride(make_stride(_1{}, 512), _4{})); auto smem_layout = make_layout(make_shape (make_shape (_4{}, _32{}), _32{}), make_stride(make_stride(_1{}, _128{}), _4{})); // By default, uses cta_tile = Shape<_128,_32> auto tma = test_tma_load<int8_t>(gmem_layout, smem_layout); // Check the TMA rank EXPECT_EQ(rank(tma.get_tma_tensor(shape(gmem_layout))(0)), 2); } // Account for stride-0 modes within the TMA tile { Layout gmem_layout = make_layout(make_shape ( 128, make_shape (_32{}, 4)), make_stride( _1{}, make_stride( _0{}, 128))); auto smem_layout = make_layout(make_shape (_64{}, make_shape (_32{} )), make_stride( _1{}, make_stride( _0{} ))); // By default, uses cta_tile = Shape<_64,_32> auto tma = test_tma_load<uint16_t>(gmem_layout, smem_layout); // Check the TMA rank EXPECT_EQ(rank(tma.get_tma_tensor(shape(gmem_layout))(0)), 2); } // Coalesce many modes and account for stride-0 modes within the TMA tile { Layout gmem_layout = make_layout(make_shape (make_shape (_32{},_4{}, 4), _32{}, make_shape (_4{}, 4)), make_stride(make_stride(_16{},_4{}, 2048), _0{}, make_stride(_1{}, _512{}))); auto smem_layout = make_layout(make_shape (make_shape (_32{},_4{} ), _32{}, make_shape (_4{} )), make_stride(make_stride(_16{},_4{} ), _0{}, make_stride(_1{} ))); // By default, uses cta_tile = Shape<_128,_32,_4> auto tma = test_tma_load<int8_t>(gmem_layout, smem_layout); // Check the TMA rank (Could be 3 instead of 4 with even better coalescing...?) EXPECT_EQ(rank(tma.get_tma_tensor(shape(gmem_layout))(0)), 4); } } TEST(SM90_CuTe_Hopper, Tma_Load_InternalType) { Layout smem_layout = Layout<Shape<_32,_32>, Stride<_1,_32>>{}; Layout gmem_layout = make_layout(make_shape(64, 64)); // Downcasted tensors to smaller TmaTypes { test_tma_load<int8_t, uint8_t>(gmem_layout, smem_layout); test_tma_load<half_t, uint8_t>(gmem_layout, smem_layout); test_tma_load< float, uint8_t>(gmem_layout, smem_layout); test_tma_load<double, uint8_t>(gmem_layout, smem_layout); } // Upcasted tensors to larger TmaTypes { test_tma_load<int8_t, uint64_t>(gmem_layout, smem_layout); test_tma_load<half_t, uint64_t>(gmem_layout, smem_layout); test_tma_load< float, uint64_t>(gmem_layout, smem_layout); test_tma_load<double, uint64_t>(gmem_layout, smem_layout); } // Complex<double> is 128bit, which the TMA has no concept of { test_tma_load<complex<double>, uint64_t>(gmem_layout, smem_layout); test_tma_load<complex<double>, uint32_t>(gmem_layout, smem_layout); } } #endif
test/unit/cute/hopper/tma_load.cu/0
{ "file_path": "test/unit/cute/hopper/tma_load.cu", "repo_id": "test", "token_count": 8354 }
61
/*************************************************************************************************** * Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. * SPDX-License-Identifier: BSD-3-Clause * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * **************************************************************************************************/ /*! \file \brief Unit tests for thread-level GEMM */ #include "../../common/cutlass_unit_test.h" #include "cutlass/aligned_buffer.h" #include "cutlass/half.h" #include "cutlass/gemm/warp/mma_tensor_op_sm70.h" #include "cutlass/epilogue/warp/fragment_iterator_volta_tensor_op.h" #include "cutlass/core_io.h" #include "cutlass/util/host_tensor.h" #include "cutlass/util/tensor_view_io.h" #include "cutlass/util/reference/host/tensor_fill.h" #include "cutlass/util/reference/host/tensor_compare.h" #include "cutlass/util/reference/host/gemm.h" ///////////////////////////////////////////////////////////////////////////////////////////////// TEST(SM70_Epilogue_warp_FragmentIterator, mma_f16_64x64x4) { using Shape = cutlass::gemm::GemmShape<64, 64, 4>; using ElementA = cutlass::half_t; using ElementB = cutlass::half_t; using ElementC = cutlass::half_t; using LayoutA = cutlass::layout::ColumnMajorVoltaTensorOpMultiplicandCongruous<cutlass::sizeof_bits<ElementA>::value>; using LayoutB = cutlass::layout::RowMajorVoltaTensorOpMultiplicandBCongruous<cutlass::sizeof_bits<ElementB>::value>; using Policy = cutlass::gemm::warp::MmaTensorOpPolicy< cutlass::arch::Mma< cutlass::gemm::GemmShape<16, 16, 4>, 32, ElementA, cutlass::layout::ColumnMajor, ElementB, cutlass::layout::RowMajor, ElementC, cutlass::layout::RowMajor, cutlass::arch::OpMultiplyAdd >, cutlass::MatrixShape<1, 1> >; using MmaTensorOp = cutlass::gemm::warp::MmaVoltaTensorOp< Shape, ElementA, LayoutA, ElementB, LayoutB, ElementC, cutlass::layout::RowMajor, Policy >; cutlass::HostTensor<cutlass::half_t, cutlass::layout::RowMajor> accumulator_tensor({Shape::kM, Shape::kN}); cutlass::reference::host::TensorFill(accumulator_tensor.host_view(), ElementC(-1)); for (int tid = 0; tid < 1; ++tid) { typename MmaTensorOp::IteratorC::Fragment accumulator_tile; CUTLASS_PRAGMA_UNROLL for (size_t i = 0; i < accumulator_tile.size(); ++i) { accumulator_tile[i] = static_cast<ElementC>(int(i)); } using FragmentIterator = cutlass::epilogue::warp::FragmentIteratorVoltaTensorOp< cutlass::gemm::GemmShape<64, 64, 4>, cutlass::gemm::GemmShape<32, 32, 4>, cutlass::half_t, cutlass::layout::RowMajor >; FragmentIterator frag_iterator(accumulator_tile); typename FragmentIterator::Fragment frag; for (int iter = 0; iter < FragmentIterator::kIterations; ++iter) { frag_iterator.load(frag); ++frag_iterator; #if 0 std::cout << "T" << tid << ": "; for (size_t i = 0; i < frag.size(); ++i) { std::cout << " " << frag[i]; } std::cout << std::endl; #endif } } } /////////////////////////////////////////////////////////////////////////////////////////////////// TEST(SM70_Epilogue_warp_FragmentIterator, mma_f32_64x64x4) { using Shape = cutlass::gemm::GemmShape<64, 64, 4>; using ElementA = cutlass::half_t; using ElementB = cutlass::half_t; using ElementC = float; using LayoutA = cutlass::layout::ColumnMajorVoltaTensorOpMultiplicandCongruous<cutlass::sizeof_bits<ElementA>::value>; using LayoutB = cutlass::layout::RowMajorVoltaTensorOpMultiplicandBCongruous<cutlass::sizeof_bits<ElementB>::value>; using LayoutC = cutlass::layout::RowMajor; using Policy = cutlass::gemm::warp::MmaTensorOpPolicy< cutlass::arch::Mma< cutlass::gemm::GemmShape<16, 16, 4>, 32, ElementA, cutlass::layout::ColumnMajor, ElementB, cutlass::layout::RowMajor, ElementC, cutlass::layout::RowMajor, cutlass::arch::OpMultiplyAdd >, cutlass::MatrixShape<1, 1> >; using MmaTensorOp = cutlass::gemm::warp::MmaVoltaTensorOp< Shape, ElementA, LayoutA, ElementB, LayoutB, ElementC, cutlass::layout::RowMajor, Policy >; cutlass::HostTensor<ElementC, LayoutC> accumulator_tensor({Shape::kM, Shape::kN}); cutlass::reference::host::TensorFill(accumulator_tensor.host_view(), ElementC(-1)); for (int tid = 0; tid < 1; ++tid) { typename MmaTensorOp::IteratorC::Fragment accumulator_tile; CUTLASS_PRAGMA_UNROLL for (size_t i = 0; i < accumulator_tile.size(); ++i) { accumulator_tile[i] = static_cast<ElementC>(i); } typename MmaTensorOp::IteratorC iterator_C(accumulator_tensor.host_ref(), tid); iterator_C.store(accumulator_tile); } /* std::ofstream output("volta_mma_f32_64x64x4.csv"); output << accumulator_tensor.host_view() << std::endl; */ for (int tid = 0; tid < 1; ++tid) { typename MmaTensorOp::IteratorC::Fragment accumulator_tile; using FragmentIterator = cutlass::epilogue::warp::FragmentIteratorVoltaTensorOp< cutlass::gemm::GemmShape<64, 64, 4>, cutlass::gemm::GemmShape<32, 32, 4>, ElementC, LayoutC >; FragmentIterator frag_iterator(accumulator_tile); for (int iter = 0; iter < FragmentIterator::kIterations; ++iter) { typename FragmentIterator::Fragment frag; frag_iterator.load(frag); ++frag_iterator; #if 0 std::cout << "Iteration: " << iter << " - T" << tid << ": "; for (int i = 0; i < frag.size(); ++i) { std::cout << " " << frag[i]; } std::cout << std::endl; #endif } } } /////////////////////////////////////////////////////////////////////////////////////////////////
test/unit/epilogue/warp/fragment_iterator_volta_tensor_op.cu/0
{ "file_path": "test/unit/epilogue/warp/fragment_iterator_volta_tensor_op.cu", "repo_id": "test", "token_count": 2712 }
62
/*************************************************************************************************** * Copyright (c) 2023 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. * SPDX-License-Identifier: BSD-3-Clause * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * **************************************************************************************************/ /*! \file \brief Testbed and host reference for EVT unittest */ #pragma once #include "gemm_testbed_3x.hpp" namespace test { namespace gemm { namespace device { /// Host-side tapply, tapply in cute is HOST_DEVICE template <class T, class F, class G, int... I> constexpr auto tapply(T&& t, F&& f, G&& g, cute::seq<I...>) { return g(f(std::get<I>(static_cast<T&&>(t)))...); } ///////////////////////////////////////////////////////////////////////////////////////////////// /// EVT: Base class for EVT Node template < typename Gemm_ > class HostEVTNodeBase { public: using Gemm = Gemm_; using TestBedImpl = typename detail::TestbedImpl<Gemm, cutlass::epilogue::thread::Identity, true>; using Kernel = typename Gemm::GemmKernel; using Epilogue = typename Kernel::CollectiveEpilogue; using ElementCompute = typename TestBedImpl::ElementCompute; using ElementScalar = typename TestBedImpl::ElementScalar; using ElementAccumulator = typename Kernel::ElementAccumulator; using ElementC = typename Kernel::ElementC; using ElementD = typename Kernel::ElementD; using LayoutTagC = typename TestBedImpl::LayoutTagC; using LayoutTagD = typename TestBedImpl::LayoutTagD; private: bool _check_relative_equality; // Factors used for calculating relative equality. These default // values are borrowed from those used by default in the CUTLASS // profiler for performing relative equality checks. float _epsilon = 0.05f; float _nonzero_floor = 1.0f / 256.0f; public: HostEVTNodeBase(){} HostEVTNodeBase(bool check_relative_equality): _check_relative_equality(check_relative_equality) { } template < class Element, class Layout > bool equality_check( cutlass::TensorView<Element, Layout> const& lhs, cutlass::TensorView<Element, Layout> const& rhs) const { if (_check_relative_equality) { return cutlass::reference::host::TensorRelativelyEquals( lhs, rhs, Element(_epsilon), Element(_nonzero_floor) ); } else { return cutlass::reference::host::TensorEquals(lhs, rhs); } } void* get_tensor_C_ptr() { return nullptr; } void* get_tensor_D_ptr() { return nullptr; } bool compare_reference(std::stringstream& error_ss) { return true; } }; ///////////////////////////////////////////////////////////////////////////////////////////////// /// EVT - Accumulator template < typename Gemm > class HostAccumulator: public HostEVTNodeBase<Gemm> { public: using Base = HostEVTNodeBase<Gemm>; using TestBedImpl = typename Base::TestBedImpl; using ElementAccumulator = typename Base::ElementAccumulator; using ElementCompute = typename Base::ElementCompute; struct Arguments { }; private: cutlass::NumericConverter<ElementCompute, ElementAccumulator> accumulator_converter; public: HostAccumulator(){} template<typename ProblemShapeType> HostAccumulator(ProblemShapeType problem_size, TestBedImpl impl, bool check_relative_equality=false) :Base(check_relative_equality) {} ElementCompute visit( int64_t m, int64_t n, int64_t l, int m_b, int n_b, ElementAccumulator acc) { return accumulator_converter(acc); } Arguments get_arguments() { return Arguments{}; } }; ///////////////////////////////////////////////////////////////////////////////////////////////// /// EVT - Scalar Broadcast template < typename Gemm, int Value, int BroadcastCount = 1, template <class> class ReductionFn = cutlass::multiplies > class HostScalarBroadcast : public HostEVTNodeBase<Gemm> { public: using Base = HostEVTNodeBase<Gemm>; using ElementCompute = typename Base::ElementCompute; struct Arguments { ElementCompute scalar[BroadcastCount] = {0}; ElementCompute const* scalar_ptrs[BroadcastCount] = { nullptr }; cute::Stride<cute::_0,cute::_0,cute::_0> dScalar{}; }; private: ElementCompute _scalar{}; public: HostScalarBroadcast(){} template<typename ProblemShapeType, typename TestBedImpl> HostScalarBroadcast(ProblemShapeType problem_size, TestBedImpl impl, bool check_relative_equality=false) : Base(check_relative_equality), _scalar(ElementCompute(Value)) {} template <class ElementAccumulator> ElementCompute visit( int64_t m, int64_t n, int64_t l, int m_b, int n_b, ElementAccumulator acc) { return _scalar; } bool compare_reference(std::stringstream& error_ss) { error_ss << "Scalar: " << float(_scalar) << "\n\n"; return true; } Arguments get_arguments() { if constexpr (BroadcastCount == 1) return Arguments{{_scalar}, {nullptr}}; else if constexpr (BroadcastCount == 2) return Arguments{{_scalar, _scalar}, {nullptr, nullptr}}; else if constexpr (BroadcastCount == 3) return Arguments{{_scalar, _scalar, _scalar}, {nullptr, nullptr, nullptr}}; else return Arguments{{_scalar}, {nullptr}}; } }; ///////////////////////////////////////////////////////////////////////////////////////////////// /// EVT - Row Broadcast template < typename Gemm, typename ElementBias_=void > class HostRowBroadcast: public HostEVTNodeBase<Gemm> { public: using Base = HostEVTNodeBase<Gemm>; using ElementBias = std::conditional_t<std::is_void_v<ElementBias_>, typename Base::ElementC, ElementBias_>; using TestBedImpl = typename Base::TestBedImpl; using ElementCompute = typename Base::ElementCompute; using LayoutTagVector = cutlass::layout::PackedVectorLayout; struct Arguments { ElementBias const* ptr_row = nullptr; ElementBias null_default = ElementBias(0); cute::Stride<cute::_0,cute::_1,cute::_0> dRow = {}; }; private: cutlass::NumericConverter<ElementCompute, ElementBias> _bias_converter; cutlass::HostTensor<ElementBias, LayoutTagVector> _bias; int _N; TestBedImpl impl_; public: HostRowBroadcast(){} template<typename ProblemShapeType> HostRowBroadcast(ProblemShapeType problem_size, TestBedImpl impl, bool check_relative_equality=false) : Base(check_relative_equality), impl_(impl) { auto problem_shape_MNKL = cute::append<4>(problem_size, 1); _N = cute::get<1>(problem_shape_MNKL); _bias.resize(cutlass::Coord<1>(_N)); EXPECT_TRUE( detail::initialize_tensor( _bias.host_view(), cutlass::Distribution::Uniform, impl_.collective_mma_inputs.seed + 2023 ) ); _bias.sync_device(); } template <class ElementAccumulator> ElementCompute visit( int64_t m, int64_t n, int64_t l, int m_b, int n_b, ElementAccumulator acc) { auto TensorBias = cute::make_tensor(_bias.host_data(), cute::make_layout(cute::make_shape(cute::_1{}, _N))); return _bias_converter(TensorBias(1, n + n_b)); } bool compare_reference(std::stringstream& error_ss) { error_ss << "PerColumnBias = \n" << _bias.host_view() << "\n\n"; return true; } Arguments get_arguments() { return {_bias.device_data()}; } }; ///////////////////////////////////////////////////////////////////////////////////////////////// /// EVT - Column Broadcast template < typename Gemm, typename ElementBias_=void > class HostColBroadcast: public HostEVTNodeBase<Gemm> { public: using Base = HostEVTNodeBase<Gemm>; using ElementBias = std::conditional_t<std::is_void_v<ElementBias_>, typename Base::ElementC, ElementBias_>; using TestBedImpl = typename Base::TestBedImpl; using ElementCompute = typename Base::ElementCompute; using LayoutTagVector = cutlass::layout::PackedVectorLayout; struct Arguments { ElementBias const* ptr_row = nullptr; ElementBias null_default = ElementBias(0); cute::Stride<cute::_1,cute::_0,cute::_0> dRow = {}; }; private: cutlass::NumericConverter<ElementCompute, ElementBias> _bias_converter; cutlass::HostTensor<ElementBias, LayoutTagVector> _bias; int _M; TestBedImpl impl_; public: HostColBroadcast(){} template<typename ProblemShapeType> HostColBroadcast(ProblemShapeType problem_size, TestBedImpl impl, bool check_relative_equality=false) : Base(check_relative_equality), impl_(impl) { auto problem_shape_MNKL = cute::append<4>(problem_size, 1); _M = cute::get<0>(problem_shape_MNKL); _bias.resize(cutlass::Coord<1>(_M)); EXPECT_TRUE( detail::initialize_tensor( _bias.host_view(), cutlass::Distribution::Uniform, impl_.collective_mma_inputs.seed + 2023 ) ); _bias.sync_device(); } template <class ElementAccumulator> ElementCompute visit( int64_t m, int64_t n, int64_t l, int m_b, int n_b, ElementAccumulator acc) { auto TensorBias = cute::make_tensor(_bias.host_data(), cute::make_layout(cute::make_shape(_M, cute::_1{}))); return _bias_converter(TensorBias(m + m_b, 1)); } bool compare_reference(std::stringstream& error_ss) { error_ss << "PerRowBias = \n" << _bias.host_view() << "\n\n"; return true; } Arguments get_arguments() { return {_bias.device_data()}; } }; ///////////////////////////////////////////////////////////////////////////////////////////////// /// EVT - Aux Load template < typename Gemm, bool isC=false, typename ElementAuxLoad_=void, typename LayoutTagAux_=void > class HostAuxLoad: public HostEVTNodeBase<Gemm> { public: using ElementAuxLoad = std::conditional_t<std::is_void_v<ElementAuxLoad_>, typename HostEVTNodeBase<Gemm>::ElementC, ElementAuxLoad_>; using LayoutTagAux = std::conditional_t<std::is_void_v<LayoutTagAux_>, typename HostEVTNodeBase<Gemm>::LayoutTagC, LayoutTagAux_>; using Base = HostEVTNodeBase<Gemm>; using TestBedImpl = typename Base::TestBedImpl; using ElementCompute = typename Base::ElementCompute; using StrideAux = cutlass::gemm::TagToStrideC_t<LayoutTagAux>; struct Arguments_Aux { ElementAuxLoad const *ptr_aux = nullptr; ElementAuxLoad null_default = ElementAuxLoad(0); StrideAux dAux = {}; }; struct Arguments_C {}; using Arguments = cute::conditional_t<isC, Arguments_C, Arguments_Aux>; private: cutlass::NumericConverter<ElementCompute, ElementAuxLoad> _aux_load_converter; cutlass::HostTensor<ElementAuxLoad, LayoutTagAux> _tensor_aux_load; int _M, _N, _L; TestBedImpl impl_; StrideAux _stride_aux; public: HostAuxLoad(){} template<typename ProblemShapeType> HostAuxLoad(ProblemShapeType problem_size, TestBedImpl impl, bool check_relative_equality=false) : Base(check_relative_equality), impl_(impl) { auto problem_shape_NMKL = cute::append<4>(problem_size, 1); auto [_M, _N, K, _L] = problem_shape_NMKL; auto aux_coord = cutlass::make_Coord(_M * _L, _N); _tensor_aux_load.resize( aux_coord, cutlass::layout::Affine2Layout_Factory<LayoutTagAux>::layout_factory( aux_coord, typename LayoutTagAux::Stride() ) ); EXPECT_TRUE( detail::initialize_tensor( _tensor_aux_load.host_view(), cutlass::Distribution::Uniform, impl_.collective_mma_inputs.seed + 2023 ) ); _tensor_aux_load.sync_device(); _stride_aux = cutlass::make_cute_packed_stride(StrideAux{}, cute::make_shape(_M, _N, _L)); } template <class ElementAccumulator> ElementCompute visit( int64_t m, int64_t n, int64_t l, int m_b, int n_b, ElementAccumulator acc) { auto TensorAuxLoad = cute::make_tensor(_tensor_aux_load.host_data(), cute::make_layout(cute::make_shape(_M, _N, _L), _stride_aux)); return _aux_load_converter(TensorAuxLoad(m + m_b, n + n_b, l)); } bool compare_reference(std::stringstream& error_ss) { if constexpr (!isC) { error_ss << "AuxLoad = \n" << _tensor_aux_load.host_view()<< "\n\n"; } return true; } void* get_tensor_C_ptr() { if constexpr (isC) { return static_cast<void*>(_tensor_aux_load.device_data()); } else { return nullptr; } } Arguments get_arguments() { if constexpr (isC) return {}; else return {_tensor_aux_load.device_data(), ElementAuxLoad(0), _stride_aux}; } }; ///////////////////////////////////////////////////////////////////////////////////////////////// /// EVT - Compute template<typename T> T* findNonNullPtr(T* first_ptr) { return first_ptr; } template <typename T, typename... Args> T* findNonNullPtr(T* first_ptr, Args... args) { if (first_ptr) { return first_ptr; } return findNonNullPtr(args...); } template < typename Gemm, template <class> class ComputeOp_ > class HostCompute: public HostEVTNodeBase<Gemm> { public: using Base = HostEVTNodeBase<Gemm>; using ElementCompute = typename Base::ElementCompute; using ComputeOp = ComputeOp_<ElementCompute>; struct Arguments { struct OpArgs {} op; }; private: ComputeOp _op; public: HostCompute(){} template <typename ProblemShapeType, typename TestBedImpl> HostCompute(ProblemShapeType problem_size, TestBedImpl impl, bool check_relative_equality=false): Base(check_relative_equality) { } template <class ElementAccumulator, typename... Args> ElementCompute visit( int64_t m, int64_t n, int64_t l, int m_b, int n_b, ElementAccumulator acc, Args... frg_inputs) { return _op(frg_inputs...); } Arguments get_arguments(){ return {}; } }; ///////////////////////////////////////////////////////////////////////////////////////////////// /// EVT - Unary Compute template < typename Gemm, template <class> class ComputeOp_, typename Child0 > class HostUnaryCompute: public HostEVTNodeBase<Gemm> { public: using Base = HostEVTNodeBase<Gemm>; using ElementCompute = typename Base::ElementCompute; using ComputeOp = ComputeOp_<ElementCompute>; struct Arguments { typename Child0::Arguments child_0_args; struct OpArgs {} op; }; private: ComputeOp _op; Child0 _child_0; public: HostUnaryCompute(){} template <typename ProblemShapeType, typename TestBedImpl> HostUnaryCompute(ProblemShapeType problem_size, TestBedImpl impl, bool check_relative_equality=false): Base(check_relative_equality), _child_0(problem_size, impl, check_relative_equality) { } template <class ElementAccumulator> ElementCompute visit( int64_t m, int64_t n, int64_t l, int m_b, int n_b, ElementAccumulator acc) { ElementCompute child_0_result = _child_0.visit(m, n, l, m_b, n_b, acc); return _op(child_0_result); } Arguments get_arguments(){ return { _child_0.get_arguments(), {}, }; } }; ///////////////////////////////////////////////////////////////////////////////////////////////// /// EVT - Aux Store template < typename Gemm, bool isD=false, class ElementAuxStore_=void, typename LayoutTagAux_=void > class HostAuxStore: public HostEVTNodeBase<Gemm> { public: using ElementAuxStore = std::conditional_t<std::is_void_v<ElementAuxStore_>, typename HostEVTNodeBase<Gemm>::ElementD, ElementAuxStore_>; using LayoutTagAux = std::conditional_t<std::is_void_v<LayoutTagAux_>, typename HostEVTNodeBase<Gemm>::LayoutTagD, LayoutTagAux_>; using Base = HostEVTNodeBase<Gemm>; using TestBedImpl = typename Base::TestBedImpl; using ElementCompute = typename Base::ElementCompute; using StrideAux = cutlass::gemm::TagToStrideC_t<LayoutTagAux>; struct Arguments_Aux { struct OpArgs { ElementAuxStore* ptr_aux = nullptr; StrideAux dAux = {}; } op; }; struct Arguments_D {}; using Arguments = cute::conditional_t<isD, Arguments_D, Arguments_Aux>; private: cutlass::NumericConverter<ElementAuxStore, ElementCompute> destination_converter; cutlass::HostTensor<ElementAuxStore, LayoutTagAux> _tensor_aux_store; cutlass::HostTensor<ElementAuxStore, LayoutTagAux> _reference_aux_store; int _M, _N, _L; TestBedImpl impl_; StrideAux _stride_aux; public: HostAuxStore(){} template <typename ProblemShapeType> HostAuxStore(ProblemShapeType problem_size, TestBedImpl impl, bool check_relative_equality=false): Base(check_relative_equality), impl_(impl) { auto problem_shape_MNKL = cute::append<4>(problem_size, 1); auto [_M, _N, K, _L] = problem_shape_MNKL; auto aux_coord = cutlass::make_Coord(_M * _L, _N); _tensor_aux_store.resize( aux_coord, cutlass::layout::Affine2Layout_Factory<LayoutTagAux>::layout_factory( aux_coord, typename LayoutTagAux::Stride() ) ); _reference_aux_store.resize( aux_coord, cutlass::layout::Affine2Layout_Factory<LayoutTagAux>::layout_factory( aux_coord, typename LayoutTagAux::Stride() ) ); _tensor_aux_store.sync_device(); _stride_aux = cutlass::make_cute_packed_stride(StrideAux{}, cute::make_shape(_M, _N, _L)); } template <class ElementAccumulator> ElementCompute visit( int64_t m, int64_t n, int64_t l, int m_b, int n_b, ElementAccumulator acc, ElementCompute child_0_result) { auto TensorAuxStore = cute::make_tensor(static_cast<ElementAuxStore*>(_reference_aux_store.host_data()), cute::make_layout(cute::make_shape(_M, _N, _L), _stride_aux)); TensorAuxStore(m + m_b, n + n_b, l) = destination_converter(child_0_result); return child_0_result; } bool compare_reference(std::stringstream& error_ss) { // Verify the store node _tensor_aux_store.sync_host(); bool equal = this->equality_check(_reference_aux_store.host_view(), _tensor_aux_store.host_view()); if (!equal) { error_ss << "\n\nReference =\n" << _reference_aux_store.host_view() << "\n\nComputed =\n" << _tensor_aux_store.host_view() << "\n\n"; } return equal; } void* get_tensor_D_ptr() { if constexpr (isD) return static_cast<void*>(_tensor_aux_store.device_data()); else return nullptr; } Arguments get_arguments() { if constexpr (isD) { return {}; } else { return {_tensor_aux_store.device_data(), _stride_aux}; } } }; ///////////////////////////////////////////////////////////////////////////////////////////////// /// EVT - Row Reduce template < typename Gemm, template <class> class ReduceFn, typename ElementReduce > class HostRowReduce: public HostEVTNodeBase<Gemm> { public: using Base = HostEVTNodeBase<Gemm>; using TestBedImpl = typename Base::TestBedImpl; using ElementCompute = typename Base::ElementCompute; using ElementOutput = typename Base::ElementD; using LayoutTagVector = cutlass::layout::PackedVectorLayout; struct Arguments { struct OpArgs { ElementReduce* ptr_row = nullptr; ElementCompute reduce_identity = 0; cute::Stride<cute::_0, cute::_1, cute::_0> dRow = {}; } op; }; private: cutlass::NumericConverter<ElementReduce, ElementCompute> destination_converter; cutlass::HostTensor<ElementReduce, LayoutTagVector> _tensor_row_reduce; cutlass::HostTensor<ElementCompute, LayoutTagVector> _reduce_buffer; cutlass::HostTensor<ElementReduce, LayoutTagVector> _reference_row_reduce; int _N; TestBedImpl impl_; ReduceFn<ElementCompute> reduce_fn; public: HostRowReduce(){} template <typename ProblemShapeType> HostRowReduce(ProblemShapeType problem_size, TestBedImpl impl, bool check_relative_equality=false): Base(check_relative_equality), impl_(impl) { auto problem_shape_MNKL = cute::append<4>(problem_size, 1); _N = cute::get<1>(problem_shape_MNKL); _tensor_row_reduce.resize(cutlass::Coord<1>(_N)); _reference_row_reduce.resize(cutlass::Coord<1>(_N)); _reduce_buffer.resize(cutlass::Coord<1>(_N)); _tensor_row_reduce.sync_device(); } template <class ElementAccumulator> ElementCompute visit( int64_t m, int64_t n, int64_t l, int m_b, int n_b, ElementAccumulator acc, ElementCompute child_0_result) { auto TensorRowReduce = cute::make_tensor(_reduce_buffer.host_data(), cute::make_layout(cute::make_shape(cute::_1{}, _N))); TensorRowReduce(1, n + n_b) = reduce_fn(TensorRowReduce(1, n + n_b), child_0_result); return child_0_result; } bool compare_reference(std::stringstream& error_ss) { // Verify the store node _tensor_row_reduce.sync_host(); auto TensorRowReduce = cute::make_tensor(_reference_row_reduce.host_data(), cute::make_layout(cute::make_shape(cute::_1{}, _N))); auto TensorReduceBuffer = cute::make_tensor(_reduce_buffer.host_data(), cute::make_layout(cute::make_shape(cute::_1{}, _N))); // Filling the reference tensor with the reduce buffer for (int n = 0; n < _N; n ++) { TensorRowReduce(1, n) = destination_converter(TensorReduceBuffer(1, n)); } bool equal = this->equality_check(_reference_row_reduce.host_view(), _tensor_row_reduce.host_view()); if (!equal) { error_ss << "\n\nRow Reduce Reference =\n" << _reference_row_reduce.host_view() << "\n\nRow Reduce Computed =\n" << _tensor_row_reduce.host_view() << "\n\n"; } return equal; } Arguments get_arguments() { return {_tensor_row_reduce.device_data()}; } }; ///////////////////////////////////////////////////////////////////////////////////////////////// /// EVT - Column Reduce template < typename Gemm, template <class> class ReduceFn, typename ElementReduce > class HostColumnReduce: public HostEVTNodeBase<Gemm> { public: using Base = HostEVTNodeBase<Gemm>; using TestBedImpl = typename Base::TestBedImpl; using ElementCompute = typename Base::ElementCompute; using ElementOutput = typename Base::ElementD; using LayoutTagVector = cutlass::layout::PackedVectorLayout; struct Arguments { struct OpArgs { ElementReduce* ptr_col = nullptr; ElementCompute reduce_identity = 0; cute::Stride<cute::_1, cute::_0, cute::_0> dRow = {}; } op; }; private: cutlass::NumericConverter<ElementReduce, ElementCompute> destination_converter; cutlass::HostTensor<ElementReduce, LayoutTagVector> _tensor_column_reduce; cutlass::HostTensor<ElementCompute, LayoutTagVector> _reduce_buffer; cutlass::HostTensor<ElementReduce, LayoutTagVector> _reference_column_reduce; int _M; TestBedImpl impl_; ReduceFn<ElementCompute> reduce_fn; public: HostColumnReduce(){} template <typename ProblemShapeType> HostColumnReduce(ProblemShapeType problem_size, TestBedImpl impl, bool check_relative_equality=false): Base(check_relative_equality), impl_(impl) { auto problem_shape_MNKL = cute::append<4>(problem_size, 1); _M = cute::get<0>(problem_shape_MNKL); _tensor_column_reduce.resize(cutlass::Coord<1>(_M)); _reference_column_reduce.resize(cutlass::Coord<1>(_M)); _reduce_buffer.resize(cutlass::Coord<1>(_M)); _tensor_column_reduce.sync_device(); } template <class ElementAccumulator> ElementCompute visit( int64_t m, int64_t n, int64_t l, int m_b, int n_b, ElementAccumulator acc, ElementCompute child_0_result) { auto TensorColReduce = cute::make_tensor(_reduce_buffer.host_data(), cute::make_layout(cute::make_shape(_M, cute::_1{}))); TensorColReduce(m + m_b, 1) = reduce_fn(TensorColReduce(m + m_b, 1), child_0_result); return child_0_result; } bool compare_reference(std::stringstream& error_ss) { // Verify the store node _tensor_column_reduce.sync_host(); auto TensorColReduce = cute::make_tensor(_reference_column_reduce.host_data(), cute::make_layout(cute::make_shape(_M, cute::_1{}))); auto TensorReduceBuffer = cute::make_tensor(_reduce_buffer.host_data(), cute::make_layout(cute::make_shape(_M, cute::_1{}))); // Filling the reference tensor with the reduce buffer for (int m = 0; m < _M; m ++) { TensorColReduce(m, 1) = destination_converter(TensorReduceBuffer(m, 1)); } bool equal = this->equality_check(_reference_column_reduce.host_view(), _tensor_column_reduce.host_view()); if (!equal) { error_ss << "\n\nColumn Reduce Reference =\n" << _reference_column_reduce.host_view() << "\n\nColumn Reduce Computed =\n" << _tensor_column_reduce.host_view() << "\n\n"; } return equal; } Arguments get_arguments() { return {_tensor_column_reduce.device_data()}; } }; ///////////////////////////////////////////////////////////////////////////////////////////////// /// EVT - Scalar Reduce template < typename Gemm, template <class> class ReduceFn, typename ElementReduce > class HostScalarReduce: public HostEVTNodeBase<Gemm> { public: using Base = HostEVTNodeBase<Gemm>; using TestBedImpl = typename Base::TestBedImpl; using ElementCompute = typename Base::ElementCompute; using ElementOutput = typename Base::ElementD; using LayoutTagVector = cutlass::layout::PackedVectorLayout; struct Arguments { struct OpArgs { ElementReduce* ptr_scalar = nullptr; ElementCompute reduce_identity = 0; cute::Stride<cute::_0, cute::_0, cute::_0> dScalar = {}; } op; }; private: cutlass::NumericConverter<ElementReduce, ElementCompute> destination_converter; cutlass::HostTensor<ElementReduce, LayoutTagVector> _tensor_scalar_reduce; cutlass::HostTensor<ElementCompute, LayoutTagVector> _reduce_buffer; cutlass::HostTensor<ElementReduce, LayoutTagVector> _reference_scalar_reduce; ReduceFn<ElementCompute> reduce_fn; TestBedImpl impl_; public: HostScalarReduce(){} template <typename ProblemShapeType> HostScalarReduce(ProblemShapeType problem_size, TestBedImpl impl, bool check_relative_equality=false): Base(check_relative_equality), impl_(impl) { _tensor_scalar_reduce.resize(cutlass::Coord<1>(1)); _reference_scalar_reduce.resize(cutlass::Coord<1>(1)); _reduce_buffer.resize(cutlass::Coord<1>(1)); _tensor_scalar_reduce.sync_device(); } template <class ElementAccumulator> ElementCompute visit( int64_t m, int64_t n, int64_t l, int m_b, int n_b, ElementAccumulator acc, ElementCompute child_0_result) { auto TensorRowReduce = cute::make_tensor(_reduce_buffer.host_data(), cute::make_layout(cute::make_shape(cute::_1{}))); TensorRowReduce(0) = reduce_fn(TensorRowReduce(0), child_0_result); return child_0_result; } bool compare_reference(std::stringstream& error_ss) { // Verify the store node _tensor_scalar_reduce.sync_host(); auto TensorRowReduce = cute::make_tensor(_reference_scalar_reduce.host_data(), cute::make_layout(cute::make_shape(cute::_1{}))); auto TensorReduceBuffer = cute::make_tensor(_reduce_buffer.host_data(), cute::make_layout(cute::make_shape(cute::_1{}))); // Filling the reference tensor with the reduce buffer TensorRowReduce(0) = destination_converter(TensorReduceBuffer(0)); bool equal = this->equality_check(_reference_scalar_reduce.host_view(), _tensor_scalar_reduce.host_view()); if (!equal) { error_ss << "\n\nScalar Reduce Reference =\n" << _reference_scalar_reduce.host_view() << "\n\nScalar Reduce Computed =\n" << _tensor_scalar_reduce.host_view() << "\n\n"; } return equal; } Arguments get_arguments() { return {_tensor_scalar_reduce.device_data()}; } }; ///////////////////////////////////////////////////////////////////////////////////////////////// /// Host EVT wrapper /// The ArgumentPack is used to model the alignment when num ops <= 4 template <typename... Ops> struct ArgumentPack; template <typename T> struct ArgumentPack<T> { T arg; ArgumentPack(T first): arg(first) {} }; template <typename First, typename... Rest> struct ArgumentPack<First, Rest...> { First arg; ArgumentPack<Rest...> rest_args; ArgumentPack(First first, Rest... rest) : arg(first), rest_args(rest...) {} }; /// Base class for Host Visitor template <typename Gemm, class... Ops> struct HostVisitorBase: public HostEVTNodeBase<Gemm> { public: using Base = HostEVTNodeBase<Gemm>; using ElementCompute = typename Base::ElementCompute; using Arguments_struct = ArgumentPack<typename Ops::Arguments...>; using Arguments_tuple = cute::tuple<typename Ops::Arguments...>; constexpr static int Rm1 = sizeof...(Ops); constexpr static bool cond = Rm1 > 4; using Arguments = cute::conditional_t<cond, Arguments_tuple, Arguments_struct>; std::tuple<Ops...> ops; HostVisitorBase(){} template<typename ProblemShapeType, typename TestBedImpl> HostVisitorBase(ProblemShapeType problem_size, TestBedImpl impl, bool check_relative_equality=false) :Base(check_relative_equality), ops(test::gemm::device::tapply(std::tuple<Ops...>{}, [&] (auto&& op) { using Op = cute::remove_cvref_t<decltype(op)>; return Op(problem_size, impl, check_relative_equality); }, [] (auto&&... _ops) { return std::make_tuple(_ops...); }, cute::make_seq<Rm1>{} )){ } bool compare_reference(std::stringstream& error_ss) { return cute::detail::tapply(ops, [&](auto& op) { return op.compare_reference(error_ss); }, [&] (auto&&... inputs) { return arrayAnd(inputs...); }, cute::make_seq<Rm1>{} ); } void* get_tensor_C_ptr() { return cute::detail::tapply(ops, [&](auto& op) { return op.get_tensor_C_ptr(); }, [&] (auto&&... inputs) { return findNonNullPtr(inputs...); }, cute::make_seq<Rm1>{} ); } void* get_tensor_D_ptr() { return cute::detail::tapply(ops, [&](auto& op) { return op.get_tensor_D_ptr(); }, [&] (auto&&... inputs) { return findNonNullPtr(inputs...); }, cute::make_seq<Rm1>{} ); } Arguments get_arguments() { return test::gemm::device::tapply(ops, [&](auto& op) { return op.get_arguments(); }, [&] (auto&&... args) { if constexpr (Rm1 > 4) { return cute::make_tuple(args...); } else { return Arguments(args...); } }, cute::make_seq<Rm1>{} ); } bool arrayAnd(bool passed) { return passed; } template <typename... Args> bool arrayAnd(bool first_passed, Args... passed) { if (first_passed) { return arrayAnd(passed...); } return first_passed; } }; /// Tree-struct visitor template <class NodeOp, class... ChildOps> struct HostTreeVisitor: public HostVisitorBase<typename NodeOp::Base::Gemm, ChildOps..., NodeOp> { public: using Gemm = typename NodeOp::Base::Gemm; using Base = HostVisitorBase<Gemm, ChildOps..., NodeOp>; using ElementCompute = typename Base::ElementCompute; using Arguments = typename Base::Arguments; constexpr static int Rm1 = sizeof...(ChildOps); HostTreeVisitor(){} template<typename ProblemShapeType, typename TestBedImpl> HostTreeVisitor(ProblemShapeType problem_size, TestBedImpl impl, bool check_relative_equality=false) :Base(problem_size, impl, check_relative_equality){ } template <class ElementAccumulator> ElementCompute visit( int64_t m, int64_t n, int64_t l, int m_b, int n_b, ElementAccumulator acc) { return cute::detail::tapply(this->ops, [&] (auto& op) { return op.visit(m, n, l, m_b, n_b, acc); }, [&] (auto&&... frg_inputs) { return std::get<Rm1>(this->ops).visit(m, n, l, m_b, n_b, acc, frg_inputs...); }, cute::make_seq<Rm1>{} ); } }; /// General Graph visitor template <class Gemm, class EdgeTuple, class... Ops> struct HostTopoVisitor: public HostVisitorBase<Gemm, Ops...> { public: using Base = HostVisitorBase<Gemm, Ops...>; using ElementCompute = typename Base::ElementCompute; constexpr static int Rm1 = Base::Rm1; using Arguments = typename Base::Arguments; private: ElementCompute frg_outputs[Rm1]; public: HostTopoVisitor(){} template<typename ProblemShapeType, typename TestBedImpl> HostTopoVisitor(ProblemShapeType problem_size, TestBedImpl impl, bool check_relative_equality=false) :Base(problem_size, impl, check_relative_equality) { } template<class ElementAccumulator, int I> ElementCompute visit_( int64_t m, int64_t n, int64_t l, int m_b, int n_b, ElementAccumulator acc) { frg_outputs[I] = cute::transform_apply(cute::get<I>(EdgeTuple{}), [&] (auto&& _E) { constexpr int e = cute::remove_cvref_t<decltype(_E)>::value; return frg_outputs[e]; }, [&] (auto const&... frg_inputs) { ElementCompute res = std::get<I>(this->ops).visit(m, n, l, m_b, n_b, acc, frg_inputs...); return res; } ); if constexpr (I < Rm1 - 1) { return visit_<ElementAccumulator, I+1>(m, n, l, m_b, n_b, acc); } else { return frg_outputs[I]; } } template <class ElementAccumulator> ElementCompute visit( int64_t m, int64_t n, int64_t l, int m_b, int n_b, ElementAccumulator acc) { return visit_<ElementAccumulator, 0>(m, n, l, m_b, n_b, acc); } }; /// SplitTree visitor template <class Gemm, class InputTree, class OutputTree, class... AuxOutTrees> struct HostSplitTreeVisitor: public HostVisitorBase<Gemm, InputTree, AuxOutTrees..., OutputTree> { public: using Base = HostVisitorBase<Gemm, InputTree, AuxOutTrees..., OutputTree>; using ElementCompute = typename Base::ElementCompute; using Arguments = typename Base::Arguments; constexpr static int Rm2 = sizeof...(AuxOutTrees); private: ElementCompute frg_input; public: HostSplitTreeVisitor(){} template<typename ProblemShapeType, typename TestBedImpl> HostSplitTreeVisitor(ProblemShapeType problem_size, TestBedImpl impl, bool check_relative_equality=false) :Base(problem_size, impl, check_relative_equality) { } template<class ElementAccumulator, int I> void visitAux( int64_t m, int64_t n, int64_t l, int m_b, int n_b, ElementAccumulator frag) { std::get<I+1>(this->ops).visit(m, n, l, m_b, n_b, frag); if constexpr (I < Rm2 - 1) { return visitAux<ElementAccumulator, I+1>(m, n, l, m_b, n_b, frag); } else { return; } } template<class ElementAccumulator> ElementCompute visit( int64_t m, int64_t n, int64_t l, int m_b, int n_b, ElementAccumulator acc) { /// Compute the input tree frg_input = std::get<0>(this->ops).visit(m, n, l, m_b, n_b, acc); /// Compute the aux out tree visitAux<ElementAccumulator, 0>(m, n, l, m_b, n_b, frg_input); /// Visit the output tree return std::get<Rm2+1>(this->ops).visit(m, n, l, m_b, n_b, frg_input); } }; /// Universal testbed for EVT template <class Gemm, typename EVT> class Testbed3xEVT { public: // The EVT Module to test using EVTModule = typename EVT::EVTModule; using TestBedImpl = typename detail::TestbedImpl<Gemm, cutlass::epilogue::thread::Identity, true>; using Kernel = typename Gemm::GemmKernel; using Epilogue = typename Gemm::GemmKernel::CollectiveEpilogue; using ElementAccumulator = typename Kernel::ElementAccumulator; using ElementC = typename Kernel::ElementC; using ElementD = typename Kernel::ElementD; using ProblemShapeType = typename Kernel::ProblemShape; using LayoutTagA = typename TestBedImpl::LayoutTagA; using LayoutTagB = typename TestBedImpl::LayoutTagB; using LayoutTagC = typename TestBedImpl::LayoutTagC; using LayoutTagD = typename TestBedImpl::LayoutTagD; // // Methods // Testbed3xEVT( bool check_relative_equality_, cutlass::Distribution::Kind init_A_ = cutlass::Distribution::Uniform, cutlass::Distribution::Kind init_B_ = cutlass::Distribution::Uniform, cutlass::Distribution::Kind init_C_ = cutlass::Distribution::Uniform, uint64_t seed_ = TestBedImpl::kDefaultSeed ) : impl_((check_relative_equality_ ? CheckEquality::RELATIVE : CheckEquality::EXACT), ScalarLoc::ON_DEVICE, VectorBeta::ENABLED, init_A_, init_B_, init_C_, cutlass::Distribution::Uniform, cutlass::Distribution::Uniform, seed_), check_relative_equality(check_relative_equality_) { } Testbed3xEVT( cutlass::Distribution::Kind init_A_ = cutlass::Distribution::Uniform, cutlass::Distribution::Kind init_B_ = cutlass::Distribution::Uniform, cutlass::Distribution::Kind init_C_ = cutlass::Distribution::Uniform, uint64_t seed_ = TestBedImpl::kDefaultSeed ) : impl_(CheckEquality::EXACT, ScalarLoc::ON_DEVICE, VectorBeta::ENABLED, init_A_, init_B_, init_C_, cutlass::Distribution::Uniform, cutlass::Distribution::Uniform, seed_), check_relative_equality(false) { } Testbed3xEVT( typename LayoutTagA::Stride stride_factor_A_, typename LayoutTagB::Stride stride_factor_B_, typename LayoutTagC::Stride stride_factor_C_, typename LayoutTagD::Stride stride_factor_D_, cutlass::Distribution::Kind init_A_ = cutlass::Distribution::Uniform, cutlass::Distribution::Kind init_B_ = cutlass::Distribution::Uniform, cutlass::Distribution::Kind init_C_ = cutlass::Distribution::Uniform, uint64_t seed_ = TestBedImpl::kDefaultSeed ) : impl_(stride_factor_A_, stride_factor_B_, stride_factor_C_, stride_factor_D_, CheckEquality::EXACT, ScalarLoc::ON_DEVICE, VectorBeta::ENABLED, init_A_, init_B_, init_C_, cutlass::Distribution::Uniform, cutlass::Distribution::Uniform, seed_), check_relative_equality(false) { } /// Initializes data structures void initialize(ProblemShapeType problem_size) { // // Allocate the GEMM workspace for A/B tensor // impl_.initialize(problem_size); } // Detail Implementation TestBedImpl impl_; // Whether to use relative equality checks bool check_relative_equality; bool verify(ProblemShapeType problem_size, EVTModule& host_reference) { auto problem_shape_MNKL = cute::append<4>(problem_size, 1); auto M = cute::get<0>(problem_shape_MNKL); auto N = cute::get<1>(problem_shape_MNKL); auto K = cute::get<2>(problem_shape_MNKL); auto L = cute::get<3>(problem_shape_MNKL); auto A = cute::make_tensor(impl_.collective_mma_inputs.tensor_A.host_data(), cute::make_layout(cute::make_shape(M, K, L), impl_.collective_mma_inputs.stride_a)); auto B = cute::make_tensor(impl_.collective_mma_inputs.tensor_B.host_data(), cute::make_layout(cute::make_shape(N, K, L), impl_.collective_mma_inputs.stride_b)); auto LayoutD = cute::make_layout(cute::make_shape(M, N, L), impl_.collective_epilogue.stride_d); cutlass::reference::host::GettMainloopParams<ElementAccumulator, decltype(A), decltype(B)> mainloop_params{A, B}; /// Reference Kernel static int constexpr kBlockM = 64; static int constexpr kBlockN = 64; #if defined(_OPENMP) #pragma omp parallel for collapse(3) #endif for (int64_t l = 0; l < cute::size<2>(mainloop_params.A.layout()); ++l) { for (int64_t m = 0; m < cute::size<0>(mainloop_params.A.layout()); m += kBlockM) { for (int64_t n = 0; n < cute::size<0>(mainloop_params.B.layout()); n += kBlockN) { ElementAccumulator acc[kBlockM][kBlockN]; gett_mainloop(mainloop_params, m, n, l, acc); /// Epilogue EVT for (int n_b = 0; n_b < kBlockN; ++n_b) { for (int m_b = 0; m_b < kBlockM; ++m_b) { if (m + m_b < cute::size<0>(LayoutD) && n + n_b < cute::size<1>(LayoutD)) { host_reference.visit(m, n, l, m_b, n_b, acc[m_b][n_b]); } } } } } } std::stringstream error_ss; bool passed = host_reference.compare_reference(error_ss); if (!passed) { std::stringstream fname; fname << "error_Gemm_device_" << M << "x" << N << "x" << K << "x" << L << "_" << cute::get<0>(typename Gemm::GemmKernel::TileShape{}) << "_" << cute::get<1>(typename Gemm::GemmKernel::TileShape{}) << "_" << cute::get<2>(typename Gemm::GemmKernel::TileShape{}) << ".txt"; std::ofstream file(fname.str()); file << "problem: " << ' ' << M << "x" << N << "x" << K << ", Batch count = " << L << "\n\n"; file << "A =\n" << impl_.collective_mma_inputs.tensor_A.host_view() << "\nB =\n" << impl_.collective_mma_inputs.tensor_B.host_view() << "\nC =\n" << impl_.collective_epilogue.tensor_C.host_view() << "\n\n"; file << error_ss.str(); } return passed; } bool run( ProblemShapeType problem_size, bool profiling = false, int iterations = 20, int splits = 1) { // Fail test if insufficient CUDA device if (!impl_.sufficient()) { std::cout << "Test failed due to insufficient CUDA device." << std::endl; return false; } // // Initialize the Gemm operator // typename Gemm::Arguments arguments; cutlass::KernelHardwareInfo hw_info; hw_info.device_id = 0; if (not profiling) { impl_.sm_count = std::min(impl_.MaxSmCount, cutlass::KernelHardwareInfo::query_device_multiprocessor_count(hw_info.device_id)); hw_info.sm_count = impl_.sm_count; } else { impl_.sm_count = cutlass::KernelHardwareInfo::query_device_multiprocessor_count(hw_info.device_id); hw_info.sm_count = impl_.sm_count; } typename Gemm::GemmKernel::TileScheduler::Arguments scheduler_args; if constexpr (cute::is_same_v<typename Gemm::GemmKernel::TileSchedulerTag, cutlass::gemm::StreamKScheduler>) { scheduler_args = { splits }; } /// Initializes data structures /// A/B/C/D Tensor initialize(problem_size); /// Initialize the epilogue arguments EVTModule host_reference(problem_size, impl_, check_relative_equality); arguments = typename Gemm::Arguments{ cutlass::gemm::GemmUniversalMode::kGemm, problem_size, { impl_.collective_mma_inputs.tensor_A.device_data(), impl_.collective_mma_inputs.stride_a, impl_.collective_mma_inputs.tensor_B.device_data(), impl_.collective_mma_inputs.stride_b }, { // Epilogue arguments {}, // thread static_cast<ElementC*>(host_reference.get_tensor_C_ptr()), impl_.collective_epilogue.stride_c, static_cast<ElementD*>(host_reference.get_tensor_D_ptr()), impl_.collective_epilogue.stride_d }, // Epilogue arguments end hw_info, scheduler_args }; // Filling in the thread arguments typename EVTModule::Arguments epilogue_args = host_reference.get_arguments(); std::memcpy(&arguments.epilogue.thread, &epilogue_args.arg, sizeof(epilogue_args.arg)); Gemm gemm_op; size_t workspace_size = Gemm::get_workspace_size(arguments); cutlass::device_memory::allocation<uint8_t> workspace(workspace_size); cutlass::Status status = gemm_op.can_implement(arguments); if (status != cutlass::Status::kSuccess) { cudaError_t error = cudaGetLastError(); std::cerr << "This test is not supported: " << cudaGetErrorString(error) << "\n"; return true; } // // Run the GEMM // if (profiling) { return impl_.profile(problem_size, iterations, gemm_op, arguments, workspace); } else { cudaError_t result; status = gemm_op.initialize(arguments, workspace.get()); status = gemm_op.run(); result = cudaDeviceSynchronize(); if (result != cudaSuccess) { EXPECT_EQ(result, cudaSuccess) << "Error at Kernel Sync."; return false; } } EXPECT_TRUE(status == cutlass::Status::kSuccess) << to_string(status); // // Verify // bool passed = this->verify(problem_size, host_reference); if (!passed) { std::cout << "Error : Failed \n"; } return passed; } }; template <typename Gemm, typename EVT> bool TestAllEVT(bool check_relative_equality=false) { using ProblemShapeType = typename Gemm::GemmKernel::ProblemShape; int max_alignment = std::max(Gemm::kAlignmentA, Gemm::kAlignmentB); std::vector<int> problem_size_m = {max_alignment, 512 - 3 * max_alignment}; std::vector<int> problem_size_n = {max_alignment, 512 - 2 * max_alignment}; if constexpr (cute::is_same_v<typename Gemm::GemmKernel::DispatchPolicy::Schedule, cutlass::gemm::KernelTmaWarpSpecializedPingpong>) { problem_size_m.push_back(768); problem_size_n.push_back(768); } constexpr int Stages = Gemm::GemmKernel::DispatchPolicy::Stages; constexpr int TileShapeK = cute::size<2>(typename Gemm::GemmKernel::TileShape{}); std::vector<int> problem_size_k = {max_alignment, TileShapeK * (Stages + 1) - max_alignment}; Testbed3xEVT<Gemm, EVT> testbed(check_relative_equality); bool passed = true; for (int m : problem_size_m) { for (int n : problem_size_n) { for (int k : problem_size_k) { ProblemShapeType problem_size; if constexpr (cute::rank(ProblemShapeType{}) == 4) { problem_size = ProblemShapeType{m, n, k, /* l */ 1}; } else { problem_size = ProblemShapeType{m, n, k}; } passed = testbed.run(problem_size); if (!passed) { return false; } } } } // if we do support batched GEMM, just run one test on it to save on test time if constexpr (cute::rank(ProblemShapeType{}) == 4) { auto problem_size = ProblemShapeType{256 + max_alignment, 256 + max_alignment, 160 + max_alignment, /* l */ 3}; passed = testbed.run( problem_size ); if (!passed) { return false; } } return passed; } } // namespace device } // namespace gemm } // namespace test /////////////////////////////////////////////////////////////////////////////////////////////////
test/unit/gemm/device/gemm_testbed_3x_evt.hpp/0
{ "file_path": "test/unit/gemm/device/gemm_testbed_3x_evt.hpp", "repo_id": "test", "token_count": 18157 }
63
/*************************************************************************************************** * Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. * SPDX-License-Identifier: BSD-3-Clause * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * **************************************************************************************************/ /*! \file \brief Tests for device-wide GEMM interface */ #include <iostream> #include "cutlass/cutlass.h" #include "cute/tensor.hpp" #include "cute/atom/mma_atom.hpp" #include "cutlass/numeric_types.h" #include "cutlass/gemm/device/gemm_universal_adapter.h" #include "cutlass/gemm/kernel/gemm_universal.hpp" #include "cutlass/gemm/collective/collective_builder.hpp" #include "cutlass/epilogue/collective/collective_builder.hpp" #include "../../common/cutlass_unit_test.h" #include "gemm_testbed_3x.hpp" #if defined(CUTLASS_ARCH_MMA_SM90_SUPPORTED) using namespace cute; /////////////////////////////////////////////////////////////////////////////// //////////////////////////////// output: E4M3 ///////////////////////////////// /////////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////// ///////////////////////////// e4m3 = e4m3 * e4m3 (TN) ///////////////////////// /////////////////////////////////////////////////////////////////////////////// TEST(SM90_Device_Gemm_e4m3t_e4m3n_e4m3n_tensor_op_gmma_f32, 64x128x128) { using LayoutA = cutlass::layout::RowMajor; using LayoutB = cutlass::layout::ColumnMajor; using LayoutC = cutlass::layout::ColumnMajor; using EpilogueSchedule = cutlass::epilogue::TmaWarpSpecialized; using FusionOperation = cutlass::epilogue::fusion::ScaledLinCombPerRowBiasEltAct< cutlass::epilogue::thread::Identity, cutlass::float_e4m3_t, float, float>; using EpilogueOp = typename cutlass::epilogue::collective::CollectiveBuilder< cutlass::arch::Sm90, cutlass::arch::OpClassTensorOp, Shape<_64,_128,_128>, Shape<_1,_1,_1>, cutlass::epilogue::collective::EpilogueTileAuto, float, float, cutlass::float_e4m3_t, LayoutC, 16 / sizeof(cutlass::float_e4m3_t), cutlass::float_e4m3_t, LayoutC, 16 / sizeof(cutlass::float_e4m3_t), EpilogueSchedule, FusionOperation >::CollectiveOp; using CollectiveOp = typename cutlass::gemm::collective::CollectiveBuilder< cutlass::arch::Sm90, cutlass::arch::OpClassTensorOp, cutlass::float_e4m3_t, LayoutA, 16, cutlass::float_e4m3_t, LayoutB, 16, float, Shape<_64,_128,_128>, Shape<_1,_1,_1>, cutlass::gemm::collective::StageCountAutoCarveout<sizeof(typename EpilogueOp::SharedStorage)>, cutlass::gemm::collective::KernelScheduleAuto >::CollectiveOp; using GemmKernel = cutlass::gemm::kernel::GemmUniversal< Shape<int,int,int,int>, CollectiveOp, EpilogueOp >; using Gemm = cutlass::gemm::device::GemmUniversalAdapter<GemmKernel>; EXPECT_TRUE(test::gemm::device::TestAllBiasElementwise<Gemm>()); } /////////////////////////////////////////////////////////////////////////////// ///////////////////////////// e4m3 = e5m2 * e4m3 (TN) ///////////////////////// /////////////////////////////////////////////////////////////////////////////// TEST(SM90_Device_Gemm_e5m2t_e4m3n_e4m3n_tensor_op_gmma_f32, 64x128x128) { using LayoutA = cutlass::layout::RowMajor; using LayoutB = cutlass::layout::ColumnMajor; using LayoutC = cutlass::layout::ColumnMajor; using EpilogueSchedule = cutlass::epilogue::TmaWarpSpecialized; using FusionOperation = cutlass::epilogue::fusion::ScaledLinCombPerRowBiasEltAct< cutlass::epilogue::thread::Identity, cutlass::float_e4m3_t, float, float>; using EpilogueOp = typename cutlass::epilogue::collective::CollectiveBuilder< cutlass::arch::Sm90, cutlass::arch::OpClassTensorOp, Shape<_64,_128,_128>, Shape<_1,_1,_1>, cutlass::epilogue::collective::EpilogueTileAuto, float, float, cutlass::float_e4m3_t, LayoutC, 16 / sizeof(cutlass::float_e4m3_t), cutlass::float_e4m3_t, LayoutC, 16 / sizeof(cutlass::float_e4m3_t), EpilogueSchedule, FusionOperation >::CollectiveOp; using CollectiveOp = typename cutlass::gemm::collective::CollectiveBuilder< cutlass::arch::Sm90, cutlass::arch::OpClassTensorOp, cutlass::float_e5m2_t, LayoutA, 16, cutlass::float_e4m3_t, LayoutB, 16, float, Shape<_64,_128,_128>, Shape<_1,_1,_1>, cutlass::gemm::collective::StageCountAutoCarveout<sizeof(typename EpilogueOp::SharedStorage)>, cutlass::gemm::collective::KernelScheduleAuto >::CollectiveOp; using GemmKernel = cutlass::gemm::kernel::GemmUniversal< Shape<int,int,int,int>, CollectiveOp, EpilogueOp >; using Gemm = cutlass::gemm::device::GemmUniversalAdapter<GemmKernel>; EXPECT_TRUE(test::gemm::device::TestAllBiasElementwise<Gemm>()); } /////////////////////////////////////////////////////////////////////////////// ///////////////////////////// e4m3 = e4m3 * e5m2 (TN) ///////////////////////// /////////////////////////////////////////////////////////////////////////////// TEST(SM90_Device_Gemm_e4m3t_e5m2n_e4m3n_tensor_op_gmma_f32, 64x128x128) { using LayoutA = cutlass::layout::RowMajor; using LayoutB = cutlass::layout::ColumnMajor; using LayoutC = cutlass::layout::ColumnMajor; using EpilogueSchedule = cutlass::epilogue::TmaWarpSpecialized; using FusionOperation = cutlass::epilogue::fusion::ScaledLinCombPerRowBiasEltAct< cutlass::epilogue::thread::Identity, cutlass::float_e4m3_t, float, float>; using EpilogueOp = typename cutlass::epilogue::collective::CollectiveBuilder< cutlass::arch::Sm90, cutlass::arch::OpClassTensorOp, Shape<_64,_128,_128>, Shape<_1,_1,_1>, cutlass::epilogue::collective::EpilogueTileAuto, float, float, cutlass::float_e4m3_t, LayoutC, 16 / sizeof(cutlass::float_e4m3_t), cutlass::float_e4m3_t, LayoutC, 16 / sizeof(cutlass::float_e4m3_t), EpilogueSchedule, FusionOperation >::CollectiveOp; using CollectiveOp = typename cutlass::gemm::collective::CollectiveBuilder< cutlass::arch::Sm90, cutlass::arch::OpClassTensorOp, cutlass::float_e4m3_t, LayoutA, 16, cutlass::float_e5m2_t, LayoutB, 16, float, Shape<_64,_128,_128>, Shape<_1,_1,_1>, cutlass::gemm::collective::StageCountAutoCarveout<sizeof(typename EpilogueOp::SharedStorage)>, cutlass::gemm::collective::KernelScheduleAuto >::CollectiveOp; using GemmKernel = cutlass::gemm::kernel::GemmUniversal< Shape<int,int,int,int>, CollectiveOp, EpilogueOp >; using Gemm = cutlass::gemm::device::GemmUniversalAdapter<GemmKernel>; EXPECT_TRUE(test::gemm::device::TestAllBiasElementwise<Gemm>()); } /////////////////////////////////////////////////////////////////////////////// ///////////////////////////////// Cluster 2x2x1 ////////////////////////////// ///////////////////////////// e4m3 = e4m3 * e4m3 (TN) ///////////////////////// /////////////////////////////////////////////////////////////////////////////// TEST(SM90_Device_Gemm_e4m3t_e4m3n_e4m3n_tensor_op_gmma_f32, 64x128x128_2x2x1) { using LayoutA = cutlass::layout::RowMajor; using LayoutB = cutlass::layout::ColumnMajor; using LayoutC = cutlass::layout::ColumnMajor; using EpilogueSchedule = cutlass::epilogue::TmaWarpSpecialized; using FusionOperation = cutlass::epilogue::fusion::ScaledLinCombPerRowBiasEltAct< cutlass::epilogue::thread::Identity, cutlass::float_e4m3_t, float, float>; using EpilogueOp = typename cutlass::epilogue::collective::CollectiveBuilder< cutlass::arch::Sm90, cutlass::arch::OpClassTensorOp, Shape<_64,_128,_128>, Shape<_2,_2,_1>, cutlass::epilogue::collective::EpilogueTileAuto, float, float, cutlass::float_e4m3_t, LayoutC, 16 / sizeof(cutlass::float_e4m3_t), cutlass::float_e4m3_t, LayoutC, 16 / sizeof(cutlass::float_e4m3_t), EpilogueSchedule, FusionOperation >::CollectiveOp; using CollectiveOp = typename cutlass::gemm::collective::CollectiveBuilder< cutlass::arch::Sm90, cutlass::arch::OpClassTensorOp, cutlass::float_e4m3_t, LayoutA, 16, cutlass::float_e4m3_t, LayoutB, 16, float, Shape<_64,_128,_128>, Shape<_2,_2,_1>, cutlass::gemm::collective::StageCountAutoCarveout<sizeof(typename EpilogueOp::SharedStorage)>, cutlass::gemm::collective::KernelScheduleAuto >::CollectiveOp; using GemmKernel = cutlass::gemm::kernel::GemmUniversal< Shape<int,int,int,int>, CollectiveOp, EpilogueOp >; using Gemm = cutlass::gemm::device::GemmUniversalAdapter<GemmKernel>; EXPECT_TRUE(test::gemm::device::TestAllBiasElementwise<Gemm>()); } /////////////////////////////////////////////////////////////////////////////// ///////////////////////////////// Cluster 1x4x1 ////////////////////////////// ///////////////////////////// e4m3 = e4m3 * e4m3 (TN) ///////////////////////// /////////////////////////////////////////////////////////////////////////////// TEST(SM90_Device_Gemm_e4m3t_e4m3n_e4m3n_tensor_op_gmma_f32, 64x128x128_1x4x1) { using LayoutA = cutlass::layout::RowMajor; using LayoutB = cutlass::layout::ColumnMajor; using LayoutC = cutlass::layout::ColumnMajor; using EpilogueSchedule = cutlass::epilogue::TmaWarpSpecialized; using FusionOperation = cutlass::epilogue::fusion::ScaledLinCombPerRowBiasEltAct< cutlass::epilogue::thread::Identity, cutlass::float_e4m3_t, float, float>; using EpilogueOp = typename cutlass::epilogue::collective::CollectiveBuilder< cutlass::arch::Sm90, cutlass::arch::OpClassTensorOp, Shape<_64,_128,_128>, Shape<_1,_4,_1>, cutlass::epilogue::collective::EpilogueTileAuto, float, float, cutlass::float_e4m3_t, LayoutC, 16 / sizeof(cutlass::float_e4m3_t), cutlass::float_e4m3_t, LayoutC, 16 / sizeof(cutlass::float_e4m3_t), EpilogueSchedule, FusionOperation >::CollectiveOp; using CollectiveOp = typename cutlass::gemm::collective::CollectiveBuilder< cutlass::arch::Sm90, cutlass::arch::OpClassTensorOp, cutlass::float_e4m3_t, LayoutA, 16, cutlass::float_e4m3_t, LayoutB, 16, float, Shape<_64,_128,_128>, Shape<_1,_4,_1>, cutlass::gemm::collective::StageCountAutoCarveout<sizeof(typename EpilogueOp::SharedStorage)>, cutlass::gemm::collective::KernelScheduleAuto >::CollectiveOp; using GemmKernel = cutlass::gemm::kernel::GemmUniversal< Shape<int,int,int,int>, CollectiveOp, EpilogueOp >; using Gemm = cutlass::gemm::device::GemmUniversalAdapter<GemmKernel>; EXPECT_TRUE(test::gemm::device::TestAllBiasElementwise<Gemm>()); } /////////////////////////////////////////////////////////////////////////////// ///////////////////////////////// Cluster 4x1x1 ////////////////////////////// ///////////////////////////// e4m3 = e4m3 * e4m3 (TN) ///////////////////////// /////////////////////////////////////////////////////////////////////////////// TEST(SM90_Device_Gemm_e4m3t_e4m3n_e4m3n_tensor_op_gmma_f32, 64x128x128_4x1x1) { using LayoutA = cutlass::layout::RowMajor; using LayoutB = cutlass::layout::ColumnMajor; using LayoutC = cutlass::layout::ColumnMajor; using EpilogueSchedule = cutlass::epilogue::TmaWarpSpecialized; using FusionOperation = cutlass::epilogue::fusion::ScaledLinCombPerRowBiasEltAct< cutlass::epilogue::thread::Identity, cutlass::float_e4m3_t, float, float>; using EpilogueOp = typename cutlass::epilogue::collective::CollectiveBuilder< cutlass::arch::Sm90, cutlass::arch::OpClassTensorOp, Shape<_64,_128,_128>, Shape<_4,_1,_1>, cutlass::epilogue::collective::EpilogueTileAuto, float, float, cutlass::float_e4m3_t, LayoutC, 16 / sizeof(cutlass::float_e4m3_t), cutlass::float_e4m3_t, LayoutC, 16 / sizeof(cutlass::float_e4m3_t), EpilogueSchedule, FusionOperation >::CollectiveOp; using CollectiveOp = typename cutlass::gemm::collective::CollectiveBuilder< cutlass::arch::Sm90, cutlass::arch::OpClassTensorOp, cutlass::float_e4m3_t, LayoutA, 16, cutlass::float_e4m3_t, LayoutB, 16, float, Shape<_64,_128,_128>, Shape<_4,_1,_1>, cutlass::gemm::collective::StageCountAutoCarveout<sizeof(typename EpilogueOp::SharedStorage)>, cutlass::gemm::collective::KernelScheduleAuto >::CollectiveOp; using GemmKernel = cutlass::gemm::kernel::GemmUniversal< Shape<int,int,int,int>, CollectiveOp, EpilogueOp >; using Gemm = cutlass::gemm::device::GemmUniversalAdapter<GemmKernel>; EXPECT_TRUE(test::gemm::device::TestAllBiasElementwise<Gemm>()); } /////////////////////////////////////////////////////////////////////////////// ///////////////////////////////// Cluster 2x4x1 ////////////////////////////// ///////////////////////////// e4m3 = e4m3 * e4m3 (TN) ///////////////////////// /////////////////////////////////////////////////////////////////////////////// TEST(SM90_Device_Gemm_e4m3t_e4m3n_e4m3n_tensor_op_gmma_f32, 64x128x128_2x4x1) { using LayoutA = cutlass::layout::RowMajor; using LayoutB = cutlass::layout::ColumnMajor; using LayoutC = cutlass::layout::ColumnMajor; using EpilogueSchedule = cutlass::epilogue::TmaWarpSpecialized; using FusionOperation = cutlass::epilogue::fusion::ScaledLinCombPerRowBiasEltAct< cutlass::epilogue::thread::Identity, cutlass::float_e4m3_t, float, float>; using EpilogueOp = typename cutlass::epilogue::collective::CollectiveBuilder< cutlass::arch::Sm90, cutlass::arch::OpClassTensorOp, Shape<_64,_128,_128>, Shape<_2,_4,_1>, cutlass::epilogue::collective::EpilogueTileAuto, float, float, cutlass::float_e4m3_t, LayoutC, 16 / sizeof(cutlass::float_e4m3_t), cutlass::float_e4m3_t, LayoutC, 16 / sizeof(cutlass::float_e4m3_t), EpilogueSchedule, FusionOperation >::CollectiveOp; using CollectiveOp = typename cutlass::gemm::collective::CollectiveBuilder< cutlass::arch::Sm90, cutlass::arch::OpClassTensorOp, cutlass::float_e4m3_t, LayoutA, 16, cutlass::float_e4m3_t, LayoutB, 16, float, Shape<_64,_128,_128>, Shape<_2,_4,_1>, cutlass::gemm::collective::StageCountAutoCarveout<sizeof(typename EpilogueOp::SharedStorage)>, cutlass::gemm::collective::KernelScheduleAuto >::CollectiveOp; using GemmKernel = cutlass::gemm::kernel::GemmUniversal< Shape<int,int,int,int>, CollectiveOp, EpilogueOp >; using Gemm = cutlass::gemm::device::GemmUniversalAdapter<GemmKernel>; EXPECT_TRUE(test::gemm::device::TestAllBiasElementwise<Gemm>()); } /////////////////////////////////////////////////////////////////////////////// //////////////////////////////// output: E5M2 ///////////////////////////////// /////////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////// ///////////////////////////// e5m2 = e4m3 * e4m3 (TN) ///////////////////////// /////////////////////////////////////////////////////////////////////////////// TEST(SM90_Device_Gemm_e4m3t_e4m3n_e5m2n_tensor_op_gmma_f32, 64x128x128) { using LayoutA = cutlass::layout::RowMajor; using LayoutB = cutlass::layout::ColumnMajor; using LayoutC = cutlass::layout::ColumnMajor; using EpilogueSchedule = cutlass::epilogue::TmaWarpSpecialized; using FusionOperation = cutlass::epilogue::fusion::ScaledLinCombPerRowBiasEltAct< cutlass::epilogue::thread::Identity, cutlass::float_e5m2_t, float, float>; using EpilogueOp = typename cutlass::epilogue::collective::CollectiveBuilder< cutlass::arch::Sm90, cutlass::arch::OpClassTensorOp, Shape<_64,_128,_128>, Shape<_1,_1,_1>, cutlass::epilogue::collective::EpilogueTileAuto, float, float, cutlass::float_e5m2_t, LayoutC, 16 / sizeof(cutlass::float_e5m2_t), cutlass::float_e5m2_t, LayoutC, 16 / sizeof(cutlass::float_e5m2_t), EpilogueSchedule, FusionOperation >::CollectiveOp; using CollectiveOp = typename cutlass::gemm::collective::CollectiveBuilder< cutlass::arch::Sm90, cutlass::arch::OpClassTensorOp, cutlass::float_e4m3_t, LayoutA, 16, cutlass::float_e4m3_t, LayoutB, 16, float, Shape<_64,_128,_128>, Shape<_1,_1,_1>, cutlass::gemm::collective::StageCountAutoCarveout<sizeof(typename EpilogueOp::SharedStorage)>, cutlass::gemm::collective::KernelScheduleAuto >::CollectiveOp; using GemmKernel = cutlass::gemm::kernel::GemmUniversal< Shape<int,int,int,int>, CollectiveOp, EpilogueOp >; using Gemm = cutlass::gemm::device::GemmUniversalAdapter<GemmKernel>; EXPECT_TRUE(test::gemm::device::TestAllBiasElementwise<Gemm>()); } /////////////////////////////////////////////////////////////////////////////// ///////////////////////////// e5m2 = e5m2 * e4m3 (TN) ///////////////////////// /////////////////////////////////////////////////////////////////////////////// TEST(SM90_Device_Gemm_e5m2t_e4m3n_e5m2n_tensor_op_gmma_f32, 64x128x128) { using LayoutA = cutlass::layout::RowMajor; using LayoutB = cutlass::layout::ColumnMajor; using LayoutC = cutlass::layout::ColumnMajor; using EpilogueSchedule = cutlass::epilogue::TmaWarpSpecialized; using FusionOperation = cutlass::epilogue::fusion::ScaledLinCombPerRowBiasEltAct< cutlass::epilogue::thread::Identity, cutlass::float_e5m2_t, float, float>; using EpilogueOp = typename cutlass::epilogue::collective::CollectiveBuilder< cutlass::arch::Sm90, cutlass::arch::OpClassTensorOp, Shape<_64,_128,_128>, Shape<_1,_1,_1>, cutlass::epilogue::collective::EpilogueTileAuto, float, float, cutlass::float_e5m2_t, LayoutC, 16 / sizeof(cutlass::float_e5m2_t), cutlass::float_e5m2_t, LayoutC, 16 / sizeof(cutlass::float_e5m2_t), EpilogueSchedule, FusionOperation >::CollectiveOp; using CollectiveOp = typename cutlass::gemm::collective::CollectiveBuilder< cutlass::arch::Sm90, cutlass::arch::OpClassTensorOp, cutlass::float_e5m2_t, LayoutA, 16, cutlass::float_e4m3_t, LayoutB, 16, float, Shape<_64,_128,_128>, Shape<_1,_1,_1>, cutlass::gemm::collective::StageCountAutoCarveout<sizeof(typename EpilogueOp::SharedStorage)>, cutlass::gemm::collective::KernelScheduleAuto >::CollectiveOp; using GemmKernel = cutlass::gemm::kernel::GemmUniversal< Shape<int,int,int,int>, CollectiveOp, EpilogueOp >; using Gemm = cutlass::gemm::device::GemmUniversalAdapter<GemmKernel>; EXPECT_TRUE(test::gemm::device::TestAllBiasElementwise<Gemm>()); } /////////////////////////////////////////////////////////////////////////////// ///////////////////////////// e5m2 = e4m3 * e5m2 (TN) ///////////////////////// /////////////////////////////////////////////////////////////////////////////// TEST(SM90_Device_Gemm_e4m3t_e5m2n_e5m2n_tensor_op_gmma_f32, 64x128x128) { using LayoutA = cutlass::layout::RowMajor; using LayoutB = cutlass::layout::ColumnMajor; using LayoutC = cutlass::layout::ColumnMajor; using EpilogueSchedule = cutlass::epilogue::TmaWarpSpecialized; using FusionOperation = cutlass::epilogue::fusion::ScaledLinCombPerRowBiasEltAct< cutlass::epilogue::thread::Identity, cutlass::float_e5m2_t, float, float>; using EpilogueOp = typename cutlass::epilogue::collective::CollectiveBuilder< cutlass::arch::Sm90, cutlass::arch::OpClassTensorOp, Shape<_64,_128,_128>, Shape<_1,_1,_1>, cutlass::epilogue::collective::EpilogueTileAuto, float, float, cutlass::float_e5m2_t, LayoutC, 16 / sizeof(cutlass::float_e5m2_t), cutlass::float_e5m2_t, LayoutC, 16 / sizeof(cutlass::float_e5m2_t), EpilogueSchedule, FusionOperation >::CollectiveOp; using CollectiveOp = typename cutlass::gemm::collective::CollectiveBuilder< cutlass::arch::Sm90, cutlass::arch::OpClassTensorOp, cutlass::float_e4m3_t, LayoutA, 16, cutlass::float_e5m2_t, LayoutB, 16, float, Shape<_64,_128,_128>, Shape<_1,_1,_1>, cutlass::gemm::collective::StageCountAutoCarveout<sizeof(typename EpilogueOp::SharedStorage)>, cutlass::gemm::collective::KernelScheduleAuto >::CollectiveOp; using GemmKernel = cutlass::gemm::kernel::GemmUniversal< Shape<int,int,int,int>, CollectiveOp, EpilogueOp >; using Gemm = cutlass::gemm::device::GemmUniversalAdapter<GemmKernel>; EXPECT_TRUE(test::gemm::device::TestAllBiasElementwise<Gemm>()); } /////////////////////////////////////////////////////////////////////////////// ///////////////////////////////// Cluster 2x2x1 ////////////////////////////// ///////////////////////////// e5m2 = e4m3 * e4m3 (TN) ///////////////////////// /////////////////////////////////////////////////////////////////////////////// TEST(SM90_Device_Gemm_e4m3t_e4m3n_e5m2n_tensor_op_gmma_f32, 64x128x128_2x2x1) { using LayoutA = cutlass::layout::RowMajor; using LayoutB = cutlass::layout::ColumnMajor; using LayoutC = cutlass::layout::ColumnMajor; using EpilogueSchedule = cutlass::epilogue::TmaWarpSpecialized; using FusionOperation = cutlass::epilogue::fusion::ScaledLinCombPerRowBiasEltAct< cutlass::epilogue::thread::Identity, cutlass::float_e5m2_t, float, float>; using EpilogueOp = typename cutlass::epilogue::collective::CollectiveBuilder< cutlass::arch::Sm90, cutlass::arch::OpClassTensorOp, Shape<_64,_128,_128>, Shape<_2,_2,_1>, cutlass::epilogue::collective::EpilogueTileAuto, float, float, cutlass::float_e5m2_t, LayoutC, 16 / sizeof(cutlass::float_e5m2_t), cutlass::float_e5m2_t, LayoutC, 16 / sizeof(cutlass::float_e5m2_t), EpilogueSchedule, FusionOperation >::CollectiveOp; using CollectiveOp = typename cutlass::gemm::collective::CollectiveBuilder< cutlass::arch::Sm90, cutlass::arch::OpClassTensorOp, cutlass::float_e4m3_t, LayoutA, 16, cutlass::float_e4m3_t, LayoutB, 16, float, Shape<_64,_128,_128>, Shape<_2,_2,_1>, cutlass::gemm::collective::StageCountAutoCarveout<sizeof(typename EpilogueOp::SharedStorage)>, cutlass::gemm::collective::KernelScheduleAuto >::CollectiveOp; using GemmKernel = cutlass::gemm::kernel::GemmUniversal< Shape<int,int,int,int>, CollectiveOp, EpilogueOp >; using Gemm = cutlass::gemm::device::GemmUniversalAdapter<GemmKernel>; EXPECT_TRUE(test::gemm::device::TestAllBiasElementwise<Gemm>()); } /////////////////////////////////////////////////////////////////////////////// ///////////////////////////////// Cluster 1x4x1 ////////////////////////////// ///////////////////////////// e5m2 = e4m3 * e4m3 (TN) ///////////////////////// /////////////////////////////////////////////////////////////////////////////// TEST(SM90_Device_Gemm_e4m3t_e4m3n_e5m2n_tensor_op_gmma_f32, 64x128x128_1x4x1) { using LayoutA = cutlass::layout::RowMajor; using LayoutB = cutlass::layout::ColumnMajor; using LayoutC = cutlass::layout::ColumnMajor; using EpilogueSchedule = cutlass::epilogue::TmaWarpSpecialized; using FusionOperation = cutlass::epilogue::fusion::ScaledLinCombPerRowBiasEltAct< cutlass::epilogue::thread::Identity, cutlass::float_e5m2_t, float, float>; using EpilogueOp = typename cutlass::epilogue::collective::CollectiveBuilder< cutlass::arch::Sm90, cutlass::arch::OpClassTensorOp, Shape<_64,_128,_128>, Shape<_1,_4,_1>, cutlass::epilogue::collective::EpilogueTileAuto, float, float, cutlass::float_e5m2_t, LayoutC, 16 / sizeof(cutlass::float_e5m2_t), cutlass::float_e5m2_t, LayoutC, 16 / sizeof(cutlass::float_e5m2_t), EpilogueSchedule, FusionOperation >::CollectiveOp; using CollectiveOp = typename cutlass::gemm::collective::CollectiveBuilder< cutlass::arch::Sm90, cutlass::arch::OpClassTensorOp, cutlass::float_e4m3_t, LayoutA, 16, cutlass::float_e4m3_t, LayoutB, 16, float, Shape<_64,_128,_128>, Shape<_1,_4,_1>, cutlass::gemm::collective::StageCountAutoCarveout<sizeof(typename EpilogueOp::SharedStorage)>, cutlass::gemm::collective::KernelScheduleAuto >::CollectiveOp; using GemmKernel = cutlass::gemm::kernel::GemmUniversal< Shape<int,int,int,int>, CollectiveOp, EpilogueOp >; using Gemm = cutlass::gemm::device::GemmUniversalAdapter<GemmKernel>; EXPECT_TRUE(test::gemm::device::TestAllBiasElementwise<Gemm>()); } /////////////////////////////////////////////////////////////////////////////// ///////////////////////////////// Cluster 4x1x1 ////////////////////////////// ///////////////////////////// e5m2 = e4m3 * e4m3 (TN) ///////////////////////// /////////////////////////////////////////////////////////////////////////////// TEST(SM90_Device_Gemm_e4m3t_e4m3n_e5m2n_tensor_op_gmma_f32, 64x128x128_4x1x1) { using LayoutA = cutlass::layout::RowMajor; using LayoutB = cutlass::layout::ColumnMajor; using LayoutC = cutlass::layout::ColumnMajor; using EpilogueSchedule = cutlass::epilogue::TmaWarpSpecialized; using FusionOperation = cutlass::epilogue::fusion::ScaledLinCombPerRowBiasEltAct< cutlass::epilogue::thread::Identity, cutlass::float_e5m2_t, float, float>; using EpilogueOp = typename cutlass::epilogue::collective::CollectiveBuilder< cutlass::arch::Sm90, cutlass::arch::OpClassTensorOp, Shape<_64,_128,_128>, Shape<_4,_1,_1>, cutlass::epilogue::collective::EpilogueTileAuto, float, float, cutlass::float_e5m2_t, LayoutC, 16 / sizeof(cutlass::float_e5m2_t), cutlass::float_e5m2_t, LayoutC, 16 / sizeof(cutlass::float_e5m2_t), EpilogueSchedule, FusionOperation >::CollectiveOp; using CollectiveOp = typename cutlass::gemm::collective::CollectiveBuilder< cutlass::arch::Sm90, cutlass::arch::OpClassTensorOp, cutlass::float_e4m3_t, LayoutA, 16, cutlass::float_e4m3_t, LayoutB, 16, float, Shape<_64,_128,_128>, Shape<_4,_1,_1>, cutlass::gemm::collective::StageCountAutoCarveout<sizeof(typename EpilogueOp::SharedStorage)>, cutlass::gemm::collective::KernelScheduleAuto >::CollectiveOp; using GemmKernel = cutlass::gemm::kernel::GemmUniversal< Shape<int,int,int,int>, CollectiveOp, EpilogueOp >; using Gemm = cutlass::gemm::device::GemmUniversalAdapter<GemmKernel>; EXPECT_TRUE(test::gemm::device::TestAllBiasElementwise<Gemm>()); } /////////////////////////////////////////////////////////////////////////////// ///////////////////////////////// Cluster 2x4x1 ////////////////////////////// ///////////////////////////// e5m2 = e4m3 * e4m3 (TN) ///////////////////////// /////////////////////////////////////////////////////////////////////////////// TEST(SM90_Device_Gemm_e4m3t_e4m3n_e5m2n_tensor_op_gmma_f32, 64x128x128_2x4x1) { using LayoutA = cutlass::layout::RowMajor; using LayoutB = cutlass::layout::ColumnMajor; using LayoutC = cutlass::layout::ColumnMajor; using EpilogueSchedule = cutlass::epilogue::TmaWarpSpecialized; using FusionOperation = cutlass::epilogue::fusion::ScaledLinCombPerRowBiasEltAct< cutlass::epilogue::thread::Identity, cutlass::float_e5m2_t, float, float>; using EpilogueOp = typename cutlass::epilogue::collective::CollectiveBuilder< cutlass::arch::Sm90, cutlass::arch::OpClassTensorOp, Shape<_64,_128,_128>, Shape<_2,_4,_1>, cutlass::epilogue::collective::EpilogueTileAuto, float, float, cutlass::float_e5m2_t, LayoutC, 16 / sizeof(cutlass::float_e5m2_t), cutlass::float_e5m2_t, LayoutC, 16 / sizeof(cutlass::float_e5m2_t), EpilogueSchedule, FusionOperation >::CollectiveOp; using CollectiveOp = typename cutlass::gemm::collective::CollectiveBuilder< cutlass::arch::Sm90, cutlass::arch::OpClassTensorOp, cutlass::float_e4m3_t, LayoutA, 16, cutlass::float_e4m3_t, LayoutB, 16, float, Shape<_64,_128,_128>, Shape<_2,_4,_1>, cutlass::gemm::collective::StageCountAutoCarveout<sizeof(typename EpilogueOp::SharedStorage)>, cutlass::gemm::collective::KernelScheduleAuto >::CollectiveOp; using GemmKernel = cutlass::gemm::kernel::GemmUniversal< Shape<int,int,int,int>, CollectiveOp, EpilogueOp >; using Gemm = cutlass::gemm::device::GemmUniversalAdapter<GemmKernel>; EXPECT_TRUE(test::gemm::device::TestAllBiasElementwise<Gemm>()); } /////////////////////////////////////////////////////////////////////////////// ///////////////////////////////// Cluster 2x4x1 ////////////////////////////// ///////////////////////////// e5m2 = e4m3 * e4m3 (TN) ///////////////////////// /////////////////////////////////////////////////////////////////////////////// TEST(SM90_Device_Gemm_e4m3t_e4m3n_e5m2n_tensor_op_gmma_f32, 64x128x128_2x4x1_persistent) { using LayoutA = cutlass::layout::RowMajor; using LayoutB = cutlass::layout::ColumnMajor; using LayoutC = cutlass::layout::ColumnMajor; using EpilogueSchedule = cutlass::epilogue::TmaWarpSpecialized; using FusionOperation = cutlass::epilogue::fusion::ScaledLinCombPerRowBiasEltAct< cutlass::epilogue::thread::Identity, cutlass::float_e5m2_t, float, float>; using EpilogueOp = typename cutlass::epilogue::collective::CollectiveBuilder< cutlass::arch::Sm90, cutlass::arch::OpClassTensorOp, Shape<_64,_128,_128>, Shape<_2,_4,_1>, cutlass::epilogue::collective::EpilogueTileAuto, float, float, cutlass::float_e5m2_t, LayoutC, 16 / sizeof(cutlass::float_e5m2_t), cutlass::float_e5m2_t, LayoutC, 16 / sizeof(cutlass::float_e5m2_t), EpilogueSchedule, FusionOperation >::CollectiveOp; using CollectiveOp = typename cutlass::gemm::collective::CollectiveBuilder< cutlass::arch::Sm90, cutlass::arch::OpClassTensorOp, cutlass::float_e4m3_t, LayoutA, 16, cutlass::float_e4m3_t, LayoutB, 16, float, Shape<_64,_128,_128>, Shape<_2,_4,_1>, cutlass::gemm::collective::StageCountAutoCarveout<sizeof(typename EpilogueOp::SharedStorage)>, cutlass::gemm::KernelTmaWarpSpecializedPingpong >::CollectiveOp; using GemmKernel = cutlass::gemm::kernel::GemmUniversal< Shape<int,int,int,int>, CollectiveOp, EpilogueOp >; using Gemm = cutlass::gemm::device::GemmUniversalAdapter<GemmKernel>; EXPECT_TRUE(test::gemm::device::TestAllBiasElementwise<Gemm>()); } /////////////////////////////////////////////////////////////////////////////// ///////////////////////////////// Cluster 2x4x1 ////////////////////////////// ///////////////////////////// e5m2 = e4m3 * e4m3 (TN) ///////////////////////// /////////////////////////////////////////////////////////////////////////////// TEST(SM90_Device_Gemm_e4m3t_e4m3n_e5m2n_tensor_op_gmma_f32, 64x128x128_2x4x1_non_warpspecialized) { using LayoutA = cutlass::layout::RowMajor; using LayoutB = cutlass::layout::ColumnMajor; using LayoutC = cutlass::layout::ColumnMajor; using EpilogueSchedule = cutlass::epilogue::TmaWarpSpecialized; using FusionOperation = cutlass::epilogue::fusion::ScaledLinCombPerRowBiasEltAct< cutlass::epilogue::thread::Identity, cutlass::float_e5m2_t, float, float>; using EpilogueOp = typename cutlass::epilogue::collective::CollectiveBuilder< cutlass::arch::Sm90, cutlass::arch::OpClassTensorOp, Shape<_64,_128,_128>, Shape<_2,_4,_1>, cutlass::epilogue::collective::EpilogueTileAuto, float, float, cutlass::float_e5m2_t, LayoutC, 16 / sizeof(cutlass::float_e5m2_t), cutlass::float_e5m2_t, LayoutC, 16 / sizeof(cutlass::float_e5m2_t), EpilogueSchedule, FusionOperation >::CollectiveOp; using CollectiveOp = typename cutlass::gemm::collective::CollectiveBuilder< cutlass::arch::Sm90, cutlass::arch::OpClassTensorOp, cutlass::float_e4m3_t, LayoutA, 16, cutlass::float_e4m3_t, LayoutB, 16, float, Shape<_64,_128,_128>, Shape<_2,_4,_1>, cutlass::gemm::collective::StageCountAutoCarveout<sizeof(typename EpilogueOp::SharedStorage)>, cutlass::gemm::collective::KernelScheduleAuto >::CollectiveOp; using GemmKernel = cutlass::gemm::kernel::GemmUniversal< Shape<int,int,int,int>, CollectiveOp, EpilogueOp >; using Gemm = cutlass::gemm::device::GemmUniversalAdapter<GemmKernel>; EXPECT_TRUE(test::gemm::device::TestAllBiasElementwise<Gemm>()); } // Use Hopper FP8+AUX from 12.1 #if (!((__CUDACC_VER_MAJOR__ == 12) && (__CUDACC_VER_MINOR__ == 0))) /////////////////////////////////////////////////////////////////////////////// ///////////////////////// output: E4M3 + Aux Tensor /////////////////////////// /////////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////// ///////////////////////////// e4m3 = e4m3 * e4m3 (TN) ///////////////////////// /////////////////////////////////////////////////////////////////////////////// TEST(SM90_Device_Gemm_e4m3t_e4m3n_e4m3n_tensor_op_gmma_f32, 64x128x128_aux_tensor_e4m3) { using LayoutA = cutlass::layout::RowMajor; using LayoutB = cutlass::layout::ColumnMajor; using LayoutC = cutlass::layout::ColumnMajor; using EpilogueSchedule = cutlass::epilogue::TmaWarpSpecialized; using FusionOperation = cutlass::epilogue::fusion::ScaledLinCombPerRowBiasEltActAmaxAux< LayoutC, cutlass::epilogue::thread::Identity, cutlass::float_e4m3_t, float, cutlass::float_e4m3_t>; using EpilogueOp = typename cutlass::epilogue::collective::CollectiveBuilder< cutlass::arch::Sm90, cutlass::arch::OpClassTensorOp, Shape<_64,_128,_128>, Shape<_1,_1,_1>, cutlass::epilogue::collective::EpilogueTileAuto, float, float, cutlass::float_e4m3_t, LayoutC, 16 / sizeof(cutlass::float_e4m3_t), cutlass::float_e4m3_t, LayoutC, 16 / sizeof(cutlass::float_e4m3_t), EpilogueSchedule, FusionOperation >::CollectiveOp; using CollectiveOp = typename cutlass::gemm::collective::CollectiveBuilder< cutlass::arch::Sm90, cutlass::arch::OpClassTensorOp, cutlass::float_e4m3_t, LayoutA, 16, cutlass::float_e4m3_t, LayoutB, 16, float, Shape<_64,_128,_128>, Shape<_1,_1,_1>, cutlass::gemm::collective::StageCountAutoCarveout<sizeof(typename EpilogueOp::SharedStorage)>, cutlass::gemm::collective::KernelScheduleAuto >::CollectiveOp; using GemmKernel = cutlass::gemm::kernel::GemmUniversal< Shape<int,int,int,int>, CollectiveOp, EpilogueOp >; using Gemm = cutlass::gemm::device::GemmUniversalAdapter<GemmKernel>; EXPECT_TRUE(test::gemm::device::TestAllBiasElementwise<Gemm>()); } #endif /////////////////////////////////////////////////////////////////////////////// ////////////////////////////////// FP8 Accum ///////////////////////////////// ///////////////////////////// e5m2 = e4m3 * e4m3 (TN) ///////////////////////// /////////////////////////////////////////////////////////////////////////////// TEST(SM90_Device_Gemm_e4m3t_e4m3n_e5m2n_tensor_op_gmma_f32, 64x128x128_2x4x1_persistent_fp8_fast_accum) { using LayoutA = cutlass::layout::RowMajor; using LayoutB = cutlass::layout::ColumnMajor; using LayoutC = cutlass::layout::ColumnMajor; using EpilogueSchedule = cutlass::epilogue::TmaWarpSpecialized; using FusionOperation = cutlass::epilogue::fusion::ScaledLinCombPerRowBiasEltAct< cutlass::epilogue::thread::Identity, cutlass::float_e5m2_t, float, float>; using EpilogueOp = typename cutlass::epilogue::collective::CollectiveBuilder< cutlass::arch::Sm90, cutlass::arch::OpClassTensorOp, Shape<_64,_128,_128>, Shape<_2,_4,_1>, cutlass::epilogue::collective::EpilogueTileAuto, float, float, cutlass::float_e5m2_t, LayoutC, 16 / sizeof(cutlass::float_e5m2_t), cutlass::float_e5m2_t, LayoutC, 16 / sizeof(cutlass::float_e5m2_t), EpilogueSchedule, FusionOperation >::CollectiveOp; using CollectiveOp = typename cutlass::gemm::collective::CollectiveBuilder< cutlass::arch::Sm90, cutlass::arch::OpClassTensorOp, cutlass::float_e4m3_t, LayoutA, 16, cutlass::float_e4m3_t, LayoutB, 16, float, Shape<_64,_128,_128>, Shape<_2,_4,_1>, cutlass::gemm::collective::StageCountAutoCarveout<sizeof(typename EpilogueOp::SharedStorage)>, cutlass::gemm::KernelTmaWarpSpecializedPingpongFP8FastAccum >::CollectiveOp; using GemmKernel = cutlass::gemm::kernel::GemmUniversal< Shape<int,int,int,int>, CollectiveOp, EpilogueOp >; using Gemm = cutlass::gemm::device::GemmUniversalAdapter<GemmKernel>; EXPECT_TRUE(test::gemm::device::TestAllBiasElementwise<Gemm>()); } /////////////////////////////////////////////////////////////////////////////// TEST(SM90_Device_Gemm_e4m3t_e4m3n_e5m2n_tensor_op_gmma_f32, 64x128x128_2x4x1_fp8_fast_accum) { using LayoutA = cutlass::layout::RowMajor; using LayoutB = cutlass::layout::ColumnMajor; using LayoutC = cutlass::layout::ColumnMajor; using EpilogueSchedule = cutlass::epilogue::TmaWarpSpecialized; using FusionOperation = cutlass::epilogue::fusion::ScaledLinCombPerRowBiasEltAct< cutlass::epilogue::thread::Identity, cutlass::float_e5m2_t, float, float>; using EpilogueOp = typename cutlass::epilogue::collective::CollectiveBuilder< cutlass::arch::Sm90, cutlass::arch::OpClassTensorOp, Shape<_64,_128,_128>, Shape<_2,_4,_1>, cutlass::epilogue::collective::EpilogueTileAuto, float, float, cutlass::float_e5m2_t, LayoutC, 16 / sizeof(cutlass::float_e5m2_t), cutlass::float_e5m2_t, LayoutC, 16 / sizeof(cutlass::float_e5m2_t), EpilogueSchedule, FusionOperation >::CollectiveOp; using CollectiveOp = typename cutlass::gemm::collective::CollectiveBuilder< cutlass::arch::Sm90, cutlass::arch::OpClassTensorOp, cutlass::float_e4m3_t, LayoutA, 16, cutlass::float_e4m3_t, LayoutB, 16, float, Shape<_64,_128,_128>, Shape<_2,_4,_1>, cutlass::gemm::collective::StageCountAutoCarveout<sizeof(typename EpilogueOp::SharedStorage)>, cutlass::gemm::KernelTmaWarpSpecializedFP8FastAccum >::CollectiveOp; using GemmKernel = cutlass::gemm::kernel::GemmUniversal< Shape<int,int,int,int>, CollectiveOp, EpilogueOp >; using Gemm = cutlass::gemm::device::GemmUniversalAdapter<GemmKernel>; EXPECT_TRUE(test::gemm::device::TestAllBiasElementwise<Gemm>()); } /////////////////////////////////////////////////////////////////////////////// ////////////////////////// output: E4M3 + Bias /////////////////////////////// /////////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////// ///////////////////////////// e4m3 = e4m3 * e4m3 (TN) ///////////////////////// /////////////////////////////////////////////////////////////////////////////// TEST(SM90_Device_Gemm_e4m3t_e4m3n_e4m3n_tensor_op_gmma_f32, 64x128x128_bias_bf16) { using LayoutA = cutlass::layout::RowMajor; using LayoutB = cutlass::layout::ColumnMajor; using LayoutC = cutlass::layout::ColumnMajor; using EpilogueSchedule = cutlass::epilogue::TmaWarpSpecialized; using FusionOperation = cutlass::epilogue::fusion::ScaledLinCombPerRowBiasEltAct< cutlass::epilogue::thread::Identity, cutlass::float_e4m3_t, float, cutlass::bfloat16_t>; using EpilogueOp = typename cutlass::epilogue::collective::CollectiveBuilder< cutlass::arch::Sm90, cutlass::arch::OpClassTensorOp, Shape<_64,_128,_128>, Shape<_1,_1,_1>, cutlass::epilogue::collective::EpilogueTileAuto, float, float, cutlass::float_e4m3_t, LayoutC, 16 / sizeof(cutlass::float_e4m3_t), cutlass::float_e4m3_t, LayoutC, 16 / sizeof(cutlass::float_e4m3_t), EpilogueSchedule, FusionOperation >::CollectiveOp; using CollectiveOp = typename cutlass::gemm::collective::CollectiveBuilder< cutlass::arch::Sm90, cutlass::arch::OpClassTensorOp, cutlass::float_e4m3_t, LayoutA, 16, cutlass::float_e4m3_t, LayoutB, 16, float, Shape<_64,_128,_128>, Shape<_1,_1,_1>, cutlass::gemm::collective::StageCountAutoCarveout<sizeof(typename EpilogueOp::SharedStorage)>, cutlass::gemm::collective::KernelScheduleAuto >::CollectiveOp; using GemmKernel = cutlass::gemm::kernel::GemmUniversal< Shape<int,int,int,int>, CollectiveOp, EpilogueOp >; using Gemm = cutlass::gemm::device::GemmUniversalAdapter<GemmKernel>; EXPECT_TRUE(test::gemm::device::TestAllBiasElementwise<Gemm>()); } /////////////////////////////////////////////////////////////////////////////// ////////////////////////// output: E4M3 + Bias + Relu //////////////////////// /////////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////// ///////////////////////////// e4m3 = e4m3 * e4m3 (TN) ///////////////////////// /////////////////////////////////////////////////////////////////////////////// TEST(SM90_Device_Gemm_e4m3t_e4m3n_e4m3n_tensor_op_gmma_f32, 64x128x128_bias_bf16_relu) { using LayoutA = cutlass::layout::RowMajor; using LayoutB = cutlass::layout::ColumnMajor; using LayoutC = cutlass::layout::ColumnMajor; using EpilogueSchedule = cutlass::epilogue::TmaWarpSpecialized; using FusionOperation = cutlass::epilogue::fusion::ScaledLinCombPerRowBiasEltAct< cutlass::epilogue::thread::ReLu, cutlass::float_e4m3_t, float, cutlass::bfloat16_t>; using EpilogueOp = typename cutlass::epilogue::collective::CollectiveBuilder< cutlass::arch::Sm90, cutlass::arch::OpClassTensorOp, Shape<_64,_128,_128>, Shape<_1,_1,_1>, cutlass::epilogue::collective::EpilogueTileAuto, float, float, cutlass::float_e4m3_t, LayoutC, 16 / sizeof(cutlass::float_e4m3_t), cutlass::float_e4m3_t, LayoutC, 16 / sizeof(cutlass::float_e4m3_t), EpilogueSchedule, FusionOperation >::CollectiveOp; using CollectiveOp = typename cutlass::gemm::collective::CollectiveBuilder< cutlass::arch::Sm90, cutlass::arch::OpClassTensorOp, cutlass::float_e4m3_t, LayoutA, 16, cutlass::float_e4m3_t, LayoutB, 16, float, Shape<_64,_128,_128>, Shape<_1,_1,_1>, cutlass::gemm::collective::StageCountAutoCarveout<sizeof(typename EpilogueOp::SharedStorage)>, cutlass::gemm::collective::KernelScheduleAuto >::CollectiveOp; using GemmKernel = cutlass::gemm::kernel::GemmUniversal< Shape<int,int,int,int>, CollectiveOp, EpilogueOp >; using Gemm = cutlass::gemm::device::GemmUniversalAdapter<GemmKernel>; EXPECT_TRUE(test::gemm::device::TestAllBiasElementwise<Gemm>()); } // Use Hopper FP8+AUX from 12.1 #if (!((__CUDACC_VER_MAJOR__ == 12) && (__CUDACC_VER_MINOR__ == 0))) /////////////////////////////////////////////////////////////////////////////// ///////////////////// output: E4M3 + Aux Tensor + Bias///////////////////////// /////////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////// ///////////////////////////// e4m3 = e4m3 * e5m2 (TN) ///////////////////////// /////////////////////////////////////////////////////////////////////////////// TEST(SM90_Device_Gemm_e4m3t_e5m2n_e4m3n_tensor_op_gmma_f32, 64x128x128_aux_tensor_f16_bias_f16) { using LayoutA = cutlass::layout::RowMajor; using LayoutB = cutlass::layout::ColumnMajor; using LayoutC = cutlass::layout::ColumnMajor; using EpilogueSchedule = cutlass::epilogue::TmaWarpSpecialized; using FusionOperation = cutlass::epilogue::fusion::ScaledLinCombPerRowBiasEltActAmaxAux< LayoutC, cutlass::epilogue::thread::Identity, cutlass::float_e4m3_t, // ElementOutput float, // ElementCompute cutlass::half_t, // ElementAux float, // ElementAmax cutlass::half_t>; // ElementBias using EpilogueOp = typename cutlass::epilogue::collective::CollectiveBuilder< cutlass::arch::Sm90, cutlass::arch::OpClassTensorOp, Shape<_64,_128,_128>, Shape<_1,_1,_1>, cutlass::epilogue::collective::EpilogueTileAuto, float, float, cutlass::float_e4m3_t, LayoutC, 16 / sizeof(cutlass::float_e4m3_t), cutlass::float_e4m3_t, LayoutC, 16 / sizeof(cutlass::float_e4m3_t), EpilogueSchedule, FusionOperation >::CollectiveOp; using CollectiveOp = typename cutlass::gemm::collective::CollectiveBuilder< cutlass::arch::Sm90, cutlass::arch::OpClassTensorOp, cutlass::float_e4m3_t, LayoutA, 16, cutlass::float_e5m2_t, LayoutB, 16, float, Shape<_64,_128,_128>, Shape<_1,_1,_1>, cutlass::gemm::collective::StageCountAutoCarveout<sizeof(typename EpilogueOp::SharedStorage)>, cutlass::gemm::collective::KernelScheduleAuto >::CollectiveOp; using GemmKernel = cutlass::gemm::kernel::GemmUniversal< Shape<int,int,int,int>, CollectiveOp, EpilogueOp >; using Gemm = cutlass::gemm::device::GemmUniversalAdapter<GemmKernel>; EXPECT_TRUE(test::gemm::device::TestAllBiasElementwise<Gemm>()); } /////////////////////////////////////////////////////////////////////////////// ///////////////////// output: E4M3 + Aux Tensor + Bias + Relu///////////////////////// /////////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////// ///////////////////////////// e4m3 = e4m3 * e5m2 (TN) ///////////////////////// /////////////////////////////////////////////////////////////////////////////// TEST(SM90_Device_Gemm_e4m3t_e5m2n_e4m3n_tensor_op_gmma_f32, 64x128x128_aux_tensor_f16_relu) { using LayoutA = cutlass::layout::RowMajor; using LayoutB = cutlass::layout::ColumnMajor; using LayoutC = cutlass::layout::ColumnMajor; using EpilogueSchedule = cutlass::epilogue::TmaWarpSpecialized; using FusionOperation = cutlass::epilogue::fusion::ScaledLinCombPerRowBiasEltActAmaxAux< LayoutC, cutlass::epilogue::thread::ReLu, cutlass::float_e4m3_t, // ElementOutput float, // ElementCompute cutlass::half_t, // ElementAux float, // ElementAmax float>; // ElementBias using EpilogueOp = typename cutlass::epilogue::collective::CollectiveBuilder< cutlass::arch::Sm90, cutlass::arch::OpClassTensorOp, Shape<_64,_128,_128>, Shape<_1,_1,_1>, cutlass::epilogue::collective::EpilogueTileAuto, float, float, cutlass::float_e4m3_t, LayoutC, 16 / sizeof(cutlass::float_e4m3_t), cutlass::float_e4m3_t, LayoutC, 16 / sizeof(cutlass::float_e4m3_t), EpilogueSchedule, FusionOperation >::CollectiveOp; using CollectiveOp = typename cutlass::gemm::collective::CollectiveBuilder< cutlass::arch::Sm90, cutlass::arch::OpClassTensorOp, cutlass::float_e4m3_t, LayoutA, 16, cutlass::float_e5m2_t, LayoutB, 16, float, Shape<_64,_128,_128>, Shape<_1,_1,_1>, cutlass::gemm::collective::StageCountAutoCarveout<sizeof(typename EpilogueOp::SharedStorage)>, cutlass::gemm::collective::KernelScheduleAuto >::CollectiveOp; using GemmKernel = cutlass::gemm::kernel::GemmUniversal< Shape<int,int,int,int>, CollectiveOp, EpilogueOp >; using Gemm = cutlass::gemm::device::GemmUniversalAdapter<GemmKernel>; EXPECT_TRUE(test::gemm::device::TestAllBiasElementwise<Gemm>()); } /////////////////////////////////////////////////////////////////////////////// ///////////////////////////// e4m3 = e4m3 * e5m2 (TN) ///////////////////////// /////////////////////////////////////////////////////////////////////////////// TEST(SM90_Device_Gemm_e4m3t_e5m2n_e4m3n_tensor_op_gmma_f32, 64x128x128_aux_tensor_f16_bias_f16_relu) { using LayoutA = cutlass::layout::RowMajor; using LayoutB = cutlass::layout::ColumnMajor; using LayoutC = cutlass::layout::ColumnMajor; using EpilogueSchedule = cutlass::epilogue::TmaWarpSpecialized; using FusionOperation = cutlass::epilogue::fusion::ScaledLinCombPerRowBiasEltActAmaxAux< LayoutC, cutlass::epilogue::thread::ReLu, cutlass::float_e4m3_t, // ElementOutput float, // ElementCompute cutlass::half_t, // ElementAux float, // ElementAmax cutlass::half_t>; // ElementBias using EpilogueOp = typename cutlass::epilogue::collective::CollectiveBuilder< cutlass::arch::Sm90, cutlass::arch::OpClassTensorOp, Shape<_64,_128,_128>, Shape<_1,_1,_1>, cutlass::epilogue::collective::EpilogueTileAuto, float, float, cutlass::float_e4m3_t, LayoutC, 16 / sizeof(cutlass::float_e4m3_t), cutlass::float_e4m3_t, LayoutC, 16 / sizeof(cutlass::float_e4m3_t), EpilogueSchedule, FusionOperation >::CollectiveOp; using CollectiveOp = typename cutlass::gemm::collective::CollectiveBuilder< cutlass::arch::Sm90, cutlass::arch::OpClassTensorOp, cutlass::float_e4m3_t, LayoutA, 16, cutlass::float_e5m2_t, LayoutB, 16, float, Shape<_64,_128,_128>, Shape<_1,_1,_1>, cutlass::gemm::collective::StageCountAutoCarveout<sizeof(typename EpilogueOp::SharedStorage)>, cutlass::gemm::collective::KernelScheduleAuto >::CollectiveOp; using GemmKernel = cutlass::gemm::kernel::GemmUniversal< Shape<int,int,int,int>, CollectiveOp, EpilogueOp >; using Gemm = cutlass::gemm::device::GemmUniversalAdapter<GemmKernel>; EXPECT_TRUE(test::gemm::device::TestAllBiasElementwise<Gemm>()); } #endif /////////////////////////////////////////////////////////////////////////////// //////////////////////////////// TMA epilogue ///////////////////////////////// /////////////////////////////////////////////////////////////////////////////// TEST(SM90_Device_Gemm_e4m3t_e4m3n_e4m3n_tensor_op_gmma_f32, 64x128x128_tma_epilogue) { using LayoutA = cutlass::layout::RowMajor; using LayoutB = cutlass::layout::ColumnMajor; using LayoutC = cutlass::layout::ColumnMajor; using EpilogueOp = typename cutlass::epilogue::collective::CollectiveBuilder< cutlass::arch::Sm90, cutlass::arch::OpClassTensorOp, Shape<_64,_128,_128>, Shape<_1,_1,_1>, cutlass::epilogue::collective::EpilogueTileAuto, float, float, cutlass::float_e4m3_t, LayoutC, 16, cutlass::float_e4m3_t, LayoutC, 16, cutlass::epilogue::TmaWarpSpecialized >::CollectiveOp; using CollectiveOp = typename cutlass::gemm::collective::CollectiveBuilder< cutlass::arch::Sm90, cutlass::arch::OpClassTensorOp, cutlass::float_e4m3_t, LayoutA, 16, cutlass::float_e4m3_t, LayoutB, 16, float, Shape<_64,_128,_128>, Shape<_1,_1,_1>, cutlass::gemm::collective::StageCountAutoCarveout<sizeof(typename EpilogueOp::SharedStorage)>, cutlass::gemm::KernelTmaWarpSpecializedPingpong >::CollectiveOp; using GemmKernel = cutlass::gemm::kernel::GemmUniversal< Shape<int,int,int,int>, CollectiveOp, EpilogueOp >; using Gemm = cutlass::gemm::device::GemmUniversalAdapter<GemmKernel>; EXPECT_TRUE(test::gemm::device::TestAll<Gemm>()); } TEST(SM90_Device_Gemm_e4m3t_e4m3n_e4m3t_tensor_op_gmma_f32, 64x128x128_tma_epilogue) { using LayoutA = cutlass::layout::RowMajor; using LayoutB = cutlass::layout::ColumnMajor; using LayoutC = cutlass::layout::RowMajor; using EpilogueOp = typename cutlass::epilogue::collective::CollectiveBuilder< cutlass::arch::Sm90, cutlass::arch::OpClassTensorOp, Shape<_64,_128,_128>, Shape<_1,_1,_1>, cutlass::epilogue::collective::EpilogueTileAuto, float, float, cutlass::float_e4m3_t, LayoutC, 16, cutlass::float_e4m3_t, LayoutC, 16, cutlass::epilogue::TmaWarpSpecialized >::CollectiveOp; using CollectiveOp = typename cutlass::gemm::collective::CollectiveBuilder< cutlass::arch::Sm90, cutlass::arch::OpClassTensorOp, cutlass::float_e4m3_t, LayoutA, 16, cutlass::float_e4m3_t, LayoutB, 16, float, Shape<_64,_128,_128>, Shape<_1,_1,_1>, cutlass::gemm::collective::StageCountAutoCarveout<sizeof(typename EpilogueOp::SharedStorage)>, cutlass::gemm::KernelTmaWarpSpecializedPingpong >::CollectiveOp; using GemmKernel = cutlass::gemm::kernel::GemmUniversal< Shape<int,int,int,int>, CollectiveOp, EpilogueOp >; using Gemm = cutlass::gemm::device::GemmUniversalAdapter<GemmKernel>; EXPECT_TRUE(test::gemm::device::TestAll<Gemm>()); } #endif // defined(CUTLASS_ARCH_MMA_SM90_SUPPORTED)
test/unit/gemm/device/sm90_gemm_f8_f8_f8_tensor_op_fp32.cu/0
{ "file_path": "test/unit/gemm/device/sm90_gemm_f8_f8_f8_tensor_op_fp32.cu", "repo_id": "test", "token_count": 20775 }
64
/*************************************************************************************************** * Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. * SPDX-License-Identifier: BSD-3-Clause * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * **************************************************************************************************/ /*! \file \brief Tests for device-wide GEMM interface */ #pragma once #include <iostream> #include <fstream> #include "../../common/cutlass_unit_test.h" #include "cutlass/cutlass.h" #include "cutlass/gemm/gemm.h" #include "cutlass/gemm/kernel/gemm_grouped.h" #include "cutlass/gemm/kernel/default_gemm_grouped.h" #include "cutlass/gemm/device/gemm_grouped.h" #include "cutlass/util/host_tensor.h" #include "cutlass/util/reference/host/gemm_complex.h" #include "cutlass/util/reference/host/tensor_compare.h" #include "cutlass/util/reference/host/tensor_copy.h" #include "cutlass/util/reference/host/tensor_fill.h" #include "cutlass/util/reference/host/tensor_norm.h" #include "cutlass/util/tensor_view_io.h" ///////////////////////////////////////////////////////////////////////////////////////////////// namespace test { namespace gemm { namespace device { ///////////////////////////////////////////////////////////////////////////////////////////////// template <typename Gemm> struct TestbedGrouped { // // Type definitions // using ElementA = typename Gemm::ElementA; using ElementB = typename Gemm::ElementB; using ElementC = typename Gemm::ElementC; using ElementAccumulator = typename Gemm::ElementAccumulator; using EpilogueOutputOp = typename Gemm::GemmKernel::Epilogue::OutputOp; using ElementCompute = typename EpilogueOutputOp::ElementCompute; using LayoutA = typename Gemm::LayoutA; using LayoutB = typename Gemm::LayoutB; using LayoutC = typename Gemm::LayoutC; using MatrixCoord = typename LayoutC::TensorCoord; // // Data members // /// Initialization cutlass::Distribution::Kind init_A; cutlass::Distribution::Kind init_B; cutlass::Distribution::Kind init_C; uint32_t seed; int problem_count; std::vector<cutlass::gemm::GemmCoord> problem_sizes_host; cutlass::DeviceAllocation<cutlass::gemm::GemmCoord> problem_sizes_device; std::vector<int64_t> offset_A; std::vector<int64_t> offset_B; std::vector<int64_t> offset_C; std::vector<int64_t> offset_D; std::vector<int64_t> lda_host; std::vector<int64_t> ldb_host; std::vector<int64_t> ldc_host; std::vector<int64_t> ldd_host; cutlass::DeviceAllocation<int64_t> lda; cutlass::DeviceAllocation<int64_t> ldb; cutlass::DeviceAllocation<int64_t> ldc; cutlass::DeviceAllocation<int64_t> ldd; cutlass::DeviceAllocation<ElementA> block_A; cutlass::DeviceAllocation<ElementB> block_B; cutlass::DeviceAllocation<ElementC> block_C; cutlass::DeviceAllocation<ElementC> block_D; cutlass::DeviceAllocation<ElementA *> ptr_A; cutlass::DeviceAllocation<ElementB *> ptr_B; cutlass::DeviceAllocation<ElementC *> ptr_C; cutlass::DeviceAllocation<ElementC *> ptr_D; // // Methods // TestbedGrouped( cutlass::Distribution::Kind init_A_ = cutlass::Distribution::Uniform, cutlass::Distribution::Kind init_B_ = cutlass::Distribution::Uniform, cutlass::Distribution::Kind init_C_ = cutlass::Distribution::Uniform, uint32_t seed_ = 3080 ): init_A(init_A_), init_B(init_B_), init_C(init_C_), seed(seed_) { } /// Helper to initialize a tensor view template <typename Element, typename Layout> bool initialize_tensor( cutlass::TensorView<Element, Layout> view, cutlass::Distribution::Kind dist_kind, uint32_t seed) { if (dist_kind == cutlass::Distribution::Uniform) { double scope_max, scope_min; int bits_input = cutlass::sizeof_bits<Element>::value; int bits_output = cutlass::sizeof_bits<typename Gemm::ElementC>::value; if (bits_input == 1) { scope_max = 2; scope_min = 0; } else if (bits_input <= 8) { scope_max = 2; scope_min = -2; } else if (bits_output == 16) { if (cutlass::sizeof_bits<ElementAccumulator>::value <= 16) { scope_max = 5; scope_min = -5; } else { scope_max = 8; scope_min = -8; } } else { scope_max = 8; scope_min = -8; } cutlass::reference::host::TensorFillRandomUniform( view, seed, scope_max, scope_min, 0); } else if (dist_kind == cutlass::Distribution::Identity) { cutlass::reference::host::TensorFillIdentity(view); } else if (dist_kind == cutlass::Distribution::Gaussian) { cutlass::reference::host::TensorFillRandomGaussian(view, seed, 0, 0.5); } else if (dist_kind == cutlass::Distribution::Sequential) { cutlass::reference::host::BlockFillSequential( view.data(), view.capacity()); } else { // no fill - remain zero } return true; } /// Initializes data structures void initialize() { // // Choose random problem sizes // // construct a few problems of random sizes srand(seed); int64_t total_elements_A = 0; int64_t total_elements_B = 0; int64_t total_elements_C = 0; int64_t total_elements_D = 0; lda_host.resize(problem_count); ldb_host.resize(problem_count); ldc_host.resize(problem_count); ldd_host.resize(problem_count); problem_sizes_host.clear(); problem_sizes_host.resize(problem_count); for (int32_t i = 0; i < problem_count; ++i) { cutlass::gemm::GemmCoord problem( 8 * (rand() % 64) + 24, 8 * (rand() % 64) + 24, 8 * (rand() % 64) + 24); if (!i) { problem = cutlass::gemm::GemmCoord(48, 16, 8); } problem_sizes_host.at(i) = problem; // std::cout << "Problem[" << i << "]: " << problem << std::endl; lda_host.at(i) = LayoutA::packed({problem.m(), problem.k()}).stride(0); ldb_host.at(i) = LayoutB::packed({problem.k(), problem.n()}).stride(0); ldc_host.at(i) = LayoutC::packed({problem.m(), problem.n()}).stride(0); ldd_host.at(i) = LayoutC::packed({problem.m(), problem.n()}).stride(0); offset_A.push_back(total_elements_A); offset_B.push_back(total_elements_B); offset_C.push_back(total_elements_C); offset_D.push_back(total_elements_D); int64_t elements_A = problem.m() * problem.k(); int64_t elements_B = problem.k() * problem.n(); int64_t elements_C = problem.m() * problem.n(); int64_t elements_D = problem.m() * problem.n(); total_elements_A += elements_A; total_elements_B += elements_B; total_elements_C += elements_C; total_elements_D += elements_D; // Random strides between problems? } problem_sizes_device.reset(problem_count); problem_sizes_device.copy_from_host(problem_sizes_host.data()); lda.reset(problem_count); ldb.reset(problem_count); ldc.reset(problem_count); ldd.reset(problem_count); lda.copy_from_host(lda_host.data()); ldb.copy_from_host(ldb_host.data()); ldc.copy_from_host(ldc_host.data()); ldd.copy_from_host(ldd_host.data()); // // Assign pointers // block_A.reset(total_elements_A); block_B.reset(total_elements_B); block_C.reset(total_elements_C); block_D.reset(total_elements_D); std::vector<ElementA *> ptr_A_host(problem_count); std::vector<ElementB *> ptr_B_host(problem_count); std::vector<ElementC *> ptr_C_host(problem_count); std::vector<ElementC *> ptr_D_host(problem_count); for (int32_t i = 0; i < problem_count; ++i) { ptr_A_host.at(i) = block_A.get() + offset_A.at(i); ptr_B_host.at(i) = block_B.get() + offset_B.at(i); ptr_C_host.at(i) = block_C.get() + offset_C.at(i); ptr_D_host.at(i) = block_D.get() + offset_D.at(i); } ptr_A.reset(problem_count); ptr_A.copy_from_host(ptr_A_host.data()); ptr_B.reset(problem_count); ptr_B.copy_from_host(ptr_B_host.data()); ptr_C.reset(problem_count); ptr_C.copy_from_host(ptr_C_host.data()); ptr_D.reset(problem_count); ptr_D.copy_from_host(ptr_D_host.data()); // // Initialize the problems of the workspace // for (int32_t i = 0; i < problem_count; ++i) { cutlass::gemm::GemmCoord problem = problem_sizes_host.at(i); LayoutA layout_A(lda_host.at(i)); LayoutB layout_B(ldb_host.at(i)); LayoutC layout_C(ldc_host.at(i)); LayoutC layout_D(ldd_host.at(i)); MatrixCoord extent_A{problem.m(), problem.k()}; MatrixCoord extent_B{problem.k(), problem.n()}; MatrixCoord extent_C{problem.m(), problem.n()}; std::vector<ElementA> matrix_A(layout_A.capacity(extent_A)); std::vector<ElementB> matrix_B(layout_B.capacity(extent_B)); std::vector<ElementC> matrix_C(layout_C.capacity(extent_C)); std::vector<ElementC> matrix_D(layout_D.capacity(extent_C)); initialize_tensor(cutlass::TensorView<ElementA, LayoutA>(matrix_A.data(), layout_A, extent_A), init_A, seed * 2021); initialize_tensor(cutlass::TensorView<ElementB, LayoutB>(matrix_B.data(), layout_B, extent_B), init_B, seed * 2022); initialize_tensor(cutlass::TensorView<ElementC, LayoutC>(matrix_C.data(), layout_C, extent_C), init_C, seed * 2023); cutlass::device_memory::copy_to_device(ptr_A_host.at(i), matrix_A.data(), matrix_A.size()); cutlass::device_memory::copy_to_device(ptr_B_host.at(i), matrix_B.data(), matrix_B.size()); cutlass::device_memory::copy_to_device(ptr_C_host.at(i), matrix_C.data(), matrix_C.size()); cutlass::device_memory::copy_to_device(ptr_D_host.at(i), matrix_D.data(), matrix_D.size()); } } /// Verifies the result is a GEMM bool verify( ElementCompute alpha, ElementCompute beta) { bool passed = true; for (int32_t i = 0; i < problem_count; ++i) { cutlass::gemm::GemmCoord problem = problem_sizes_host.at(i); LayoutA layout_A(lda_host.at(i)); LayoutB layout_B(ldb_host.at(i)); LayoutC layout_C(ldc_host.at(i)); LayoutC layout_D(ldd_host.at(i)); MatrixCoord extent_A{problem.m(), problem.k()}; MatrixCoord extent_B{problem.k(), problem.n()}; MatrixCoord extent_C{problem.m(), problem.n()}; std::vector<ElementA> matrix_A(layout_A.capacity(extent_A)); std::vector<ElementB> matrix_B(layout_B.capacity(extent_B)); std::vector<ElementC> matrix_C(layout_C.capacity(extent_C)); std::vector<ElementC> matrix_D(layout_D.capacity(extent_C)); std::vector<ElementC> matrix_Ref(layout_D.capacity(extent_C)); cutlass::device_memory::copy_to_host(matrix_A.data(), block_A.get() + offset_A.at(i), matrix_A.size()); cutlass::device_memory::copy_to_host(matrix_B.data(), block_B.get() + offset_B.at(i), matrix_B.size()); cutlass::device_memory::copy_to_host(matrix_C.data(), block_C.get() + offset_C.at(i), matrix_C.size()); cutlass::device_memory::copy_to_host(matrix_D.data(), block_D.get() + offset_D.at(i), matrix_D.size()); cutlass::TensorView<ElementA, LayoutA> view_A(matrix_A.data(), layout_A, extent_A); cutlass::TensorView<ElementB, LayoutB> view_B(matrix_B.data(), layout_B, extent_B); cutlass::TensorView<ElementC, LayoutC> view_C(matrix_C.data(), layout_C, extent_C); cutlass::TensorView<ElementC, LayoutC> view_D(matrix_D.data(), layout_D, extent_C); cutlass::TensorView<ElementC, LayoutC> view_Ref(matrix_Ref.data(), layout_D, extent_C); // Reference GEMM cutlass::reference::host::GemmComplex< ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, ElementCompute, ElementAccumulator >( problem, alpha, view_A, Gemm::kTransformA, view_B, Gemm::kTransformB, beta, view_C, view_Ref, ElementAccumulator(0) ); // Ensure that no input or output is entirely zero EXPECT_GT(cutlass::reference::host::TensorNorm(view_A), 0); EXPECT_GT(cutlass::reference::host::TensorNorm(view_B), 0); EXPECT_GT(cutlass::reference::host::TensorNorm(view_C), 0); EXPECT_GT(cutlass::reference::host::TensorNorm(view_D), 0); EXPECT_GT(cutlass::reference::host::TensorNorm(view_Ref), 0); // Compare against reference passed = cutlass::reference::host::TensorEquals(view_D, view_Ref); if (!passed) { std::ofstream file("testbed_grouped_errors.txt"); file << "problem: " << problem << " [group: " << i << "]\n" << ", alpha: " << alpha << ", beta: " << beta << "\n\n"; file << "A =\n" << view_A << "\nB =\n" << view_B << "\nC =\n" << view_C << "\n\nReference =\n" << view_Ref << "\nComputed =\n" << view_D; return passed; } } return passed; } /// Executes one test bool run( int problem_count, ElementCompute alpha = ElementCompute(1), ElementCompute beta = ElementCompute(0)) { this->problem_count = problem_count; // Initialize the problem initialize(); int threadblock_count = Gemm::sufficient(problem_sizes_host.data(), problem_count); // Early exit if (!threadblock_count) { if (CUTLASS_TEST_UNIT_ENABLE_WARNINGS) { std::cerr << "Test waived due to insufficient CUDA device resources." << std::endl; } return true; } // Configure the GEMM arguments typename EpilogueOutputOp::Params epilogue_op(alpha, beta); // Configure GEMM arguments typename Gemm::Arguments args( problem_sizes_device.get(), problem_count, threadblock_count, epilogue_op, ptr_A.get(), ptr_B.get(), ptr_C.get(), ptr_D.get(), lda.get(), ldb.get(), ldc.get(), ldd.get(), problem_sizes_host.data() ); // Initialize the GEMM object Gemm gemm; size_t workspace_size = gemm.get_workspace_size(args); cutlass::DeviceAllocation<uint8_t> workspace(workspace_size); cutlass::Status status = gemm.initialize(args, workspace.get()); if (status != cutlass::Status::kSuccess) { return false; } // Run the GEMM object status = gemm.run(); if (status != cutlass::Status::kSuccess) { return false; } // Wait for completion cudaError_t result = cudaDeviceSynchronize(); EXPECT_EQ(result, cudaSuccess) << "Kernel execution error: " << cudaGetErrorString(result); if (result != cudaSuccess) { return false; } // Verify correctness return verify(alpha, beta); } }; ///////////////////////////////////////////////////////////////////////////////////////////////// } // device } // gemm } // test /////////////////////////////////////////////////////////////////////////////////////////////////
test/unit/gemm/device/testbed_grouped.h/0
{ "file_path": "test/unit/gemm/device/testbed_grouped.h", "repo_id": "test", "token_count": 6616 }
65
/*************************************************************************************************** * Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. * SPDX-License-Identifier: BSD-3-Clause * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * **************************************************************************************************/ /*! \file \brief Unit tests for threadblock-level GEMM */ #include "mma_multistage_testbed.h" #if defined(CUTLASS_ARCH_MMA_SM80_SUPPORTED) //////////////////////////////////////////////////////////////////////////////// TEST(SM80_gemm_threadblock_congruous, tensor_op_16x128x64_16x32x64_16x8x16_3stage) { using ElementA = cutlass::half_t; using LayoutA = cutlass::layout::ColumnMajor; using ElementB = cutlass::half_t; using LayoutB = cutlass::layout::RowMajor; using ElementC = float; using LayoutC = cutlass::layout::ColumnMajor; cutlass::gemm::GemmCoord problem_size(32, 256, 128); using ThreadblockShape = cutlass::gemm::GemmShape<16, 128, 64>; using WarpShape = cutlass::gemm::GemmShape<16, 32, 64>; using InstructionShape = cutlass::gemm::GemmShape<16, 8, 16>; float alpha = 1.f; float beta = 0.0f; int const Stages = 3; // Define the MmaCore components using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore< ThreadblockShape, WarpShape, InstructionShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp, Stages>; dim3 grid(2, 2); dim3 block(32, 4, 1); test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(), problem_size.k(), alpha, beta) .run(grid, block); } //////////////////////////////////////////////////////////////////////////////// TEST(SM80_gemm_threadblock_congruous, tensor_op_128x16x64_32x16x64_16x8x16_3stage) { using ElementA = cutlass::half_t; using LayoutA = cutlass::layout::ColumnMajor; using ElementB = cutlass::half_t; using LayoutB = cutlass::layout::RowMajor; using ElementC = float; using LayoutC = cutlass::layout::ColumnMajor; cutlass::gemm::GemmCoord problem_size(256, 32, 128); using ThreadblockShape = cutlass::gemm::GemmShape<128, 16, 64>; using WarpShape = cutlass::gemm::GemmShape<32, 16, 64>; using InstructionShape = cutlass::gemm::GemmShape<16, 8, 16>; float alpha = 1.f; float beta = 0.0f; int const Stages = 3; // Define the MmaCore components using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore< ThreadblockShape, WarpShape, InstructionShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp, Stages>; dim3 grid(2, 2); dim3 block(32, 4, 1); test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(), problem_size.k(), alpha, beta) .run(grid, block); } //////////////////////////////////////////////////////////////////////////////// TEST(SM80_gemm_threadblock_congruous, tensor_op_32x128x32_32x32x32_16x8x16_3stage) { using ElementA = cutlass::half_t; using LayoutA = cutlass::layout::ColumnMajor; using ElementB = cutlass::half_t; using LayoutB = cutlass::layout::RowMajor; using ElementC = float; using LayoutC = cutlass::layout::ColumnMajor; cutlass::gemm::GemmCoord problem_size(64, 256, 128); using ThreadblockShape = cutlass::gemm::GemmShape<32, 128, 32>; using WarpShape = cutlass::gemm::GemmShape<32, 32, 32>; using InstructionShape = cutlass::gemm::GemmShape<16, 8, 16>; float alpha = 1.f; float beta = 0.0f; int const Stages = 3; // Define the MmaCore components using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore< ThreadblockShape, WarpShape, InstructionShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp, Stages>; dim3 grid(2, 2); dim3 block(32, 4, 1); test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(), problem_size.k(), alpha, beta) .run(grid, block); } //////////////////////////////////////////////////////////////////////////////// TEST(SM80_gemm_threadblock_congruous, tensor_op_128x32x32_32x32x32_16x8x16_3stage) { using ElementA = cutlass::half_t; using LayoutA = cutlass::layout::ColumnMajor; using ElementB = cutlass::half_t; using LayoutB = cutlass::layout::RowMajor; using ElementC = float; using LayoutC = cutlass::layout::ColumnMajor; cutlass::gemm::GemmCoord problem_size(256, 64, 128); using ThreadblockShape = cutlass::gemm::GemmShape<128, 32, 32>; using WarpShape = cutlass::gemm::GemmShape<32, 32, 32>; using InstructionShape = cutlass::gemm::GemmShape<16, 8, 16>; float alpha = 1.f; float beta = 0.0f; int const Stages = 3; // Define the MmaCore components using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore< ThreadblockShape, WarpShape, InstructionShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp, Stages>; dim3 grid(2, 2); dim3 block(32, 4, 1); test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(), problem_size.k(), alpha, beta) .run(grid, block); } //////////////////////////////////////////////////////////////////////////////// TEST(SM80_gemm_threadblock_congruous, tensor_op_64x64x64_64x64x64_16x8x16_3stage) { using ElementA = cutlass::half_t; using LayoutA = cutlass::layout::ColumnMajor; using ElementB = cutlass::half_t; using LayoutB = cutlass::layout::RowMajor; using ElementC = float; using LayoutC = cutlass::layout::ColumnMajor; cutlass::gemm::GemmCoord problem_size(64, 64, 256); using ThreadblockShape = cutlass::gemm::GemmShape<64, 64, 64>; using WarpShape = cutlass::gemm::GemmShape<64, 64, 64>; using InstructionShape = cutlass::gemm::GemmShape<16, 8, 16>; float alpha = 1.f; float beta = 0.0f; int const Stages = 3; // Define the MmaCore components using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore< ThreadblockShape, WarpShape, InstructionShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp, Stages>; dim3 grid(1, 1); dim3 block(32, 1, 1); test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(), problem_size.k(), alpha, beta) .run(grid, block); } //////////////////////////////////////////////////////////////////////////////// TEST(SM80_gemm_threadblock_congruous, tensor_op_128x64x64_64x32x64_16x8x16_3stage) { using ElementA = cutlass::half_t; using LayoutA = cutlass::layout::ColumnMajor; using ElementB = cutlass::half_t; using LayoutB = cutlass::layout::RowMajor; using ElementC = float; using LayoutC = cutlass::layout::ColumnMajor; cutlass::gemm::GemmCoord problem_size(128, 64, 256); using ThreadblockShape = cutlass::gemm::GemmShape<128, 64, 64>; using WarpShape = cutlass::gemm::GemmShape<64, 32, 64>; using InstructionShape = cutlass::gemm::GemmShape<16, 8, 16>; float alpha = 1.f; float beta = 0.0f; int const Stages = 3; // Define the MmaCore components using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore< ThreadblockShape, WarpShape, InstructionShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp, Stages>; dim3 grid(1, 1); dim3 block(32, 4, 1); test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(), problem_size.k(), alpha, beta) .run(grid, block); } //////////////////////////////////////////////////////////////////////////////// TEST(SM80_gemm_threadblock_congruous, tensor_op_64x128x64_32x64x64_16x8x16_3stage) { using ElementA = cutlass::half_t; using LayoutA = cutlass::layout::ColumnMajor; using ElementB = cutlass::half_t; using LayoutB = cutlass::layout::RowMajor; using ElementC = float; using LayoutC = cutlass::layout::ColumnMajor; cutlass::gemm::GemmCoord problem_size(64, 128, 256); using ThreadblockShape = cutlass::gemm::GemmShape<64, 128, 64>; using WarpShape = cutlass::gemm::GemmShape<32, 64, 64>; using InstructionShape = cutlass::gemm::GemmShape<16, 8, 16>; float alpha = 1.f; float beta = 0.0f; int const Stages = 3; // Define the MmaCore components using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore< ThreadblockShape, WarpShape, InstructionShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp, Stages>; dim3 grid(1, 1); dim3 block(32, 4, 1); test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(), problem_size.k(), alpha, beta) .run(grid, block); } //////////////////////////////////////////////////////////////////////////////// TEST(SM80_gemm_threadblock_congruous, tensor_op_128x128x64_64x64x64_16x8x16_3stage) { using ElementA = cutlass::half_t; using LayoutA = cutlass::layout::ColumnMajor; using ElementB = cutlass::half_t; using LayoutB = cutlass::layout::RowMajor; using ElementC = float; using LayoutC = cutlass::layout::ColumnMajor; cutlass::gemm::GemmCoord problem_size(128, 128, 256); using ThreadblockShape = cutlass::gemm::GemmShape<128, 128, 64>; using WarpShape = cutlass::gemm::GemmShape<64, 64, 64>; using InstructionShape = cutlass::gemm::GemmShape<16, 8, 16>; float alpha = 1.f; float beta = 0.0f; int const Stages = 3; // Define the MmaCore components using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore< ThreadblockShape, WarpShape, InstructionShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp, Stages>; dim3 grid(1, 1); dim3 block(32, 4, 1); test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(), problem_size.k(), alpha, beta) .run(grid, block); } //////////////////////////////////////////////////////////////////////////////// TEST(SM80_gemm_threadblock_congruous, multicta_256x256x384_128x128x64_64x64x64_16x8x16_3stage) { using ElementA = cutlass::half_t; using LayoutA = cutlass::layout::ColumnMajor; using ElementB = cutlass::half_t; using LayoutB = cutlass::layout::RowMajor; using ElementC = float; using LayoutC = cutlass::layout::ColumnMajor; cutlass::gemm::GemmCoord problem_size(256, 256, 384); using ThreadblockShape = cutlass::gemm::GemmShape<128, 128, 64>; using WarpShape = cutlass::gemm::GemmShape<64, 64, 64>; using InstructionShape = cutlass::gemm::GemmShape<16, 8, 16>; float alpha = 1.f; float beta = 0.0f; int const Stages = 3; // Define the MmaCore components using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore< ThreadblockShape, WarpShape, InstructionShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp, Stages>; dim3 grid(2, 2); dim3 block(32, 4, 1); test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(), problem_size.k(), alpha, beta) .run(grid, block); } //////////////////////////////////////////////////////////////////////////////// TEST(SM80_gemm_threadblock_congruous, multicta_512x256x384_256x128x64_64x64x64_16x8x16_3stage) { using ElementA = cutlass::half_t; using LayoutA = cutlass::layout::ColumnMajor; using ElementB = cutlass::half_t; using LayoutB = cutlass::layout::RowMajor; using ElementC = float; using LayoutC = cutlass::layout::ColumnMajor; cutlass::gemm::GemmCoord problem_size(512, 256, 384); using ThreadblockShape = cutlass::gemm::GemmShape<256, 128, 64>; using WarpShape = cutlass::gemm::GemmShape<64, 64, 64>; using InstructionShape = cutlass::gemm::GemmShape<16, 8, 16>; float alpha = 1.f; float beta = 0.0f; int const Stages = 3; // Define the MmaCore components using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore< ThreadblockShape, WarpShape, InstructionShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp, Stages>; dim3 grid(2, 2); dim3 block(32, 8, 1); test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(), problem_size.k(), alpha, beta) .run(grid, block); } //////////////////////////////////////////////////////////////////////////////// TEST(SM80_gemm_threadblock_congruous, tensor_op_64x64x32_64x64x32_16x8x16_4stage) { using ElementA = cutlass::half_t; using LayoutA = cutlass::layout::ColumnMajor; using ElementB = cutlass::half_t; using LayoutB = cutlass::layout::RowMajor; using ElementC = float; using LayoutC = cutlass::layout::ColumnMajor; cutlass::gemm::GemmCoord problem_size(64, 64, 256); using ThreadblockShape = cutlass::gemm::GemmShape<64, 64, 32>; using WarpShape = cutlass::gemm::GemmShape<64, 64, 32>; using InstructionShape = cutlass::gemm::GemmShape<16, 8, 16>; float alpha = 1.f; float beta = 0.0f; int const Stages = 4; // Define the MmaCore components using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore< ThreadblockShape, WarpShape, InstructionShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp, Stages>; dim3 grid(1, 1); dim3 block(32, 1, 1); test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(), problem_size.k(), alpha, beta) .run(grid, block); } //////////////////////////////////////////////////////////////////////////////// TEST(SM80_gemm_threadblock_congruous, tensor_op_128x64x32_64x32x32_16x8x16_4stage) { using ElementA = cutlass::half_t; using LayoutA = cutlass::layout::ColumnMajor; using ElementB = cutlass::half_t; using LayoutB = cutlass::layout::RowMajor; using ElementC = float; using LayoutC = cutlass::layout::ColumnMajor; cutlass::gemm::GemmCoord problem_size(128, 64, 256); using ThreadblockShape = cutlass::gemm::GemmShape<128, 64, 32>; using WarpShape = cutlass::gemm::GemmShape<64, 32, 32>; using InstructionShape = cutlass::gemm::GemmShape<16, 8, 16>; float alpha = 1.f; float beta = 0.0f; int const Stages = 4; // Define the MmaCore components using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore< ThreadblockShape, WarpShape, InstructionShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp, Stages>; dim3 grid(1, 1); dim3 block(32, 4, 1); test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(), problem_size.k(), alpha, beta) .run(grid, block); } //////////////////////////////////////////////////////////////////////////////// TEST(SM80_gemm_threadblock_congruous, tensor_op_64x128x32_32x64x32_16x8x16_4stage) { using ElementA = cutlass::half_t; using LayoutA = cutlass::layout::ColumnMajor; using ElementB = cutlass::half_t; using LayoutB = cutlass::layout::RowMajor; using ElementC = float; using LayoutC = cutlass::layout::ColumnMajor; cutlass::gemm::GemmCoord problem_size(64, 128, 256); using ThreadblockShape = cutlass::gemm::GemmShape<64, 128, 32>; using WarpShape = cutlass::gemm::GemmShape<32, 64, 32>; using InstructionShape = cutlass::gemm::GemmShape<16, 8, 16>; float alpha = 1.f; float beta = 0.0f; int const Stages = 4; // Define the MmaCore components using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore< ThreadblockShape, WarpShape, InstructionShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp, Stages>; dim3 grid(1, 1); dim3 block(32, 4, 1); test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(), problem_size.k(), alpha, beta) .run(grid, block); } //////////////////////////////////////////////////////////////////////////////// TEST(SM80_gemm_threadblock_congruous, tensor_op_128x128x32_64x64x32_16x8x16_4stage) { using ElementA = cutlass::half_t; using LayoutA = cutlass::layout::ColumnMajor; using ElementB = cutlass::half_t; using LayoutB = cutlass::layout::RowMajor; using ElementC = float; using LayoutC = cutlass::layout::ColumnMajor; cutlass::gemm::GemmCoord problem_size(128, 128, 384); using ThreadblockShape = cutlass::gemm::GemmShape<128, 128, 32>; using WarpShape = cutlass::gemm::GemmShape<64, 64, 32>; using InstructionShape = cutlass::gemm::GemmShape<16, 8, 16>; float alpha = 1.f; float beta = 0.0f; int const Stages = 4; // Define the MmaCore components using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore< ThreadblockShape, WarpShape, InstructionShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp, Stages>; dim3 grid(1, 1); dim3 block(32, 4, 1); test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(), problem_size.k(), alpha, beta) .run(grid, block); } //////////////////////////////////////////////////////////////////////////////// TEST(SM80_gemm_threadblock_congruous, multicta_256x256x384_128x128x32_64x64x32_16x8x16_4stage) { using ElementA = cutlass::half_t; using LayoutA = cutlass::layout::ColumnMajor; using ElementB = cutlass::half_t; using LayoutB = cutlass::layout::RowMajor; using ElementC = float; using LayoutC = cutlass::layout::ColumnMajor; cutlass::gemm::GemmCoord problem_size(256, 256, 384); using ThreadblockShape = cutlass::gemm::GemmShape<128, 128, 32>; using WarpShape = cutlass::gemm::GemmShape<64, 64, 32>; using InstructionShape = cutlass::gemm::GemmShape<16, 8, 16>; float alpha = 1.f; float beta = 0.0f; int const Stages = 4; // Define the MmaCore components using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore< ThreadblockShape, WarpShape, InstructionShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp, Stages>; dim3 grid(2, 2); dim3 block(32, 4, 1); test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(), problem_size.k(), alpha, beta) .run(grid, block); } //////////////////////////////////////////////////////////////////////////////// TEST(SM80_gemm_threadblock_congruous, multicta_512x256x768_256x128x32_64x64x32_16x8x16_4stage) { using ElementA = cutlass::half_t; using LayoutA = cutlass::layout::ColumnMajor; using ElementB = cutlass::half_t; using LayoutB = cutlass::layout::RowMajor; using ElementC = float; using LayoutC = cutlass::layout::ColumnMajor; cutlass::gemm::GemmCoord problem_size(512, 256, 768); using ThreadblockShape = cutlass::gemm::GemmShape<256, 128, 32>; using WarpShape = cutlass::gemm::GemmShape<64, 64, 32>; using InstructionShape = cutlass::gemm::GemmShape<16, 8, 16>; float alpha = 1.f; float beta = 0.0f; int const Stages = 4; // Define the MmaCore components using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore< ThreadblockShape, WarpShape, InstructionShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp, Stages>; dim3 grid(2, 2); dim3 block(32, 8, 1); test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(), problem_size.k(), alpha, beta) .run(grid, block); } //////////////////////////////////////////////////////////////////////////////// TEST(SM80_gemm_threadblock_congruous, tensor_op_64x64x32_64x64x32_16x8x8_3stage) { using ElementA = cutlass::tfloat32_t; using LayoutA = cutlass::layout::ColumnMajor; using ElementB = cutlass::tfloat32_t; using LayoutB = cutlass::layout::RowMajor; using ElementC = float; using LayoutC = cutlass::layout::ColumnMajor; cutlass::gemm::GemmCoord problem_size(64, 64, 128); using ThreadblockShape = cutlass::gemm::GemmShape<64, 64, 32>; using WarpShape = cutlass::gemm::GemmShape<64, 64, 32>; using InstructionShape = cutlass::gemm::GemmShape<16, 8, 8>; float alpha = 1.f; float beta = 0.0f; int const Stages = 3; // Define the MmaCore components using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore< ThreadblockShape, WarpShape, InstructionShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp, Stages>; dim3 grid(1, 1); dim3 block(32, 1, 1); test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(), problem_size.k(), alpha, beta) .run(grid, block); } //////////////////////////////////////////////////////////////////////////////// TEST(SM80_gemm_threadblock_congruous, tensor_op_128x64x32_64x32x32_16x8x8_3stage) { using ElementA = cutlass::tfloat32_t; using LayoutA = cutlass::layout::ColumnMajor; using ElementB = cutlass::tfloat32_t; using LayoutB = cutlass::layout::RowMajor; using ElementC = float; using LayoutC = cutlass::layout::ColumnMajor; cutlass::gemm::GemmCoord problem_size(128, 64, 128); using ThreadblockShape = cutlass::gemm::GemmShape<128, 64, 32>; using WarpShape = cutlass::gemm::GemmShape<64, 32, 32>; using InstructionShape = cutlass::gemm::GemmShape<16, 8, 8>; float alpha = 1.f; float beta = 0.0f; int const Stages = 3; // Define the MmaCore components using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore< ThreadblockShape, WarpShape, InstructionShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp, Stages>; dim3 grid(1, 1); dim3 block(32, 4, 1); test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(), problem_size.k(), alpha, beta) .run(grid, block); } //////////////////////////////////////////////////////////////////////////////// TEST(SM80_gemm_threadblock_congruous, tensor_op_64x128x32_32x64x32_16x8x8_3stage) { using ElementA = cutlass::tfloat32_t; using LayoutA = cutlass::layout::ColumnMajor; using ElementB = cutlass::tfloat32_t; using LayoutB = cutlass::layout::RowMajor; using ElementC = float; using LayoutC = cutlass::layout::ColumnMajor; cutlass::gemm::GemmCoord problem_size(64, 128, 128); using ThreadblockShape = cutlass::gemm::GemmShape<64, 128, 32>; using WarpShape = cutlass::gemm::GemmShape<32, 64, 32>; using InstructionShape = cutlass::gemm::GemmShape<16, 8, 8>; float alpha = 1.f; float beta = 0.0f; int const Stages = 3; // Define the MmaCore components using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore< ThreadblockShape, WarpShape, InstructionShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp, Stages>; dim3 grid(1, 1); dim3 block(32, 4, 1); test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(), problem_size.k(), alpha, beta) .run(grid, block); } //////////////////////////////////////////////////////////////////////////////// TEST(SM80_gemm_threadblock_congruous, tensor_op_128x128x32_64x64x32_16x8x8_3stage) { using ElementA = cutlass::tfloat32_t; using LayoutA = cutlass::layout::ColumnMajor; using ElementB = cutlass::tfloat32_t; using LayoutB = cutlass::layout::RowMajor; using ElementC = float; using LayoutC = cutlass::layout::ColumnMajor; cutlass::gemm::GemmCoord problem_size(128, 128, 128); using ThreadblockShape = cutlass::gemm::GemmShape<128, 128, 32>; using WarpShape = cutlass::gemm::GemmShape<64, 64, 32>; using InstructionShape = cutlass::gemm::GemmShape<16, 8, 8>; float alpha = 1.f; float beta = 0.0f; int const Stages = 3; // Define the MmaCore components using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore< ThreadblockShape, WarpShape, InstructionShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp, Stages>; dim3 grid(1, 1); dim3 block(32, 4, 1); test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(), problem_size.k(), alpha, beta) .run(grid, block); } //////////////////////////////////////////////////////////////////////////////// TEST(SM80_gemm_threadblock_congruous, multicta_256x256x192_128x128x32_64x64x32_16x8x8_3stage) { using ElementA = cutlass::tfloat32_t; using LayoutA = cutlass::layout::ColumnMajor; using ElementB = cutlass::tfloat32_t; using LayoutB = cutlass::layout::RowMajor; using ElementC = float; using LayoutC = cutlass::layout::ColumnMajor; cutlass::gemm::GemmCoord problem_size(256, 256, 192); using ThreadblockShape = cutlass::gemm::GemmShape<128, 128, 32>; using WarpShape = cutlass::gemm::GemmShape<64, 64, 32>; using InstructionShape = cutlass::gemm::GemmShape<16, 8, 8>; float alpha = 1.f; float beta = 0.0f; int const Stages = 3; // Define the MmaCore components using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore< ThreadblockShape, WarpShape, InstructionShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp, Stages>; dim3 grid(2, 2); dim3 block(32, 4, 1); test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(), problem_size.k(), alpha, beta) .run(grid, block); } //////////////////////////////////////////////////////////////////////////////// TEST(SM80_gemm_threadblock_congruous, multicta_512x256x384_256x128x32_64x64x32_16x8x8_3stage) { using ElementA = cutlass::tfloat32_t; using LayoutA = cutlass::layout::ColumnMajor; using ElementB = cutlass::tfloat32_t; using LayoutB = cutlass::layout::RowMajor; using ElementC = float; using LayoutC = cutlass::layout::ColumnMajor; cutlass::gemm::GemmCoord problem_size(512, 256, 192); using ThreadblockShape = cutlass::gemm::GemmShape<256, 128, 32>; using WarpShape = cutlass::gemm::GemmShape<64, 64, 32>; using InstructionShape = cutlass::gemm::GemmShape<16, 8, 8>; float alpha = 1.f; float beta = 0.0f; int const Stages = 3; // Define the MmaCore components using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore< ThreadblockShape, WarpShape, InstructionShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp, Stages>; dim3 grid(2, 2); dim3 block(32, 8, 1); test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(), problem_size.k(), alpha, beta) .run(grid, block); } //////////////////////////////////////////////////////////////////////////////// TEST(SM80_gemm_threadblock_congruous, tensor_op_64x64x16_64x64x16_16x8x8_4stage) { using ElementA = cutlass::tfloat32_t; using LayoutA = cutlass::layout::ColumnMajor; using ElementB = cutlass::tfloat32_t; using LayoutB = cutlass::layout::RowMajor; using ElementC = float; using LayoutC = cutlass::layout::ColumnMajor; cutlass::gemm::GemmCoord problem_size(64, 64, 128); using ThreadblockShape = cutlass::gemm::GemmShape<64, 64, 16>; using WarpShape = cutlass::gemm::GemmShape<64, 64, 16>; using InstructionShape = cutlass::gemm::GemmShape<16, 8, 8>; float alpha = 1.f; float beta = 0.0f; int const Stages = 4; // Define the MmaCore components using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore< ThreadblockShape, WarpShape, InstructionShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp, Stages>; dim3 grid(1, 1); dim3 block(32, 1, 1); test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(), problem_size.k(), alpha, beta) .run(grid, block); } //////////////////////////////////////////////////////////////////////////////// TEST(SM80_gemm_threadblock_congruous, tensor_op_128x64x16_64x32x16_16x8x8_4stage) { using ElementA = cutlass::tfloat32_t; using LayoutA = cutlass::layout::ColumnMajor; using ElementB = cutlass::tfloat32_t; using LayoutB = cutlass::layout::RowMajor; using ElementC = float; using LayoutC = cutlass::layout::ColumnMajor; cutlass::gemm::GemmCoord problem_size(128, 64, 128); using ThreadblockShape = cutlass::gemm::GemmShape<128, 64, 16>; using WarpShape = cutlass::gemm::GemmShape<64, 32, 16>; using InstructionShape = cutlass::gemm::GemmShape<16, 8, 8>; float alpha = 1.f; float beta = 0.0f; int const Stages = 4; // Define the MmaCore components using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore< ThreadblockShape, WarpShape, InstructionShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp, Stages>; dim3 grid(1, 1); dim3 block(32, 4, 1); test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(), problem_size.k(), alpha, beta) .run(grid, block); } //////////////////////////////////////////////////////////////////////////////// TEST(SM80_gemm_threadblock_congruous, tensor_op_64x128x16_32x64x16_16x8x8_4stage) { using ElementA = cutlass::tfloat32_t; using LayoutA = cutlass::layout::ColumnMajor; using ElementB = cutlass::tfloat32_t; using LayoutB = cutlass::layout::RowMajor; using ElementC = float; using LayoutC = cutlass::layout::ColumnMajor; cutlass::gemm::GemmCoord problem_size(64, 128, 128); using ThreadblockShape = cutlass::gemm::GemmShape<64, 128, 16>; using WarpShape = cutlass::gemm::GemmShape<32, 64, 16>; using InstructionShape = cutlass::gemm::GemmShape<16, 8, 8>; float alpha = 1.f; float beta = 0.0f; int const Stages = 4; // Define the MmaCore components using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore< ThreadblockShape, WarpShape, InstructionShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp, Stages>; dim3 grid(1, 1); dim3 block(32, 4, 1); test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(), problem_size.k(), alpha, beta) .run(grid, block); } //////////////////////////////////////////////////////////////////////////////// TEST(SM80_gemm_threadblock_congruous, tensor_op_128x128x16_64x64x16_16x8x8_4stage) { using ElementA = cutlass::tfloat32_t; using LayoutA = cutlass::layout::ColumnMajor; using ElementB = cutlass::tfloat32_t; using LayoutB = cutlass::layout::RowMajor; using ElementC = float; using LayoutC = cutlass::layout::ColumnMajor; cutlass::gemm::GemmCoord problem_size(128, 128, 128); using ThreadblockShape = cutlass::gemm::GemmShape<128, 128, 16>; using WarpShape = cutlass::gemm::GemmShape<64, 64, 16>; using InstructionShape = cutlass::gemm::GemmShape<16, 8, 8>; float alpha = 1.f; float beta = 0.0f; int const Stages = 4; // Define the MmaCore components using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore< ThreadblockShape, WarpShape, InstructionShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp, Stages>; dim3 grid(1, 1); dim3 block(32, 4, 1); test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(), problem_size.k(), alpha, beta) .run(grid, block); } //////////////////////////////////////////////////////////////////////////////// TEST(SM80_gemm_threadblock_congruous, multicta_256x256x192_128x128x16_64x64x16_16x8x8_4stage) { using ElementA = cutlass::tfloat32_t; using LayoutA = cutlass::layout::ColumnMajor; using ElementB = cutlass::tfloat32_t; using LayoutB = cutlass::layout::RowMajor; using ElementC = float; using LayoutC = cutlass::layout::ColumnMajor; cutlass::gemm::GemmCoord problem_size(256, 256, 192); using ThreadblockShape = cutlass::gemm::GemmShape<128, 128, 16>; using WarpShape = cutlass::gemm::GemmShape<64, 64, 16>; using InstructionShape = cutlass::gemm::GemmShape<16, 8, 8>; float alpha = 1.f; float beta = 0.0f; int const Stages = 4; // Define the MmaCore components using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore< ThreadblockShape, WarpShape, InstructionShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp, Stages>; dim3 grid(2, 2); dim3 block(32, 4, 1); test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(), problem_size.k(), alpha, beta) .run(grid, block); } //////////////////////////////////////////////////////////////////////////////// TEST(SM80_gemm_threadblock_congruous, multicta_512x256x384_256x128x16_64x64x16_16x8x8_4stage) { using ElementA = cutlass::tfloat32_t; using LayoutA = cutlass::layout::ColumnMajor; using ElementB = cutlass::tfloat32_t; using LayoutB = cutlass::layout::RowMajor; using ElementC = float; using LayoutC = cutlass::layout::ColumnMajor; cutlass::gemm::GemmCoord problem_size(512, 256, 384); using ThreadblockShape = cutlass::gemm::GemmShape<256, 128, 16>; using WarpShape = cutlass::gemm::GemmShape<64, 64, 16>; using InstructionShape = cutlass::gemm::GemmShape<16, 8, 8>; float alpha = 1.f; float beta = 0.0f; int const Stages = 4; // Define the MmaCore components using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore< ThreadblockShape, WarpShape, InstructionShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp, Stages>; dim3 grid(2, 2); dim3 block(32, 8, 1); test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(), problem_size.k(), alpha, beta) .run(grid, block); } //////////////////////////////////////////////////////////////////////////////// TEST(SM80_gemm_threadblock_crosswise, tensor_op_64x64x64_64x64x64_16x8x16_3stage) { using ElementA = cutlass::half_t; using LayoutA = cutlass::layout::RowMajor; using ElementB = cutlass::half_t; using LayoutB = cutlass::layout::ColumnMajor; using ElementC = float; using LayoutC = cutlass::layout::ColumnMajor; cutlass::gemm::GemmCoord problem_size(64, 64, 256); using ThreadblockShape = cutlass::gemm::GemmShape<64, 64, 64>; using WarpShape = cutlass::gemm::GemmShape<64, 64, 64>; using InstructionShape = cutlass::gemm::GemmShape<16, 8, 16>; float alpha = 1.f; float beta = 0.0f; int const Stages = 3; // Define the MmaCore components using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore< ThreadblockShape, WarpShape, InstructionShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp, Stages>; dim3 grid(1, 1); dim3 block(32, 1, 1); test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(), problem_size.k(), alpha, beta) .run(grid, block); } //////////////////////////////////////////////////////////////////////////////// TEST(SM80_gemm_threadblock_crosswise, tensor_op_64x64x64_32x32x64_16x8x16_3stage) { using ElementA = cutlass::half_t; using LayoutA = cutlass::layout::RowMajor; using ElementB = cutlass::half_t; using LayoutB = cutlass::layout::ColumnMajor; using ElementC = float; using LayoutC = cutlass::layout::ColumnMajor; cutlass::gemm::GemmCoord problem_size(64, 64, 256); using ThreadblockShape = cutlass::gemm::GemmShape<64, 64, 64>; using WarpShape = cutlass::gemm::GemmShape<32, 32, 64>; using InstructionShape = cutlass::gemm::GemmShape<16, 8, 16>; float alpha = 1.f; float beta = 0.0f; int const Stages = 3; // Define the MmaCore components using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore< ThreadblockShape, WarpShape, InstructionShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp, Stages>; dim3 grid(1, 1); dim3 block(32, 4, 1); test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(), problem_size.k(), alpha, beta) .run(grid, block); } //////////////////////////////////////////////////////////////////////////////// TEST(SM80_gemm_threadblock_crosswise, tensor_op_128x64x64_64x32x64_16x8x16_3stage) { using ElementA = cutlass::half_t; using LayoutA = cutlass::layout::RowMajor; using ElementB = cutlass::half_t; using LayoutB = cutlass::layout::ColumnMajor; using ElementC = float; using LayoutC = cutlass::layout::ColumnMajor; cutlass::gemm::GemmCoord problem_size(128, 64, 256); using ThreadblockShape = cutlass::gemm::GemmShape<128, 64, 64>; using WarpShape = cutlass::gemm::GemmShape<64, 32, 64>; using InstructionShape = cutlass::gemm::GemmShape<16, 8, 16>; float alpha = 1.f; float beta = 0.0f; int const Stages = 3; // Define the MmaCore components using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore< ThreadblockShape, WarpShape, InstructionShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp, Stages>; dim3 grid(1, 1); dim3 block(32, 4, 1); test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(), problem_size.k(), alpha, beta) .run(grid, block); } //////////////////////////////////////////////////////////////////////////////// TEST(SM80_gemm_threadblock_crosswise, tensor_op_64x128x64_32x64x64_16x8x16_3stage) { using ElementA = cutlass::half_t; using LayoutA = cutlass::layout::RowMajor; using ElementB = cutlass::half_t; using LayoutB = cutlass::layout::ColumnMajor; using ElementC = float; using LayoutC = cutlass::layout::ColumnMajor; cutlass::gemm::GemmCoord problem_size(64, 128, 256); using ThreadblockShape = cutlass::gemm::GemmShape<64, 128, 64>; using WarpShape = cutlass::gemm::GemmShape<32, 64, 64>; using InstructionShape = cutlass::gemm::GemmShape<16, 8, 16>; float alpha = 1.f; float beta = 0.0f; int const Stages = 3; // Define the MmaCore components using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore< ThreadblockShape, WarpShape, InstructionShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp, Stages>; dim3 grid(1, 1); dim3 block(32, 4, 1); test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(), problem_size.k(), alpha, beta) .run(grid, block); } //////////////////////////////////////////////////////////////////////////////// TEST(SM80_gemm_threadblock_crosswise, tensor_op_128x128x64_64x64x64_16x8x16_3stage) { using ElementA = cutlass::half_t; using LayoutA = cutlass::layout::RowMajor; using ElementB = cutlass::half_t; using LayoutB = cutlass::layout::ColumnMajor; using ElementC = float; using LayoutC = cutlass::layout::ColumnMajor; cutlass::gemm::GemmCoord problem_size(128, 128, 384); using ThreadblockShape = cutlass::gemm::GemmShape<128, 128, 64>; using WarpShape = cutlass::gemm::GemmShape<64, 64, 64>; using InstructionShape = cutlass::gemm::GemmShape<16, 8, 16>; float alpha = 1.f; float beta = 0.0f; int const Stages = 3; // Define the MmaCore components using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore< ThreadblockShape, WarpShape, InstructionShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp, Stages>; dim3 grid(1, 1); dim3 block(32, 4, 1); test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(), problem_size.k(), alpha, beta) .run(grid, block); } //////////////////////////////////////////////////////////////////////////////// TEST(SM80_gemm_threadblock_crosswise, multicta_256x256x384_128x128x64_64x64x64_16x8x16_3stage) { using ElementA = cutlass::half_t; using LayoutA = cutlass::layout::RowMajor; using ElementB = cutlass::half_t; using LayoutB = cutlass::layout::ColumnMajor; using ElementC = float; using LayoutC = cutlass::layout::ColumnMajor; cutlass::gemm::GemmCoord problem_size(256, 256, 384); using ThreadblockShape = cutlass::gemm::GemmShape<128, 128, 64>; using WarpShape = cutlass::gemm::GemmShape<64, 64, 64>; using InstructionShape = cutlass::gemm::GemmShape<16, 8, 16>; float alpha = 1.f; float beta = 0.0f; int const Stages = 3; // Define the MmaCore components using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore< ThreadblockShape, WarpShape, InstructionShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp, Stages>; dim3 grid(2, 2); dim3 block(32, 4, 1); test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(), problem_size.k(), alpha, beta) .run(grid, block); } //////////////////////////////////////////////////////////////////////////////// TEST(SM80_gemm_threadblock_crosswise, multicta_512x256x768_256x128x64_64x64x64_16x8x16_3stage) { using ElementA = cutlass::half_t; using LayoutA = cutlass::layout::RowMajor; using ElementB = cutlass::half_t; using LayoutB = cutlass::layout::ColumnMajor; using ElementC = float; using LayoutC = cutlass::layout::ColumnMajor; cutlass::gemm::GemmCoord problem_size(512, 256, 768); using ThreadblockShape = cutlass::gemm::GemmShape<256, 128, 64>; using WarpShape = cutlass::gemm::GemmShape<64, 64, 64>; using InstructionShape = cutlass::gemm::GemmShape<16, 8, 16>; float alpha = 1.f; float beta = 0.0f; int const Stages = 3; // Define the MmaCore components using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore< ThreadblockShape, WarpShape, InstructionShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp, Stages>; dim3 grid(2, 2); dim3 block(32, 8, 1); test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(), problem_size.k(), alpha, beta) .run(grid, block); } //////////////////////////////////////////////////////////////////////////////// TEST(SM80_gemm_threadblock_crosswise, tensor_op_64x64x32_64x64x32_16x8x16_4stage) { using ElementA = cutlass::half_t; using LayoutA = cutlass::layout::RowMajor; using ElementB = cutlass::half_t; using LayoutB = cutlass::layout::ColumnMajor; using ElementC = float; using LayoutC = cutlass::layout::ColumnMajor; cutlass::gemm::GemmCoord problem_size(64, 64, 256); using ThreadblockShape = cutlass::gemm::GemmShape<64, 64, 32>; using WarpShape = cutlass::gemm::GemmShape<64, 64, 32>; using InstructionShape = cutlass::gemm::GemmShape<16, 8, 16>; float alpha = 1.f; float beta = 0.0f; int const Stages = 4; // Define the MmaCore components using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore< ThreadblockShape, WarpShape, InstructionShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp, Stages>; dim3 grid(1, 1); dim3 block(32, 1, 1); test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(), problem_size.k(), alpha, beta) .run(grid, block); } //////////////////////////////////////////////////////////////////////////////// TEST(SM80_gemm_threadblock_crosswise, tensor_op_64x64x32_32x32x32_16x8x16_4stage) { using ElementA = cutlass::half_t; using LayoutA = cutlass::layout::RowMajor; using ElementB = cutlass::half_t; using LayoutB = cutlass::layout::ColumnMajor; using ElementC = float; using LayoutC = cutlass::layout::ColumnMajor; cutlass::gemm::GemmCoord problem_size(64, 64, 256); using ThreadblockShape = cutlass::gemm::GemmShape<64, 64, 32>; using WarpShape = cutlass::gemm::GemmShape<32, 32, 32>; using InstructionShape = cutlass::gemm::GemmShape<16, 8, 16>; float alpha = 1.f; float beta = 0.0f; int const Stages = 4; // Define the MmaCore components using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore< ThreadblockShape, WarpShape, InstructionShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp, Stages>; dim3 grid(1, 1); dim3 block(32, 4, 1); test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(), problem_size.k(), alpha, beta) .run(grid, block); } //////////////////////////////////////////////////////////////////////////////// TEST(SM80_gemm_threadblock_crosswise, tensor_op_128x64x32_64x32x32_16x8x16_4stage) { using ElementA = cutlass::half_t; using LayoutA = cutlass::layout::RowMajor; using ElementB = cutlass::half_t; using LayoutB = cutlass::layout::ColumnMajor; using ElementC = float; using LayoutC = cutlass::layout::ColumnMajor; cutlass::gemm::GemmCoord problem_size(128, 64, 256); using ThreadblockShape = cutlass::gemm::GemmShape<128, 64, 32>; using WarpShape = cutlass::gemm::GemmShape<64, 32, 32>; using InstructionShape = cutlass::gemm::GemmShape<16, 8, 16>; float alpha = 1.f; float beta = 0.0f; int const Stages = 4; // Define the MmaCore components using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore< ThreadblockShape, WarpShape, InstructionShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp, Stages>; dim3 grid(1, 1); dim3 block(32, 4, 1); test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(), problem_size.k(), alpha, beta) .run(grid, block); } //////////////////////////////////////////////////////////////////////////////// TEST(SM80_gemm_threadblock_crosswise, tensor_op_64x128x32_32x64x32_16x8x16_4stage) { using ElementA = cutlass::half_t; using LayoutA = cutlass::layout::RowMajor; using ElementB = cutlass::half_t; using LayoutB = cutlass::layout::ColumnMajor; using ElementC = float; using LayoutC = cutlass::layout::ColumnMajor; cutlass::gemm::GemmCoord problem_size(64, 128, 256); using ThreadblockShape = cutlass::gemm::GemmShape<64, 128, 32>; using WarpShape = cutlass::gemm::GemmShape<32, 64, 32>; using InstructionShape = cutlass::gemm::GemmShape<16, 8, 16>; float alpha = 1.f; float beta = 0.0f; int const Stages = 4; // Define the MmaCore components using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore< ThreadblockShape, WarpShape, InstructionShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp, Stages>; dim3 grid(1, 1); dim3 block(32, 4, 1); test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(), problem_size.k(), alpha, beta) .run(grid, block); } //////////////////////////////////////////////////////////////////////////////// TEST(SM80_gemm_threadblock_crosswise, tensor_op_128x128x32_64x64x32_16x8x16_4stage) { using ElementA = cutlass::half_t; using LayoutA = cutlass::layout::RowMajor; using ElementB = cutlass::half_t; using LayoutB = cutlass::layout::ColumnMajor; using ElementC = float; using LayoutC = cutlass::layout::ColumnMajor; cutlass::gemm::GemmCoord problem_size(128, 128, 384); using ThreadblockShape = cutlass::gemm::GemmShape<128, 128, 32>; using WarpShape = cutlass::gemm::GemmShape<64, 64, 32>; using InstructionShape = cutlass::gemm::GemmShape<16, 8, 16>; float alpha = 1.f; float beta = 0.0f; int const Stages = 4; // Define the MmaCore components using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore< ThreadblockShape, WarpShape, InstructionShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp, Stages>; dim3 grid(1, 1); dim3 block(32, 4, 1); test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(), problem_size.k(), alpha, beta) .run(grid, block); } //////////////////////////////////////////////////////////////////////////////// TEST(SM80_gemm_threadblock_crosswise, multicta_256x256x384_128x128x32_64x64x32_16x8x16_4stage) { using ElementA = cutlass::half_t; using LayoutA = cutlass::layout::RowMajor; using ElementB = cutlass::half_t; using LayoutB = cutlass::layout::ColumnMajor; using ElementC = float; using LayoutC = cutlass::layout::ColumnMajor; cutlass::gemm::GemmCoord problem_size(256, 256, 384); using ThreadblockShape = cutlass::gemm::GemmShape<128, 128, 32>; using WarpShape = cutlass::gemm::GemmShape<64, 64, 32>; using InstructionShape = cutlass::gemm::GemmShape<16, 8, 16>; float alpha = 1.f; float beta = 0.0f; int const Stages = 4; // Define the MmaCore components using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore< ThreadblockShape, WarpShape, InstructionShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp, Stages>; dim3 grid(2, 2); dim3 block(32, 4, 1); test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(), problem_size.k(), alpha, beta) .run(grid, block); } //////////////////////////////////////////////////////////////////////////////// TEST(SM80_gemm_threadblock_crosswise, multicta_512x256x768_256x128x32_64x64x32_16x8x16_4stage) { using ElementA = cutlass::half_t; using LayoutA = cutlass::layout::RowMajor; using ElementB = cutlass::half_t; using LayoutB = cutlass::layout::ColumnMajor; using ElementC = float; using LayoutC = cutlass::layout::ColumnMajor; cutlass::gemm::GemmCoord problem_size(512, 256, 768); using ThreadblockShape = cutlass::gemm::GemmShape<256, 128, 32>; using WarpShape = cutlass::gemm::GemmShape<64, 64, 32>; using InstructionShape = cutlass::gemm::GemmShape<16, 8, 16>; float alpha = 1.f; float beta = 0.0f; int const Stages = 4; // Define the MmaCore components using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore< ThreadblockShape, WarpShape, InstructionShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp, Stages>; dim3 grid(2, 2); dim3 block(32, 8, 1); test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(), problem_size.k(), alpha, beta) .run(grid, block); } //////////////////////////////////////////////////////////////////////////////// TEST(SM80_gemm_threadblock_crosswise, tensor_op_64x64x32_64x64x32_16x8x8_3stage) { using ElementA = cutlass::tfloat32_t; using LayoutA = cutlass::layout::RowMajor; using ElementB = cutlass::tfloat32_t; using LayoutB = cutlass::layout::ColumnMajor; using ElementC = float; using LayoutC = cutlass::layout::ColumnMajor; cutlass::gemm::GemmCoord problem_size(64, 64, 128); using ThreadblockShape = cutlass::gemm::GemmShape<64, 64, 32>; using WarpShape = cutlass::gemm::GemmShape<64, 64, 32>; using InstructionShape = cutlass::gemm::GemmShape<16, 8, 8>; float alpha = 1.f; float beta = 0.0f; int const Stages = 3; // Define the MmaCore components using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore< ThreadblockShape, WarpShape, InstructionShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp, Stages>; dim3 grid(1, 1); dim3 block(32, 1, 1); test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(), problem_size.k(), alpha, beta) .run(grid, block); } //////////////////////////////////////////////////////////////////////////////// TEST(SM80_gemm_threadblock_crosswise, tensor_op_64x64x32_32x32x32_16x8x8_3stage) { using ElementA = cutlass::tfloat32_t; using LayoutA = cutlass::layout::RowMajor; using ElementB = cutlass::tfloat32_t; using LayoutB = cutlass::layout::ColumnMajor; using ElementC = float; using LayoutC = cutlass::layout::ColumnMajor; cutlass::gemm::GemmCoord problem_size(64, 64, 128); using ThreadblockShape = cutlass::gemm::GemmShape<64, 64, 32>; using WarpShape = cutlass::gemm::GemmShape<32, 32, 32>; using InstructionShape = cutlass::gemm::GemmShape<16, 8, 8>; float alpha = 1.f; float beta = 0.0f; int const Stages = 3; // Define the MmaCore components using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore< ThreadblockShape, WarpShape, InstructionShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp, Stages>; dim3 grid(1, 1); dim3 block(32, 4, 1); test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(), problem_size.k(), alpha, beta) .run(grid, block); } //////////////////////////////////////////////////////////////////////////////// TEST(SM80_gemm_threadblock_crosswise, tensor_op_128x64x32_64x32x32_16x8x8_3stage) { using ElementA = cutlass::tfloat32_t; using LayoutA = cutlass::layout::RowMajor; using ElementB = cutlass::tfloat32_t; using LayoutB = cutlass::layout::ColumnMajor; using ElementC = float; using LayoutC = cutlass::layout::ColumnMajor; cutlass::gemm::GemmCoord problem_size(128, 64, 128); using ThreadblockShape = cutlass::gemm::GemmShape<128, 64, 32>; using WarpShape = cutlass::gemm::GemmShape<64, 32, 32>; using InstructionShape = cutlass::gemm::GemmShape<16, 8, 8>; float alpha = 1.f; float beta = 0.0f; int const Stages = 3; // Define the MmaCore components using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore< ThreadblockShape, WarpShape, InstructionShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp, Stages>; dim3 grid(1, 1); dim3 block(32, 4, 1); test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(), problem_size.k(), alpha, beta) .run(grid, block); } //////////////////////////////////////////////////////////////////////////////// TEST(SM80_gemm_threadblock_crosswise, tensor_op_64x128x32_32x64x32_16x8x8_3stage) { using ElementA = cutlass::tfloat32_t; using LayoutA = cutlass::layout::RowMajor; using ElementB = cutlass::tfloat32_t; using LayoutB = cutlass::layout::ColumnMajor; using ElementC = float; using LayoutC = cutlass::layout::ColumnMajor; cutlass::gemm::GemmCoord problem_size(64, 128, 128); using ThreadblockShape = cutlass::gemm::GemmShape<64, 128, 32>; using WarpShape = cutlass::gemm::GemmShape<32, 64, 32>; using InstructionShape = cutlass::gemm::GemmShape<16, 8, 8>; float alpha = 1.f; float beta = 0.0f; int const Stages = 3; // Define the MmaCore components using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore< ThreadblockShape, WarpShape, InstructionShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp, Stages>; dim3 grid(1, 1); dim3 block(32, 4, 1); test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(), problem_size.k(), alpha, beta) .run(grid, block); } //////////////////////////////////////////////////////////////////////////////// TEST(SM80_gemm_threadblock_crosswise, tensor_op_128x128x32_64x64x32_16x8x8_3stage) { using ElementA = cutlass::tfloat32_t; using LayoutA = cutlass::layout::RowMajor; using ElementB = cutlass::tfloat32_t; using LayoutB = cutlass::layout::ColumnMajor; using ElementC = float; using LayoutC = cutlass::layout::ColumnMajor; cutlass::gemm::GemmCoord problem_size(128, 128, 128); using ThreadblockShape = cutlass::gemm::GemmShape<128, 128, 32>; using WarpShape = cutlass::gemm::GemmShape<64, 64, 32>; using InstructionShape = cutlass::gemm::GemmShape<16, 8, 8>; float alpha = 1.f; float beta = 0.0f; int const Stages = 3; // Define the MmaCore components using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore< ThreadblockShape, WarpShape, InstructionShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp, Stages>; dim3 grid(1, 1); dim3 block(32, 4, 1); test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(), problem_size.k(), alpha, beta) .run(grid, block); } //////////////////////////////////////////////////////////////////////////////// TEST(SM80_gemm_threadblock_crosswise, multicta_256x256x192_128x128x32_64x64x32_16x8x8_3stage) { using ElementA = cutlass::tfloat32_t; using LayoutA = cutlass::layout::RowMajor; using ElementB = cutlass::tfloat32_t; using LayoutB = cutlass::layout::ColumnMajor; using ElementC = float; using LayoutC = cutlass::layout::ColumnMajor; cutlass::gemm::GemmCoord problem_size(256, 256, 192); using ThreadblockShape = cutlass::gemm::GemmShape<128, 128, 32>; using WarpShape = cutlass::gemm::GemmShape<64, 64, 32>; using InstructionShape = cutlass::gemm::GemmShape<16, 8, 8>; float alpha = 1.f; float beta = 0.0f; int const Stages = 3; // Define the MmaCore components using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore< ThreadblockShape, WarpShape, InstructionShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp, Stages>; dim3 grid(2, 2); dim3 block(32, 4, 1); test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(), problem_size.k(), alpha, beta) .run(grid, block); } //////////////////////////////////////////////////////////////////////////////// TEST(SM80_gemm_threadblock_crosswise, multicta_512x256x192_256x128x32_64x64x32_16x8x8_3stage) { using ElementA = cutlass::tfloat32_t; using LayoutA = cutlass::layout::RowMajor; using ElementB = cutlass::tfloat32_t; using LayoutB = cutlass::layout::ColumnMajor; using ElementC = float; using LayoutC = cutlass::layout::ColumnMajor; cutlass::gemm::GemmCoord problem_size(512, 256, 192); using ThreadblockShape = cutlass::gemm::GemmShape<256, 128, 32>; using WarpShape = cutlass::gemm::GemmShape<64, 64, 32>; using InstructionShape = cutlass::gemm::GemmShape<16, 8, 8>; float alpha = 1.f; float beta = 0.0f; int const Stages = 3; // Define the MmaCore components using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore< ThreadblockShape, WarpShape, InstructionShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp, Stages>; dim3 grid(2, 2); dim3 block(32, 8, 1); test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(), problem_size.k(), alpha, beta) .run(grid, block); } //////////////////////////////////////////////////////////////////////////////// TEST(SM80_gemm_threadblock_crosswise, tensor_op_64x64x16_64x64x16_16x8x8_4stage) { using ElementA = cutlass::tfloat32_t; using LayoutA = cutlass::layout::RowMajor; using ElementB = cutlass::tfloat32_t; using LayoutB = cutlass::layout::ColumnMajor; using ElementC = float; using LayoutC = cutlass::layout::ColumnMajor; cutlass::gemm::GemmCoord problem_size(64, 64, 128); using ThreadblockShape = cutlass::gemm::GemmShape<64, 64, 16>; using WarpShape = cutlass::gemm::GemmShape<64, 64, 16>; using InstructionShape = cutlass::gemm::GemmShape<16, 8, 8>; float alpha = 1.f; float beta = 0.0f; int const Stages = 4; // Define the MmaCore components using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore< ThreadblockShape, WarpShape, InstructionShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp, Stages>; dim3 grid(1, 1); dim3 block(32, 1, 1); test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(), problem_size.k(), alpha, beta) .run(grid, block); } //////////////////////////////////////////////////////////////////////////////// TEST(SM80_gemm_threadblock_crosswise, tensor_op_64x64x16_32x32x16_16x8x8_4stage) { using ElementA = cutlass::tfloat32_t; using LayoutA = cutlass::layout::RowMajor; using ElementB = cutlass::tfloat32_t; using LayoutB = cutlass::layout::ColumnMajor; using ElementC = float; using LayoutC = cutlass::layout::ColumnMajor; cutlass::gemm::GemmCoord problem_size(64, 64, 128); using ThreadblockShape = cutlass::gemm::GemmShape<64, 64, 16>; using WarpShape = cutlass::gemm::GemmShape<32, 32, 16>; using InstructionShape = cutlass::gemm::GemmShape<16, 8, 8>; float alpha = 1.f; float beta = 0.0f; int const Stages = 4; // Define the MmaCore components using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore< ThreadblockShape, WarpShape, InstructionShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp, Stages>; dim3 grid(1, 1); dim3 block(32, 4, 1); test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(), problem_size.k(), alpha, beta) .run(grid, block); } //////////////////////////////////////////////////////////////////////////////// TEST(SM80_gemm_threadblock_crosswise, tensor_op_128x64x16_64x32x16_16x8x8_4stage) { using ElementA = cutlass::tfloat32_t; using LayoutA = cutlass::layout::RowMajor; using ElementB = cutlass::tfloat32_t; using LayoutB = cutlass::layout::ColumnMajor; using ElementC = float; using LayoutC = cutlass::layout::ColumnMajor; cutlass::gemm::GemmCoord problem_size(128, 64, 128); using ThreadblockShape = cutlass::gemm::GemmShape<128, 64, 16>; using WarpShape = cutlass::gemm::GemmShape<64, 32, 16>; using InstructionShape = cutlass::gemm::GemmShape<16, 8, 8>; float alpha = 1.f; float beta = 0.0f; int const Stages = 4; // Define the MmaCore components using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore< ThreadblockShape, WarpShape, InstructionShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp, Stages>; dim3 grid(1, 1); dim3 block(32, 4, 1); test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(), problem_size.k(), alpha, beta) .run(grid, block); } //////////////////////////////////////////////////////////////////////////////// TEST(SM80_gemm_threadblock_crosswise, tensor_op_64x128x16_32x64x16_16x8x8_4stage) { using ElementA = cutlass::tfloat32_t; using LayoutA = cutlass::layout::RowMajor; using ElementB = cutlass::tfloat32_t; using LayoutB = cutlass::layout::ColumnMajor; using ElementC = float; using LayoutC = cutlass::layout::ColumnMajor; cutlass::gemm::GemmCoord problem_size(64, 128, 128); using ThreadblockShape = cutlass::gemm::GemmShape<64, 128, 16>; using WarpShape = cutlass::gemm::GemmShape<32, 64, 16>; using InstructionShape = cutlass::gemm::GemmShape<16, 8, 8>; float alpha = 1.f; float beta = 0.0f; int const Stages = 4; // Define the MmaCore components using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore< ThreadblockShape, WarpShape, InstructionShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp, Stages>; dim3 grid(1, 1); dim3 block(32, 4, 1); test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(), problem_size.k(), alpha, beta) .run(grid, block); } //////////////////////////////////////////////////////////////////////////////// TEST(SM80_gemm_threadblock_crosswise, tensor_op_128x128x16_64x64x16_16x8x8_4stage) { using ElementA = cutlass::tfloat32_t; using LayoutA = cutlass::layout::RowMajor; using ElementB = cutlass::tfloat32_t; using LayoutB = cutlass::layout::ColumnMajor; using ElementC = float; using LayoutC = cutlass::layout::ColumnMajor; cutlass::gemm::GemmCoord problem_size(128, 128, 128); using ThreadblockShape = cutlass::gemm::GemmShape<128, 128, 16>; using WarpShape = cutlass::gemm::GemmShape<64, 64, 16>; using InstructionShape = cutlass::gemm::GemmShape<16, 8, 8>; float alpha = 1.f; float beta = 0.0f; int const Stages = 4; // Define the MmaCore components using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore< ThreadblockShape, WarpShape, InstructionShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp, Stages>; dim3 grid(1, 1); dim3 block(32, 4, 1); test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(), problem_size.k(), alpha, beta) .run(grid, block); } //////////////////////////////////////////////////////////////////////////////// TEST(SM80_gemm_threadblock_crosswise, multicta_256x256x192_128x128x16_64x64x16_16x8x8_4stage) { using ElementA = cutlass::tfloat32_t; using LayoutA = cutlass::layout::RowMajor; using ElementB = cutlass::tfloat32_t; using LayoutB = cutlass::layout::ColumnMajor; using ElementC = float; using LayoutC = cutlass::layout::ColumnMajor; cutlass::gemm::GemmCoord problem_size(256, 256, 192); using ThreadblockShape = cutlass::gemm::GemmShape<128, 128, 16>; using WarpShape = cutlass::gemm::GemmShape<64, 64, 16>; using InstructionShape = cutlass::gemm::GemmShape<16, 8, 8>; float alpha = 1.f; float beta = 0.0f; int const Stages = 4; // Define the MmaCore components using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore< ThreadblockShape, WarpShape, InstructionShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp, Stages>; dim3 grid(2, 2); dim3 block(32, 4, 1); test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(), problem_size.k(), alpha, beta) .run(grid, block); } //////////////////////////////////////////////////////////////////////////////// TEST(SM80_gemm_threadblock_crosswise, multicta_512x256x192_256x128x16_64x64x16_16x8x8_4stage) { using ElementA = cutlass::tfloat32_t; using LayoutA = cutlass::layout::RowMajor; using ElementB = cutlass::tfloat32_t; using LayoutB = cutlass::layout::ColumnMajor; using ElementC = float; using LayoutC = cutlass::layout::ColumnMajor; cutlass::gemm::GemmCoord problem_size(512, 256, 192); using ThreadblockShape = cutlass::gemm::GemmShape<256, 128, 16>; using WarpShape = cutlass::gemm::GemmShape<64, 64, 16>; using InstructionShape = cutlass::gemm::GemmShape<16, 8, 8>; float alpha = 1.f; float beta = 0.0f; int const Stages = 4; // Define the MmaCore components using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore< ThreadblockShape, WarpShape, InstructionShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp, Stages>; dim3 grid(2, 2); dim3 block(32, 8, 1); test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(), problem_size.k(), alpha, beta) .run(grid, block); } //////////////////////////////////////////////////////////////////////////////// TEST(SM80_gemm_threadblock_crosswise, tensor_op_64x64x128_64x64x128_16x8x32_3stage) { using ElementA = int8_t; using LayoutA = cutlass::layout::RowMajor; using ElementB = int8_t; using LayoutB = cutlass::layout::ColumnMajor; using ElementC = int; using LayoutC = cutlass::layout::ColumnMajor; cutlass::gemm::GemmCoord problem_size(64, 64, 512); using ThreadblockShape = cutlass::gemm::GemmShape<64, 64, 128>; using WarpShape = cutlass::gemm::GemmShape<64, 64, 128>; using InstructionShape = cutlass::gemm::GemmShape<16, 8, 32>; float alpha = 1.f; float beta = 0.0f; int const Stages = 3; // Define the MmaCore components using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore< ThreadblockShape, WarpShape, InstructionShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp, Stages>; dim3 grid(1, 1); dim3 block(32, 1, 1); test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(), problem_size.k(), alpha, beta) .run(grid, block); } //////////////////////////////////////////////////////////////////////////////// TEST(SM80_gemm_threadblock_crosswise, tensor_op_64x64x128_32x32x128_16x8x32_3stage) { using ElementA = int8_t; using LayoutA = cutlass::layout::RowMajor; using ElementB = int8_t; using LayoutB = cutlass::layout::ColumnMajor; using ElementC = int; using LayoutC = cutlass::layout::ColumnMajor; cutlass::gemm::GemmCoord problem_size(64, 64, 512); using ThreadblockShape = cutlass::gemm::GemmShape<64, 64, 128>; using WarpShape = cutlass::gemm::GemmShape<32, 32, 128>; using InstructionShape = cutlass::gemm::GemmShape<16, 8, 32>; float alpha = 1.f; float beta = 0.0f; int const Stages = 3; // Define the MmaCore components using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore< ThreadblockShape, WarpShape, InstructionShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp, Stages>; dim3 grid(1, 1); dim3 block(32, 4, 1); test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(), problem_size.k(), alpha, beta) .run(grid, block); } //////////////////////////////////////////////////////////////////////////////// TEST(SM80_gemm_threadblock_crosswise, tensor_op_128x64x128_64x32x128_16x8x32_3stage) { using ElementA = int8_t; using LayoutA = cutlass::layout::RowMajor; using ElementB = int8_t; using LayoutB = cutlass::layout::ColumnMajor; using ElementC = int; using LayoutC = cutlass::layout::ColumnMajor; cutlass::gemm::GemmCoord problem_size(128, 64, 512); using ThreadblockShape = cutlass::gemm::GemmShape<128, 64, 128>; using WarpShape = cutlass::gemm::GemmShape<64, 32, 128>; using InstructionShape = cutlass::gemm::GemmShape<16, 8, 32>; float alpha = 1.f; float beta = 0.0f; int const Stages = 3; // Define the MmaCore components using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore< ThreadblockShape, WarpShape, InstructionShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp, Stages>; dim3 grid(1, 1); dim3 block(32, 4, 1); test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(), problem_size.k(), alpha, beta) .run(grid, block); } //////////////////////////////////////////////////////////////////////////////// TEST(SM80_gemm_threadblock_crosswise, tensor_op_64x128x128_32x64x128_16x8x32_3stage) { using ElementA = int8_t; using LayoutA = cutlass::layout::RowMajor; using ElementB = int8_t; using LayoutB = cutlass::layout::ColumnMajor; using ElementC = int; using LayoutC = cutlass::layout::ColumnMajor; cutlass::gemm::GemmCoord problem_size(64, 128, 512); using ThreadblockShape = cutlass::gemm::GemmShape<64, 128, 128>; using WarpShape = cutlass::gemm::GemmShape<32, 64, 128>; using InstructionShape = cutlass::gemm::GemmShape<16, 8, 32>; float alpha = 1.f; float beta = 0.0f; int const Stages = 3; // Define the MmaCore components using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore< ThreadblockShape, WarpShape, InstructionShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp, Stages>; dim3 grid(1, 1); dim3 block(32, 4, 1); test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(), problem_size.k(), alpha, beta) .run(grid, block); } //////////////////////////////////////////////////////////////////////////////// TEST(SM80_gemm_threadblock_crosswise, tensor_op_128x128x128_64x64x128_16x8x32_3stage) { using ElementA = int8_t; using LayoutA = cutlass::layout::RowMajor; using ElementB = int8_t; using LayoutB = cutlass::layout::ColumnMajor; using ElementC = int; using LayoutC = cutlass::layout::ColumnMajor; cutlass::gemm::GemmCoord problem_size(128, 128, 512); using ThreadblockShape = cutlass::gemm::GemmShape<128, 128, 128>; using WarpShape = cutlass::gemm::GemmShape<64, 64, 128>; using InstructionShape = cutlass::gemm::GemmShape<16, 8, 32>; float alpha = 1.f; float beta = 0.0f; int const Stages = 3; // Define the MmaCore components using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore< ThreadblockShape, WarpShape, InstructionShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp, Stages>; dim3 grid(1, 1); dim3 block(32, 4, 1); test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(), problem_size.k(), alpha, beta) .run(grid, block); } //////////////////////////////////////////////////////////////////////////////// TEST(SM80_gemm_threadblock_crosswise, multicta_256x256x768_128x128x128_64x64x128_16x8x32_3stage) { using ElementA = int8_t; using LayoutA = cutlass::layout::RowMajor; using ElementB = int8_t; using LayoutB = cutlass::layout::ColumnMajor; using ElementC = int; using LayoutC = cutlass::layout::ColumnMajor; cutlass::gemm::GemmCoord problem_size(256, 256, 768); using ThreadblockShape = cutlass::gemm::GemmShape<128, 128, 128>; using WarpShape = cutlass::gemm::GemmShape<64, 64, 128>; using InstructionShape = cutlass::gemm::GemmShape<16, 8, 32>; float alpha = 1.f; float beta = 0.0f; int const Stages = 3; // Define the MmaCore components using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore< ThreadblockShape, WarpShape, InstructionShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp, Stages>; dim3 grid(2, 2); dim3 block(32, 4, 1); test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(), problem_size.k(), alpha, beta) .run(grid, block); } //////////////////////////////////////////////////////////////////////////////// TEST(SM80_gemm_threadblock_crosswise, multicta_512x256x768_256x128x128_64x64x128_16x8x32_3stage) { using ElementA = int8_t; using LayoutA = cutlass::layout::RowMajor; using ElementB = int8_t; using LayoutB = cutlass::layout::ColumnMajor; using ElementC = int; using LayoutC = cutlass::layout::ColumnMajor; cutlass::gemm::GemmCoord problem_size(512, 256, 768); using ThreadblockShape = cutlass::gemm::GemmShape<256, 128, 128>; using WarpShape = cutlass::gemm::GemmShape<64, 64, 128>; using InstructionShape = cutlass::gemm::GemmShape<16, 8, 32>; float alpha = 1.f; float beta = 0.0f; int const Stages = 3; // Define the MmaCore components using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore< ThreadblockShape, WarpShape, InstructionShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp, Stages>; dim3 grid(2, 2); dim3 block(32, 8, 1); test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(), problem_size.k(), alpha, beta) .run(grid, block); } //////////////////////////////////////////////////////////////////////////////// TEST(SM80_gemm_threadblock_crosswise, tensor_op_64x64x64_64x64x64_16x8x32_4stage) { using ElementA = int8_t; using LayoutA = cutlass::layout::RowMajor; using ElementB = int8_t; using LayoutB = cutlass::layout::ColumnMajor; using ElementC = int; using LayoutC = cutlass::layout::ColumnMajor; cutlass::gemm::GemmCoord problem_size(64, 64, 512); using ThreadblockShape = cutlass::gemm::GemmShape<64, 64, 64>; using WarpShape = cutlass::gemm::GemmShape<64, 64, 64>; using InstructionShape = cutlass::gemm::GemmShape<16, 8, 32>; float alpha = 1.f; float beta = 0.0f; int const Stages = 4; // Define the MmaCore components using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore< ThreadblockShape, WarpShape, InstructionShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp, Stages>; dim3 grid(1, 1); dim3 block(32, 1, 1); test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(), problem_size.k(), alpha, beta) .run(grid, block); } //////////////////////////////////////////////////////////////////////////////// TEST(SM80_gemm_threadblock_crosswise, tensor_op_64x64x64_32x32x64_16x8x32_4stage) { using ElementA = int8_t; using LayoutA = cutlass::layout::RowMajor; using ElementB = int8_t; using LayoutB = cutlass::layout::ColumnMajor; using ElementC = int; using LayoutC = cutlass::layout::ColumnMajor; cutlass::gemm::GemmCoord problem_size(64, 64, 512); using ThreadblockShape = cutlass::gemm::GemmShape<64, 64, 64>; using WarpShape = cutlass::gemm::GemmShape<32, 32, 64>; using InstructionShape = cutlass::gemm::GemmShape<16, 8, 32>; float alpha = 1.f; float beta = 0.0f; int const Stages = 4; // Define the MmaCore components using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore< ThreadblockShape, WarpShape, InstructionShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp, Stages>; dim3 grid(1, 1); dim3 block(32, 4, 1); test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(), problem_size.k(), alpha, beta) .run(grid, block); } //////////////////////////////////////////////////////////////////////////////// TEST(SM80_gemm_threadblock_crosswise, tensor_op_128x64x64_64x32x64_16x8x32_4stage) { using ElementA = int8_t; using LayoutA = cutlass::layout::RowMajor; using ElementB = int8_t; using LayoutB = cutlass::layout::ColumnMajor; using ElementC = int; using LayoutC = cutlass::layout::ColumnMajor; cutlass::gemm::GemmCoord problem_size(128, 64, 512); using ThreadblockShape = cutlass::gemm::GemmShape<128, 64, 64>; using WarpShape = cutlass::gemm::GemmShape<64, 32, 64>; using InstructionShape = cutlass::gemm::GemmShape<16, 8, 32>; float alpha = 1.f; float beta = 0.0f; int const Stages = 4; // Define the MmaCore components using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore< ThreadblockShape, WarpShape, InstructionShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp, Stages>; dim3 grid(1, 1); dim3 block(32, 4, 1); test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(), problem_size.k(), alpha, beta) .run(grid, block); } //////////////////////////////////////////////////////////////////////////////// TEST(SM80_gemm_threadblock_crosswise, tensor_op_64x128x64_32x64x64_16x8x32_4stage) { using ElementA = int8_t; using LayoutA = cutlass::layout::RowMajor; using ElementB = int8_t; using LayoutB = cutlass::layout::ColumnMajor; using ElementC = int; using LayoutC = cutlass::layout::ColumnMajor; cutlass::gemm::GemmCoord problem_size(64, 128, 512); using ThreadblockShape = cutlass::gemm::GemmShape<64, 128, 64>; using WarpShape = cutlass::gemm::GemmShape<32, 64, 64>; using InstructionShape = cutlass::gemm::GemmShape<16, 8, 32>; float alpha = 1.f; float beta = 0.0f; int const Stages = 4; // Define the MmaCore components using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore< ThreadblockShape, WarpShape, InstructionShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp, Stages>; dim3 grid(1, 1); dim3 block(32, 4, 1); test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(), problem_size.k(), alpha, beta) .run(grid, block); } //////////////////////////////////////////////////////////////////////////////// TEST(SM80_gemm_threadblock_crosswise, tensor_op_128x128x64_64x64x64_16x8x32_4stage) { using ElementA = int8_t; using LayoutA = cutlass::layout::RowMajor; using ElementB = int8_t; using LayoutB = cutlass::layout::ColumnMajor; using ElementC = int; using LayoutC = cutlass::layout::ColumnMajor; cutlass::gemm::GemmCoord problem_size(128, 128, 512); using ThreadblockShape = cutlass::gemm::GemmShape<128, 128, 64>; using WarpShape = cutlass::gemm::GemmShape<64, 64, 64>; using InstructionShape = cutlass::gemm::GemmShape<16, 8, 32>; float alpha = 1.f; float beta = 0.0f; int const Stages = 4; // Define the MmaCore components using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore< ThreadblockShape, WarpShape, InstructionShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp, Stages>; dim3 grid(1, 1); dim3 block(32, 4, 1); test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(), problem_size.k(), alpha, beta) .run(grid, block); } //////////////////////////////////////////////////////////////////////////////// TEST(SM80_gemm_threadblock_crosswise, multicta_256x256x768_128x128x64_64x64x64_16x8x32_4stage) { using ElementA = int8_t; using LayoutA = cutlass::layout::RowMajor; using ElementB = int8_t; using LayoutB = cutlass::layout::ColumnMajor; using ElementC = int; using LayoutC = cutlass::layout::ColumnMajor; cutlass::gemm::GemmCoord problem_size(256, 256, 768); using ThreadblockShape = cutlass::gemm::GemmShape<128, 128, 64>; using WarpShape = cutlass::gemm::GemmShape<64, 64, 64>; using InstructionShape = cutlass::gemm::GemmShape<16, 8, 32>; float alpha = 1.f; float beta = 0.0f; int const Stages = 4; // Define the MmaCore components using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore< ThreadblockShape, WarpShape, InstructionShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp, Stages>; dim3 grid(2, 2); dim3 block(32, 4, 1); test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(), problem_size.k(), alpha, beta) .run(grid, block); } //////////////////////////////////////////////////////////////////////////////// TEST(SM80_gemm_threadblock_crosswise, multicta_512x256x768_256x128x64_64x64x64_16x8x32_4stage) { using ElementA = int8_t; using LayoutA = cutlass::layout::RowMajor; using ElementB = int8_t; using LayoutB = cutlass::layout::ColumnMajor; using ElementC = int; using LayoutC = cutlass::layout::ColumnMajor; cutlass::gemm::GemmCoord problem_size(512, 256, 768); using ThreadblockShape = cutlass::gemm::GemmShape<256, 128, 64>; using WarpShape = cutlass::gemm::GemmShape<64, 64, 64>; using InstructionShape = cutlass::gemm::GemmShape<16, 8, 32>; float alpha = 1.f; float beta = 0.0f; int const Stages = 4; // Define the MmaCore components using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore< ThreadblockShape, WarpShape, InstructionShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp, Stages>; dim3 grid(2, 2); dim3 block(32, 8, 1); test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(), problem_size.k(), alpha, beta) .run(grid, block); } //////////////////////////////////////////////////////////////////////////////// TEST(SM80_gemm_threadblock_crosswise, tensor_op_64x64x256_64x64x256_16x8x64_3stage) { using ElementA = cutlass::int4b_t; using LayoutA = cutlass::layout::RowMajor; using ElementB = cutlass::int4b_t; using LayoutB = cutlass::layout::ColumnMajor; using ElementC = int; using LayoutC = cutlass::layout::ColumnMajor; cutlass::gemm::GemmCoord problem_size(64, 64, 1024); using ThreadblockShape = cutlass::gemm::GemmShape<64, 64, 256>; using WarpShape = cutlass::gemm::GemmShape<64, 64, 256>; using InstructionShape = cutlass::gemm::GemmShape<16, 8, 64>; float alpha = 1.f; float beta = 0.0f; int const Stages = 3; // Define the MmaCore components using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore< ThreadblockShape, WarpShape, InstructionShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp, Stages>; dim3 grid(1, 1); dim3 block(32, 1, 1); test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(), problem_size.k(), alpha, beta) .run(grid, block); } //////////////////////////////////////////////////////////////////////////////// TEST(SM80_gemm_threadblock_crosswise, tensor_op_64x64x256_32x32x256_16x8x64_3stage) { using ElementA = cutlass::int4b_t; using LayoutA = cutlass::layout::RowMajor; using ElementB = cutlass::int4b_t; using LayoutB = cutlass::layout::ColumnMajor; using ElementC = int; using LayoutC = cutlass::layout::ColumnMajor; cutlass::gemm::GemmCoord problem_size(64, 64, 1024); using ThreadblockShape = cutlass::gemm::GemmShape<64, 64, 256>; using WarpShape = cutlass::gemm::GemmShape<32, 32, 256>; using InstructionShape = cutlass::gemm::GemmShape<16, 8, 64>; float alpha = 1.f; float beta = 0.0f; int const Stages = 3; // Define the MmaCore components using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore< ThreadblockShape, WarpShape, InstructionShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp, Stages>; dim3 grid(1, 1); dim3 block(32, 4, 1); test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(), problem_size.k(), alpha, beta) .run(grid, block); } //////////////////////////////////////////////////////////////////////////////// TEST(SM80_gemm_threadblock_crosswise, tensor_op_128x64x256_64x32x256_16x8x64_3stage) { using ElementA = cutlass::int4b_t; using LayoutA = cutlass::layout::RowMajor; using ElementB = cutlass::int4b_t; using LayoutB = cutlass::layout::ColumnMajor; using ElementC = int; using LayoutC = cutlass::layout::ColumnMajor; cutlass::gemm::GemmCoord problem_size(128, 64, 1024); using ThreadblockShape = cutlass::gemm::GemmShape<128, 64, 256>; using WarpShape = cutlass::gemm::GemmShape<64, 32, 256>; using InstructionShape = cutlass::gemm::GemmShape<16, 8, 64>; float alpha = 1.f; float beta = 0.0f; int const Stages = 3; // Define the MmaCore components using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore< ThreadblockShape, WarpShape, InstructionShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp, Stages>; dim3 grid(1, 1); dim3 block(32, 4, 1); test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(), problem_size.k(), alpha, beta) .run(grid, block); } //////////////////////////////////////////////////////////////////////////////// TEST(SM80_gemm_threadblock_crosswise, tensor_op_64x256x256_32x64x256_16x8x64_3stage) { using ElementA = cutlass::int4b_t; using LayoutA = cutlass::layout::RowMajor; using ElementB = cutlass::int4b_t; using LayoutB = cutlass::layout::ColumnMajor; using ElementC = int; using LayoutC = cutlass::layout::ColumnMajor; cutlass::gemm::GemmCoord problem_size(64, 128, 1024); using ThreadblockShape = cutlass::gemm::GemmShape<64, 128, 256>; using WarpShape = cutlass::gemm::GemmShape<32, 64, 256>; using InstructionShape = cutlass::gemm::GemmShape<16, 8, 64>; float alpha = 1.f; float beta = 0.0f; int const Stages = 3; // Define the MmaCore components using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore< ThreadblockShape, WarpShape, InstructionShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp, Stages>; dim3 grid(1, 1); dim3 block(32, 4, 1); test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(), problem_size.k(), alpha, beta) .run(grid, block); } //////////////////////////////////////////////////////////////////////////////// TEST(SM80_gemm_threadblock_crosswise, tensor_op_128x256x256_64x64x256_16x8x64_3stage) { using ElementA = cutlass::int4b_t; using LayoutA = cutlass::layout::RowMajor; using ElementB = cutlass::int4b_t; using LayoutB = cutlass::layout::ColumnMajor; using ElementC = int; using LayoutC = cutlass::layout::ColumnMajor; cutlass::gemm::GemmCoord problem_size(128, 128, 1024); using ThreadblockShape = cutlass::gemm::GemmShape<128, 128, 256>; using WarpShape = cutlass::gemm::GemmShape<64, 64, 256>; using InstructionShape = cutlass::gemm::GemmShape<16, 8, 64>; float alpha = 1.f; float beta = 0.0f; int const Stages = 3; // Define the MmaCore components using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore< ThreadblockShape, WarpShape, InstructionShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp, Stages>; dim3 grid(1, 1); dim3 block(32, 4, 1); test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(), problem_size.k(), alpha, beta) .run(grid, block); } //////////////////////////////////////////////////////////////////////////////// TEST(SM80_gemm_threadblock_crosswise, multicta_256x256x1536_128x256x256_64x64x256_16x8x64_3stage) { using ElementA = cutlass::int4b_t; using LayoutA = cutlass::layout::RowMajor; using ElementB = cutlass::int4b_t; using LayoutB = cutlass::layout::ColumnMajor; using ElementC = int; using LayoutC = cutlass::layout::ColumnMajor; cutlass::gemm::GemmCoord problem_size(256, 256, 1536); using ThreadblockShape = cutlass::gemm::GemmShape<128, 128, 256>; using WarpShape = cutlass::gemm::GemmShape<64, 64, 256>; using InstructionShape = cutlass::gemm::GemmShape<16, 8, 64>; float alpha = 1.f; float beta = 0.0f; int const Stages = 3; // Define the MmaCore components using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore< ThreadblockShape, WarpShape, InstructionShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp, Stages>; dim3 grid(2, 2); dim3 block(32, 4, 1); test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(), problem_size.k(), alpha, beta) .run(grid, block); } //////////////////////////////////////////////////////////////////////////////// TEST(SM80_gemm_threadblock_crosswise, multicta_512x256x1536_256x256x256_64x64x256_16x8x64_3stage) { using ElementA = cutlass::int4b_t; using LayoutA = cutlass::layout::RowMajor; using ElementB = cutlass::int4b_t; using LayoutB = cutlass::layout::ColumnMajor; using ElementC = int; using LayoutC = cutlass::layout::ColumnMajor; cutlass::gemm::GemmCoord problem_size(512, 256, 1536); using ThreadblockShape = cutlass::gemm::GemmShape<256, 128, 256>; using WarpShape = cutlass::gemm::GemmShape<64, 64, 256>; using InstructionShape = cutlass::gemm::GemmShape<16, 8, 64>; float alpha = 1.f; float beta = 0.0f; int const Stages = 3; // Define the MmaCore components using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore< ThreadblockShape, WarpShape, InstructionShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp, Stages>; dim3 grid(2, 2); dim3 block(32, 8, 1); test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(), problem_size.k(), alpha, beta) .run(grid, block); } //////////////////////////////////////////////////////////////////////////////// TEST(SM80_gemm_threadblock_crosswise, tensor_op_64x64x128_64x64x128_16x8x64_4stage) { using ElementA = cutlass::int4b_t; using LayoutA = cutlass::layout::RowMajor; using ElementB = cutlass::int4b_t; using LayoutB = cutlass::layout::ColumnMajor; using ElementC = int; using LayoutC = cutlass::layout::ColumnMajor; cutlass::gemm::GemmCoord problem_size(64, 64, 1024); using ThreadblockShape = cutlass::gemm::GemmShape<64, 64, 128>; using WarpShape = cutlass::gemm::GemmShape<64, 64, 128>; using InstructionShape = cutlass::gemm::GemmShape<16, 8, 64>; float alpha = 1.f; float beta = 0.0f; int const Stages = 4; // Define the MmaCore components using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore< ThreadblockShape, WarpShape, InstructionShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp, Stages>; dim3 grid(1, 1); dim3 block(32, 1, 1); test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(), problem_size.k(), alpha, beta) .run(grid, block); } //////////////////////////////////////////////////////////////////////////////// TEST(SM80_gemm_threadblock_crosswise, tensor_op_64x64x128_32x32x128_16x8x64_4stage) { using ElementA = cutlass::int4b_t; using LayoutA = cutlass::layout::RowMajor; using ElementB = cutlass::int4b_t; using LayoutB = cutlass::layout::ColumnMajor; using ElementC = int; using LayoutC = cutlass::layout::ColumnMajor; cutlass::gemm::GemmCoord problem_size(64, 64, 1024); using ThreadblockShape = cutlass::gemm::GemmShape<64, 64, 128>; using WarpShape = cutlass::gemm::GemmShape<32, 32, 128>; using InstructionShape = cutlass::gemm::GemmShape<16, 8, 64>; float alpha = 1.f; float beta = 0.0f; int const Stages = 4; // Define the MmaCore components using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore< ThreadblockShape, WarpShape, InstructionShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp, Stages>; dim3 grid(1, 1); dim3 block(32, 4, 1); test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(), problem_size.k(), alpha, beta) .run(grid, block); } //////////////////////////////////////////////////////////////////////////////// TEST(SM80_gemm_threadblock_crosswise, tensor_op_128x64x128_64x32x128_16x8x64_4stage) { using ElementA = cutlass::int4b_t; using LayoutA = cutlass::layout::RowMajor; using ElementB = cutlass::int4b_t; using LayoutB = cutlass::layout::ColumnMajor; using ElementC = int; using LayoutC = cutlass::layout::ColumnMajor; cutlass::gemm::GemmCoord problem_size(128, 64, 1024); using ThreadblockShape = cutlass::gemm::GemmShape<128, 64, 128>; using WarpShape = cutlass::gemm::GemmShape<64, 32, 128>; using InstructionShape = cutlass::gemm::GemmShape<16, 8, 64>; float alpha = 1.f; float beta = 0.0f; int const Stages = 4; // Define the MmaCore components using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore< ThreadblockShape, WarpShape, InstructionShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp, Stages>; dim3 grid(1, 1); dim3 block(32, 4, 1); test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(), problem_size.k(), alpha, beta) .run(grid, block); } //////////////////////////////////////////////////////////////////////////////// TEST(SM80_gemm_threadblock_crosswise, tensor_op_64x256x128_32x64x128_16x8x64_4stage) { using ElementA = cutlass::int4b_t; using LayoutA = cutlass::layout::RowMajor; using ElementB = cutlass::int4b_t; using LayoutB = cutlass::layout::ColumnMajor; using ElementC = int; using LayoutC = cutlass::layout::ColumnMajor; cutlass::gemm::GemmCoord problem_size(64, 128, 1024); using ThreadblockShape = cutlass::gemm::GemmShape<64, 128, 128>; using WarpShape = cutlass::gemm::GemmShape<32, 64, 128>; using InstructionShape = cutlass::gemm::GemmShape<16, 8, 64>; float alpha = 1.f; float beta = 0.0f; int const Stages = 4; // Define the MmaCore components using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore< ThreadblockShape, WarpShape, InstructionShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp, Stages>; dim3 grid(1, 1); dim3 block(32, 4, 1); test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(), problem_size.k(), alpha, beta) .run(grid, block); } //////////////////////////////////////////////////////////////////////////////// TEST(SM80_gemm_threadblock_crosswise, tensor_op_128x256x128_64x64x128_16x8x64_4stage) { using ElementA = cutlass::int4b_t; using LayoutA = cutlass::layout::RowMajor; using ElementB = cutlass::int4b_t; using LayoutB = cutlass::layout::ColumnMajor; using ElementC = int; using LayoutC = cutlass::layout::ColumnMajor; cutlass::gemm::GemmCoord problem_size(128, 128, 1024); using ThreadblockShape = cutlass::gemm::GemmShape<128, 128, 128>; using WarpShape = cutlass::gemm::GemmShape<64, 64, 128>; using InstructionShape = cutlass::gemm::GemmShape<16, 8, 64>; float alpha = 1.f; float beta = 0.0f; int const Stages = 4; // Define the MmaCore components using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore< ThreadblockShape, WarpShape, InstructionShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp, Stages>; dim3 grid(1, 1); dim3 block(32, 4, 1); test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(), problem_size.k(), alpha, beta) .run(grid, block); } //////////////////////////////////////////////////////////////////////////////// TEST(SM80_gemm_threadblock_crosswise, multicta_256x256x1536_128x256x128_64x64x128_16x8x64_4stage) { using ElementA = cutlass::int4b_t; using LayoutA = cutlass::layout::RowMajor; using ElementB = cutlass::int4b_t; using LayoutB = cutlass::layout::ColumnMajor; using ElementC = int; using LayoutC = cutlass::layout::ColumnMajor; cutlass::gemm::GemmCoord problem_size(256, 256, 1536); using ThreadblockShape = cutlass::gemm::GemmShape<128, 128, 128>; using WarpShape = cutlass::gemm::GemmShape<64, 64, 128>; using InstructionShape = cutlass::gemm::GemmShape<16, 8, 64>; float alpha = 1.f; float beta = 0.0f; int const Stages = 4; // Define the MmaCore components using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore< ThreadblockShape, WarpShape, InstructionShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp, Stages>; dim3 grid(2, 2); dim3 block(32, 4, 1); test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(), problem_size.k(), alpha, beta) .run(grid, block); } //////////////////////////////////////////////////////////////////////////////// TEST(SM80_gemm_threadblock_crosswise, multicta_512x256x1536_256x256x128_64x64x128_16x8x64_4stage) { using ElementA = cutlass::int4b_t; using LayoutA = cutlass::layout::RowMajor; using ElementB = cutlass::int4b_t; using LayoutB = cutlass::layout::ColumnMajor; using ElementC = int; using LayoutC = cutlass::layout::ColumnMajor; cutlass::gemm::GemmCoord problem_size(512, 256, 1536); using ThreadblockShape = cutlass::gemm::GemmShape<256, 128, 128>; using WarpShape = cutlass::gemm::GemmShape<64, 64, 128>; using InstructionShape = cutlass::gemm::GemmShape<16, 8, 64>; float alpha = 1.f; float beta = 0.0f; int const Stages = 4; // Define the MmaCore components using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore< ThreadblockShape, WarpShape, InstructionShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp, Stages>; dim3 grid(2, 2); dim3 block(32, 8, 1); test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(), problem_size.k(), alpha, beta) .run(grid, block); } //////////////////////////////////////////////////////////////////////////////// TEST(SM80_gemm_threadblock_crosswise, tensor_op_64x64x1024_64x64x1024_16x8x256_3stage) { using ElementA = cutlass::uint1b_t; using LayoutA = cutlass::layout::RowMajor; using ElementB = cutlass::uint1b_t; using LayoutB = cutlass::layout::ColumnMajor; using ElementC = int; using LayoutC = cutlass::layout::ColumnMajor; cutlass::gemm::GemmCoord problem_size(64, 64, 4096); using ThreadblockShape = cutlass::gemm::GemmShape<64, 64, 1024>; using WarpShape = cutlass::gemm::GemmShape<64, 64, 1024>; using InstructionShape = cutlass::gemm::GemmShape<16, 8, 256>; float alpha = 1.f; float beta = 0.0f; int const Stages = 3; // Define the MmaCore components using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore< ThreadblockShape, WarpShape, InstructionShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp, Stages>; dim3 grid(1, 1); dim3 block(32, 1, 1); test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(), problem_size.k(), alpha, beta) .run(grid, block); } //////////////////////////////////////////////////////////////////////////////// TEST(SM80_gemm_threadblock_crosswise, tensor_op_64x64x1024_32x32x1024_16x8x256_3stage) { using ElementA = cutlass::uint1b_t; using LayoutA = cutlass::layout::RowMajor; using ElementB = cutlass::uint1b_t; using LayoutB = cutlass::layout::ColumnMajor; using ElementC = int; using LayoutC = cutlass::layout::ColumnMajor; cutlass::gemm::GemmCoord problem_size(64, 64, 4096); using ThreadblockShape = cutlass::gemm::GemmShape<64, 64, 1024>; using WarpShape = cutlass::gemm::GemmShape<32, 32, 1024>; using InstructionShape = cutlass::gemm::GemmShape<16, 8, 256>; float alpha = 1.f; float beta = 0.0f; int const Stages = 3; // Define the MmaCore components using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore< ThreadblockShape, WarpShape, InstructionShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp, Stages>; dim3 grid(1, 1); dim3 block(32, 4, 1); test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(), problem_size.k(), alpha, beta) .run(grid, block); } //////////////////////////////////////////////////////////////////////////////// TEST(SM80_gemm_threadblock_crosswise, tensor_op_128x64x1024_64x32x1024_16x8x256_3stage) { using ElementA = cutlass::uint1b_t; using LayoutA = cutlass::layout::RowMajor; using ElementB = cutlass::uint1b_t; using LayoutB = cutlass::layout::ColumnMajor; using ElementC = int; using LayoutC = cutlass::layout::ColumnMajor; cutlass::gemm::GemmCoord problem_size(128, 64, 4096); using ThreadblockShape = cutlass::gemm::GemmShape<128, 64, 1024>; using WarpShape = cutlass::gemm::GemmShape<64, 32, 1024>; using InstructionShape = cutlass::gemm::GemmShape<16, 8, 256>; float alpha = 1.f; float beta = 0.0f; int const Stages = 3; // Define the MmaCore components using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore< ThreadblockShape, WarpShape, InstructionShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp, Stages>; dim3 grid(1, 1); dim3 block(32, 4, 1); test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(), problem_size.k(), alpha, beta) .run(grid, block); } //////////////////////////////////////////////////////////////////////////////// TEST(SM80_gemm_threadblock_crosswise, tensor_op_64x1024x1024_32x64x1024_16x8x256_3stage) { using ElementA = cutlass::uint1b_t; using LayoutA = cutlass::layout::RowMajor; using ElementB = cutlass::uint1b_t; using LayoutB = cutlass::layout::ColumnMajor; using ElementC = int; using LayoutC = cutlass::layout::ColumnMajor; cutlass::gemm::GemmCoord problem_size(64, 128, 4096); using ThreadblockShape = cutlass::gemm::GemmShape<64, 128, 1024>; using WarpShape = cutlass::gemm::GemmShape<32, 64, 1024>; using InstructionShape = cutlass::gemm::GemmShape<16, 8, 256>; float alpha = 1.f; float beta = 0.0f; int const Stages = 3; // Define the MmaCore components using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore< ThreadblockShape, WarpShape, InstructionShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp, Stages>; dim3 grid(1, 1); dim3 block(32, 4, 1); test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(), problem_size.k(), alpha, beta) .run(grid, block); } //////////////////////////////////////////////////////////////////////////////// TEST(SM80_gemm_threadblock_crosswise, tensor_op_128x1024x1024_64x64x1024_16x8x256_3stage) { using ElementA = cutlass::uint1b_t; using LayoutA = cutlass::layout::RowMajor; using ElementB = cutlass::uint1b_t; using LayoutB = cutlass::layout::ColumnMajor; using ElementC = int; using LayoutC = cutlass::layout::ColumnMajor; cutlass::gemm::GemmCoord problem_size(128, 128, 4096); using ThreadblockShape = cutlass::gemm::GemmShape<128, 128, 1024>; using WarpShape = cutlass::gemm::GemmShape<64, 64, 1024>; using InstructionShape = cutlass::gemm::GemmShape<16, 8, 256>; float alpha = 1.f; float beta = 0.0f; int const Stages = 3; // Define the MmaCore components using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore< ThreadblockShape, WarpShape, InstructionShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp, Stages>; dim3 grid(1, 1); dim3 block(32, 4, 1); test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(), problem_size.k(), alpha, beta) .run(grid, block); } //////////////////////////////////////////////////////////////////////////////// TEST(SM80_gemm_threadblock_crosswise, multicta_256x256x6144_128x1024x1024_64x64x1024_16x8x256_3stage) { using ElementA = cutlass::uint1b_t; using LayoutA = cutlass::layout::RowMajor; using ElementB = cutlass::uint1b_t; using LayoutB = cutlass::layout::ColumnMajor; using ElementC = int; using LayoutC = cutlass::layout::ColumnMajor; cutlass::gemm::GemmCoord problem_size(256, 256, 6144); using ThreadblockShape = cutlass::gemm::GemmShape<128, 128, 1024>; using WarpShape = cutlass::gemm::GemmShape<64, 64, 1024>; using InstructionShape = cutlass::gemm::GemmShape<16, 8, 256>; float alpha = 1.f; float beta = 0.0f; int const Stages = 3; // Define the MmaCore components using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore< ThreadblockShape, WarpShape, InstructionShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp, Stages>; dim3 grid(2, 2); dim3 block(32, 4, 1); test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(), problem_size.k(), alpha, beta) .run(grid, block); } //////////////////////////////////////////////////////////////////////////////// TEST(SM80_gemm_threadblock_crosswise, multicta_512x256x6144_256x1024x1024_64x64x1024_16x8x256_3stage) { using ElementA = cutlass::uint1b_t; using LayoutA = cutlass::layout::RowMajor; using ElementB = cutlass::uint1b_t; using LayoutB = cutlass::layout::ColumnMajor; using ElementC = int; using LayoutC = cutlass::layout::ColumnMajor; cutlass::gemm::GemmCoord problem_size(512, 256, 6144); using ThreadblockShape = cutlass::gemm::GemmShape<256, 128, 1024>; using WarpShape = cutlass::gemm::GemmShape<64, 64, 1024>; using InstructionShape = cutlass::gemm::GemmShape<16, 8, 256>; float alpha = 1.f; float beta = 0.0f; int const Stages = 3; // Define the MmaCore components using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore< ThreadblockShape, WarpShape, InstructionShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp, Stages>; dim3 grid(2, 2); dim3 block(32, 8, 1); test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(), problem_size.k(), alpha, beta) .run(grid, block); } //////////////////////////////////////////////////////////////////////////////// TEST(SM80_gemm_threadblock_crosswise, tensor_op_64x64x512_64x64x512_16x8x256_4stage) { using ElementA = cutlass::uint1b_t; using LayoutA = cutlass::layout::RowMajor; using ElementB = cutlass::uint1b_t; using LayoutB = cutlass::layout::ColumnMajor; using ElementC = int; using LayoutC = cutlass::layout::ColumnMajor; cutlass::gemm::GemmCoord problem_size(64, 64, 4096); using ThreadblockShape = cutlass::gemm::GemmShape<64, 64, 512>; using WarpShape = cutlass::gemm::GemmShape<64, 64, 512>; using InstructionShape = cutlass::gemm::GemmShape<16, 8, 256>; float alpha = 1.f; float beta = 0.0f; int const Stages = 4; // Define the MmaCore components using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore< ThreadblockShape, WarpShape, InstructionShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp, Stages>; dim3 grid(1, 1); dim3 block(32, 1, 1); test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(), problem_size.k(), alpha, beta) .run(grid, block); } //////////////////////////////////////////////////////////////////////////////// TEST(SM80_gemm_threadblock_crosswise, tensor_op_64x64x512_32x32x512_16x8x256_4stage) { using ElementA = cutlass::uint1b_t; using LayoutA = cutlass::layout::RowMajor; using ElementB = cutlass::uint1b_t; using LayoutB = cutlass::layout::ColumnMajor; using ElementC = int; using LayoutC = cutlass::layout::ColumnMajor; cutlass::gemm::GemmCoord problem_size(64, 64, 4096); using ThreadblockShape = cutlass::gemm::GemmShape<64, 64, 512>; using WarpShape = cutlass::gemm::GemmShape<32, 32, 512>; using InstructionShape = cutlass::gemm::GemmShape<16, 8, 256>; float alpha = 1.f; float beta = 0.0f; int const Stages = 4; // Define the MmaCore components using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore< ThreadblockShape, WarpShape, InstructionShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp, Stages>; dim3 grid(1, 1); dim3 block(32, 4, 1); test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(), problem_size.k(), alpha, beta) .run(grid, block); } //////////////////////////////////////////////////////////////////////////////// TEST(SM80_gemm_threadblock_crosswise, tensor_op_128x64x512_64x32x512_16x8x256_4stage) { using ElementA = cutlass::uint1b_t; using LayoutA = cutlass::layout::RowMajor; using ElementB = cutlass::uint1b_t; using LayoutB = cutlass::layout::ColumnMajor; using ElementC = int; using LayoutC = cutlass::layout::ColumnMajor; cutlass::gemm::GemmCoord problem_size(128, 64, 4096); using ThreadblockShape = cutlass::gemm::GemmShape<128, 64, 512>; using WarpShape = cutlass::gemm::GemmShape<64, 32, 512>; using InstructionShape = cutlass::gemm::GemmShape<16, 8, 256>; float alpha = 1.f; float beta = 0.0f; int const Stages = 4; // Define the MmaCore components using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore< ThreadblockShape, WarpShape, InstructionShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp, Stages>; dim3 grid(1, 1); dim3 block(32, 4, 1); test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(), problem_size.k(), alpha, beta) .run(grid, block); } //////////////////////////////////////////////////////////////////////////////// TEST(SM80_gemm_threadblock_crosswise, tensor_op_64x128x512_32x64x512_16x8x256_4stage) { using ElementA = cutlass::uint1b_t; using LayoutA = cutlass::layout::RowMajor; using ElementB = cutlass::uint1b_t; using LayoutB = cutlass::layout::ColumnMajor; using ElementC = int; using LayoutC = cutlass::layout::ColumnMajor; cutlass::gemm::GemmCoord problem_size(64, 128, 4096); using ThreadblockShape = cutlass::gemm::GemmShape<64, 128, 512>; using WarpShape = cutlass::gemm::GemmShape<32, 64, 512>; using InstructionShape = cutlass::gemm::GemmShape<16, 8, 256>; float alpha = 1.f; float beta = 0.0f; int const Stages = 4; // Define the MmaCore components using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore< ThreadblockShape, WarpShape, InstructionShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp, Stages>; dim3 grid(1, 1); dim3 block(32, 4, 1); test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(), problem_size.k(), alpha, beta) .run(grid, block); } //////////////////////////////////////////////////////////////////////////////// TEST(SM80_gemm_threadblock_crosswise, tensor_op_128x128x512_64x64x512_16x8x256_4stage) { using ElementA = cutlass::uint1b_t; using LayoutA = cutlass::layout::RowMajor; using ElementB = cutlass::uint1b_t; using LayoutB = cutlass::layout::ColumnMajor; using ElementC = int; using LayoutC = cutlass::layout::ColumnMajor; cutlass::gemm::GemmCoord problem_size(128, 128, 4096); using ThreadblockShape = cutlass::gemm::GemmShape<128, 128, 512>; using WarpShape = cutlass::gemm::GemmShape<64, 64, 512>; using InstructionShape = cutlass::gemm::GemmShape<16, 8, 256>; float alpha = 1.f; float beta = 0.0f; int const Stages = 4; // Define the MmaCore components using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore< ThreadblockShape, WarpShape, InstructionShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp, Stages>; dim3 grid(1, 1); dim3 block(32, 4, 1); test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(), problem_size.k(), alpha, beta) .run(grid, block); } //////////////////////////////////////////////////////////////////////////////// TEST(SM80_gemm_threadblock_crosswise, multicta_256x256x6144_128x128x512_64x64x512_16x8x256_4stage) { using ElementA = cutlass::uint1b_t; using LayoutA = cutlass::layout::RowMajor; using ElementB = cutlass::uint1b_t; using LayoutB = cutlass::layout::ColumnMajor; using ElementC = int; using LayoutC = cutlass::layout::ColumnMajor; cutlass::gemm::GemmCoord problem_size(256, 256, 6144); using ThreadblockShape = cutlass::gemm::GemmShape<128, 128, 512>; using WarpShape = cutlass::gemm::GemmShape<64, 64, 512>; using InstructionShape = cutlass::gemm::GemmShape<16, 8, 256>; float alpha = 1.f; float beta = 0.0f; int const Stages = 4; // Define the MmaCore components using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore< ThreadblockShape, WarpShape, InstructionShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp, Stages>; dim3 grid(2, 2); dim3 block(32, 4, 1); test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(), problem_size.k(), alpha, beta) .run(grid, block); } //////////////////////////////////////////////////////////////////////////////// TEST(SM80_gemm_threadblock_crosswise, multicta_512x256x6144_256x128x512_64x64x512_16x8x256_4stage) { using ElementA = cutlass::uint1b_t; using LayoutA = cutlass::layout::RowMajor; using ElementB = cutlass::uint1b_t; using LayoutB = cutlass::layout::ColumnMajor; using ElementC = int; using LayoutC = cutlass::layout::ColumnMajor; cutlass::gemm::GemmCoord problem_size(512, 256, 6144); using ThreadblockShape = cutlass::gemm::GemmShape<256, 128, 512>; using WarpShape = cutlass::gemm::GemmShape<64, 64, 512>; using InstructionShape = cutlass::gemm::GemmShape<16, 8, 256>; float alpha = 1.f; float beta = 0.0f; int const Stages = 4; // Define the MmaCore components using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore< ThreadblockShape, WarpShape, InstructionShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp, Stages>; dim3 grid(2, 2); dim3 block(32, 8, 1); test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(), problem_size.k(), alpha, beta) .run(grid, block); } //////////////////////////////////////////////////////////////////////////////// TEST(SM80_gemm_threadblock_congruous, tensor_op_64x64x16_32x64x16_8x8x4_3stage) { using ElementA = double; using LayoutA = cutlass::layout::ColumnMajor; using ElementB = double; using LayoutB = cutlass::layout::RowMajor; using ElementC = double; using LayoutC = cutlass::layout::RowMajor; cutlass::gemm::GemmCoord problem_size(64, 64, 16); using ThreadblockShape = cutlass::gemm::GemmShape<64, 64, 16>; using WarpShape = cutlass::gemm::GemmShape<32, 64, 16>; using InstructionShape = cutlass::gemm::GemmShape<8, 8, 4>; int const Stages = 3; // Define the MmaCore components using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore< ThreadblockShape, WarpShape, InstructionShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp, Stages>; dim3 grid(1, 1); dim3 block(32, 2, 1); test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(), problem_size.k()) .run(grid, block); } //////////////////////////////////////////////////////////////////////////////// TEST(SM80_gemm_threadblock_congruous, tensor_op_128x128x16_32x64x16_8x8x4_3stage) { using ElementA = double; using LayoutA = cutlass::layout::ColumnMajor; using ElementB = double; using LayoutB = cutlass::layout::RowMajor; using ElementC = double; using LayoutC = cutlass::layout::RowMajor; cutlass::gemm::GemmCoord problem_size(128, 128, 64); using ThreadblockShape = cutlass::gemm::GemmShape<128, 128, 16>; using WarpShape = cutlass::gemm::GemmShape<32, 64, 16>; using InstructionShape = cutlass::gemm::GemmShape<8, 8, 4>; int const Stages = 3; // Define the MmaCore components using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore< ThreadblockShape, WarpShape, InstructionShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp, Stages>; dim3 grid(1, 1); dim3 block(32, 8, 1); test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(), problem_size.k()) .run(grid, block); } //////////////////////////////////////////////////////////////////////////////// TEST(SM80_gemm_threadblock_interleaved, tensor_op_64x128x64_32x64x64_16x8x32_3stage) { using ElementA = int8_t; using LayoutA = cutlass::layout::ColumnMajorInterleaved<32>; using ElementB = int8_t; using LayoutB = cutlass::layout::RowMajorInterleaved<32>; using ElementC = int; using LayoutC = cutlass::layout::ColumnMajor; cutlass::gemm::GemmCoord problem_size(64, 128, 256); using ThreadblockShape = cutlass::gemm::GemmShape<64, 128, 64>; using WarpShape = cutlass::gemm::GemmShape<32, 64, 64>; using InstructionShape = cutlass::gemm::GemmShape<16, 8, 32>; float alpha = 1.f; float beta = 0.0f; int const Stages = 3; // Define the MmaCore components using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore< ThreadblockShape, WarpShape, InstructionShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp, Stages>; dim3 grid(1, 1); dim3 block(32, 4, 1); test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(), problem_size.k(), alpha, beta) .run(grid, block); } //////////////////////////////////////////////////////////////////////////////// TEST(SM80_gemm_threadblock_interleaved, tensor_op_128x128x64_64x64x64_16x8x32_3stage) { using ElementA = int8_t; using LayoutA = cutlass::layout::ColumnMajorInterleaved<32>; using ElementB = int8_t; using LayoutB = cutlass::layout::RowMajorInterleaved<32>; using ElementC = int; using LayoutC = cutlass::layout::ColumnMajor; cutlass::gemm::GemmCoord problem_size(128, 128, 256); using ThreadblockShape = cutlass::gemm::GemmShape<128, 128, 64>; using WarpShape = cutlass::gemm::GemmShape<64, 64, 64>; using InstructionShape = cutlass::gemm::GemmShape<16, 8, 32>; float alpha = 1.f; float beta = 0.0f; int const Stages = 3; // Define the MmaCore components using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore< ThreadblockShape, WarpShape, InstructionShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp, Stages>; dim3 grid(1, 1); dim3 block(32, 4, 1); test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(), problem_size.k(), alpha, beta) .run(grid, block); } //////////////////////////////////////////////////////////////////////////////// TEST(SM80_gemm_threadblock_interleaved, multicta_256x256x384_128x128x64_64x64x64_16x8x32_3stage) { using ElementA = int8_t; using LayoutA = cutlass::layout::ColumnMajorInterleaved<32>; using ElementB = int8_t; using LayoutB = cutlass::layout::RowMajorInterleaved<32>; using ElementC = int; using LayoutC = cutlass::layout::ColumnMajor; cutlass::gemm::GemmCoord problem_size(256, 256, 384); using ThreadblockShape = cutlass::gemm::GemmShape<128, 128, 64>; using WarpShape = cutlass::gemm::GemmShape<64, 64, 64>; using InstructionShape = cutlass::gemm::GemmShape<16, 8, 32>; float alpha = 1.f; float beta = 0.0f; int const Stages = 3; // Define the MmaCore components using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore< ThreadblockShape, WarpShape, InstructionShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp, Stages>; dim3 grid(2, 2); dim3 block(32, 4, 1); test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(), problem_size.k(), alpha, beta) .run(grid, block); } //////////////////////////////////////////////////////////////////////////////// TEST(SM80_gemm_threadblock_interleaved, multicta_512x256x384_256x128x64_64x64x64_16x8x32_3stage) { using ElementA = int8_t; using LayoutA = cutlass::layout::ColumnMajorInterleaved<32>; using ElementB = int8_t; using LayoutB = cutlass::layout::RowMajorInterleaved<32>; using ElementC = int; using LayoutC = cutlass::layout::ColumnMajor; cutlass::gemm::GemmCoord problem_size(512, 256, 384); using ThreadblockShape = cutlass::gemm::GemmShape<256, 128, 64>; using WarpShape = cutlass::gemm::GemmShape<64, 64, 64>; using InstructionShape = cutlass::gemm::GemmShape<16, 8, 32>; float alpha = 1.f; float beta = 0.0f; int const Stages = 3; // Define the MmaCore components using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore< ThreadblockShape, WarpShape, InstructionShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp, Stages>; dim3 grid(2, 2); dim3 block(32, 8, 1); test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(), problem_size.k(), alpha, beta) .run(grid, block); } //////////////////////////////////////////////////////////////////////////////// TEST(SM80_gemm_threadblock_interleaved, tensor_op_64x128x128_32x64x128_16x8x64_3stage) { using ElementA = cutlass::int4b_t; using LayoutA = cutlass::layout::ColumnMajorInterleaved<64>; using ElementB = cutlass::int4b_t; using LayoutB = cutlass::layout::RowMajorInterleaved<64>; using ElementC = int; using LayoutC = cutlass::layout::ColumnMajor; cutlass::gemm::GemmCoord problem_size(64, 128, 512); using ThreadblockShape = cutlass::gemm::GemmShape<64, 128, 128>; using WarpShape = cutlass::gemm::GemmShape<32, 64, 128>; using InstructionShape = cutlass::gemm::GemmShape<16, 8, 64>; float alpha = 1.f; float beta = 0.0f; int const Stages = 3; // Define the MmaCore components using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore< ThreadblockShape, WarpShape, InstructionShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp, Stages>; dim3 grid(1, 1); dim3 block(32, 4, 1); test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(), problem_size.k(), alpha, beta) .run(grid, block); } //////////////////////////////////////////////////////////////////////////////// TEST(SM80_gemm_threadblock_interleaved, tensor_op_128x128x128_64x64x128_16x8x64_3stage) { using ElementA = cutlass::int4b_t; using LayoutA = cutlass::layout::ColumnMajorInterleaved<64>; using ElementB = cutlass::int4b_t; using LayoutB = cutlass::layout::RowMajorInterleaved<64>; using ElementC = int; using LayoutC = cutlass::layout::ColumnMajor; cutlass::gemm::GemmCoord problem_size(128, 128, 512); using ThreadblockShape = cutlass::gemm::GemmShape<128, 128, 128>; using WarpShape = cutlass::gemm::GemmShape<64, 64, 128>; using InstructionShape = cutlass::gemm::GemmShape<16, 8, 64>; float alpha = 1.f; float beta = 0.0f; int const Stages = 3; // Define the MmaCore components using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore< ThreadblockShape, WarpShape, InstructionShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp, Stages>; dim3 grid(1, 1); dim3 block(32, 4, 1); test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(), problem_size.k(), alpha, beta) .run(grid, block); } //////////////////////////////////////////////////////////////////////////////// TEST(SM80_gemm_threadblock_interleaved, multicta_256x256x768_128x128x128_64x64x128_16x8x64_3stage) { using ElementA = cutlass::int4b_t; using LayoutA = cutlass::layout::ColumnMajorInterleaved<64>; using ElementB = cutlass::int4b_t; using LayoutB = cutlass::layout::RowMajorInterleaved<64>; using ElementC = int; using LayoutC = cutlass::layout::ColumnMajor; cutlass::gemm::GemmCoord problem_size(256, 256, 768); using ThreadblockShape = cutlass::gemm::GemmShape<128, 128, 128>; using WarpShape = cutlass::gemm::GemmShape<64, 64, 128>; using InstructionShape = cutlass::gemm::GemmShape<16, 8, 64>; float alpha = 1.f; float beta = 0.0f; int const Stages = 3; // Define the MmaCore components using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore< ThreadblockShape, WarpShape, InstructionShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp, Stages>; dim3 grid(2, 2); dim3 block(32, 4, 1); test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(), problem_size.k(), alpha, beta) .run(grid, block); } //////////////////////////////////////////////////////////////////////////////// TEST(SM80_gemm_threadblock_interleaved, multicta_512x256x1536_256x128x128_64x64x128_16x8x64_3stage) { using ElementA = cutlass::int4b_t; using LayoutA = cutlass::layout::ColumnMajorInterleaved<64>; using ElementB = cutlass::int4b_t; using LayoutB = cutlass::layout::RowMajorInterleaved<64>; using ElementC = int; using LayoutC = cutlass::layout::ColumnMajor; cutlass::gemm::GemmCoord problem_size(512, 256, 1536); using ThreadblockShape = cutlass::gemm::GemmShape<256, 128, 128>; using WarpShape = cutlass::gemm::GemmShape<64, 64, 128>; using InstructionShape = cutlass::gemm::GemmShape<16, 8, 64>; float alpha = 1.f; float beta = 0.0f; int const Stages = 3; // Define the MmaCore components using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore< ThreadblockShape, WarpShape, InstructionShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp, Stages>; dim3 grid(2, 2); dim3 block(32, 8, 1); test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(), problem_size.k(), alpha, beta) .run(grid, block); } //////////////////////////////////////////////////////////////////////////////// TEST(SM80_gemm_threadblock_crosswise_f64, tensor_op_32x32x16_16x16x16_8x8x4_4stage) { using ElementA = double; using LayoutA = cutlass::layout::RowMajor; using ElementB = double; using LayoutB = cutlass::layout::ColumnMajor; using ElementC = double; using LayoutC = cutlass::layout::RowMajor; cutlass::gemm::GemmCoord problem_size(32, 32, 128); using ThreadblockShape = cutlass::gemm::GemmShape<32, 32, 16>; using WarpShape = cutlass::gemm::GemmShape<16, 16, 16>; using InstructionShape = cutlass::gemm::GemmShape<8, 8, 4>; int const Stages = 4; // Define the MmaCore components using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore< ThreadblockShape, WarpShape, InstructionShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp, Stages>; dim3 grid(1, 1); dim3 block(32, 4, 1); test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(), problem_size.k()) .run(grid, block); } TEST(SM80_gemm_threadblock_crosswise_f64, tensor_op_64x64x16_32x32x16_8x8x4_4stage) { using ElementA = double; using LayoutA = cutlass::layout::RowMajor; using ElementB = double; using LayoutB = cutlass::layout::ColumnMajor; using ElementC = double; using LayoutC = cutlass::layout::RowMajor; cutlass::gemm::GemmCoord problem_size(64, 64, 128); using ThreadblockShape = cutlass::gemm::GemmShape<64, 64, 16>; using WarpShape = cutlass::gemm::GemmShape<32, 32, 16>; using InstructionShape = cutlass::gemm::GemmShape<8, 8, 4>; int const Stages = 4; // Define the MmaCore components using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore< ThreadblockShape, WarpShape, InstructionShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp, Stages>; dim3 grid(1, 1); dim3 block(32, 4, 1); test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(), problem_size.k()) .run(grid, block); } TEST(SM80_gemm_threadblock_crosswise_f64, tensor_op_64x128x16_32x64x16_8x8x4_4stage) { using ElementA = double; using LayoutA = cutlass::layout::RowMajor; using ElementB = double; using LayoutB = cutlass::layout::ColumnMajor; using ElementC = double; using LayoutC = cutlass::layout::RowMajor; cutlass::gemm::GemmCoord problem_size(64, 128, 128); using ThreadblockShape = cutlass::gemm::GemmShape<64, 128, 16>; using WarpShape = cutlass::gemm::GemmShape<32, 64, 16>; using InstructionShape = cutlass::gemm::GemmShape<8, 8, 4>; int const Stages = 4; // Define the MmaCore components using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore< ThreadblockShape, WarpShape, InstructionShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp, Stages>; dim3 grid(1, 1); dim3 block(32, 4, 1); test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(), problem_size.k()) .run(grid, block); } TEST(SM80_gemm_threadblock_crosswise_f64, tensor_op_128x64x16_64x32x16_8x8x4_4stage) { using ElementA = double; using LayoutA = cutlass::layout::RowMajor; using ElementB = double; using LayoutB = cutlass::layout::ColumnMajor; using ElementC = double; using LayoutC = cutlass::layout::RowMajor; cutlass::gemm::GemmCoord problem_size(128, 64, 128); using ThreadblockShape = cutlass::gemm::GemmShape<128, 64, 16>; using WarpShape = cutlass::gemm::GemmShape<64, 32, 16>; using InstructionShape = cutlass::gemm::GemmShape<8, 8, 4>; int const Stages = 4; // Define the MmaCore components using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore< ThreadblockShape, WarpShape, InstructionShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp, Stages>; dim3 grid(1, 1); dim3 block(32, 4, 1); test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(), problem_size.k()) .run(grid, block); } TEST(SM80_gemm_threadblock_crosswise_f64, tensor_op_128x128x16_32x64x16_8x8x4_3stage) { using ElementA = double; using LayoutA = cutlass::layout::RowMajor; using ElementB = double; using LayoutB = cutlass::layout::ColumnMajor; using ElementC = double; using LayoutC = cutlass::layout::RowMajor; cutlass::gemm::GemmCoord problem_size(128, 128, 128); using ThreadblockShape = cutlass::gemm::GemmShape<128, 128, 16>; using WarpShape = cutlass::gemm::GemmShape<32, 64, 16>; using InstructionShape = cutlass::gemm::GemmShape<8, 8, 4>; int const Stages = 3; // Define the MmaCore components using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore< ThreadblockShape, WarpShape, InstructionShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp, Stages>; dim3 grid(1, 1); dim3 block(32, 8, 1); test::gemm::threadblock::Testbed<MmaCore>(problem_size.m(), problem_size.n(), problem_size.k()) .run(grid, block); } //////////////////////////////////////////////////////////////////////////////// #endif
test/unit/gemm/threadblock/mma_multistage.cu/0
{ "file_path": "test/unit/gemm/threadblock/mma_multistage.cu", "repo_id": "test", "token_count": 53626 }
66
/*************************************************************************************************** * Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. * SPDX-License-Identifier: BSD-3-Clause * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * **************************************************************************************************/ /*! \file \brief Unit testbed for kernel-level GEMM */ #pragma once #include <fstream> #include "../../common/cutlass_unit_test.h" #include "cutlass/cutlass.h" #include "cutlass/platform/platform.h" #include "cutlass/aligned_buffer.h" #include "cutlass/gemm/gemm.h" #include "cutlass/layout/matrix.h" #include "cutlass/layout/vector.h" #include "cutlass/numeric_types.h" #include "cutlass/core_io.h" #include "cutlass/util/host_tensor_planar_complex.h" #include "cutlass/util/tensor_view_io.h" #include "cutlass/util/distribution.h" #include "cutlass/util/reference/host/gemm_planar_complex.h" #include "cutlass/util/reference/host/tensor_compare.h" #include "cutlass/util/reference/host/tensor_fill.h" ///////////////////////////////////////////////////////////////////////////////////////////////// namespace test { namespace gemm { namespace threadblock { ///////////////////////////////////////////////////////////////////////////////////////////////// template <typename Mma> __global__ void kernel_mma_planar_complex( cutlass::gemm::GemmCoord problem_size, typename Mma::IteratorA::Params params_A, typename Mma::IteratorA::Element *ptr_A, int64_t imaginary_stride_A, typename Mma::IteratorB::Params params_B, typename Mma::IteratorB::Element *ptr_B, int64_t imaginary_stride_B, typename Mma::ElementC *ptr_C, typename Mma::LayoutC::Stride::Index ldc, int64_t imaginary_stride_C) { // Shared storage needed by threadblock-scoped matrix multiply-accumulate __shared__ typename Mma::SharedStorage shared_storage; // Compute threadblock location cutlass::gemm::GemmCoord tb_tile_offset = {int(blockIdx.x), int(blockIdx.y), 0}; cutlass::MatrixCoord tb_offset_A{tb_tile_offset.m() * Mma::Shape::kM, tb_tile_offset.k()}; cutlass::MatrixCoord tb_offset_B{tb_tile_offset.k(), tb_tile_offset.n() * Mma::Shape::kN}; // Compute position within threadblock int tb_thread_id = threadIdx.y * blockDim.x + threadIdx.x; // Construct iterators to A operand typename Mma::IteratorA iterator_A_real(params_A, ptr_A, {problem_size.m(), problem_size.k()}, tb_thread_id, tb_offset_A); typename Mma::IteratorA iterator_A_imag(params_A, ptr_A + imaginary_stride_A, {problem_size.m(), problem_size.k()}, tb_thread_id, tb_offset_A); // Construct iterators to B operand typename Mma::IteratorB iterator_B_real(params_B, ptr_B, {problem_size.k(), problem_size.n()}, tb_thread_id, tb_offset_B); typename Mma::IteratorB iterator_B_imag(params_B, ptr_B + imaginary_stride_B, {problem_size.k(), problem_size.n()}, tb_thread_id, tb_offset_B); int warp_id = threadIdx.y; int lane_id = threadIdx.x; // Construct thread-scoped matrix multiply Mma mma(shared_storage, tb_thread_id, warp_id, threadIdx.x); typename Mma::FragmentC accum; accum.clear(); int gemm_k_iterations = (problem_size.k() + Mma::Shape::kK - 1) / Mma::Shape::kK; // Compute threadblock-scoped matrix multiply-add mma(gemm_k_iterations, accum, iterator_A_real, iterator_A_imag, iterator_B_real, iterator_B_imag, accum); // Output results typename Mma::Operator::IteratorC iterator_C({ptr_C, ldc}, lane_id); iterator_C.add_tile_offset( {(tb_tile_offset.m() * Mma::WarpCount::kM) + (warp_id % Mma::WarpCount::kM), (tb_tile_offset.n() * Mma::WarpCount::kN) + (warp_id / Mma::WarpCount::kM)}); iterator_C.store(accum.real); iterator_C.store_with_pointer_offset(accum.imag, imaginary_stride_C); } ///////////////////////////////////////////////////////////////////////////////////////////////// /// Structure to compute the matrix product template < /// Threadblock-level matrix multiply-accumulate typename Mma_> struct TestbedPlanarComplex { using Mma = Mma_; using ThreadblockShape = typename Mma::Shape; using IteratorA = typename Mma::IteratorA; using ElementA = typename Mma::IteratorA::Element; using LayoutA = typename Mma::IteratorA::Layout; using IteratorB = typename Mma::IteratorB; using ElementB = typename Mma::IteratorB::Element; using LayoutB = typename Mma::IteratorB::Layout; using ElementC = typename Mma::ElementC; using ElementAccumulator = typename Mma::ElementC; using LayoutC = typename Mma::LayoutC; using ThreadMapA = typename Mma::IteratorA::ThreadMap; using ThreadMapB = typename Mma::IteratorB::ThreadMap; using AccessTypeA = cutlass::Array<ElementA, ThreadMapA::kElementsPerAccess>; using AccessTypeB = cutlass::Array<ElementB, ThreadMapB::kElementsPerAccess>; static int const Stages = Mma::kStages; static cutlass::arch::CacheOperation::Kind const CacheOpA = Mma::kCacheOpA; static cutlass::arch::CacheOperation::Kind const CacheOpB = Mma::kCacheOpB; // // Data members // cutlass::HostTensorPlanarComplex<ElementA, LayoutA> matrix_A; cutlass::HostTensorPlanarComplex<ElementB, LayoutB> matrix_B; cutlass::HostTensorPlanarComplex<ElementC, LayoutC> matrix_C_computed; cutlass::HostTensorPlanarComplex<ElementC, LayoutC> matrix_C_reference; cutlass::gemm::GemmCoord problem_size; // // Methods // /// Allocates workspace in device memory TestbedPlanarComplex(int m, int n, int k) : problem_size(m, n, k) { matrix_A.reset(cutlass::make_Coord(m, k)); matrix_B.reset(cutlass::make_Coord(k, n)); matrix_C_computed.reset(cutlass::make_Coord(m, n)); matrix_C_reference.reset(cutlass::make_Coord(m, n), false); } /// Runs the test bool run( dim3 grid, dim3 block, cutlass::Distribution::Kind init_A = cutlass::Distribution::Uniform, cutlass::Distribution::Kind init_B = cutlass::Distribution::Uniform) { // // initialize device memory // if (init_A == cutlass::Distribution::Uniform) { int scope_max = 8; int scope_min = -8; if (cutlass::sizeof_bits<ElementA>::value == 4) { scope_max = 2; scope_min = -2; } else if (cutlass::sizeof_bits<ElementA>::value == 1) { scope_max = 2; scope_min = 0; } uint64_t seed = 7; cutlass::reference::host::TensorFillRandomUniform( matrix_A.host_view(), seed, scope_max, scope_min, 0); } else if (init_A == cutlass::Distribution::Sequential) { for (int i = 0; i < matrix_A.capacity() * 2; ++i) { matrix_A.host_data()[i] = cutlass::half_t(float(i % 5) - 2); } /* cutlass::reference::host::BlockFillSequential(matrix_A.host_data(), matrix_A.capacity() * 2); */ } else if (init_A == cutlass::Distribution::Identity) { //cutlass::reference::host::TensorFillIdentity(matrix_A.host_view()); } else { return false; } if (init_B == cutlass::Distribution::Uniform) { int scope_max = 8; int scope_min = -8; if (cutlass::sizeof_bits<ElementB>::value == 4) { scope_max = 2; scope_min = -2; } else if (cutlass::sizeof_bits<ElementB>::value == 1) { scope_max = 2; scope_min = 0; } uint64_t seed = 7; cutlass::reference::host::TensorFillRandomUniform( matrix_B.host_view(), seed + 16, scope_max, scope_min, 0); } else if (init_B == cutlass::Distribution::Sequential) { cutlass::reference::host::BlockFillSequential(matrix_B.host_data(), matrix_B.capacity() * 2); for (int i = 0; i < matrix_B.capacity() * 2; ++i) { matrix_B.host_data()[i] = cutlass::half_t(float((i + 3) % 5) - 2); } } else if (init_B == cutlass::Distribution::Identity) { //cutlass::reference::host::TensorFillIdentity(matrix_B.host_view()); } else { return false; } matrix_A.sync_device(); matrix_B.sync_device(); matrix_C_computed.sync_device(); typename IteratorA::Params params_A(matrix_A.layout()); typename IteratorB::Params params_B(matrix_B.layout()); test::gemm::threadblock::kernel_mma_planar_complex<Mma><<<grid, block>>>( problem_size, params_A, matrix_A.device_data(), matrix_A.imaginary_stride(), params_B, matrix_B.device_data(), matrix_B.imaginary_stride(), matrix_C_computed.device_data(), matrix_C_computed.layout().stride(0), matrix_C_computed.imaginary_stride() ); // // Check error code // cudaError_t result = cudaDeviceSynchronize(); EXPECT_EQ(result, cudaSuccess) << " kernel error: " << cudaGetErrorString(result); matrix_C_computed.sync_host(); cutlass::reference::host::GemmPlanarComplex< ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, ElementAccumulator >( problem_size, cutlass::complex<ElementAccumulator>(ElementAccumulator(1)), matrix_A.host_ref(), Mma::kTransformA, matrix_B.host_ref(), Mma::kTransformB, cutlass::complex<ElementAccumulator>(ElementAccumulator(0)), matrix_C_reference.host_ref(), matrix_C_reference.host_ref() ); bool passed = cutlass::reference::host::TensorEquals( matrix_C_computed.host_view(), matrix_C_reference.host_view() ); EXPECT_TRUE(passed); if (!passed) { std::ofstream output("mma_pipelined_testbed_errors.txt"); output << "A:\n" << matrix_A.host_view() << "\n" << "B:\n" << matrix_B.host_view() << "\n" << "Reference:\n" << matrix_C_reference.host_view() << "\n" << "Computed:\n" << matrix_C_computed.host_view() << "\n"; } return passed; } }; ///////////////////////////////////////////////////////////////////////////////////////////////// } // namespace threadblock } // namespace gemm } // namespace test
test/unit/gemm/threadblock/mma_planar_complex_testbed.h/0
{ "file_path": "test/unit/gemm/threadblock/mma_planar_complex_testbed.h", "repo_id": "test", "token_count": 4837 }
67
/*************************************************************************************************** * Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. * SPDX-License-Identifier: BSD-3-Clause * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * **************************************************************************************************/ /*! \file \brief Unit tests for thread-level GEMM */ #pragma once #include "cutlass/cutlass.h" #include "cutlass/aligned_buffer.h" #include "cutlass/numeric_types.h" #include "cutlass/subbyte_reference.h" #include "cutlass/platform/platform.h" #include "cutlass/arch/arch.h" #include "cutlass/util/host_tensor.h" #include "cutlass/util/tensor_view_io.h" #include "cutlass/util/distribution.h" #include "cutlass/util/reference/host/gemm.h" #include "cutlass/util/reference/host/gemm_complex.h" #include "cutlass/util/reference/host/tensor_compare.h" #include "cutlass/util/reference/host/tensor_copy.h" #include "cutlass/util/reference/host/tensor_fill.h" #include "cutlass/util/host_reorder.h" #include "cutlass/util/host_uncompress.h" namespace test { namespace gemm { namespace warp { ///////////////////////////////////////////////////////////////////////////////////////////////// /// Test kernel template <typename Mma, typename ThreadblockShape> __global__ void kernel( typename Mma::ElementC *output_C, typename Mma::ElementA const *input_A, typename Mma::ElementB const *input_B, typename Mma::ElementC const *input_C, int iterations = 1) { // Use AlignedBuffer to store trivially copyable objects in unions and __shared__ buffers. __shared__ cutlass::AlignedBuffer< typename Mma::ElementA, ThreadblockShape::kM * ThreadblockShape::kK> smem_buffer_A; __shared__ cutlass::AlignedBuffer< typename Mma::ElementB, ThreadblockShape::kN * ThreadblockShape::kK> smem_buffer_B; if (threadIdx.x == 0) { typename Mma::ElementA *smem_ptr_A = smem_buffer_A.data(); #pragma unroll 1 for (size_t i = 0; i < smem_buffer_A.size(); ++i) { cutlass::ReferenceFactory<typename Mma::ElementA>::get(smem_ptr_A, i) = cutlass::ReferenceFactory<typename cutlass::platform::remove_const< typename Mma::ElementA>::type>::get(input_A, i); } typename Mma::ElementB *smem_ptr_B = smem_buffer_B.data(); #pragma unroll 1 for (size_t i = 0; i < smem_buffer_B.size(); ++i) { cutlass::ReferenceFactory<typename Mma::ElementB>::get(smem_ptr_B, i) = cutlass::ReferenceFactory<typename cutlass::platform::remove_const< typename Mma::ElementB>::type>::get(input_B, i); } } __syncthreads(); // // Construct warp-level matrix product // using FragmentA = typename Mma::FragmentA; using FragmentB = typename Mma::FragmentB; using FragmentC = typename Mma::FragmentC; typename Mma::LayoutA layout_A = Mma::LayoutA::packed({ThreadblockShape::kM, ThreadblockShape::kK}); typename Mma::LayoutB layout_B = Mma::LayoutB::packed({ThreadblockShape::kK, ThreadblockShape::kN}); typename Mma::LayoutC layout_C = Mma::LayoutC::packed({Mma::Shape::kM, Mma::Shape::kN}); typename Mma::IteratorA iter_A({smem_buffer_A.data(), layout_A}, cutlass::arch::LaneId()); typename Mma::IteratorB iter_B({smem_buffer_B.data(), layout_B}, cutlass::arch::LaneId()); FragmentA frag_A; FragmentB frag_B; FragmentC accum; Mma mma; accum.clear(); CUTLASS_PRAGMA_NO_UNROLL for (int iter = 0; iter < iterations; ++iter) { // place in loop that is not unrolled CUTLASS_PRAGMA_UNROLL for (int k = 0; k < ThreadblockShape::kK; k += Mma::Policy::MmaShape::kK) { iter_A.load(frag_A); iter_B.load(frag_B); ++iter_A; ++iter_B; mma(accum, frag_A, frag_B, accum); } } typename Mma::IteratorC iter_C({output_C, layout_C}, cutlass::arch::LaneId()); iter_C.store(accum); } ///////////////////////////////////////////////////////////////////////////////////////////////// /// Structure to compute the matrix product template < /// Warp-level matrix multiply-accumulate typename Mma_, /// Size of threadblock-scoped shape used to store SMEM typename ThreadblockShape_, /// The inner product operation performed by GEMM typename Operator_ = cutlass::arch::OpMultiplyAdd > struct Testbed { /// Thread-level matrix multiply-accumulate operator using Mma = Mma_; using ThreadblockShape = ThreadblockShape_; using Operator = Operator_; using Shape = typename Mma::Shape; using ElementA = typename Mma::ElementA; using LayoutA = typename Mma::LayoutA; using ElementB = typename Mma::ElementB; using LayoutB = typename Mma::LayoutB; using ElementC = typename Mma::ElementC; using LayoutC = typename Mma::LayoutC; // // Data members // cutlass::HostTensor<ElementA, LayoutA> tensor_A; cutlass::HostTensor<ElementB, LayoutB> tensor_B; cutlass::HostTensor<ElementC, LayoutC> tensor_C; cutlass::HostTensor<ElementC, LayoutC> tensor_D_computed; cutlass::HostTensor<ElementC, LayoutC> tensor_D_reference; // // Methods // /// Allocates workspace in device memory Testbed() { tensor_A.reset(cutlass::make_Coord(ThreadblockShape::kM, ThreadblockShape::kK)); tensor_B.reset(cutlass::make_Coord(ThreadblockShape::kK, ThreadblockShape::kN)); tensor_C.reset(cutlass::make_Coord(Shape::kM, Shape::kN)); tensor_D_computed.reset(cutlass::make_Coord(Shape::kM, Shape::kN)); tensor_D_reference.reset(cutlass::make_Coord(Shape::kM, Shape::kN), false); } /// Returns true if the CUDA device is sufficient to execute the kernel. bool sufficient() const { cudaDeviceProp properties; int device_idx; cudaError_t result = cudaGetDevice(&device_idx); if (result != cudaSuccess) { throw std::runtime_error("cudaGetDevice() API call failed."); } result = cudaGetDeviceProperties(&properties, device_idx); if (result != cudaSuccess) { throw std::runtime_error("cudaGetDeviceProperties() failed"); } if (properties.major == 9) { // NVIDIA Hopper drops support for several data types if ( cutlass::sizeof_bits<ElementA>::value < 8 || cutlass::sizeof_bits<ElementB>::value < 8 || cutlass::sizeof_bits<ElementC>::value < 8) { return false; } } return true; } /// Runs the test bool run( cutlass::Distribution::Kind init_A = cutlass::Distribution::Uniform, cutlass::Distribution::Kind init_B = cutlass::Distribution::Uniform) { if (!sufficient()) { return true; } // // initialize device memory // if (init_A == cutlass::Distribution::Uniform) { int scope_max = 8; int scope_min = -8; if (cutlass::sizeof_bits<ElementA>::value == 4) { scope_max = 2; scope_min = -2; } else if (cutlass::sizeof_bits<ElementA>::value == 1) { scope_max = 2; scope_min = 0; } uint64_t seed = 7; cutlass::reference::host::BlockFillRandomUniform(tensor_A.host_data(), tensor_A.capacity(), seed, scope_max, scope_min, 0); } else if (init_A == cutlass::Distribution::Sequential) { cutlass::reference::host::BlockFillSequential(tensor_A.host_data(), tensor_A.capacity()); } else if (init_A == cutlass::Distribution::Identity) { cutlass::reference::host::TensorFillIdentity(tensor_A.host_view()); } else { return false; } if (init_B == cutlass::Distribution::Uniform) { int scope_max = 8; int scope_min = -8; if (cutlass::sizeof_bits<ElementB>::value == 4) { scope_max = 2; scope_min = -2; } else if (cutlass::sizeof_bits<ElementB>::value == 1) { scope_max = 2; scope_min = 0; } uint64_t seed = 7; cutlass::reference::host::BlockFillRandomUniform(tensor_B.host_data(), tensor_B.capacity(), seed, scope_max, scope_min, 0); } else if (init_B == cutlass::Distribution::Sequential) { cutlass::reference::host::BlockFillSequential(tensor_B.host_data(), tensor_B.capacity()); } else if (init_B == cutlass::Distribution::Identity) { cutlass::reference::host::TensorFillIdentity(tensor_B.host_view()); } else { return false; } cutlass::reference::host::TensorFill( tensor_C.host_view(), ElementC(0) ); cutlass::reference::host::TensorFill( tensor_D_computed.host_view(), ElementC(0) ); cutlass::reference::host::TensorFill( tensor_D_reference.host_view(), ElementC(0) ); tensor_A.sync_device(); tensor_B.sync_device(); tensor_C.sync_device(); tensor_D_computed.sync_device(); // launch kernel kernel<Mma, ThreadblockShape><<< dim3(1, 1), dim3(32, 1, 1) >>>( tensor_D_computed.device_data(), tensor_A.device_data(), tensor_B.device_data(), tensor_C.device_data()); // verify no errors cudaError_t result = cudaDeviceSynchronize(); EXPECT_EQ(result, cudaSuccess) << "CUDA ERROR: " << cudaGetErrorString(result); if (result != cudaSuccess) { return false; } tensor_D_computed.sync_host(); // // Reference implementation // cutlass::reference::host::Gemm<ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, ElementC, ElementC, Operator> reference_gemm; reference_gemm( {Shape::kM, Shape::kN, ThreadblockShape::kK}, ElementC(1), tensor_A.host_ref(), tensor_B.host_ref(), ElementC(0), tensor_D_reference.host_ref() ); // // Verify equivalence // // compare bool passed = cutlass::reference::host::TensorEquals( tensor_D_computed.host_view(), tensor_D_reference.host_view() ); EXPECT_TRUE(passed); if (!passed) { cutlass::TensorView<ElementA, cutlass::layout::ColumnMajor> tensor_A_physical( tensor_A.host_data(), tensor_A.stride()[0], tensor_A.extent()); cutlass::TensorView<ElementB, cutlass::layout::RowMajor> tensor_B_physical( tensor_B.host_data(), tensor_B.stride()[0], tensor_B.extent()); std::cout <<"cutlass::sizeof_bits<ElementA>::value = "<<cutlass::sizeof_bits<ElementA>::value<<"\n"; std::cout << "A:\n" << tensor_A.host_view() << "\n\n" << "A(physical - stride: " << tensor_A.stride()[0] << ", extent: " << tensor_A.extent() << "):\n" << tensor_A_physical << "\n\n"; std::cout <<"cutlass::sizeof_bits<ElementB>::value = "<<cutlass::sizeof_bits<ElementB>::value<<"\n"; std::cout << "B:\n" << tensor_B.host_view() << "\n\n" << "B(physical - stride: " << tensor_B.stride()[0] << ", extent: " << tensor_B.extent() << "):\n" << tensor_B_physical << "\n\n"; std::cout << "C:\n" << tensor_C.host_view() << "\n\n" << "Reference:\n" << tensor_D_reference.host_view() << "\n\n" << "Computed:\n" << tensor_D_computed.host_view() << std::endl; } return passed; } }; ///////////////////////////////////////////////////////////////////////////////////////////////// /// Structure to compute the matrix product template < /// Warp-level matrix multiply-accumulate typename Mma_, /// Size of threadblock-scoped shape used to store SMEM typename ThreadblockShape_ > struct TestbedComplex { /// Thread-level matrix multiply-accumulate operator using Mma = Mma_; using ThreadblockShape = ThreadblockShape_; using Shape = typename Mma::Shape; using ElementA = typename Mma::ElementA; using LayoutA = typename Mma::LayoutA; using ElementB = typename Mma::ElementB; using LayoutB = typename Mma::LayoutB; using ElementC = typename Mma::ElementC; using LayoutC = typename Mma::LayoutC; // // Data members // cutlass::HostTensor<ElementA, LayoutA> tensor_A; cutlass::HostTensor<ElementB, LayoutB> tensor_B; cutlass::HostTensor<ElementC, LayoutC> tensor_C; cutlass::HostTensor<ElementC, LayoutC> tensor_D_computed; cutlass::HostTensor<ElementC, LayoutC> tensor_D_reference; // // Methods // /// Allocates workspace in device memory TestbedComplex() { tensor_A.reset(cutlass::make_Coord(ThreadblockShape::kM, ThreadblockShape::kK)); tensor_B.reset(cutlass::make_Coord(ThreadblockShape::kK, ThreadblockShape::kN)); tensor_C.reset(cutlass::make_Coord(Shape::kM, Shape::kN)); tensor_D_computed.reset(cutlass::make_Coord(Shape::kM, Shape::kN)); tensor_D_reference.reset(cutlass::make_Coord(Shape::kM, Shape::kN), false); } /// Returns true if the CUDA device is sufficient to execute the kernel. bool sufficient() const { cudaDeviceProp properties; int device_idx; cudaError_t result = cudaGetDevice(&device_idx); if (result != cudaSuccess) { throw std::runtime_error("cudaGetDevice() API call failed."); } result = cudaGetDeviceProperties(&properties, device_idx); if (result != cudaSuccess) { throw std::runtime_error("cudaGetDeviceProperties() failed"); } if (properties.major == 9) { // NVIDIA Hopper drops support for several data types if ( cutlass::sizeof_bits<ElementA>::value < 8 || cutlass::sizeof_bits<ElementB>::value < 8 || cutlass::sizeof_bits<ElementC>::value < 8) { return false; } } return true; } /// Runs the test bool run( cutlass::Distribution::Kind init_A = cutlass::Distribution::Uniform, cutlass::Distribution::Kind init_B = cutlass::Distribution::Uniform) { if (!sufficient()) { return true; } // // initialize device memory // if (init_A == cutlass::Distribution::Uniform) { uint64_t seed = 7; cutlass::reference::host::TensorFillRandomUniform(tensor_A.host_view(), seed, 8, -8, 0); } else if (init_A == cutlass::Distribution::Sequential) { cutlass::reference::host::BlockFillSequential(tensor_A.host_data(), tensor_A.capacity()); } else if (init_A == cutlass::Distribution::Identity) { cutlass::reference::host::TensorFillIdentity(tensor_A.host_view()); } else { return false; } if (init_B == cutlass::Distribution::Uniform) { uint64_t seed = 7; cutlass::reference::host::TensorFillRandomUniform(tensor_B.host_view(), seed + 16, 8, -8, 0); } else if (init_B == cutlass::Distribution::Sequential) { cutlass::reference::host::BlockFillSequential(tensor_B.host_data(), tensor_B.capacity()); } else if (init_B == cutlass::Distribution::Identity) { cutlass::reference::host::TensorFillIdentity(tensor_B.host_view()); } else { return false; } cutlass::reference::host::TensorFill( tensor_C.host_view(), ElementC(0) ); cutlass::reference::host::TensorFill( tensor_D_computed.host_view(), ElementC(0) ); cutlass::reference::host::TensorFill( tensor_D_reference.host_view(), ElementC(0) ); tensor_A.sync_device(); tensor_B.sync_device(); tensor_C.sync_device(); tensor_D_computed.sync_device(); // launch kernel kernel<Mma, ThreadblockShape><<< dim3(1, 1), dim3(32, 1, 1) >>>( tensor_D_computed.device_data(), tensor_A.device_data(), tensor_B.device_data(), tensor_C.device_data()); // verify no errors cudaError_t result = cudaDeviceSynchronize(); EXPECT_EQ(result, cudaSuccess) << "CUDA ERROR: " << cudaGetErrorString(result); if (result != cudaSuccess) { return false; } tensor_D_computed.sync_host(); // // Reference implementation // cutlass::reference::host::GemmComplex( {Shape::kM, Shape::kN, ThreadblockShape::kK}, ElementC(1), tensor_A.host_ref(), Mma::kTransformA, tensor_B.host_ref(), Mma::kTransformB, ElementC(0), tensor_C.host_ref(), tensor_D_reference.host_ref() ); // // Verify equivalence // // compare bool passed = cutlass::reference::host::TensorEquals( tensor_D_computed.host_view(), tensor_D_reference.host_view() ); EXPECT_TRUE(passed); if (!passed) { cutlass::TensorView<ElementA, cutlass::layout::ColumnMajor> tensor_A_physical( tensor_A.host_data(), tensor_A.stride()[0], tensor_A.extent()); cutlass::TensorView<ElementB, cutlass::layout::RowMajor> tensor_B_physical( tensor_B.host_data(), tensor_B.stride()[0], tensor_B.extent()); std::cout <<"cutlass::sizeof_bits<ElementA>::value = "<<cutlass::sizeof_bits<ElementA>::value<<"\n"; std::cout << "A:\n" << tensor_A.host_view() << "\n\n" << "A(physical - stride: " << tensor_A.stride()[0] << ", extent: " << tensor_A.extent() << "):\n" << tensor_A_physical << "\n\n"; std::cout <<"cutlass::sizeof_bits<ElementB>::value = "<<cutlass::sizeof_bits<ElementB>::value<<"\n"; std::cout << "B:\n" << tensor_B.host_view() << "\n\n" << "B(physical - stride: " << tensor_B.stride()[0] << ", extent: " << tensor_B.extent() <<"):\n" << tensor_B_physical << "\n\n"; std::cout << "C:\n" << tensor_C.host_view() << "\n\n" << "Reference:\n" << tensor_D_reference.host_view() << "\n\n" << "Computed:\n" << tensor_D_computed.host_view() << std::endl; } return passed; } }; ///////////////////////////////////////////////////////////////////////////////////////////////// /// Test kernel template <typename Mma, typename ThreadblockShape> __global__ void kernel_transform( typename Mma::ElementC *output_C, typename Mma::ElementA const *input_A, typename Mma::ElementB const *input_B, typename Mma::ElementC const *input_C, int iterations = 1) { // Use AlignedBuffer to store trivially copyable objects in unions and __shared__ buffers. __shared__ cutlass::AlignedBuffer< typename Mma::ElementA, ThreadblockShape::kM * ThreadblockShape::kK> smem_buffer_A; __shared__ cutlass::AlignedBuffer< typename Mma::ElementB, ThreadblockShape::kN * ThreadblockShape::kK> smem_buffer_B; if (threadIdx.x == 0) { typename Mma::ElementA *smem_ptr_A = smem_buffer_A.data(); #pragma unroll 1 for (size_t i = 0; i < smem_buffer_A.size(); ++i) { cutlass::ReferenceFactory<typename Mma::ElementA>::get(smem_ptr_A, i) = cutlass::ReferenceFactory<typename cutlass::platform::remove_const< typename Mma::ElementA>::type>::get(input_A, i); } typename Mma::ElementB *smem_ptr_B = smem_buffer_B.data(); #pragma unroll 1 for (size_t i = 0; i < smem_buffer_B.size(); ++i) { cutlass::ReferenceFactory<typename Mma::ElementB>::get(smem_ptr_B, i) = cutlass::ReferenceFactory<typename cutlass::platform::remove_const< typename Mma::ElementB>::type>::get(input_B, i); } } __syncthreads(); // // Construct warp-level matrix product // using FragmentA = typename Mma::FragmentA; using FragmentB = typename Mma::FragmentB; using FragmentC = typename Mma::FragmentC; using TransformedFragmentA = typename Mma::TransformedFragmentA; using TransformedFragmentB = typename Mma::TransformedFragmentB; typename Mma::LayoutA layout_A = Mma::LayoutA::packed({ThreadblockShape::kM, ThreadblockShape::kK}); typename Mma::LayoutB layout_B = Mma::LayoutB::packed({ThreadblockShape::kK, ThreadblockShape::kN}); typename Mma::LayoutC layout_C = Mma::LayoutC::packed({Mma::Shape::kM, Mma::Shape::kN}); typename Mma::IteratorA iter_A({smem_buffer_A.data(), layout_A}, cutlass::arch::LaneId()); typename Mma::IteratorB iter_B({smem_buffer_B.data(), layout_B}, cutlass::arch::LaneId()); FragmentA loaded_frag_A; FragmentB loaded_frag_B; TransformedFragmentA transformed_frag_A; TransformedFragmentB transformed_frag_B; FragmentC accum; Mma mma; accum.clear(); CUTLASS_PRAGMA_NO_UNROLL for (int iter = 0; iter < iterations; ++iter) { // place in loop that is not unrolled CUTLASS_PRAGMA_UNROLL for (int k = 0; k < ThreadblockShape::kK; k += Mma::Policy::MmaShape::kK) { iter_A.load(loaded_frag_A); iter_B.load(loaded_frag_B); ++iter_A; ++iter_B; mma.transform(transformed_frag_A, transformed_frag_B, loaded_frag_A, loaded_frag_B); mma(accum, transformed_frag_A, transformed_frag_B, accum); } } typename Mma::IteratorC iter_C({output_C, layout_C}, cutlass::arch::LaneId()); iter_C.store(accum); } ///////////////////////////////////////////////////////////////////////////////////////////////// /// Structure to compute the matrix product template < /// Warp-level matrix multiply-accumulate typename Mma_, /// Size of threadblock-scoped shape used to store SMEM typename ThreadblockShape_, /// The innter product operation performed by GEMM typename Operator_ = cutlass::arch::OpMultiplyAdd > struct TransformTestbed { /// Thread-level matrix multiply-accumulate operator using Mma = Mma_; using ThreadblockShape = ThreadblockShape_; using Operator = Operator_; using Shape = typename Mma::Shape; using ElementA = typename Mma::ElementA; using LayoutA = typename Mma::LayoutA; using ElementB = typename Mma::ElementB; using LayoutB = typename Mma::LayoutB; using ElementC = typename Mma::ElementC; using LayoutC = typename Mma::LayoutC; // // Data members // cutlass::HostTensor<ElementA, LayoutA> tensor_A; cutlass::HostTensor<ElementB, LayoutB> tensor_B; cutlass::HostTensor<ElementC, LayoutC> tensor_C; cutlass::HostTensor<ElementC, LayoutC> tensor_D_computed; cutlass::HostTensor<ElementC, LayoutC> tensor_D_reference; // // Methods // /// Allocates workspace in device memory TransformTestbed() { tensor_A.reset(cutlass::make_Coord(ThreadblockShape::kM, ThreadblockShape::kK)); tensor_B.reset(cutlass::make_Coord(ThreadblockShape::kK, ThreadblockShape::kN)); tensor_C.reset(cutlass::make_Coord(Shape::kM, Shape::kN)); tensor_D_computed.reset(cutlass::make_Coord(Shape::kM, Shape::kN)); tensor_D_reference.reset(cutlass::make_Coord(Shape::kM, Shape::kN), false); } /// Returns true if the CUDA device is sufficient to execute the kernel. bool sufficient() const { cudaDeviceProp properties; int device_idx; cudaError_t result = cudaGetDevice(&device_idx); if (result != cudaSuccess) { throw std::runtime_error("cudaGetDevice() API call failed."); } result = cudaGetDeviceProperties(&properties, device_idx); if (result != cudaSuccess) { throw std::runtime_error("cudaGetDeviceProperties() failed"); } if (properties.major == 9) { // NVIDIA Hopper drops support for several data types if ( cutlass::sizeof_bits<ElementA>::value < 8 || cutlass::sizeof_bits<ElementB>::value < 8 || cutlass::sizeof_bits<ElementC>::value < 8) { return false; } } return true; } /// Runs the test bool run( cutlass::Distribution::Kind init_A = cutlass::Distribution::Uniform, cutlass::Distribution::Kind init_B = cutlass::Distribution::Uniform) { if (!sufficient()) { return true; } // // initialize device memory // if (init_A == cutlass::Distribution::Uniform) { int scope_max = 8; int scope_min = -8; if (cutlass::sizeof_bits<ElementA>::value == 4) { scope_max = 2; scope_min = -2; } else if (cutlass::sizeof_bits<ElementA>::value == 1) { scope_max = 2; scope_min = 0; } uint64_t seed = 7; cutlass::reference::host::TensorFillRandomUniform( tensor_A.host_view(), seed, scope_max, scope_min, 0); } else if (init_A == cutlass::Distribution::Sequential) { cutlass::reference::host::BlockFillSequential(tensor_A.host_data(), tensor_A.capacity()); } else if (init_A == cutlass::Distribution::Identity) { cutlass::reference::host::TensorFillIdentity(tensor_A.host_view()); } else { return false; } if (init_B == cutlass::Distribution::Uniform) { int scope_max = 8; int scope_min = -8; if (cutlass::sizeof_bits<ElementB>::value == 4) { scope_max = 2; scope_min = -2; } else if (cutlass::sizeof_bits<ElementB>::value == 1) { scope_max = 2; scope_min = 0; } uint64_t seed = 7; cutlass::reference::host::TensorFillRandomUniform( tensor_B.host_view(), seed + 16, scope_max, scope_min, 0); } else if (init_B == cutlass::Distribution::Sequential) { cutlass::reference::host::BlockFillSequential(tensor_B.host_data(), tensor_B.capacity()); } else if (init_B == cutlass::Distribution::Identity) { cutlass::reference::host::TensorFillIdentity(tensor_B.host_view()); } else { return false; } cutlass::reference::host::TensorFill( tensor_C.host_view(), ElementC(0) ); cutlass::reference::host::TensorFill( tensor_D_computed.host_view(), ElementC(0) ); cutlass::reference::host::TensorFill( tensor_D_reference.host_view(), ElementC(0) ); tensor_A.sync_device(); tensor_B.sync_device(); tensor_C.sync_device(); tensor_D_computed.sync_device(); // launch kernel kernel_transform<Mma, ThreadblockShape><<<dim3(1, 1), dim3(32, 1, 1)>>>( tensor_D_computed.device_data(), tensor_A.device_data(), tensor_B.device_data(), tensor_C.device_data()); // verify no errors cudaError_t result = cudaDeviceSynchronize(); EXPECT_EQ(result, cudaSuccess) << "CUDA ERROR: " << cudaGetErrorString(result); if (result != cudaSuccess) { return false; } tensor_D_computed.sync_host(); // // Reference implementation // cutlass::reference::host::Gemm<ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, ElementC, ElementC, Operator> reference_gemm; reference_gemm( {Shape::kM, Shape::kN, ThreadblockShape::kK}, ElementC(1), tensor_A.host_ref(), tensor_B.host_ref(), ElementC(0), tensor_D_reference.host_ref() ); // // Verify equivalence // // compare bool passed = cutlass::reference::host::TensorEquals( tensor_D_computed.host_view(), tensor_D_reference.host_view() ); EXPECT_TRUE(passed); if (!passed) { cutlass::TensorView<ElementA, cutlass::layout::ColumnMajor> tensor_A_physical( tensor_A.host_data(), tensor_A.stride()[0], tensor_A.extent()); cutlass::TensorView<ElementB, cutlass::layout::RowMajor> tensor_B_physical( tensor_B.host_data(), tensor_B.stride()[0], tensor_B.extent()); std::cout <<"cutlass::sizeof_bits<ElementA>::value = "<<cutlass::sizeof_bits<ElementA>::value<<"\n"; std::cout << "A:\n" << tensor_A.host_view() << "\n\n" << "A(physical - stride: " << tensor_A.stride()[0] << ", extent: " << tensor_A.extent() << "):\n" << tensor_A_physical << "\n\n"; std::cout <<"cutlass::sizeof_bits<ElementB>::value = "<<cutlass::sizeof_bits<ElementB>::value<<"\n"; std::cout << "B:\n" << tensor_B.host_view() << "\n\n" << "B(physical - stride: " << tensor_B.stride()[0] << ", extent: " << tensor_B.extent() << "):\n" << tensor_B_physical << "\n\n"; std::cout << "C:\n" << tensor_C.host_view() << "\n\n" << "Reference:\n" << tensor_D_reference.host_view() << "\n\n" << "Computed:\n" << tensor_D_computed.host_view() << std::endl; } return passed; } }; ///////////////////////////////////////////////////////////////////////////////////////////////// /// Structure to compute the matrix product template < /// Warp-level matrix multiply-accumulate typename Mma_, /// Size of threadblock-scoped shape used to store SMEM typename ThreadblockShape_ > struct TransformedTestbedComplex { /// Thread-level matrix multiply-accumulate operator using Mma = Mma_; using ThreadblockShape = ThreadblockShape_; using Shape = typename Mma::Shape; using ElementA = typename Mma::ElementA; using LayoutA = typename Mma::LayoutA; using ElementB = typename Mma::ElementB; using LayoutB = typename Mma::LayoutB; using ElementC = typename Mma::ElementC; using LayoutC = typename Mma::LayoutC; // // Data members // cutlass::HostTensor<ElementA, LayoutA> tensor_A; cutlass::HostTensor<ElementB, LayoutB> tensor_B; cutlass::HostTensor<ElementC, LayoutC> tensor_C; cutlass::HostTensor<ElementC, LayoutC> tensor_D_computed; cutlass::HostTensor<ElementC, LayoutC> tensor_D_reference; // // Methods // /// Allocates workspace in device memory TransformedTestbedComplex() { tensor_A.reset(cutlass::make_Coord(ThreadblockShape::kM, ThreadblockShape::kK)); tensor_B.reset(cutlass::make_Coord(ThreadblockShape::kK, ThreadblockShape::kN)); tensor_C.reset(cutlass::make_Coord(Shape::kM, Shape::kN)); tensor_D_computed.reset(cutlass::make_Coord(Shape::kM, Shape::kN)); tensor_D_reference.reset(cutlass::make_Coord(Shape::kM, Shape::kN), false); } /// Returns true if the CUDA device is sufficient to execute the kernel. bool sufficient() const { cudaDeviceProp properties; int device_idx; cudaError_t result = cudaGetDevice(&device_idx); if (result != cudaSuccess) { throw std::runtime_error("cudaGetDevice() API call failed."); } result = cudaGetDeviceProperties(&properties, device_idx); if (result != cudaSuccess) { throw std::runtime_error("cudaGetDeviceProperties() failed"); } if (properties.major == 9) { // NVIDIA Hopper drops support for several data types if ( cutlass::sizeof_bits<ElementA>::value < 8 || cutlass::sizeof_bits<ElementB>::value < 8 || cutlass::sizeof_bits<ElementC>::value < 8) { return false; } } return true; } /// Runs the test bool run( cutlass::Distribution::Kind init_A = cutlass::Distribution::Uniform, cutlass::Distribution::Kind init_B = cutlass::Distribution::Uniform) { if (!sufficient()) { return true; } // // initialize device memory // if (init_A == cutlass::Distribution::Uniform) { uint64_t seed = 7; cutlass::reference::host::TensorFillRandomUniform(tensor_A.host_view(), seed, 8, -8, 0); } else if (init_A == cutlass::Distribution::Sequential) { cutlass::reference::host::BlockFillSequential(tensor_A.host_data(), tensor_A.capacity()); } else if (init_A == cutlass::Distribution::Identity) { cutlass::reference::host::TensorFillIdentity(tensor_A.host_view()); } else { return false; } if (init_B == cutlass::Distribution::Uniform) { uint64_t seed = 7; cutlass::reference::host::TensorFillRandomUniform(tensor_B.host_view(), seed + 16, 8, -8, 0); } else if (init_B == cutlass::Distribution::Sequential) { cutlass::reference::host::BlockFillSequential(tensor_B.host_data(), tensor_B.capacity()); } else if (init_B == cutlass::Distribution::Identity) { cutlass::reference::host::TensorFillIdentity(tensor_B.host_view()); } else { return false; } cutlass::reference::host::TensorFill( tensor_C.host_view(), ElementC(0) ); cutlass::reference::host::TensorFill( tensor_D_computed.host_view(), ElementC(0) ); cutlass::reference::host::TensorFill( tensor_D_reference.host_view(), ElementC(0) ); tensor_A.sync_device(); tensor_B.sync_device(); tensor_C.sync_device(); tensor_D_computed.sync_device(); // launch kernel kernel_transform<Mma, ThreadblockShape><<< dim3(1, 1), dim3(32, 1, 1) >>>( tensor_D_computed.device_data(), tensor_A.device_data(), tensor_B.device_data(), tensor_C.device_data()); // verify no errors cudaError_t result = cudaDeviceSynchronize(); EXPECT_EQ(result, cudaSuccess) << "CUDA ERROR: " << cudaGetErrorString(result); if (result != cudaSuccess) { return false; } tensor_D_computed.sync_host(); // // Reference implementation // cutlass::reference::host::GemmComplex( {Shape::kM, Shape::kN, ThreadblockShape::kK}, ElementC(1), tensor_A.host_ref(), Mma::kTransformA, tensor_B.host_ref(), Mma::kTransformB, ElementC(0), tensor_C.host_ref(), tensor_D_reference.host_ref() ); // // Verify equivalence // // compare bool passed = cutlass::reference::host::TensorEquals( tensor_D_computed.host_view(), tensor_D_reference.host_view() ); EXPECT_TRUE(passed); if (!passed) { cutlass::TensorView<ElementA, cutlass::layout::ColumnMajor> tensor_A_physical( tensor_A.host_data(), tensor_A.stride()[0], tensor_A.extent()); cutlass::TensorView<ElementB, cutlass::layout::RowMajor> tensor_B_physical( tensor_B.host_data(), tensor_B.stride()[0], tensor_B.extent()); std::cout <<"cutlass::sizeof_bits<ElementA>::value = "<<cutlass::sizeof_bits<ElementA>::value<<"\n"; std::cout << "A:\n" << tensor_A.host_view() << "\n\n" << "A(physical - stride: " << tensor_A.stride()[0] << ", extent: " << tensor_A.extent() << "):\n" << tensor_A_physical << "\n\n"; std::cout <<"cutlass::sizeof_bits<ElementB>::value = "<<cutlass::sizeof_bits<ElementB>::value<<"\n"; std::cout << "B:\n" << tensor_B.host_view() << "\n\n" << "B(physical - stride: " << tensor_B.stride()[0] << ", extent: " << tensor_B.extent() <<"):\n" << tensor_B_physical << "\n\n"; std::cout << "C:\n" << tensor_C.host_view() << "\n\n" << "Reference:\n" << tensor_D_reference.host_view() << "\n\n" << "Computed:\n" << tensor_D_computed.host_view() << std::endl; } return passed; } }; ///////////////////////////////////////////////////////////////////////////////////////////////// /// Test kernel template <typename Mma, typename ThreadblockShape> __global__ void sparse_kernel( typename Mma::ElementC *output_C, typename Mma::ElementA const *input_A, typename Mma::ElementB const *input_B, typename Mma::ElementC const *input_C, typename Mma::ElementE const *input_E, int iterations = 1) { // Use AlignedBuffer to store trivially copyable objects in unions and __shared__ buffers. __shared__ cutlass::AlignedBuffer<typename Mma::ElementA, ThreadblockShape::kM * ThreadblockShape::kK / Mma::kSparse> smem_buffer_A; __shared__ cutlass::AlignedBuffer< typename Mma::ElementB, ThreadblockShape::kN * ThreadblockShape::kK> smem_buffer_B; __shared__ cutlass::AlignedBuffer< typename Mma::ElementE, Mma::Shape::kM * Mma::Shape::kK / Mma::kSparse / Mma::kElementsPerElementE> smem_buffer_E; __syncthreads(); if (threadIdx.x == 0) { typename Mma::ElementA *smem_ptr_A = smem_buffer_A.data(); #pragma unroll 1 for (size_t i = 0; i < smem_buffer_A.size(); ++i) { cutlass::ReferenceFactory<typename Mma::ElementA>::get(smem_ptr_A, i) = cutlass::ReferenceFactory<typename cutlass::platform::remove_const< typename Mma::ElementA>::type>::get(input_A, i); } typename Mma::ElementB *smem_ptr_B = smem_buffer_B.data(); #pragma unroll 1 for (size_t i = 0; i < smem_buffer_B.size(); ++i) { cutlass::ReferenceFactory<typename Mma::ElementB>::get(smem_ptr_B, i) = cutlass::ReferenceFactory<typename cutlass::platform::remove_const< typename Mma::ElementB>::type>::get(input_B, i); } typename Mma::ElementE *smem_ptr_E = smem_buffer_E.data(); #pragma unroll 1 for (size_t i = 0; i < smem_buffer_E.size(); ++i) { cutlass::ReferenceFactory<typename Mma::ElementE>::get(smem_ptr_E, i) = cutlass::ReferenceFactory<typename cutlass::platform::remove_const< typename Mma::ElementE>::type>::get(input_E, i); } } __syncthreads(); // // Construct warp-level matrix product // using FragmentA = typename Mma::FragmentA; using FragmentB = typename Mma::FragmentB; using FragmentC = typename Mma::FragmentC; using FragmentE = typename Mma::FragmentE; typename Mma::LayoutA layout_A = Mma::LayoutA::packed( {ThreadblockShape::kM, ThreadblockShape::kK / Mma::kSparse}); typename Mma::LayoutB layout_B = Mma::LayoutB::packed({ThreadblockShape::kK, ThreadblockShape::kN}); typename Mma::LayoutC layout_C = Mma::LayoutC::packed({Mma::Shape::kM, Mma::Shape::kN}); typename Mma::LayoutE layout_E = Mma::LayoutE::packed({Mma::Shape::kM * Mma::kInterleaved, Mma::Shape::kK / Mma::kSparse / Mma::kElementsPerElementE / Mma::kInterleaved}); typename Mma::IteratorA iter_A({smem_buffer_A.data(), layout_A}, cutlass::arch::LaneId()); typename Mma::IteratorB iter_B({smem_buffer_B.data(), layout_B}, cutlass::arch::LaneId()); typename Mma::IteratorE iter_E({smem_buffer_E.data(), layout_E}, cutlass::arch::LaneId()); FragmentA frag_A; FragmentB frag_B; FragmentC accum; FragmentE frag_E; Mma mma; accum.clear(); CUTLASS_PRAGMA_NO_UNROLL for (int iter = 0; iter < iterations; ++iter) { // place in loop that is not unrolled CUTLASS_PRAGMA_UNROLL for (int k = 0; k < ThreadblockShape::kK; k += Mma::Policy::MmaShape::kK) { iter_A.load(frag_A); iter_B.load(frag_B); iter_E.load(frag_E); ++iter_A; ++iter_B; ++iter_E; mma(accum, frag_A, frag_B, accum, frag_E); } } typename Mma::IteratorC iter_C({output_C, layout_C}, cutlass::arch::LaneId()); iter_C.store(accum); } ///////////////////////////////////////////////////////////////////////////////////////////////// /// Structure to compute the matrix product template < /// Warp-level matrix multiply-accumulate typename Mma_, /// Size of threadblock-scoped shape used to store SMEM typename ThreadblockShape_, /// The innter product operation performed by GEMM typename Operator_ = cutlass::arch::OpMultiplyAdd > struct SparseTestbed { /// Thread-level matrix multiply-accumulate operator using Mma = Mma_; using ThreadblockShape = ThreadblockShape_; using Operator = Operator_; using Shape = typename Mma::Shape; using ElementA = typename Mma::ElementA; using LayoutA = typename Mma::LayoutA; using ElementB = typename Mma::ElementB; using LayoutB = typename Mma::LayoutB; using ElementC = typename Mma::ElementC; using LayoutC = typename Mma::LayoutC; static int const Sparse = Mma::kSparse; static int const MetaSizeInBits = Mma::kMetaSizeInBits; static int const MaxID2 = Mma::kMaxID2; static int const Interleaved = Mma::kInterleaved; using ElementE = typename Mma::ElementE; static int const ElementsPerElementE = Mma::kElementsPerElementE; using LayoutE = cutlass::layout::RowMajor; using ReorderedLayoutE = cutlass::layout::ColumnMajorInterleaved<Interleaved>; // // Data members // cutlass::HostTensor<ElementA, LayoutA> tensor_A; cutlass::HostTensor<ElementA, LayoutA> tensor_A_uncompressed; cutlass::HostTensor<ElementB, LayoutB> tensor_B; cutlass::HostTensor<ElementC, LayoutC> tensor_C; cutlass::HostTensor<ElementC, LayoutC> tensor_D_computed; cutlass::HostTensor<ElementC, LayoutC> tensor_D_reference; cutlass::HostTensor<ElementE, LayoutE> tensor_E; cutlass::HostTensor<ElementE, ReorderedLayoutE> tensor_E_reordered; // // Methods // /// Allocates workspace in device memory SparseTestbed() { tensor_A.reset(cutlass::make_Coord(ThreadblockShape::kM, ThreadblockShape::kK / Sparse)); tensor_A_uncompressed.reset( cutlass::make_Coord(ThreadblockShape::kM, ThreadblockShape::kK)); tensor_B.reset(cutlass::make_Coord(ThreadblockShape::kK, ThreadblockShape::kN)); tensor_C.reset(cutlass::make_Coord(Shape::kM, Shape::kN)); tensor_D_computed.reset(cutlass::make_Coord(Shape::kM, Shape::kN)); tensor_D_reference.reset(cutlass::make_Coord(Shape::kM, Shape::kN), false); tensor_E.reset(cutlass::make_Coord( Shape::kM, Shape::kK / Sparse / ElementsPerElementE)); tensor_E_reordered.reset(cutlass::make_Coord( Shape::kM, Shape::kK / Sparse / ElementsPerElementE)); } /// Returns true if the CUDA device is sufficient to execute the kernel. bool sufficient() const { cudaDeviceProp properties; int device_idx; cudaError_t result = cudaGetDevice(&device_idx); if (result != cudaSuccess) { throw std::runtime_error("cudaGetDevice() API call failed."); } result = cudaGetDeviceProperties(&properties, device_idx); if (result != cudaSuccess) { throw std::runtime_error("cudaGetDeviceProperties() failed"); } if (properties.major == 9) { // NVIDIA Hopper drops support for several data types if ( cutlass::sizeof_bits<ElementA>::value < 8 || cutlass::sizeof_bits<ElementB>::value < 8 || cutlass::sizeof_bits<ElementC>::value < 8) { return false; } } return true; } /// Runs the test bool run( cutlass::Distribution::Kind init_A = cutlass::Distribution::Uniform, cutlass::Distribution::Kind init_B = cutlass::Distribution::Uniform, cutlass::Distribution::Kind init_E = cutlass::Distribution::Uniform) { if (!sufficient()) { return true; } // // initialize device memory // if (init_A == cutlass::Distribution::Uniform) { int scope_max = 8; int scope_min = -8; if (cutlass::sizeof_bits<ElementA>::value == 4) { scope_max = 2; scope_min = -2; } else if (cutlass::sizeof_bits<ElementA>::value == 1) { scope_max = 2; scope_min = 0; } uint64_t seed = 7; cutlass::reference::host::TensorFillRandomUniform( tensor_A.host_view(), seed, scope_max, scope_min, 0); } else if (init_A == cutlass::Distribution::Sequential) { cutlass::reference::host::BlockFillSequential(tensor_A.host_data(), tensor_A.capacity()); } else if (init_A == cutlass::Distribution::Identity) { cutlass::reference::host::TensorFillIdentity(tensor_A.host_view()); } else { return false; } if (init_B == cutlass::Distribution::Uniform) { int scope_max = 8; int scope_min = -8; if (cutlass::sizeof_bits<ElementB>::value == 4) { scope_max = 2; scope_min = -2; } else if (cutlass::sizeof_bits<ElementB>::value == 1) { scope_max = 2; scope_min = 0; } uint64_t seed = 7; cutlass::reference::host::TensorFillRandomUniform( tensor_B.host_view(), seed + 16, scope_max, scope_min, 0); } else if (init_B == cutlass::Distribution::Sequential) { cutlass::reference::host::BlockFillSequential(tensor_B.host_data(), tensor_B.capacity()); } else if (init_B == cutlass::Distribution::Identity) { cutlass::reference::host::TensorFillIdentity(tensor_B.host_view()); } else { return false; } cutlass::reference::host::TensorFill( tensor_C.host_view(), ElementC(0) ); cutlass::reference::host::TensorFill( tensor_D_computed.host_view(), ElementC(0) ); cutlass::reference::host::TensorFill( tensor_D_reference.host_view(), ElementC(0) ); if (init_E == cutlass::Distribution::Uniform) { uint64_t seed = 7; cutlass::reference::host::TensorFillRandomSparseMeta( tensor_E.host_view(), seed, MetaSizeInBits); } else if (init_E == cutlass::Distribution::Identity) { uint32_t content = (MaxID2 == 1) ? 0x44444444 : 0x4444; cutlass::reference::host::TensorFill(tensor_E.host_view(), (ElementE)(content)); } else { return false; } cutlass::reorder_meta( tensor_E_reordered.host_ref(), tensor_E.host_ref(), {Shape::kM, Shape::kN, Shape::kK / Sparse / ElementsPerElementE}); tensor_A.sync_device(); tensor_B.sync_device(); tensor_C.sync_device(); tensor_D_computed.sync_device(); tensor_E_reordered.sync_device(); // launch kernel sparse_kernel<Mma, ThreadblockShape><<< dim3(1, 1), dim3(32, 1, 1) >>>( tensor_D_computed.device_data(), tensor_A.device_data(), tensor_B.device_data(), tensor_C.device_data(), tensor_E_reordered.device_data()); // verify no errors cudaError_t result = cudaDeviceSynchronize(); EXPECT_EQ(result, cudaSuccess) << "CUDA ERROR: " << cudaGetErrorString(result); if (result != cudaSuccess) { return false; } tensor_D_computed.sync_host(); // // Reference implementation // cutlass::uncompress(tensor_A_uncompressed.host_ref(), tensor_A.host_ref(), tensor_E.host_ref(), Shape::kM, Shape::kK); cutlass::reference::host::Gemm<ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, ElementC, ElementC, Operator> reference_gemm; reference_gemm( {Shape::kM, Shape::kN, ThreadblockShape::kK}, ElementC(1), tensor_A_uncompressed.host_ref(), tensor_B.host_ref(), ElementC(0), tensor_D_reference.host_ref() ); // // Verify equivalence // // compare bool passed = cutlass::reference::host::TensorEquals( tensor_D_computed.host_view(), tensor_D_reference.host_view() ); EXPECT_TRUE(passed); if (!passed) { std::cout <<"cutlass::sizeof_bits<ElementA>::value = "<<cutlass::sizeof_bits<ElementA>::value<<"\n"; std::cout << "A:\n" << tensor_A.host_view() << "\n\n"; std::cout <<"cutlass::sizeof_bits<ElementB>::value = "<<cutlass::sizeof_bits<ElementB>::value<<"\n"; std::cout << "B:\n" << tensor_B.host_view() << "\n\n"; std::cout <<"cutlass::sizeof_bits<ElementB>::value = "<<cutlass::sizeof_bits<ElementE>::value<<"\n"; std::cout << "E:\n" << tensor_E.host_view() << "\n\n"; std::cout << "C:\n" << tensor_C.host_view() << "\n\n" << "Reference:\n" << tensor_D_reference.host_view() << "\n\n" << "Computed:\n" << tensor_D_computed.host_view() << "\n"; } return passed; } }; ///////////////////////////////////////////////////////////////////////////////////////////////// } // namespace warp } // namespace gemm } // namespace test
test/unit/gemm/warp/testbed.h/0
{ "file_path": "test/unit/gemm/warp/testbed.h", "repo_id": "test", "token_count": 20479 }
68
#pragma once #define CUDA_INCLUDE_DIR "@CUDA_TOOLKIT_ROOT_DIR@/include"
test/unit/nvrtc/thread/nvrtc_config.in/0
{ "file_path": "test/unit/nvrtc/thread/nvrtc_config.in", "repo_id": "test", "token_count": 36 }
69
/*************************************************************************************************** * Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. * SPDX-License-Identifier: BSD-3-Clause * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * **************************************************************************************************/ /*! \file \brief Tests for device-wide GEMM interface */ #include <iostream> #include "../../common/cutlass_unit_test.h" #include "cutlass/cutlass.h" #include "cutlass/epilogue/thread/linear_combination.h" #include "cutlass/reduction/kernel/reduce_split_k.h" #include "cutlass/reduction/thread/reduction_operators.h" #include "cutlass/util/host_tensor.h" #include "cutlass/util/reference/host/gemm.h" #include "cutlass/util/reference/host/tensor_compare.h" #include "cutlass/util/reference/host/tensor_copy.h" #include "cutlass/util/reference/host/tensor_fill.h" #include "cutlass/util/reference/host/tensor_norm.h" #include "cutlass/util/tensor_view_io.h" ///////////////////////////////////////////////////////////////////////////////////////////////// namespace test { namespace reduction { template <typename ReductionKernel> __global__ void kernel_reduce_splitk(typename ReductionKernel::Params params) { __shared__ typename ReductionKernel::SharedStorage shared_storage; ReductionKernel reduction_op; reduction_op(params, shared_storage); } template <typename ReductionKernel> class ReduceSplitKTestbed { public: using ElementAccumulator = typename ReductionKernel::ElementAccumulator; using ElementWorkspace = typename ReductionKernel::ElementWorkspace; using ElementOutput = typename ReductionKernel::ElementOutput; using Layout = cutlass::layout::RowMajor; public: cutlass::Distribution::Kind distribution_workspace; cutlass::Distribution::Kind distribution_source; uint64_t seed; public: /// Ctor ReduceSplitKTestbed( cutlass::Distribution::Kind distribution_workspace = cutlass::Distribution::Uniform, cutlass::Distribution::Kind distribution_source = cutlass::Distribution::Uniform, uint64_t seed = 2019 ): distribution_workspace(distribution_workspace), distribution_source(distribution_source), seed(seed) { } /// Helper to initialize a tensor view template <typename Element, typename Layout> bool initialize_tensor(cutlass::TensorView<Element, Layout> view, cutlass::Distribution::Kind dist_kind, uint64_t seed) { if (dist_kind == cutlass::Distribution::Uniform) { cutlass::reference::host::TensorFillRandomUniform(view, seed, 8, -8, 0); } else if (dist_kind == cutlass::Distribution::Gaussian) { cutlass::reference::host::TensorFillRandomGaussian(view, seed, 0, 0.5, -1); } else if (dist_kind == cutlass::Distribution::Identity) { cutlass::reference::host::TensorFillIdentity(view); } else if (dist_kind == cutlass::Distribution::Sequential) { cutlass::reference::host::BlockFillSequential(view.data(), view.capacity()); } else { EXPECT_TRUE(false) << "Not implemented"; return false; } return true; } /// Runs a single problem size bool run( cutlass::MatrixCoord problem_size, int partitions, ElementAccumulator alpha = 1, ElementAccumulator beta = 0) { cutlass::HostTensor<ElementWorkspace, Layout> workspace({ problem_size.row() * partitions, problem_size.column() }); cutlass::HostTensor<ElementOutput, Layout> source(problem_size); cutlass::HostTensor<ElementOutput, Layout> destination(problem_size); cutlass::HostTensor<ElementOutput, Layout> destination_reference(problem_size, false); // // Initialize // initialize_tensor(workspace.host_view(), distribution_workspace, seed); initialize_tensor(source.host_view(), distribution_source, seed + 23); cutlass::reference::host::TensorFill(destination.host_view()); workspace.sync_device(); source.sync_device(); destination.sync_device(); // // Launch reduction kernel // dim3 block = ReductionKernel::block_shape(); dim3 grid = ReductionKernel::grid_shape(problem_size); typename ReductionKernel::Params params( problem_size, partitions, problem_size.row() * problem_size.column(), workspace.device_ref(), destination.device_ref(), source.device_ref(), {alpha, beta} ); test::reduction::kernel_reduce_splitk<ReductionKernel><<< grid, block >>>(params); cudaError_t result = cudaDeviceSynchronize(); EXPECT_EQ(result, cudaSuccess) << "CUDA error: " << cudaGetErrorString(result); destination.sync_host(); // // Compute reference // for (int m = 0; m < problem_size.row(); ++m) { for (int n = 0; n < problem_size.column(); ++n) { ElementAccumulator accum = 0; for (int k = 0; k < partitions; ++k) { accum += ElementAccumulator(workspace.at({m + k * problem_size.row(), n})); } ElementAccumulator c = ElementAccumulator(source.at({m, n})); destination_reference.at({m, n}) = ElementOutput(accum * alpha + beta * c); } } // // Compare // EXPECT_GT(cutlass::reference::host::TensorNorm(destination.host_view()), 0); EXPECT_GT(cutlass::reference::host::TensorNorm(destination_reference.host_view()), 0); bool passed = cutlass::reference::host::TensorEquals( destination.host_view(), destination_reference.host_view()); EXPECT_TRUE(passed) << "Workspace =\n" << workspace.host_view() << "\n\n" << "\n" << "Reference =\n" << destination_reference.host_view() << "\n\n" << "Computed =\n" << destination.host_view() << "\n"; return passed; } /// Runs through a variety of test cases bool run_all() { cutlass::MatrixCoord problem_sizes[] = { {8, 8}, {136, 72}, {248, 232}, }; int partition_counts[] = { 1,3,4,5,11 }; bool passed = false; for (cutlass::MatrixCoord problem : problem_sizes) { for (int partitions : partition_counts) { passed = run(problem, partitions); if (!passed) { return false; } } } return passed; } }; } // namespace reduction } // namespace test ///////////////////////////////////////////////////////////////////////////////////////////////// // // Strictly F32 data // TEST(Reduction_ReduceSplitK, f32_f32_f32_1_1x32) { using ElementWorkspace = float; using ElementAccumulator = float; using ElementOutput = float; int const kN = 1; using Shape = cutlass::MatrixShape<1, 32>; using OutputOp = cutlass::epilogue::thread::LinearCombination< ElementOutput, kN, ElementAccumulator, ElementAccumulator >; using ReductionOp = cutlass::reduction::thread::ReduceAdd< ElementAccumulator, ElementWorkspace, kN >; using ReductionKernel = cutlass::reduction::kernel::ReduceSplitK< Shape, OutputOp, ReductionOp >; test::reduction::ReduceSplitKTestbed<ReductionKernel> testbed; EXPECT_TRUE(testbed.run_all()); } ///////////////////////////////////////////////////////////////////////////////////////////////// // // Vectorized access // TEST(Reduction_ReduceSplitK, f32_f32_f32_2_4x64) { using ElementWorkspace = float; using ElementAccumulator = float; using ElementOutput = float; int const kN = 2; using Shape = cutlass::MatrixShape<4, 64>; using OutputOp = cutlass::epilogue::thread::LinearCombination< ElementOutput, kN, ElementAccumulator, ElementAccumulator >; using ReductionOp = cutlass::reduction::thread::ReduceAdd< ElementAccumulator, ElementWorkspace, kN >; using ReductionKernel = cutlass::reduction::kernel::ReduceSplitK< Shape, OutputOp, ReductionOp >; test::reduction::ReduceSplitKTestbed<ReductionKernel> testbed; EXPECT_TRUE(testbed.run_all()); } ///////////////////////////////////////////////////////////////////////////////////////////////// // // Vectorized access // TEST(Reduction_ReduceSplitK, f32_f32_f16_2_4x64) { using ElementWorkspace = float; using ElementAccumulator = float; using ElementOutput = cutlass::half_t; int const kN = 2; using Shape = cutlass::MatrixShape<4, 64>; using OutputOp = cutlass::epilogue::thread::LinearCombination< ElementOutput, kN, ElementAccumulator, ElementAccumulator >; using ReductionOp = cutlass::reduction::thread::ReduceAdd< ElementAccumulator, ElementWorkspace, kN >; using ReductionKernel = cutlass::reduction::kernel::ReduceSplitK< Shape, OutputOp, ReductionOp >; test::reduction::ReduceSplitKTestbed<ReductionKernel> testbed; EXPECT_TRUE(testbed.run_all()); } ///////////////////////////////////////////////////////////////////////////////////////////////// // // Vectorized access // TEST(Reduction_ReduceSplitK, f32_f32_f16_8_4x64) { using ElementWorkspace = float; using ElementAccumulator = float; using ElementOutput = cutlass::half_t; int const kN = 8; using Shape = cutlass::MatrixShape<4, 64>; using OutputOp = cutlass::epilogue::thread::LinearCombination< ElementOutput, kN, ElementAccumulator, ElementAccumulator >; using ReductionOp = cutlass::reduction::thread::ReduceAdd< ElementAccumulator, ElementWorkspace, kN >; using ReductionKernel = cutlass::reduction::kernel::ReduceSplitK< Shape, OutputOp, ReductionOp >; test::reduction::ReduceSplitKTestbed<ReductionKernel> testbed; EXPECT_TRUE(testbed.run_all()); } /////////////////////////////////////////////////////////////////////////////////////////////////
test/unit/reduction/kernel/reduce_splitk.cu/0
{ "file_path": "test/unit/reduction/kernel/reduce_splitk.cu", "repo_id": "test", "token_count": 3842 }
70
/*************************************************************************************************** * Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. * SPDX-License-Identifier: BSD-3-Clause * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * **************************************************************************************************/ /*! \file \brief CUTLASS Library handle. */ #include <iostream> #include <stdexcept> #include <cstdint> #include "cutlass/library/handle.h" #include "cutlass/library/singleton.h" #include "cutlass/library/util.h" namespace cutlass { namespace library { /////////////////////////////////////////////////////////////////////////////////////////////////// /// Constructor Handle::Handle( cudaStream_t stream, size_t workspace_size ): provider_(Provider::kCUTLASS), stream_(stream), workspace_(nullptr), workspace_size_(0), scalar_pointer_mode_(ScalarPointerMode::kHost), last_operation_(nullptr) { int device_idx = -1; cudaError_t error = cudaGetDevice(&device_idx); if (error != cudaSuccess) { throw std::runtime_error("cudaGetDevice() failed"); } error = cudaGetDeviceProperties(&device_, device_idx); if (error != cudaSuccess) { throw std::runtime_error("cudaGetDeviceProperties() failed"); } set_workspace_size(workspace_size); Singleton::get(); } /// Destructor Handle::~Handle() { if (workspace_) { if (workspace_) { cudaFree(workspace_); } workspace_ = nullptr; workspace_size_ = 0; } } /// Move constructor Handle::Handle(Handle && handle) { device_ = handle.device_; workspace_size_ = handle.workspace_size_; workspace_ = handle.workspace_; stream_ = handle.stream_; scalar_pointer_mode_ = handle.scalar_pointer_mode_; handle.workspace_ = nullptr; handle.workspace_size_ = 0; } /// Move assignment operator Handle & Handle::operator=(Handle && handle) { provider_ = handle.provider_; device_ = handle.device_; workspace_size_ = handle.workspace_size_; workspace_ = handle.workspace_; stream_ = handle.stream_; scalar_pointer_mode_ = handle.scalar_pointer_mode_; handle.workspace_ = nullptr; handle.workspace_size_ = 0; return *this; } int Handle::compute_capability() const { return device_.major * 10 + device_.minor; } /// Sets the current CUDA stream void Handle::set_stream(cudaStream_t stream) { stream_ = stream; } /// Gets the current CUDA stream cudaStream_t Handle::get_stream() const { return stream_; } /// Gets the current provider Provider Handle::get_provider() const { return provider_; } /// Sets the provider of operations void Handle::set_provider(Provider provider) { provider_ = provider; } /// Gets the device workspace size size_t Handle::get_workspace_size() const { return workspace_size_; } /// Gets a pointer to the device workspace allocation in Global Memory void *Handle::get_workspace() const { return workspace_; } /// Sets the size of device workspace, invalidating previous calls to get_device_workspace() void Handle::set_workspace_size(size_t bytes) { if (bytes != workspace_size_) { if (workspace_) { cudaFree(workspace_); } workspace_ = nullptr; workspace_size_ = bytes; if (workspace_size_) { cudaError_t error = cudaMalloc((void **)&workspace_, workspace_size_); if (error != cudaSuccess) { throw std::runtime_error("Failed to allocate workspace"); } } } if (workspace_) { cudaError_t error = cudaMemset(workspace_, 0, workspace_size_); if (error != cudaSuccess) { throw std::runtime_error("Failed to clear workspace"); } } } /// Gets the scalar pointer mode ScalarPointerMode Handle::get_scalar_pointer_mode() const { return scalar_pointer_mode_; } /// Sets the scalar pointer mode void Handle::set_scalar_pointer_mode(ScalarPointerMode mode) { scalar_pointer_mode_ = mode; } /// Gets the last operation Operation const *Handle::get_last_operation() const { return last_operation_; } /////////////////////////////////////////////////////////////////////////////////////////////////// /// Returns the maximum required alignment for each operator static int maximum_alignment_requirement(GemmDescription const &desc) { return std::max( std::max(desc.A.alignment, desc.B.alignment), desc.C.alignment); } /// Returns the largest alignment (in units of elements) the problem satisfies, starting from a /// given upper limit. static int gemm_problem_alignment( int M, int N, int K, NumericTypeID element_A, void const *ptr_A, int64_t lda, int64_t batch_stride_A, NumericTypeID element_B, void const *ptr_B, int64_t ldb, int64_t batch_stride_B, NumericTypeID element_C, void const * ptr_C, int64_t ldc, int64_t batch_stride_C, void const * ptr_D, int64_t ldd, int64_t batch_stride_D, int max_alignment_in_bytes = 16 ) { void const *pointers[] = { ptr_A, ptr_B, ptr_C, ptr_D }; int64_t extents[] = { M, N, K, lda, ldb, ldc, ldd, batch_stride_A, batch_stride_B, batch_stride_C, batch_stride_D }; NumericTypeID elements[] = { element_A, element_B, element_C }; for (; max_alignment_in_bytes > 0; max_alignment_in_bytes /= 2) { bool satisfied = true; // Can pointers satisfy this? for (void const *ptr : pointers) { std::uintptr_t int_ptr = reinterpret_cast<std::uintptr_t>(ptr); if (int_ptr % max_alignment_in_bytes) { satisfied = false; break; } } if (!satisfied) { continue; } // Compute the maximum alignment based on element data types int max_element_alignment = 0; for (NumericTypeID type_id : elements) { int element_alignment = max_alignment_in_bytes * 8 / library::sizeof_bits(type_id); max_element_alignment = std::max(max_element_alignment, element_alignment); } // Can the problem size and leading dimensions satisfy this? for (int64_t extent : extents) { if (extent % max_element_alignment) { satisfied = false; break; } } if (!satisfied) { continue; } // Yes return max_element_alignment; } // No alignment satisfies this problem return 0; } /// Find the best kernel in descending order of preference. static Operation const * find_gemm_operation( GemmOperationFunctionalMap::const_iterator operators_it, GemmPreferenceKey const preference_key) { auto cc_it = operators_it->second.upper_bound(preference_key); if (cc_it == operators_it->second.begin()) { return nullptr; } Operation const *operation = nullptr; // Search in descending order of compute capability do { --cc_it; // Search tile sizes in order, for now. for (auto const * op : cc_it->second) { GemmDescription const &desc = static_cast<GemmDescription const &>(op->description()); int min_cc = desc.tile_description.minimum_compute_capability; int max_cc = desc.tile_description.maximum_compute_capability; int op_alignment = maximum_alignment_requirement(desc); if ((min_cc <= preference_key.compute_capability) && (preference_key.compute_capability <= max_cc) && (op_alignment <= preference_key.alignment)) { operation = op; break; } } } while (!operation && cc_it != operators_it->second.begin()); return operation; } /////////////////////////////////////////////////////////////////////////////////////////////////// /// Executes a GEMM computation: D <= alpha * A*B + beta * C Status Handle::gemm( int M, /// GEMM M dimension int N, /// GEMM N dimension int K, /// GEMM K dimension NumericTypeID element_compute, /// Data type of internal accumulation NumericTypeID element_scalar, /// Data type of alpha/beta scalars void const *alpha, /// Pointer to alpha scalar NumericTypeID element_A, /// Data type of A matrix elements LayoutTypeID layout_A, /// Layout of A matrix ComplexTransform transform_A, /// Complex transformation applied to A matrix - ignored for real-valued matrices void const * ptr_A, /// Pointer to A matrix in Global Memory int64_t lda, /// Leading dimension of A matrix NumericTypeID element_B, /// Data type of B matrix elements LayoutTypeID layout_B, /// Layout of B matrix ComplexTransform transform_B, /// Complex transformation applied to B matrix - ignored for real-valued matrices void const * ptr_B, /// Pointer to B matrix in Global Memory int64_t ldb, /// Leading dimension of B matrix void const * beta, /// Pointer to beta scalar NumericTypeID element_C, /// Data type of C and D matrices void const * ptr_C, /// Pointer to C matrix int64_t ldc, /// Leading dimension of C matrix void * ptr_D, /// Pointer to D matrix int64_t ldd /// Leading dimension of D matrix ) { // // Find the operation // GemmFunctionalKey key( provider_, GemmKind::kGemm, element_compute, element_scalar, element_A, layout_A, transform_A, element_B, layout_B, transform_B, element_C, // C/D are same type and col major default LayoutTypeID::kColumnMajor, element_C, LayoutTypeID::kColumnMajor ); auto operators_it = Singleton::get().operation_table.gemm_operations.find(key); if (operators_it == Singleton::get().operation_table.gemm_operations.end()) { return cutlass::Status::kErrorNotSupported; } if (operators_it->second.empty()) { return cutlass::Status::kErrorNotSupported; } // // Compute the largest alignment restriction the kernel can satisfy. // // Maximum alignment expectation among all kernels (in units of bytes) int const kMaximumAlignmentSize = 16; int alignment = gemm_problem_alignment( M, N, K, element_A, ptr_A, lda, 0, element_B, ptr_B, ldb, 0, element_C, ptr_C, ldc, 0, ptr_D, ldd, 0, kMaximumAlignmentSize ); // // Find the best kernel in descending order of preference. // GemmPreferenceKey preference_key(compute_capability(), alignment); Operation const *operation = find_gemm_operation(operators_it, preference_key); if (!operation) { return cutlass::Status::kErrorNotSupported; } last_operation_ = operation; // // Configure operation // GemmConfiguration configuration{ {M, N, K}, lda, ldb, ldc, ldd, 1 }; // Query host work space size uint64_t host_workspace_size_needed = operation->get_host_workspace_size(&configuration); if (uint64_t(kHostWorkspaceSize) < host_workspace_size_needed) { return cutlass::Status::kErrorNotSupported; } char host_workspace[kHostWorkspaceSize]; // Query device workspace size uint64_t device_workspace_size_needed = operation->get_device_workspace_size(&configuration); if (uint64_t(workspace_size_) < device_workspace_size_needed) { return cutlass::Status::kErrorNotSupported; } // Initialize host and device workspaces Status status = operation->initialize( &configuration, host_workspace, workspace_, stream_); if (status != cutlass::Status::kSuccess) { return status; } // Run the operator GemmArguments arguments{ ptr_A, ptr_B, ptr_C, ptr_D, alpha, beta, scalar_pointer_mode_ }; return operation->run(&arguments, host_workspace, workspace_, stream_); } /////////////////////////////////////////////////////////////////////////////////////////////////// /// Executes a GEMM computation: D <= alpha * A*B + beta * C. // // Supports batched-strided, batched array or split-K serial or split-K parallel. // Status Handle::gemm_universal( GemmUniversalMode mode, /// indicates the mode in which the kUniversal GEMM is launched int M, /// GEMM M dimension int N, /// GEMM N dimension int K, /// GEMM K dimension NumericTypeID element_compute, /// Data type of internal accumulation NumericTypeID element_scalar, /// Data type of alpha/beta scalars void const *alpha, /// Pointer to alpha scalar NumericTypeID element_A, /// Data type of A matrix elements LayoutTypeID layout_A, /// Layout of A matrix ComplexTransform transform_A, /// Complex transformation applied to A matrix - ignored for real-valued matrices void const * ptr_A, /// Pointer to A matrix in Global Memory int64_t lda, /// Leading dimension of A matrix NumericTypeID element_B, /// Data type of B matrix elements LayoutTypeID layout_B, /// Layout of B matrix ComplexTransform transform_B, /// Complex transformation applied to B matrix - ignored for real-valued matrices void const * ptr_B, /// Pointer to B matrix in Global Memory int64_t ldb, /// Leading dimension of B matrix void const * beta, /// Pointer to beta scalar NumericTypeID element_C, /// Data type of C matrix LayoutTypeID layout_C, /// Layout of D matrix void const * ptr_C, /// Pointer to C matrix int64_t ldc, /// Leading dimension of C matrix NumericTypeID element_D, /// Data type of D matrix LayoutTypeID layout_D, /// Layout of D matrix void * ptr_D, /// Pointer to D matrix int64_t ldd, /// Leading dimension of D matrix int batch_count, /// Batch count or number of split-K slices int64_t batch_stride_A, /// Batch stride of A operand int64_t batch_stride_B, /// Batch stride of B operand int64_t batch_stride_C, /// Batch stride of C operand int64_t batch_stride_D /// Batch stride of D operand ) { // // Find the operation // GemmFunctionalKey key( provider_, GemmKind::kUniversal, element_compute, element_scalar, element_A, layout_A, transform_A, element_B, layout_B, transform_B, element_C, layout_C, element_D, layout_D ); auto operators_it = Singleton::get().operation_table.gemm_operations.find(key); if (operators_it == Singleton::get().operation_table.gemm_operations.end()) { return cutlass::Status::kErrorNotSupported; } if (operators_it->second.empty()) { return cutlass::Status::kErrorNotSupported; } // // Compute the largest alignment restriction the kernel can satisfy. // // Maximum alignment expectation among all kernels (in units of bytes) int const kMaximumAlignmentSize = 16; void const *ptr_A_check = ptr_A; void const *ptr_B_check = ptr_B; void const *ptr_C_check = ptr_C; void * ptr_D_check = ptr_D; // Ignore alignment of pointers to pointers. We can't check this from the host, // as each batch index has its own pointer in device memory. if (mode == GemmUniversalMode::kArray) { ptr_A_check = nullptr; ptr_B_check = nullptr; ptr_C_check = nullptr; ptr_D_check = nullptr; } int alignment = gemm_problem_alignment( M, N, K, element_A, ptr_A_check, lda, 0, element_B, ptr_B_check, ldb, 0, element_C, ptr_C_check, ldc, 0, ptr_D_check, ldd, 0, kMaximumAlignmentSize ); // // Find the best kernel in descending order of preference. // GemmPreferenceKey preference_key(compute_capability(), alignment); Operation const *operation = find_gemm_operation(operators_it, preference_key); if (!operation) { return cutlass::Status::kErrorNotSupported; } last_operation_ = operation; // // Configure operation // GemmUniversalConfiguration configuration{ mode, {M, N, K}, batch_count, lda, ldb, ldc, ldd }; // Query host work space size uint64_t host_workspace_size_needed = operation->get_host_workspace_size(&configuration); if (uint64_t(kHostWorkspaceSize) < host_workspace_size_needed) { return cutlass::Status::kErrorNotSupported; } char host_workspace[kHostWorkspaceSize]; GemmUniversalArguments arguments{ {M, N, K}, batch_count, ptr_A, ptr_B, ptr_C, ptr_D, alpha, beta, scalar_pointer_mode_, lda, ldb, ldc, ldd, batch_stride_A, batch_stride_B, batch_stride_C, batch_stride_D }; // Query device workspace size uint64_t device_workspace_size_needed = operation->get_device_workspace_size(&configuration, &arguments); if (uint64_t(workspace_size_) < device_workspace_size_needed) { return cutlass::Status::kErrorNotSupported; } // Initialize host and device workspaces Status status = operation->initialize( &configuration, host_workspace, workspace_, stream_); if (status != cutlass::Status::kSuccess) { return status; } // Run the operator return operation->run(&arguments, host_workspace, workspace_, stream_); } /////////////////////////////////////////////////////////////////////////////////////////////////// /// Planar complex GEMM Status Handle::gemm_planar_complex( int M, /// GEMM M dimension int N, /// GEMM N dimension int K, /// GEMM K dimension NumericTypeID element_compute, /// Data type of internal accumulation NumericTypeID element_scalar, /// Data type of alpha/beta scalars void const *alpha, /// Pointer to alpha scalar NumericTypeID element_A, /// Data type of A matrix elements LayoutTypeID layout_A, /// Layout of A matrix ComplexTransform transform_A, /// Complex transformation applied to A matrix void const * ptr_A_real, /// Pointer to real part of A matrix void const * ptr_A_imag, /// Pointer to imaginary part of A matrix int64_t lda_real, /// Leading dimension of real part of A matrix int64_t lda_imag, /// Leading dimension of imaginary part of A matrix NumericTypeID element_B, /// Data type of B matrix elements LayoutTypeID layout_B, /// Layout of B matrix ComplexTransform transform_B, /// Complex transformation applied to B matrix void const * ptr_B_real, /// Pointer to real part of B matrix void const * ptr_B_imag, /// Pointer to imaginary part of B matrix int64_t ldb_real, /// Leading dimension of real part of B matrix int64_t ldb_imag, /// Leading dimension of imaginary part of B matrix void const * beta, /// Pointer to beta scalar NumericTypeID element_C, /// Data type of C and D matrix void const * ptr_C_real, /// Pointer to real part of C matrix void const * ptr_C_imag, /// Pointer to imaginary part of C matrix int64_t ldc_real, /// Leading dimension of real part of C matrix int64_t ldc_imag, /// Leading dimension of imaginary part of C matrix void * ptr_D_real, /// Pointer to real part of D matrix void * ptr_D_imag, /// Pointer to imaginary part of D matrix int64_t ldd_real, /// Leading dimension of real part of D matrix int64_t ldd_imag, /// Leading dimension of imaginary part of D matrix int batch_count, /// Number of batched GEMMs to execute int64_t batch_stride_A_real, int64_t batch_stride_A_imag, int64_t batch_stride_B_real, int64_t batch_stride_B_imag, int64_t batch_stride_C_real, int64_t batch_stride_C_imag, int64_t batch_stride_D_real, int64_t batch_stride_D_imag ) { // // Find the operation // GemmFunctionalKey key( provider_, GemmKind::kPlanarComplex, element_compute, element_scalar, element_A, layout_A, transform_A, element_B, layout_B, transform_B, element_C, // C/D are same type LayoutTypeID::kColumnMajor, element_C, LayoutTypeID::kColumnMajor ); auto operators_it = Singleton::get().operation_table.gemm_operations.find(key); if (operators_it == Singleton::get().operation_table.gemm_operations.end()) { return cutlass::Status::kErrorNotSupported; } if (operators_it->second.empty()) { return cutlass::Status::kErrorNotSupported; } // // Compute the largest alignment restriction the kernel can satisfy. // // Maximum alignment expectation among all kernels (in units of bytes) int const kMaximumAlignmentSize = 16; int alignment = std::max( gemm_problem_alignment( M, N, K, element_A, ptr_A_real, lda_real, batch_stride_A_real, element_B, ptr_B_real, ldb_real, batch_stride_B_real, element_C, ptr_C_real, ldc_real, batch_stride_C_real, ptr_D_real, ldd_real, batch_stride_D_real, kMaximumAlignmentSize ), gemm_problem_alignment( M, N, K, element_A, ptr_A_imag, lda_imag, batch_stride_A_imag, element_B, ptr_B_imag, ldb_imag, batch_stride_B_imag, element_C, ptr_C_imag, ldc_imag, batch_stride_C_imag, ptr_D_imag, ldd_imag, batch_stride_D_imag, kMaximumAlignmentSize ) ); // // Find the best kernel in descending order of preference. // GemmPreferenceKey preference_key(compute_capability(), alignment); Operation const *operation = find_gemm_operation(operators_it, preference_key); if (!operation) { return cutlass::Status::kErrorNotSupported; } last_operation_ = operation; // // Configure operation // GemmPlanarComplexConfiguration configuration{ GemmUniversalMode::kBatched, {M, N, K}, batch_count, lda_real, lda_imag, ldb_real, ldb_imag, ldc_real, ldc_imag, ldd_real, ldd_imag }; // Query host work space size uint64_t host_workspace_size_needed = operation->get_host_workspace_size(&configuration); if (uint64_t(kHostWorkspaceSize) < host_workspace_size_needed) { return cutlass::Status::kErrorNotSupported; } char host_workspace[kHostWorkspaceSize]; // Query device workspace size uint64_t device_workspace_size_needed = operation->get_device_workspace_size(&configuration); if (uint64_t(workspace_size_) < device_workspace_size_needed) { return cutlass::Status::kErrorNotSupported; } // Initialize host and device workspaces Status status = operation->initialize( &configuration, host_workspace, workspace_, stream_); if (status != cutlass::Status::kSuccess) { return status; } // Run the operator GemmPlanarComplexArguments arguments{ ptr_A_real, ptr_A_imag, ptr_B_real, ptr_B_imag, ptr_C_real, ptr_C_imag, ptr_D_real, ptr_D_imag, alpha, beta, scalar_pointer_mode_, batch_stride_A_real, batch_stride_A_imag, batch_stride_B_real, batch_stride_B_imag, batch_stride_C_real, batch_stride_C_imag, batch_stride_D_real, batch_stride_D_imag }; return operation->run(&arguments, host_workspace, workspace_, stream_); } ///////////////////////////////////////////////////////////////////////////////////////////////// /// Planar complex batched GEMM loading pointers from arrays in global memory Status Handle::gemm_planar_complex_array( int expected_M, /// Expected GEMM M dimension (used for sizing CUDA grid) int expected_N, /// Expected GEMM N dimension (used for sizing CUDA grid) int expected_K, /// Expected GEMM K dimension int batch_count, /// Number of independent GEMM computations to execute int const *M, /// Array containing the GEMM M dimension for each batch index int const *N, /// Array containing the GEMM N dimension for each batch index int const *K, /// Array containing the GEMM K dimension for each batch index NumericTypeID element_compute, /// Data type of internal accumulation NumericTypeID element_scalar, /// Data type of alpha/beta scalars void const *alpha, /// Pointer to alpha scalar NumericTypeID element_A, /// Data type of A matrix elements LayoutTypeID layout_A, /// Layout of A matrix ComplexTransform transform_A, /// Complex transformation applied to A matrix void const * const * ptr_A_real, /// Pointer to array containing pointers to real part of A matrices void const * const * ptr_A_imag, /// Pointer to array containing pointers to imaginary part of A matrices int64_t lda_real, /// Leading dimension of real part of A matrix int64_t lda_imag, /// Leading dimension of imaginary part of A matrix NumericTypeID element_B, /// Data type of B matrix elements LayoutTypeID layout_B, /// Layout of B matrix ComplexTransform transform_B, /// Complex transformation applied to B matrix void const * const * ptr_B_real, /// Pointer to array containing pointers to real part of B matrices void const * const * ptr_B_imag, /// Pointer to array containing pointers to imaginary part of B matrices int64_t ldb_real, /// Leading dimension of real part of B matrix int64_t ldb_imag, /// Leading dimension of imaginary part of B matrix void const * beta, /// Pointer to beta scalar NumericTypeID element_C, /// Data type of C and D matrix void const * const * ptr_C_real, /// Pointer to array containing pointers to real part of C matrices void const * const * ptr_C_imag, /// Pointer to array containing pointers to imaginary part of C matrices int64_t ldc_real, /// Leading dimension of real part of C matrix int64_t ldc_imag, /// Leading dimension of imaginary part of C matrix void * const * ptr_D_real, /// Pointer to array containing pointers to real part of D matrices void * const * ptr_D_imag, /// Pointer to array containing pointers to imaginary part of D matrices int64_t ldd_real, /// Leading dimension of real part of D matrix int64_t ldd_imag /// Leading dimension of imaginary part of D matrix ) { // // Find the operation // GemmFunctionalKey key( provider_, GemmKind::kPlanarComplexArray, element_compute, element_scalar, element_A, layout_A, transform_A, element_B, layout_B, transform_B, element_C, // C/D are same type LayoutTypeID::kColumnMajor, element_C, LayoutTypeID::kColumnMajor ); auto operators_it = Singleton::get().operation_table.gemm_operations.find(key); if (operators_it == Singleton::get().operation_table.gemm_operations.end()) { return cutlass::Status::kErrorNotSupported; } if (operators_it->second.empty()) { return cutlass::Status::kErrorNotSupported; } // // Compute the largest alignment restriction the kernel can satisfy. // // Maximum alignment expectation among all kernels (in units of bytes) int const kMaximumAlignmentSize = 16; int alignment = std::max( gemm_problem_alignment( expected_M, expected_N, expected_K, element_A, nullptr, lda_real, 0, element_B, nullptr, ldb_real, 0, element_C, nullptr, ldc_real, 0, nullptr, ldd_real, 0, kMaximumAlignmentSize ), gemm_problem_alignment( expected_M, expected_N, expected_K, element_A, nullptr, lda_imag, 0, element_B, nullptr, ldb_imag, 0, element_C, nullptr, ldc_imag, 0, nullptr, ldd_imag, 0, kMaximumAlignmentSize ) ); // // Find the best kernel in descending order of preference. // GemmPreferenceKey preference_key(compute_capability(), alignment); Operation const *operation = find_gemm_operation(operators_it, preference_key); if (!operation) { return cutlass::Status::kErrorNotSupported; } last_operation_ = operation; // // Configure operation // GemmPlanarComplexArrayConfiguration configuration{ {expected_M, expected_N, expected_K}, batch_count, lda_real, lda_imag, ldb_real, ldb_imag, ldc_real, ldc_imag, ldd_real, ldd_imag }; // Query host work space size uint64_t host_workspace_size_needed = operation->get_host_workspace_size(&configuration); if (uint64_t(kHostWorkspaceSize) < host_workspace_size_needed) { return cutlass::Status::kErrorNotSupported; } char host_workspace[kHostWorkspaceSize]; // Query device workspace size uint64_t device_workspace_size_needed = operation->get_device_workspace_size(&configuration); if (uint64_t(workspace_size_) < device_workspace_size_needed) { return cutlass::Status::kErrorNotSupported; } // Initialize host and device workspaces Status status = operation->initialize( &configuration, host_workspace, workspace_, stream_); if (status != cutlass::Status::kSuccess) { return status; } // Run the operator GemmPlanarComplexArrayArguments arguments{ M, N, K, ptr_A_real, ptr_A_imag, ptr_B_real, ptr_B_imag, ptr_C_real, ptr_C_imag, ptr_D_real, ptr_D_imag, alpha, beta, scalar_pointer_mode_ }; return operation->run(&arguments, host_workspace, workspace_, stream_); } ///////////////////////////////////////////////////////////////////////////////////////////////// /// Finds conv operation instances with Conv::ElementC = Reduction::ElementWorkspace Operation const* find_conv_operation_for_parallel_reduction(Operation const *operation) { ConvDescription const &conv_desc = static_cast<ConvDescription const &>(operation->description()); // if the curren conv operation accumulator and output data type match return operation if(conv_desc.tile_description.math_instruction.element_accumulator == conv_desc.C.element) { return operation; } // find conv operation to match conv output and reduction workspace data type ConvFunctionalKey key( library::Provider::kCUTLASS, conv_desc.conv_kind, conv_desc.A.element, conv_desc.A.layout, conv_desc.B.element, conv_desc.B.layout, conv_desc.tile_description.math_instruction.element_accumulator, conv_desc.C.layout, conv_desc.tile_description.math_instruction.element_accumulator, conv_desc.element_epilogue); // conv operation table for conv2d or conv3d auto conv_operations = (conv_desc.kind == OperationKind::kConv2d) ? Singleton::get().operation_table.conv2d_operations : Singleton::get().operation_table.conv3d_operations; // find ConvFunctionalKey in convolution operation table auto operators_it = conv_operations.find(key); if (operators_it == conv_operations.end()) { return nullptr; } if (operators_it->second.empty()) { return nullptr; } // conv operation for same compute capability and iterator algorithm ConvPreferenceKey preference_key( conv_desc.tile_description.minimum_compute_capability, conv_desc.iterator_algorithm); auto it = operators_it->second.find(preference_key); if(it == operators_it->second.end()) { return nullptr; } // return matching conv opertion (same tile sizes and instruction) for (auto op : it->second) { if (op->description().tile_description == operation->description().tile_description) { return op; } } return nullptr; } ///////////////////////////////////////////////////////////////////////////////////////////////// /// Finds gemm operation instances with Gemm::ElementC = Reduction::ElementWorkspace Operation const* find_gemm_operation_for_parallel_reduction(Operation const *operation) { GemmDescription const &gemm_desc = static_cast<GemmDescription const &>(operation->description()); // if the curren gemm operation accumulator and output data type match return operation if(gemm_desc.tile_description.math_instruction.element_accumulator == gemm_desc.D.element) { return operation; } // find gemm operation to match gemm output and reduction workspace data type GemmFunctionalKey key( library::Provider::kCUTLASS, gemm_desc.gemm_kind, gemm_desc.tile_description.math_instruction.element_accumulator, gemm_desc.element_epilogue, gemm_desc.A.element, gemm_desc.A.layout, gemm_desc.transform_A, gemm_desc.B.element, gemm_desc.B.layout, gemm_desc.transform_B, gemm_desc.tile_description.math_instruction.element_accumulator, // C/D are same type LayoutTypeID::kColumnMajor, gemm_desc.tile_description.math_instruction.element_accumulator, LayoutTypeID::kColumnMajor); // gemm operation table auto gemm_operations = Singleton::get().operation_table.gemm_operations; // find ConvFunctionalKey in gemm operation table auto operators_it = gemm_operations.find(key); if (operators_it == gemm_operations.end()) { return nullptr; } if (operators_it->second.empty()) { return nullptr; } // gemm operation for same compute capability and max operand alignment int alignment = std::max( gemm_desc.A.alignment, gemm_desc.B.alignment); GemmPreferenceKey preference_key( gemm_desc.tile_description.minimum_compute_capability, alignment); auto it = operators_it->second.find(preference_key); if(it == operators_it->second.end()) { return nullptr; } // return matching gemm opertion (same tile shape, stages, warp count, and instruction) for (auto op : it->second) { if (op->description().tile_description == operation->description().tile_description) { return op; } } // return nullptr if no matching gemm operation found for parallel split-k reduction return nullptr; } ///////////////////////////////////////////////////////////////////////////////////////////////// } // namespace library } // namespace cutlass /////////////////////////////////////////////////////////////////////////////////////////////////
tools/library/src/handle.cu/0
{ "file_path": "tools/library/src/handle.cu", "repo_id": "tools", "token_count": 13942 }
71
/*************************************************************************************************** * Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. * SPDX-License-Identifier: BSD-3-Clause * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * **************************************************************************************************/ /* \file \brief "Any sufficiently complicated C or Fortran program contains an ad-hoc, informally-specified, bug-ridden, slow implementation of half of Common Lisp." - Greenspun's Tenth Rule of Programming cutlass::profiler::ProblemSpace defines a set of data structures which represent the Cartesian product of sequences defined by integer ranges, lists of scalars, and sets of enumerated types. These permit a single invocation of the CUTLASS Profiler to iterate over a large set of problems, verify and profile various operations when they are compatible with the command line, and construct data tables of results that are convenient inputs to post processing in Excel or Pandas. By executing multiple problems per invocation, startup overheads may be amortized across many kernel launches. */ #pragma once // Standard Library includes #include <string> #include <vector> #include <memory> #include <unordered_map> #include <cstdlib> // CUTLASS Utility includes #include "cutlass/util/command_line.h" // CUTLASS Library includes #include "cutlass/library/library.h" // Profiler includes #include "enumerated_types.h" namespace cutlass { namespace profiler { ///////////////////////////////////////////////////////////////////////////////////////////////// /// Defines the argument schema struct ArgumentDescription { /// Type of argument ArgumentTypeID type; /// Prioritized array of aliases used in command line parsing std::vector<std::string> aliases; /// Description of argument std::string description; // // Methods // /// Default ctor ArgumentDescription(): type(ArgumentTypeID::kInvalid) { } /// Constructor with aliases ArgumentDescription( ArgumentTypeID type_, std::vector<std::string> const &aliases_, std::string const &description_ ): type(type_), aliases(aliases_), description(description_) { } }; /// Vector of arguments using ArgumentDescriptionVector = std::vector<ArgumentDescription>; ///////////////////////////////////////////////////////////////////////////////////////////////// /// Base class for kernel arguments struct KernelArgument { // // Type definitions // /// Value base class struct Value { KernelArgument const *argument; bool not_null; // // Methods // Value( KernelArgument const *argument_ = nullptr, bool not_null_ = true ): argument(argument_), not_null(not_null_) { } virtual ~Value() { } virtual std::ostream &print(std::ostream &out) const =0; }; /// Abstract base class to iterate over values within arguments struct ValueIterator { /// Indicates type of kernel argument KernelArgument const *argument; /// If the iterator points to an argument that is null, it needs to be distinguished /// from end. bool null_argument; // // Methods // /// Constructs a value iterator - no methods are valid if argument_ == nullptr ValueIterator( KernelArgument const *argument_ = nullptr, bool null_argument_ = false): argument(argument_), null_argument(null_argument_) { if (!argument_->not_null()) { null_argument = true; } } virtual ~ValueIterator() { } /// Advances to next point in range virtual void operator++() = 0; /// Compares against another value iterator - must be of the same KernelArgument type virtual bool operator==(ValueIterator const &it) const = 0; /// Returns a unique_ptr<Value> object pointing to a newly created value object virtual std::unique_ptr<Value> at() const = 0; /// Gets the type of the iterator ArgumentTypeID type() const { return argument->description->type; } /// Helper to compute inequality bool operator!=(ValueIterator const &it) const { return !(*this == it); } std::ostream &print(std::ostream &out) const; }; // // Data members // /// Describes the argument ArgumentDescription const *description; /// Parent node KernelArgument *parent; /// Sequence in which the kernel argument is to be iterated over. /// Smaller means faster changing. -1 is don't care int ordinal; // // Methods // /// Default ctor KernelArgument( ArgumentDescription const *description_ = nullptr, KernelArgument *parent_ = nullptr, int ordinal_ = -1 ): description(description_), parent(parent_), ordinal(ordinal_) { } virtual ~KernelArgument(); /// Returns true if the kernel argument iself is empty virtual bool not_null() const =0; /// Returns a string name for debugging std::string qualified_name() const { if (description) { if (description->aliases.empty()) { return "<description_not_null_no_aliases>"; } return description->aliases.front(); } return "<description_null>"; } virtual std::unique_ptr<ValueIterator> begin() const =0; virtual std::unique_ptr<ValueIterator> end() const =0; }; using KernelArgumentVector = std::vector<std::unique_ptr<KernelArgument>>; ///////////////////////////////////////////////////////////////////////////////////////////////// /// Defines a scalar argument type as a string that is lexically cast to the appropriate kernel /// type. struct ScalarArgument : public KernelArgument { // // Type definitions // /// Value type struct ScalarValue : public KernelArgument::Value { std::string value; // // Methods // ScalarValue( std::string const &value_ = "", ScalarArgument const *argument = nullptr, bool not_null_ = true ); virtual std::ostream &print(std::ostream &out) const; }; using ValueCollection = std::vector<std::string>; /// Abstract base class to iterate over values within arguments struct ScalarValueIterator : public KernelArgument::ValueIterator { // // Data members // ValueCollection::const_iterator value_it; // // Methods // ScalarValueIterator(ScalarArgument const *argument = nullptr); virtual void operator++(); virtual bool operator==(ValueIterator const &it) const; /// Gets the value pointed to virtual std::unique_ptr<KernelArgument::Value> at() const; }; // // Data members // /// Set of possible values ValueCollection values; // // Methods // /// Default ctor ScalarArgument( ArgumentDescription const *description ): KernelArgument(description) { } virtual bool not_null() const { return !values.empty(); } virtual std::unique_ptr<KernelArgument::ValueIterator> begin() const; virtual std::unique_ptr<KernelArgument::ValueIterator> end() const; }; ///////////////////////////////////////////////////////////////////////////////////////////////// /// Closed range supporting additive increment struct Range { // // Type definitions // enum class Mode { kSequence, kRandom, kRandomLog2, kInvalid }; struct Iterator { int64_t value; int64_t increment; Range const *range; // // Methods // Iterator( int64_t value_ = 0, int64_t increment_ = 1, Range const *range_ = nullptr ): value(value_), increment(increment_), range(range_) { } Iterator & operator++() { value += increment; return *this; } Iterator operator++(int) { Iterator self(*this); ++(*this); return self; } bool operator==(Iterator const &it) const { return value == it.value; } bool operator!=(Iterator const &it) const { return !(*this == it); } static int64_t round(int64_t value, int64_t divisible) { int64_t rem = (value % divisible); // Round either up or down if (rem > divisible / 2) { value += (divisible - rem); } else { value -= rem; } return value; } int64_t at() const { if (!range) { return value; } switch (range->mode) { case Mode::kSequence: return value; case Mode::kRandom: { double rnd = double(range->minimum) + double(std::rand()) / double(RAND_MAX) * (double(range->maximum) - double(range->minimum)); int64_t value = int64_t(rnd); return round(value, range->divisible); } break; case Mode::kRandomLog2: { double lg2_minimum = std::log(double(range->minimum)) / std::log(2.0); double lg2_maximum = std::log(double(range->maximum)) / std::log(2.0); double rnd = lg2_minimum + double(std::rand()) / double(RAND_MAX) * (lg2_maximum - lg2_minimum); int64_t value = int64_t(std::pow(2.0, rnd)); return round(value, range->divisible); } break; default: break; } return value; } int64_t operator*() const { return at(); } }; // // Data members // int64_t first; ///< first element in range int64_t last; ///< last element in range int64_t increment; ///< additive increment between values Mode mode; ///< mode selection enables alternative values int64_t minimum; ///< minimum value to return int64_t maximum; ///< maximum value to return int64_t divisible; ///< rounds value down to an integer multiple of this value // // Methods // /// Default constructor - range acts as a scalar Range(int64_t first_ = 0): first(first_), last(first_), increment(1), mode(Mode::kSequence), minimum(0), maximum(0), divisible(1) { } /// Range acts as a range Range( int64_t first_, int64_t last_, int64_t increment_ = 1, Mode mode_ = Mode::kSequence, int64_t minimum_ = 0, int64_t maximum_ = 0, int64_t divisible_ = 1 ): first(first_), last(last_), increment(increment_), mode(mode_), minimum(minimum_), maximum(maximum_), divisible(divisible_) { // Helpers to avoid constructing invalid ranges if (increment > 0) { if (last < first) { std::swap(last, first); } } else if (increment < 0) { if (first < last) { std::swap(last, first); } } else if (last != first) { last = first; increment = 1; } } /// Helper to construct a sequence range static Range Sequence(int64_t first_, int64_t last_, int64_t increment_ = 1) { return Range(first_, last_, increment_, Mode::kSequence); } /// Helper to construct a range that is a random distribution static Range Random(int64_t minimum_, int64_t maximum_, int64_t count_, int64_t divisible_ = 1) { return Range(1, count_, 1, Mode::kRandom, minimum_, maximum_, divisible_); } /// Helper to construct a range that is a random distribution over a log scale static Range RandomLog2(int64_t minimum_, int64_t maximum_, int64_t count_, int64_t divisible_ = 1) { return Range(1, count_, 1, Mode::kRandomLog2, minimum_, maximum_, divisible_); } /// Returns an iterator to the first element within the range Iterator begin() const { return Iterator(first, increment, this); } /// Returns an iterator to the first element *after* the range Iterator end() const { return Iterator(first + ((last - first)/increment + 1) * increment, increment, this); } }; /// Integer-valued argument - represented as a list of integer-valued ranges struct IntegerArgument : public KernelArgument { // // Type definitions // /// Value type struct IntegerValue : public KernelArgument::Value { int64_t value; // // Methods // IntegerValue( int64_t value_ = 0, IntegerArgument const *argument_ = nullptr, bool not_null_ = true ); /// Pretty printer for debugging virtual std::ostream &print(std::ostream &out) const; }; /// Collection of ranges represent the IntegerArgument's state using RangeCollection = std::vector<Range>; /// Abstract base class to iterate over values within arguments struct IntegerValueIterator : public KernelArgument::ValueIterator { // // Data members // RangeCollection::const_iterator range_it; Range::Iterator value_it; // // Methods // IntegerValueIterator(); IntegerValueIterator(IntegerArgument const *argument); virtual void operator++(); virtual bool operator==(ValueIterator const &it) const; /// Gets the value pointed to virtual std::unique_ptr<KernelArgument::Value> at() const; }; // // Data members // /// Set of possible values RangeCollection ranges; // // Methods // /// Default ctor IntegerArgument( ArgumentDescription const *description ): KernelArgument(description) { } virtual bool not_null() const { bool _not_null = !ranges.empty(); return _not_null; } virtual std::unique_ptr<KernelArgument::ValueIterator> begin() const; virtual std::unique_ptr<KernelArgument::ValueIterator> end() const; }; ///////////////////////////////////////////////////////////////////////////////////////////////// /// Structure defining the data type of tensors struct TensorArgument : public KernelArgument { // // Type definitions // struct TensorDescription { /// Data type of elements library::NumericTypeID element; /// Layout definition library::LayoutTypeID layout; /// Computed extent std::vector<int> extent; /// Enables directly specifying stride value used to size tensor std::vector<int> stride; // // Methods // TensorDescription( library::NumericTypeID element_ = library::NumericTypeID::kUnknown, library::LayoutTypeID layout_ = library::LayoutTypeID::kUnknown, std::vector<int> extent_ = std::vector<int>(), std::vector<int> stride_ = std::vector<int>() ): element(element_), layout(layout_), extent(extent_), stride(stride_) {} }; using ValueCollection = std::vector<TensorDescription>; /// Value structure struct TensorValue : public KernelArgument::Value { TensorDescription desc; // // Methods // TensorValue( TensorDescription const &desc_ = TensorDescription(), TensorArgument const *argument_ = nullptr, bool not_null_ = true ); /// Pretty printer for debugging virtual std::ostream &print(std::ostream &out) const; }; /// Abstract base class to iterate over values within arguments struct TensorValueIterator : public KernelArgument::ValueIterator { // // Data members // ValueCollection::const_iterator value_it; // // Methods // TensorValueIterator(TensorArgument const *argument_); virtual void operator++(); virtual bool operator==(ValueIterator const &it) const; /// Gets the value pointed to virtual std::unique_ptr<KernelArgument::Value> at() const; }; /// Set of possible values ValueCollection values; // // Methods // /// Default ctor TensorArgument( ArgumentDescription const *description ): KernelArgument(description) { } virtual bool not_null() const { return !values.empty(); } virtual std::unique_ptr<KernelArgument::ValueIterator> begin() const; virtual std::unique_ptr<KernelArgument::ValueIterator> end() const; }; ///////////////////////////////////////////////////////////////////////////////////////////////// /// Numeric data type struct EnumeratedTypeArgument : public KernelArgument { // // Type definitions // struct EnumeratedTypeValue : public KernelArgument::Value { /// Data type of element std::string element; // // Methods // EnumeratedTypeValue( std::string const &element_ = std::string(), EnumeratedTypeArgument const *argument_ = nullptr, bool not_null_ = true ); /// Pretty printer for debugging virtual std::ostream &print(std::ostream &out) const; }; using ValueCollection = std::vector<std::string>; /// Abstract base class to iterate over values within arguments struct EnumeratedTypeValueIterator : public KernelArgument::ValueIterator { // // Data members // ValueCollection::const_iterator value_it; // // Methods // EnumeratedTypeValueIterator(EnumeratedTypeArgument const *argument_ = nullptr); virtual void operator++(); virtual bool operator==(ValueIterator const &it) const; /// Gets the value pointed to virtual std::unique_ptr<KernelArgument::Value> at() const; }; // // Data members // ValueCollection values; // // Members // /// Default ctor EnumeratedTypeArgument(ArgumentDescription const *description): KernelArgument(description) {} virtual bool not_null() const { return !values.empty(); } virtual std::unique_ptr<KernelArgument::ValueIterator> begin() const; virtual std::unique_ptr<KernelArgument::ValueIterator> end() const; }; ///////////////////////////////////////////////////////////////////////////////////////////////// /// Object storing the space argument values class ProblemSpace { public: /// Tuple of arguments using Problem = std::vector<std::unique_ptr<KernelArgument::Value>>; /// Type used to iterator over things using IteratorVector = std::vector<std::unique_ptr<KernelArgument::ValueIterator>>; /// Iterates over points in the design space class Iterator { private: /// One iterator per argument IteratorVector iterators; public: // // Methods // explicit Iterator(); Iterator(ProblemSpace const &problem_space); Iterator(Iterator &&it); // Rule of three Iterator(Iterator const &) = delete; Iterator &operator=(Iterator const &it) = delete; ~Iterator() = default; /// Pre-increment - advances to next point in argument range void operator++(); /// Gets the current argument value Problem at() const; /// Moves iterator to end void move_to_end(); /// Equality operator bool operator==(Iterator const &it) const; /// Inequality operator bool operator!=(Iterator const &it) const { return !(*this == it); } /// Helper to call at() method Problem operator*() const { return at(); } /// Helper to print iterator state std::ostream & print(std::ostream &out) const; private: /// Helper for recursively constructing iterators void construct_(KernelArgument const *argument); }; public: // // Data members // KernelArgumentVector arguments; /// Map of argument names to their position within the argument vector std::unordered_map<std::string, size_t> argument_index_map; public: // // Methods // /// Default ctor ProblemSpace() {} /// Constructs a problem space from a vector of arguments. This vector must outlive /// the ProblemSpace object, which stores pointers to objects within the /// ArgumentDescriptionVector. ProblemSpace(ArgumentDescriptionVector const &schema, CommandLine const &cmdline); Iterator begin() const; // returns an iterator to the first point in the range Iterator end() const; // returns an iterator to the first point after the range /// Returns the index of an argument by name size_t argument_index(char const *name) const; /// Gets all argument names as an ordered vector std::vector<std::string> argument_names() const; /// Returns the number of dimensions of the problem space size_t rank() const { return arguments.size(); } private: /// Helper for recursively cloning void clone_( KernelArgumentVector &kernel_args, ArgumentDescription const *arg_desc); /// Parses command line argument void parse_( KernelArgument *arg, CommandLine const &cmdline); }; ///////////////////////////////////////////////////////////////////////////////////////////////// /// Lexically casts an argument to an int if it is defined. Returns true if not null. bool arg_as_int(int &int_value, KernelArgument::Value const *value_ptr); /// Lexically casts an argument to an int64 if it is defined. Returns true if not null. bool arg_as_int(int64_t &int_value, KernelArgument::Value const *value_ptr); /// Lexically casts an argument to an int64 if it is defined. Returns true if not null. bool arg_as_int( int &int_value, char const *name, ProblemSpace const &problem_space, ProblemSpace::Problem const &problem); /// Lexically casts an argument to an int64 if it is defined. Returns true if not null. bool arg_as_int( int64_t &int_value, char const *name, ProblemSpace const &problem_space, ProblemSpace::Problem const &problem); /// Lexically casts an argument to an int64 if it is defined. Returns true if not null. bool arg_as_NumericTypeID(library::NumericTypeID &numeric_type, KernelArgument::Value const *value_ptr); /// Lexically casts an argument to an int64 if it is defined. Returns true if not null. bool arg_as_NumericTypeID( library::NumericTypeID &numeric_type, char const *name, ProblemSpace const &problem_space, ProblemSpace::Problem const &problem); /// Lexically casts an argument to an int64 if it is defined. Returns true if not null. bool arg_as_LayoutTypeID(library::LayoutTypeID &layout_type, KernelArgument::Value const *value_ptr); /// Lexically casts an argument to an int64 if it is defined. Returns true if not null. bool arg_as_LayoutTypeID( library::LayoutTypeID &layout_type, char const *name, ProblemSpace const &problem_space, ProblemSpace::Problem const &problem); /// Lexically casts an argument to an int64 if it is defined. Returns true if not null. bool arg_as_OpcodeClassID(library::OpcodeClassID &opcode_class, KernelArgument::Value const *value_ptr); /// Lexically casts an argument to an int64 if it is defined. Returns true if not null. bool arg_as_OpcodeClassID( library::OpcodeClassID &opcode_class, char const *name, ProblemSpace const &problem_space, ProblemSpace::Problem const &problem); /// Lexically casts an argument to an int64 if it is defined. Returns true if not null. bool arg_as_SplitKModeID(library::SplitKMode &split_k_mode, KernelArgument::Value const *value_ptr); /// Lexically casts an argument to an int64 if it is defined. Returns true if not null. bool arg_as_SplitKModeID( library::SplitKMode &split_k_mode, char const *name, ProblemSpace const &problem_space, ProblemSpace::Problem const &problem); /// Lexically casts an argument to an int64 if it is defined. Returns true if not null. bool arg_as_ConvModeID(library::ConvModeID &conv_mode, KernelArgument::Value const *value_ptr); /// Lexically casts an argument to an int64 if it is defined. Returns true if not null. bool arg_as_ConvModeID( library::ConvModeID &conv_mode, char const *name, ProblemSpace const &problem_space, ProblemSpace::Problem const &problem); /// Lexically casts an argument to an int64 if it is defined. Returns true if not null. bool arg_as_IteratorAlgorithmID(library::IteratorAlgorithmID &iterator_algorithm, KernelArgument::Value const *value_ptr); /// Lexically casts an argument to an int64 if it is defined. Returns true if not null. bool arg_as_IteratorAlgorithmID( library::IteratorAlgorithmID &iterator_algorithm, char const *name, ProblemSpace const &problem_space, ProblemSpace::Problem const &problem); /// Lexically casts an argument to an int64 if it is defined. Returns true if not null. bool arg_as_RasterOrder(library::RasterOrder &raster_order, KernelArgument::Value const *value_ptr); /// Lexically casts an argument to an int64 if it is defined. Returns true if not null. bool arg_as_RasterOrder( library::RasterOrder &raster_order, char const *name, ProblemSpace const &problem_space, ProblemSpace::Problem const &problem); /// Lexically casts an argument to an int64 if it is defined. Returns true if not null. bool arg_as_ProviderID(library::Provider &provider, KernelArgument::Value const *value_ptr); /// Lexically casts an argument to an int64 if it is defined. Returns true if not null. bool arg_as_ProviderID( library::Provider &provider, char const *name, ProblemSpace const &problem_space, ProblemSpace::Problem const &problem); /// Lexically casts an argument to a given type stored in a byte array. Returns true if not null. bool arg_as_scalar( std::vector<uint8_t> &bytes, library::NumericTypeID numeric_type, KernelArgument::Value const *value_ptr); /// Lexically casts an argument to a given type stored in a byte array. Returns true if not null. bool arg_as_scalar( std::vector<uint8_t> &bytes, library::NumericTypeID numeric_type, char const *name, ProblemSpace const &problem_space, ProblemSpace::Problem const &problem); /// Returns true if a tensor description satisfies a `tensor` value bool tensor_description_satisfies( library::TensorDescription const &tensor_desc, TensorArgument::TensorValue const *value_ptr); /// Returns true if a tensor description satisfies a `tensor` value bool tensor_description_satisfies( library::TensorDescription const &tensor_desc, char const *name, ProblemSpace const &problem_space, ProblemSpace::Problem const &problem); /// Returns true if a conv kind satisfies the value bool conv_kind_satisfies( library::ConvKind const &conv_kind, EnumeratedTypeArgument::EnumeratedTypeValue const *value_ptr); /// Returns true if a conv kind satisfies the value bool conv_kind_satisfies( library::ConvKind const &conv_kind, char const *name, ProblemSpace const &problem_space, ProblemSpace::Problem const &problem); /// Returns true if a iterator algorithm satisfies the value bool iterator_algorithm_satisfies( library::IteratorAlgorithmID const &iterator_algorithm, EnumeratedTypeArgument::EnumeratedTypeValue const *value_ptr); /// Returns true if a iterator algorithm satisfies the value bool iterator_algorithm_satisfies( library::IteratorAlgorithmID const &iterator_algorithm, char const *name, ProblemSpace const &problem_space, ProblemSpace::Problem const &problem); ///////////////////////////////////////////////////////////////////////////////////////////////// } // namespace profiler } // namespace cutlass ////////////////////////////////////////////////////////////////////////////////////////////////
tools/profiler/include/cutlass/profiler/problem_space.h/0
{ "file_path": "tools/profiler/include/cutlass/profiler/problem_space.h", "repo_id": "tools", "token_count": 8750 }
72
/*************************************************************************************************** * Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. * SPDX-License-Identifier: BSD-3-Clause * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * **************************************************************************************************/ /*! \file \brief Contains code for debugging cutlass code */ #pragma once #include "device_dump.h" //////////////////////////////////////////////////////////////////////////////////////////////////// /****************************************************************************** * Debug and logging macros ******************************************************************************/ /** * Formats and prints the given message to stdout */ #if !defined(CUDA_LOG) #if !defined(__CUDA_ARCH__) #define CUDA_LOG(format, ...) printf(format, __VA_ARGS__) #else #define CUDA_LOG(format, ...) \ printf("[block (%d,%d,%d), thread (%d,%d,%d)]: " format, \ blockIdx.x, \ blockIdx.y, \ blockIdx.z, \ threadIdx.x, \ threadIdx.y, \ threadIdx.z, \ __VA_ARGS__); #endif #endif /** * Formats and prints the given message to stdout only if DEBUG is defined */ #if !defined(CUDA_LOG_DEBUG) #ifdef DEBUG #define CUDA_LOG_DEBUG(format, ...) CUDA_LOG(format, __VA_ARGS__) #else #define CUDA_LOG_DEBUG(format, ...) #endif #endif /** * \brief The corresponding error message is printed to \p stderr (or \p stdout in device code) * along with the supplied source context. * * \return The CUDA error. */ __host__ CUTLASS_DEVICE cudaError_t cuda_perror_impl(cudaError_t error, const char* expression, const char* filename, int line) { (void)filename; (void)line; if (error) { #if !defined(__CUDA_ARCH__) fprintf( stderr, "CUDA error %d [%s, %d] in expression '%s': %s\n", error, filename, line, expression, cudaGetErrorString(error)); fflush(stderr); #else printf("CUDA error %d [%s, %d] in expression '%s'\n", error, filename, line, expression); #endif } return error; } /** * \brief Perror macro */ #ifndef CUDA_PERROR #define CUDA_PERROR(e) cuda_perror_impl((cudaError_t)(e), #e, __FILE__, __LINE__) #endif /** * \brief Perror macro with exit */ #ifndef CUDA_PERROR_EXIT #define CUDA_PERROR_EXIT(e) \ do { if (cuda_perror_impl((cudaError_t)(e), #e, __FILE__, __LINE__)) { \ exit(1); \ } } while (0) #endif /** * \brief Perror macro only if DEBUG is defined */ #ifndef CUDA_PERROR_DEBUG #ifdef DEBUG #define CUDA_PERROR_DEBUG(e) CUDA_PERROR(e) #else #define CUDA_PERROR_DEBUG(e) (e) #endif #endif //////////////////////////////////////////////////////////////////////////////////////////////////// // A small helper class to dump a type at compile time // Usage:: DumpType<Class>::Class template <typename T> struct DebugType {}; template <typename T> void DebugTypeFunc(T const& t) { T::t; } // A small helper class to dump a compile time constant at compile time // Usage: DumpValue<Class::kConstant>::kConstant template <int Value> struct DebugValue {};
tools/util/include/cutlass/util/debug.h/0
{ "file_path": "tools/util/include/cutlass/util/debug.h", "repo_id": "tools", "token_count": 1956 }
73
/*************************************************************************************************** * Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. * SPDX-License-Identifier: BSD-3-Clause * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * **************************************************************************************************/ #pragma once /*! \file \brief HostTensor contributes management for both host and device memory. HostTensor allocates host and device memory upon construction. Basic element-wise operations on host memory synchronize device memory automatically. Explicit copy operations provide abstractions for CUDA memcpy operations. Call {host, device}_{data, ref, view}() for accessing host or device memory. See cutlass/tensor_ref.h and cutlass/tensor_view.h for more details. */ #include <vector> #include "cutlass/cutlass.h" #include "cutlass/tensor_ref.h" #include "cutlass/tensor_view.h" #include "cutlass/fast_math.h" #include "device_memory.h" namespace cutlass { /////////////////////////////////////////////////////////////////////////////////////////////////// /// Host tensor template < /// Data type of element stored within tensor (concept: NumericType) typename Element_, /// Defines a mapping from logical coordinate to linear memory (concept: Layout) typename Layout_ > class HostTensor { public: /// Data type of individual access using Element = Element_; /// Mapping function from logical coordinate to linear memory using Layout = Layout_; /// Logical rank of tensor index space static int const kRank = Layout::kRank; /// Index type using Index = typename Layout::Index; /// Long index used for pointer offsets using LongIndex = typename Layout::LongIndex; /// Coordinate in logical tensor space using TensorCoord = typename Layout::TensorCoord; /// Layout's stride vector using Stride = typename Layout::Stride; /// Tensor reference to device memory using TensorRef = TensorRef<Element, Layout>; /// Tensor reference to constant device memory using ConstTensorRef = typename TensorRef::ConstTensorRef; /// Tensor reference to device memory using TensorView = TensorView<Element, Layout>; /// Tensor reference to constant device memory using ConstTensorView = typename TensorView::ConstTensorView; /// Reference to element in tensor using Reference = typename TensorRef::Reference; /// Constant reference to element in tensor using ConstReference = typename ConstTensorRef::Reference; /// Note: Below is used to handle packing of subbyte elements /// kBitsStoredVec : The bits of store vec that could be divisiable by the element /// kElementsPerStoredVec : The number of elements could be stored in per store vec /// kNumStoragePerStoredVec : How much storage(i.e. sizeof(element storage)) the store vec needs to consume. /// Usually the element storage of subbyte is uint8_t. /// Example /// int2: kBitsStoredVec = 8; kElementsPerStoredVec = 4; kNumStoragePerStoredVec = 1 uint8_t; /// int4: kBitsStoredVec = 8; kElementsPerStoredVec = 2; kNumStoragePerStoredVec = 1 uint8_t; static constexpr int kBitsStoredVec = (sizeof_bits<Element>::value < 8) ? cutlass::lcm(sizeof_bits<Element>::value, 8) : sizeof_bits<Element>::value; static constexpr int kElementsPerStoredVec = kBitsStoredVec / sizeof_bits<Element>::value; static constexpr int kNumStoragePerStoredVec = kBitsStoredVec / (sizeof(Element) * 8); static_assert(kBitsStoredVec != 0, "kBitsStoredVec can not be zero"); static_assert(kElementsPerStoredVec != 0, "kElementsPerStoredVec can not be zero"); static_assert(kNumStoragePerStoredVec != 0, "kNumStoragePerStoredVec can not be zero"); private: // // Data members // /// Extent of tensor in logical dimensions TensorCoord extent_; /// Layout object Layout layout_; /// Host-side memory allocation /// avoid the std::vector<bool> specialization std::vector<std::conditional_t<std::is_same_v<Element,bool>, uint8_t, Element>> host_; /// Device-side memory device_memory::allocation<Element> device_; public: // // Device and Host Methods // /// Default constructor HostTensor() {} /// Constructs a tensor given an extent. Assumes a packed layout HostTensor( TensorCoord const &extent, bool device_backed = true ) { this->reset(extent, Layout::packed(extent), device_backed); } /// Constructs a tensor given an extent and layout HostTensor( TensorCoord const &extent, Layout const &layout, bool device_backed = true ) { this->reset(extent, layout, device_backed); } ~HostTensor() { } /// Clears the HostTensor allocation to size/capacity = 0 void reset() { extent_ = TensorCoord(); layout_ = Layout::packed(extent_); host_.clear(); device_.reset(); } /// Resizes internal memory allocations without affecting layout or extent void reserve( size_t count, ///< size of tensor in elements bool device_backed_ = true) { ///< if true, device memory is also allocated device_.reset(); host_.clear(); count = (count + kElementsPerStoredVec - 1) / kElementsPerStoredVec * kNumStoragePerStoredVec; host_.resize(count); // Allocate memory Element* device_memory = nullptr; if (device_backed_) { device_memory = device_memory::allocate<Element>(count); } device_.reset(device_memory, device_backed_ ? count : 0); } /// Updates the extent and layout of the HostTensor. Allocates memory according to the new /// extent and layout. void reset( TensorCoord const &extent, ///< extent of logical tensor Layout const &layout, ///< layout object of tensor bool device_backed_ = true) { ///< if true, device memory is also allocated. extent_ = extent; layout_ = layout; reserve(size_t(layout_.capacity(extent_)), device_backed_); } /// Updates the extent and layout of the HostTensor. Allocates memory according to the new /// extent and layout. Assumes a packed tensor configuration. void reset( TensorCoord const &extent, ///< extent of logical tensor bool device_backed_ = true) { ///< if true, device memory is also allocated. reset(extent, Layout::packed(extent), device_backed_); } /// Changes the size of the logical tensor. Only allocates memory if new capacity exceeds reserved capacity. /// To force allocation, call reset(). void resize( TensorCoord const &extent, ///< extent of logical tensor Layout const &layout, ///< layout object of tensor bool device_backed_ = true) { ///< if true, device memory is also allocated. extent_ = extent; layout_ = layout; LongIndex new_size = size_t(layout_.capacity(extent_)); if (static_cast<decltype(host_.size())>(new_size) > host_.size()) { reserve(new_size, device_backed_); } } /// Changes the size of the logical tensor. Only allocates memory if new capacity exceeds reserved capacity. /// To force allocation, call reset(). Note, this form of resize() assumes a packed tensor configuration. void resize( TensorCoord const &extent, ///< extent of logical tensor bool device_backed_ = true) { ///< if true, device memory is also allocated. resize(extent, Layout::packed(extent), device_backed_); } /// Returns the number of elements stored in the host tensor size_t size() const { return host_.size() / kNumStoragePerStoredVec * kElementsPerStoredVec; } /// Returns the logical capacity based on extent and layout. May differ from size(). LongIndex capacity() const { return layout_.capacity(extent_); } /// Gets pointer to host data Element * host_data() { return reinterpret_cast<Element *>(host_.data()); } /// Gets pointer to host data with a pointer offset Element * host_data_ptr_offset(LongIndex ptr_element_offset) { return &ReferenceFactory<Element>::get(host_data(), ptr_element_offset); } /// Gets a reference to an element in host memory Reference host_data(LongIndex idx) { return ReferenceFactory<Element>::get(host_data(), idx); } /// Gets pointer to host data Element const * host_data() const { return reinterpret_cast<Element const *>(host_.data()); } /// Gets pointer to host data with a pointer offset Element const * host_data_ptr_offset(LongIndex ptr_element_offset) const { return &ReferenceFactory<Element>::get(host_data(), ptr_element_offset); } /// Gets a constant reference to an element in host memory ConstReference host_data(LongIndex idx) const { return ReferenceFactory<Element const>::get(host_data(), idx); } /// Gets pointer to device data Element * device_data() { return device_.get(); } /// Gets pointer to device data Element const * device_data() const { return device_.get(); } /// Gets pointer to device data with a pointer offset Element * device_data_ptr_offset(LongIndex ptr_element_offset) { return &ReferenceFactory<Element>::get(device_data(), ptr_element_offset); } /// Gets pointer to device data with a pointer offset Element const * device_data_ptr_offset(LongIndex ptr_element_offset) const { return &ReferenceFactory<Element>::get(device_data(), ptr_element_offset); } /// Accesses the tensor reference pointing to data TensorRef host_ref(LongIndex ptr_element_offset=0) { return TensorRef(host_data_ptr_offset(ptr_element_offset), layout_); } /// Accesses the tensor reference pointing to data ConstTensorRef host_ref(LongIndex ptr_element_offset=0) const { return ConstTensorRef(host_data_ptr_offset(ptr_element_offset), layout_); } /// Accesses the tensor reference pointing to data TensorRef device_ref(LongIndex ptr_element_offset=0) { return TensorRef(device_data_ptr_offset(ptr_element_offset), layout_); } /// Accesses the tensor reference pointing to data ConstTensorRef device_ref(LongIndex ptr_element_offset=0) const { return TensorRef(device_data_ptr_offset(ptr_element_offset), layout_); } /// Accesses the tensor reference pointing to data TensorView host_view(LongIndex ptr_element_offset=0) { return TensorView(host_data_ptr_offset(ptr_element_offset), layout_, extent_); } /// Accesses the tensor reference pointing to data ConstTensorView host_view(LongIndex ptr_element_offset=0) const { return ConstTensorView(host_data_ptr_offset(ptr_element_offset), layout_, extent_); } /// Accesses the tensor reference pointing to data TensorView device_view(LongIndex ptr_element_offset=0) { return TensorView(device_data_ptr_offset(ptr_element_offset), layout_, extent_); } /// Accesses the tensor reference pointing to data ConstTensorView device_view(LongIndex ptr_element_offset=0) const { return ConstTensorView(device_data_ptr_offset(ptr_element_offset), layout_, extent_); } /// Returns true if device memory is allocated bool device_backed() const { return (device_.get() == nullptr) ? false : true; } /// Returns the layout object Layout & layout() { return layout_; } /// Returns the layout object Layout layout() const { return layout_; } /// Returns the layout object's stride vector Stride stride() const { return layout_.stride(); } /// Returns the layout object's stride vector Stride & stride() { return layout_.stride(); } /// Returns the layout object's stride in a given physical dimension LongIndex stride(int dim) const { return layout_.stride().at(dim); } /// Returns the layout object's stride in a given physical dimension LongIndex & stride(int dim) { return layout_.stride().at(dim); } /// Computes the offset of an index from the origin of the tensor LongIndex offset(TensorCoord const& coord) const { return layout_(coord); } /// Returns a reference to the element at the logical Coord in host memory Reference at(TensorCoord const& coord) { return host_data(offset(coord)); } /// Returns a const reference to the element at the logical Coord in host memory ConstReference at(TensorCoord const& coord) const { return host_data(offset(coord)); } /// Returns the extent of the tensor TensorCoord extent() const { return extent_; } /// Returns the extent of the tensor TensorCoord & extent() { return extent_; } /// Copies data from device to host void sync_host() { if (device_backed()) { device_memory::copy_to_host( host_data(), device_data(), size()); } } /// Copies data from host to device void sync_device() { if (device_backed()) { device_memory::copy_to_device( device_data(), host_data(), size()); } } /// Copy data from a caller-supplied device pointer into host memory. void copy_in_device_to_host( Element const* ptr_device, ///< source device memory LongIndex count = -1) { ///< number of elements to transfer; if negative, entire tensor is overwritten. if (count < 0) { count = capacity(); } else { count = __NV_STD_MIN(capacity(), count); } device_memory::copy_to_host( host_data(), ptr_device, count); } /// Copy data from a caller-supplied device pointer into host memory. void copy_in_device_to_device( Element const* ptr_device, ///< source device memory LongIndex count = -1) { ///< number of elements to transfer; if negative, entire tensor is overwritten. if (count < 0) { count = capacity(); } else { count = __NV_STD_MIN(capacity(), count); } device_memory::copy_device_to_device( device_data(), ptr_device, count); } /// Copy data from a caller-supplied device pointer into host memory. void copy_in_host_to_device( Element const* ptr_host, ///< source host memory LongIndex count = -1) { ///< number of elements to transfer; if negative, entire tensor is overwritten. if (count < 0) { count = capacity(); } else { count = __NV_STD_MIN(capacity(), count); } device_memory::copy_to_device( device_data(), ptr_host, count); } /// Copy data from a caller-supplied device pointer into host memory. void copy_in_host_to_host( Element const* ptr_host, ///< source host memory LongIndex count = -1) { ///< number of elements to transfer; if negative, entire tensor is overwritten. if (count < 0) { count = capacity(); } else { count = __NV_STD_MIN(capacity(), count); } device_memory::copy_host_to_host( host_data(), ptr_host, count); } /// Copy data from a caller-supplied device pointer into host memory. void copy_out_device_to_host( Element * ptr_host, ///< source device memory LongIndex count = -1) const { ///< number of elements to transfer; if negative, entire tensor is overwritten. if (count < 0) { count = capacity(); } else { count = __NV_STD_MIN(capacity(), count); } device_memory::copy_to_host( ptr_host, device_data(), count); } /// Copy data from a caller-supplied device pointer into host memory. void copy_out_device_to_device( Element * ptr_device, ///< source device memory LongIndex count = -1) const { ///< number of elements to transfer; if negative, entire tensor is overwritten. if (count < 0) { count = capacity(); } else { count = __NV_STD_MIN(capacity(), count); } device_memory::copy_device_to_device( ptr_device, device_data(), count); } /// Copy data from a caller-supplied device pointer into host memory. void copy_out_host_to_device( Element * ptr_device, ///< source host memory LongIndex count = -1) const { ///< number of elements to transfer; if negative, entire tensor is overwritten. if (count < 0) { count = capacity(); } else { count = __NV_STD_MIN(capacity(), count); } device_memory::copy_to_device( ptr_device, host_data(), count); } /// Copy data from a caller-supplied device pointer into host memory. void copy_out_host_to_host( Element * ptr_host, ///< source host memory LongIndex count = -1) const { ///< number of elements to transfer; if negative, entire tensor is overwritten. if (count < 0) { count = capacity(); } else { count = __NV_STD_MIN(capacity(), count); } device_memory::copy_host_to_host( ptr_host, host_data(), count); } }; /////////////////////////////////////////////////////////////////////////////////////////////////// } // namespace cutlass
tools/util/include/cutlass/util/host_tensor.h/0
{ "file_path": "tools/util/include/cutlass/util/host_tensor.h", "repo_id": "tools", "token_count": 6056 }
74
/*************************************************************************************************** * Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. * SPDX-License-Identifier: BSD-3-Clause * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * **************************************************************************************************/ /*! \file \brief Reference implementation for complex-valued Rank 2K update in host-side code. */ #pragma once #include "cutlass/blas3.h" #include "cutlass/complex.h" #include "cutlass/numeric_conversion.h" #include "cutlass/tensor_view.h" #include "cutlass/gemm/gemm.h" #include <assert.h> namespace cutlass { namespace reference { namespace host { //////////////////////////////////////////////////////////////////////////////////////////////////// /// Computes a general matrix product among matrices (tensors of rank=2) pointed to by TensorRef /// objects. /// /// Explicitly naming types needed by this template can be cumbersome, particularly for the /// accumulator type, so a function argument 'initial_accum' is exposed. Passing /// AccumulatorType(0) as the last function argument can be easier than naming all template /// arguments explicitly. template < typename ElementA, typename LayoutA, typename ElementC, typename LayoutC, typename ScalarType, typename ComputeType, typename ConvertOp = NumericConverter<ElementC, ScalarType>, typename InnerProductOp = multiply_add<ComputeType> > void Rank2KComplex( gemm::GemmCoord problem_size, ScalarType alpha, TensorRef<ElementA, LayoutA> tensor_a, ComplexTransform transform_a, ScalarType beta, TensorRef<ElementC, LayoutC> tensor_c, TensorRef<ElementC, LayoutC> tensor_d, ComputeType initial_accum, FillMode fill_mode_c, BlasMode blas_mode, int batch_count = 1, int64_t batch_stride_A = 0, int64_t batch_stride_C = 0, int64_t batch_stride_D = 0) { static_assert( LayoutA::kRank == 2 && LayoutC::kRank == 2, "Tensors must be of rank 2"); // Note: batch is ignored. int const M = problem_size.m(); int const N = problem_size.n(); int const K = problem_size.k(); // Rank2K update operates on A=NxK, B=NxK, and C=NxN assert(M==N); // Blocking necessary to speedup reference implementation int const Mblock = 16; int const Nblock = 16; ConvertOp convert_op; InnerProductOp inner_product_op; for (int batch_idx = 0; batch_idx < batch_count; ++batch_idx) { // Compute matrix product using blocks for (int row_block = 0; row_block < M; row_block += Mblock) { for (int col_block = 0; col_block < N; col_block += Nblock) { ComputeType accum[Mblock][Nblock]; for (int j = 0; j < Nblock; j++) { for (int i = 0; i < Mblock; i++) { accum[i][j] = initial_accum; } } for (int k_block = 0; k_block < K; ++k_block) { for (int j = 0; j < Nblock; j++) { for (int i = 0; i < Mblock; i++) { int row = row_block + i; int col = col_block + j; if (row < M && col < N && ( (fill_mode_c == FillMode::kLower && row >= col) || (fill_mode_c == FillMode::kUpper && row <= col) ) ) { // A x A^T (Symmetric) or A x A^H (Hermitian) // complex conjugation on operandB (a_t) (function of blas3 computation) ElementA a = tensor_a.at(MatrixCoord(row, k_block)); ElementA a_t = (blas_mode == BlasMode::kHermitian) ? conj(tensor_a.at(MatrixCoord(col, k_block))) : tensor_a.at(MatrixCoord(col, k_block)); ComputeType a_ik = ComputeType(a); ComputeType b_jk = ComputeType(a_t); // complex conjugation (function of input layouts) if (transform_a == ComplexTransform::kConjugate) { a_ik = conj(a_ik); } // complex conjugation (function of input layouts) if (transform_a == ComplexTransform::kConjugate) { b_jk = conj(b_jk); } accum[i][j] = inner_product_op(a_ik, b_jk, accum[i][j]); } } } } for (int j = 0; j < Nblock; j++) { for (int i = 0; i < Mblock; i++) { int row = row_block + i; int col = col_block + j; MatrixCoord coord = MatrixCoord(row, col); if (row < M && col < N && ((fill_mode_c == FillMode::kLower && row >= col) || (fill_mode_c == FillMode::kUpper && row <= col)) ) { ScalarType c = tensor_c.at(coord); // The imaginary parts of the diagonal elements of // a complex data type are assumed and set to zero if (blas_mode == BlasMode::kHermitian) { c = (row == col) ? real(c) : c; } ScalarType tmp_d = convert_op( alpha * ScalarType(accum[i][j]) + beta * c); if (blas_mode == BlasMode::kHermitian && row == col ) { tensor_d.at(coord) = real(tmp_d); } else { tensor_d.at(coord) = tmp_d; } } } } } // for (col_block) } // for (row_block) tensor_a.add_pointer_offset(batch_stride_A); tensor_c.add_pointer_offset(batch_stride_C); tensor_d.add_pointer_offset(batch_stride_D); } // for (batch_idx) } //////////////////////////////////////////////////////////////////////////////////////////////////// /// Computes a general matrix product among matrices (tensors of rank=2) pointed to by TensorRef /// objects. /// /// This assumes the accumulator type is the same type as the scalars. template < typename ElementA, typename LayoutA, typename ElementC, typename LayoutC, typename ScalarType > void RankKComplex( gemm::GemmCoord problem_size, ScalarType alpha, TensorRef<ElementA, LayoutA> tensor_a, ComplexTransform transform_a, ScalarType beta, TensorRef<ElementC, LayoutC> tensor_c, TensorRef<ElementC, LayoutC> tensor_d, FillMode fill_mode_c, BlasMode blas_mode) { Rank2KComplex( problem_size, alpha, tensor_a, transform_a, beta, tensor_c, tensor_d, ScalarType(0), fill_mode_c, blas_mode); } //////////////////////////////////////////////////////////////////////////////////////////////////// } // namespace host } // namespace reference } // namespace cutlass
tools/util/include/cutlass/util/reference/host/rank_k_complex.h/0
{ "file_path": "tools/util/include/cutlass/util/reference/host/rank_k_complex.h", "repo_id": "tools", "token_count": 3255 }
75
/*************************************************************************************************** * Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. * SPDX-License-Identifier: BSD-3-Clause * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * **************************************************************************************************/ /*! \file \brief Type traits for common CUDA types */ #pragma once #include <cublas_v2.h> #include <cuda_fp16.h> #include <stdint.h> #include "cutlass/numeric_types.h" #include "cutlass/complex.h" namespace cutlass { struct half_t; template <typename T> struct TypeTraits { typedef T host_type; typedef T device_type; static inline T remove_negative_zero(T x) { return x; } static inline T to_print(T x) { return x; } static inline device_type to_device(host_type x) { return x; } }; template <> struct TypeTraits<int8_t> { static cudaDataType_t const cublas_type = CUDA_R_8I; typedef int8_t host_type; typedef int8_t device_type; typedef int8_t integer_type; typedef uint8_t unsigned_type; static inline int8_t remove_negative_zero(int8_t x) { return x; } static inline int to_print(int8_t x) { return (int)x; } static inline device_type to_device(host_type x) { return x; } }; template <> struct TypeTraits<uint8_t> { static cudaDataType_t const cublas_type = CUDA_R_8I; typedef uint8_t host_type; typedef uint8_t device_type; typedef uint8_t integer_type; typedef uint8_t unsigned_type; static inline uint8_t remove_negative_zero(uint8_t x) { return x; } static inline uint32_t to_print(uint8_t x) { return (uint32_t)x; } static inline device_type to_device(host_type x) { return x; } }; template <> struct TypeTraits<int> { static cudaDataType_t const cublas_type = CUDA_R_32I; typedef int host_type; typedef int device_type; typedef int32_t integer_type; typedef uint32_t unsigned_type; static inline int32_t remove_negative_zero(int32_t x) { return x; } static inline int to_print(int x) { return x; } static inline device_type to_device(host_type x) { return x; } }; template <> struct TypeTraits<unsigned> { static cudaDataType_t const cublas_type = CUDA_R_32I; typedef unsigned host_type; typedef unsigned device_type; typedef uint32_t integer_type; typedef uint32_t unsigned_type; static inline uint32_t remove_negative_zero(uint32_t x) { return x; } static inline uint32_t to_print(uint32_t x) { return x; } static inline device_type to_device(host_type x) { return x; } }; template <> struct TypeTraits<int64_t> { static cudaDataType_t const cublas_type = CUDA_R_8I; typedef int64_t host_type; typedef int64_t device_type; typedef int64_t integer_type; typedef uint64_t unsigned_type; static inline int64_t remove_negative_zero(int64_t x) { return x; } static inline int64_t to_print(int64_t x) { return x; } static inline device_type to_device(host_type x) { return x; } }; template <> struct TypeTraits<uint64_t> { static cudaDataType_t const cublas_type = CUDA_R_8I; typedef uint64_t host_type; typedef uint64_t device_type; typedef uint64_t integer_type; typedef uint64_t unsigned_type; static inline uint64_t remove_negative_zero(uint64_t x) { return x; } static inline uint64_t to_print(uint64_t x) { return x; } static inline device_type to_device(host_type x) { return x; } }; template <> struct TypeTraits<half_t> { static cudaDataType_t const cublas_type = CUDA_R_16F; typedef half_t host_type; typedef half_t device_type; typedef int16_t integer_type; typedef uint16_t unsigned_type; static inline half_t remove_negative_zero(half_t x) { return (x.raw() == 0x8000 ? half_t::bitcast(0) : x); } static inline half_t to_print(half_t x) { return x; } static inline device_type to_device(half_t x) { return reinterpret_cast<device_type const &>(x); } }; template <> struct TypeTraits<float> { static cudaDataType_t const cublas_type = CUDA_R_32F; typedef float host_type; typedef float device_type; typedef int32_t integer_type; typedef uint32_t unsigned_type; static inline float remove_negative_zero(float x) { return x == -0.f ? 0.f : x; } static inline float to_print(float x) { return x; } static inline device_type to_device(host_type x) { return x; } }; template <> struct TypeTraits<double> { static cudaDataType_t const cublas_type = CUDA_R_64F; typedef double host_type; typedef double device_type; typedef int64_t integer_type; typedef uint64_t unsigned_type; static inline double remove_negative_zero(double x) { return x == -0.0 ? 0.0 : x; } static inline double to_print(double x) { return x; } static inline device_type to_device(host_type x) { return x; } }; /////////////////////////////////////////////////////////////////////////////////////////////////// // // Complex types // /////////////////////////////////////////////////////////////////////////////////////////////////// template <> struct TypeTraits<complex<half> > { static cudaDataType_t const cublas_type = CUDA_C_16F; typedef complex<half_t> host_type; typedef complex<half> device_type; typedef int16_t integer_type; typedef uint16_t unsigned_type; static inline device_type to_device(complex<half> x) { return reinterpret_cast<device_type const &>(x); } }; template <> struct TypeTraits<complex<half_t> > { static cudaDataType_t const cublas_type = CUDA_C_16F; typedef complex<half_t> host_type; typedef complex<half> device_type; typedef int16_t integer_type; typedef uint16_t unsigned_type; static inline complex<half_t> remove_negative_zero(complex<half_t> x) { return complex<half_t>( real(x) == -0_hf ? 0_hf : real(x), imag(x) == -0_hf ? 0_hf : imag(x) ); } static inline complex<half_t> to_print(complex<half_t> x) { return x; } static inline device_type to_device(complex<half_t> x) { return reinterpret_cast<device_type const &>(x); } }; template <> struct TypeTraits<complex<float> > { static cudaDataType_t const cublas_type = CUDA_C_32F; typedef complex<float> host_type; typedef complex<float> device_type; typedef int64_t integer_type; typedef uint64_t unsigned_type; static inline complex<float> remove_negative_zero(complex<float> x) { return complex<float>( real(x) == -0.f ? 0.f : real(x), imag(x) == -0.f ? 0.f : imag(x) ); } static inline complex<float> to_print(complex<float> x) { return x; } static inline device_type to_device(complex<float> x) { return reinterpret_cast<device_type const &>(x); } }; template <> struct TypeTraits<complex<double> > { static cudaDataType_t const cublas_type = CUDA_C_64F; typedef complex<double> host_type; typedef complex<double> device_type; struct integer_type { int64_t real, imag; }; struct unsigned_type { uint64_t real, imag; }; static inline complex<double> remove_negative_zero(complex<double> x) { return complex<double>( real(x) == -0.0 ? 0.0 : real(x), imag(x) == -0.0 ? 0.0 : imag(x) ); } static inline complex<double> to_print(complex<double> x) { return x; } static inline device_type to_device(complex<double> x) { return reinterpret_cast<device_type const &>(x); } }; /////////////////////////////////////////////////////////////////////////////////////////////////// } // namespace cutlass
tools/util/include/cutlass/util/type_traits.h/0
{ "file_path": "tools/util/include/cutlass/util/type_traits.h", "repo_id": "tools", "token_count": 2954 }
76
var searchData= [ ['shmem_5frow_5fsize',['SHMEM_ROW_SIZE',['../device__dump_8h.html#a9add1f3dc46bf728b679c7ca472abfe3',1,'device_dump.h']]], ['static_5fassert',['static_assert',['../platform_8h.html#adde4c9ea91b753491851361a4198c009',1,'platform.h']]] ];
docs/search/defines_3.js/0
{ "file_path": "docs/search/defines_3.js", "repo_id": "docs", "token_count": 124 }
0
var searchData= [ ['opcodeclassid',['OpcodeClassID',['../namespacecutlass_1_1library.html#a6e7f08a7db0273b3da7cc7ec6188b95e',1,'cutlass::library']]], ['operand',['Operand',['../namespacecutlass_1_1gemm.html#a34338284023da7403c9ecbd3f406b2a6',1,'cutlass::gemm']]], ['operationkind',['OperationKind',['../namespacecutlass_1_1library.html#ae609b16f8fa78f39136fc0a9802e4459',1,'cutlass::library']]] ];
docs/search/enums_7.js/0
{ "file_path": "docs/search/enums_7.js", "repo_id": "docs", "token_count": 179 }
1
var searchData= [ ['default_5fepilogue_5fcomplex_5ftensor_5fop_2eh',['default_epilogue_complex_tensor_op.h',['../default__epilogue__complex__tensor__op_8h.html',1,'']]], ['default_5fepilogue_5fsimt_2eh',['default_epilogue_simt.h',['../default__epilogue__simt_8h.html',1,'']]], ['default_5fepilogue_5ftensor_5fop_2eh',['default_epilogue_tensor_op.h',['../default__epilogue__tensor__op_8h.html',1,'']]], ['default_5fepilogue_5fvolta_5ftensor_5fop_2eh',['default_epilogue_volta_tensor_op.h',['../default__epilogue__volta__tensor__op_8h.html',1,'']]], ['default_5fepilogue_5fwmma_5ftensor_5fop_2eh',['default_epilogue_wmma_tensor_op.h',['../default__epilogue__wmma__tensor__op_8h.html',1,'']]], ['default_5fgemm_2eh',['default_gemm.h',['../default__gemm_8h.html',1,'']]], ['default_5fgemm_5fconfiguration_2eh',['default_gemm_configuration.h',['../default__gemm__configuration_8h.html',1,'']]], ['default_5fgemm_5fsplitk_5fparallel_2eh',['default_gemm_splitk_parallel.h',['../default__gemm__splitk__parallel_8h.html',1,'']]], ['default_5fgemv_2eh',['default_gemv.h',['../default__gemv_8h.html',1,'']]], ['default_5fgemv_5fcore_2eh',['default_gemv_core.h',['../default__gemv__core_8h.html',1,'']]], ['default_5fmma_2eh',['default_mma.h',['../default__mma_8h.html',1,'']]], ['default_5fmma_5fcore_2eh',['default_mma_core.h',['../default__mma__core_8h.html',1,'']]], ['default_5fmma_5fcore_5fsimt_2eh',['default_mma_core_simt.h',['../default__mma__core__simt_8h.html',1,'']]], ['default_5fmma_5fcore_5fsm50_2eh',['default_mma_core_sm50.h',['../default__mma__core__sm50_8h.html',1,'']]], ['default_5fmma_5fcore_5fsm70_2eh',['default_mma_core_sm70.h',['../default__mma__core__sm70_8h.html',1,'']]], ['default_5fmma_5fcore_5fsm75_2eh',['default_mma_core_sm75.h',['../default__mma__core__sm75_8h.html',1,'']]], ['default_5fmma_5fcore_5fwmma_2eh',['default_mma_core_wmma.h',['../default__mma__core__wmma_8h.html',1,'']]], ['default_5fmma_5ftensor_5fop_2eh',['default_mma_tensor_op.h',['../default__mma__tensor__op_8h.html',1,'']]], ['default_5fmma_5fwmma_5ftensor_5fop_2eh',['default_mma_wmma_tensor_op.h',['../default__mma__wmma__tensor__op_8h.html',1,'']]], ['default_5fthread_5fmap_5fsimt_2eh',['default_thread_map_simt.h',['../default__thread__map__simt_8h.html',1,'']]], ['default_5fthread_5fmap_5ftensor_5fop_2eh',['default_thread_map_tensor_op.h',['../default__thread__map__tensor__op_8h.html',1,'']]], ['default_5fthread_5fmap_5fvolta_5ftensor_5fop_2eh',['default_thread_map_volta_tensor_op.h',['../default__thread__map__volta__tensor__op_8h.html',1,'']]], ['default_5fthread_5fmap_5fwmma_5ftensor_5fop_2eh',['default_thread_map_wmma_tensor_op.h',['../default__thread__map__wmma__tensor__op_8h.html',1,'']]], ['device_5fdump_2eh',['device_dump.h',['../device__dump_8h.html',1,'']]], ['device_5fkernel_2eh',['device_kernel.h',['../device__kernel_8h.html',1,'']]], ['device_5fmemory_2eh',['device_memory.h',['../device__memory_8h.html',1,'']]], ['direct_5fepilogue_5ftensor_5fop_2eh',['direct_epilogue_tensor_op.h',['../direct__epilogue__tensor__op_8h.html',1,'']]], ['distribution_2eh',['distribution.h',['../distribution_8h.html',1,'']]], ['doxygen_5fmainpage_2emd',['doxygen_mainpage.md',['../doxygen__mainpage_8md.html',1,'']]], ['gemm_5fbatched_2eh',['gemm_batched.h',['../device_2gemm__batched_8h.html',1,'']]], ['gemm_5fsplitk_5fparallel_2eh',['gemm_splitk_parallel.h',['../device_2gemm__splitk__parallel_8h.html',1,'']]], ['tensor_5fcompare_2eh',['tensor_compare.h',['../device_2tensor__compare_8h.html',1,'']]], ['tensor_5felementwise_2eh',['tensor_elementwise.h',['../device_2kernel_2tensor__elementwise_8h.html',1,'']]], ['tensor_5ffill_2eh',['tensor_fill.h',['../device_2tensor__fill_8h.html',1,'']]], ['tensor_5fforeach_2eh',['tensor_foreach.h',['../device_2kernel_2tensor__foreach_8h.html',1,'']]], ['tensor_5fforeach_2eh',['tensor_foreach.h',['../device_2tensor__foreach_8h.html',1,'']]] ];
docs/search/files_3.js/0
{ "file_path": "docs/search/files_3.js", "repo_id": "docs", "token_count": 1805 }
2
var searchData= [ ['manifest_2eh',['manifest.h',['../manifest_8h.html',1,'']]], ['matrix_5fcoord_2eh',['matrix_coord.h',['../matrix__coord_8h.html',1,'']]], ['matrix_5fshape_2eh',['matrix_shape.h',['../matrix__shape_8h.html',1,'']]], ['matrix_5ftraits_2eh',['matrix_traits.h',['../matrix__traits_8h.html',1,'']]], ['memory_2eh',['memory.h',['../memory_8h.html',1,'']]], ['memory_5fsm75_2eh',['memory_sm75.h',['../memory__sm75_8h.html',1,'']]], ['mma_5fbase_2eh',['mma_base.h',['../mma__base_8h.html',1,'']]], ['mma_5fcomplex_5ftensor_5fop_2eh',['mma_complex_tensor_op.h',['../mma__complex__tensor__op_8h.html',1,'']]], ['mma_5fpipelined_2eh',['mma_pipelined.h',['../mma__pipelined_8h.html',1,'']]], ['mma_5fsimt_2eh',['mma_simt.h',['../mma__simt_8h.html',1,'']]], ['mma_5fsimt_5fpolicy_2eh',['mma_simt_policy.h',['../mma__simt__policy_8h.html',1,'']]], ['mma_5fsimt_5ftile_5fiterator_2eh',['mma_simt_tile_iterator.h',['../mma__simt__tile__iterator_8h.html',1,'']]], ['mma_5fsinglestage_2eh',['mma_singlestage.h',['../mma__singlestage_8h.html',1,'']]], ['mma_5fsm70_2eh',['mma_sm70.h',['../mma__sm70_8h.html',1,'']]], ['mma_5fsm75_2eh',['mma_sm75.h',['../mma__sm75_8h.html',1,'']]], ['mma_5ftensor_5fop_2eh',['mma_tensor_op.h',['../mma__tensor__op_8h.html',1,'']]], ['mma_5ftensor_5fop_5fpolicy_2eh',['mma_tensor_op_policy.h',['../mma__tensor__op__policy_8h.html',1,'']]], ['mma_5ftensor_5fop_5fsm70_2eh',['mma_tensor_op_sm70.h',['../mma__tensor__op__sm70_8h.html',1,'']]], ['mma_5ftensor_5fop_5ftile_5fiterator_2eh',['mma_tensor_op_tile_iterator.h',['../mma__tensor__op__tile__iterator_8h.html',1,'']]], ['mma_5ftensor_5fop_5ftile_5fiterator_5fsm70_2eh',['mma_tensor_op_tile_iterator_sm70.h',['../mma__tensor__op__tile__iterator__sm70_8h.html',1,'']]], ['mma_5ftensor_5fop_5ftile_5fiterator_5fwmma_2eh',['mma_tensor_op_tile_iterator_wmma.h',['../mma__tensor__op__tile__iterator__wmma_8h.html',1,'']]], ['mma_5ftensor_5fop_5fwmma_2eh',['mma_tensor_op_wmma.h',['../mma__tensor__op__wmma_8h.html',1,'']]] ];
docs/search/files_b.js/0
{ "file_path": "docs/search/files_b.js", "repo_id": "docs", "token_count": 994 }
3
function convertToId(search) { var result = ''; for (i=0;i<search.length;i++) { var c = search.charAt(i); var cn = c.charCodeAt(0); if (c.match(/[a-z0-9\u0080-\uFFFF]/)) { result+=c; } else if (cn<16) { result+="_0"+cn.toString(16); } else { result+="_"+cn.toString(16); } } return result; } function getXPos(item) { var x = 0; if (item.offsetWidth) { while (item && item!=document.body) { x += item.offsetLeft; item = item.offsetParent; } } return x; } function getYPos(item) { var y = 0; if (item.offsetWidth) { while (item && item!=document.body) { y += item.offsetTop; item = item.offsetParent; } } return y; } /* A class handling everything associated with the search panel. Parameters: name - The name of the global variable that will be storing this instance. Is needed to be able to set timeouts. resultPath - path to use for external files */ function SearchBox(name, resultsPath, inFrame, label) { if (!name || !resultsPath) { alert("Missing parameters to SearchBox."); } // ---------- Instance variables this.name = name; this.resultsPath = resultsPath; this.keyTimeout = 0; this.keyTimeoutLength = 500; this.closeSelectionTimeout = 300; this.lastSearchValue = ""; this.lastResultsPage = ""; this.hideTimeout = 0; this.searchIndex = 0; this.searchActive = false; this.insideFrame = inFrame; this.searchLabel = label; // ----------- DOM Elements this.DOMSearchField = function() { return document.getElementById("MSearchField"); } this.DOMSearchSelect = function() { return document.getElementById("MSearchSelect"); } this.DOMSearchSelectWindow = function() { return document.getElementById("MSearchSelectWindow"); } this.DOMPopupSearchResults = function() { return document.getElementById("MSearchResults"); } this.DOMPopupSearchResultsWindow = function() { return document.getElementById("MSearchResultsWindow"); } this.DOMSearchClose = function() { return document.getElementById("MSearchClose"); } this.DOMSearchBox = function() { return document.getElementById("MSearchBox"); } // ------------ Event Handlers // Called when focus is added or removed from the search field. this.OnSearchFieldFocus = function(isActive) { this.Activate(isActive); } this.OnSearchSelectShow = function() { var searchSelectWindow = this.DOMSearchSelectWindow(); var searchField = this.DOMSearchSelect(); if (this.insideFrame) { var left = getXPos(searchField); var top = getYPos(searchField); left += searchField.offsetWidth + 6; top += searchField.offsetHeight; // show search selection popup searchSelectWindow.style.display='block'; left -= searchSelectWindow.offsetWidth; searchSelectWindow.style.left = left + 'px'; searchSelectWindow.style.top = top + 'px'; } else { var left = getXPos(searchField); var top = getYPos(searchField); top += searchField.offsetHeight; // show search selection popup searchSelectWindow.style.display='block'; searchSelectWindow.style.left = left + 'px'; searchSelectWindow.style.top = top + 'px'; } // stop selection hide timer if (this.hideTimeout) { clearTimeout(this.hideTimeout); this.hideTimeout=0; } return false; // to avoid "image drag" default event } this.OnSearchSelectHide = function() { this.hideTimeout = setTimeout(this.name +".CloseSelectionWindow()", this.closeSelectionTimeout); } // Called when the content of the search field is changed. this.OnSearchFieldChange = function(evt) { if (this.keyTimeout) // kill running timer { clearTimeout(this.keyTimeout); this.keyTimeout = 0; } var e = (evt) ? evt : window.event; // for IE if (e.keyCode==40 || e.keyCode==13) { if (e.shiftKey==1) { this.OnSearchSelectShow(); var win=this.DOMSearchSelectWindow(); for (i=0;i<win.childNodes.length;i++) { var child = win.childNodes[i]; // get span within a if (child.className=='SelectItem') { child.focus(); return; } } return; } else if (window.frames.MSearchResults.searchResults) { var elem = window.frames.MSearchResults.searchResults.NavNext(0); if (elem) elem.focus(); } } else if (e.keyCode==27) // Escape out of the search field { this.DOMSearchField().blur(); this.DOMPopupSearchResultsWindow().style.display = 'none'; this.DOMSearchClose().style.display = 'none'; this.lastSearchValue = ''; this.Activate(false); return; } // strip whitespaces var searchValue = this.DOMSearchField().value.replace(/ +/g, ""); if (searchValue != this.lastSearchValue) // search value has changed { if (searchValue != "") // non-empty search { // set timer for search update this.keyTimeout = setTimeout(this.name + '.Search()', this.keyTimeoutLength); } else // empty search field { this.DOMPopupSearchResultsWindow().style.display = 'none'; this.DOMSearchClose().style.display = 'none'; this.lastSearchValue = ''; } } } this.SelectItemCount = function(id) { var count=0; var win=this.DOMSearchSelectWindow(); for (i=0;i<win.childNodes.length;i++) { var child = win.childNodes[i]; // get span within a if (child.className=='SelectItem') { count++; } } return count; } this.SelectItemSet = function(id) { var i,j=0; var win=this.DOMSearchSelectWindow(); for (i=0;i<win.childNodes.length;i++) { var child = win.childNodes[i]; // get span within a if (child.className=='SelectItem') { var node = child.firstChild; if (j==id) { node.innerHTML='&#8226;'; } else { node.innerHTML='&#160;'; } j++; } } } // Called when an search filter selection is made. // set item with index id as the active item this.OnSelectItem = function(id) { this.searchIndex = id; this.SelectItemSet(id); var searchValue = this.DOMSearchField().value.replace(/ +/g, ""); if (searchValue!="" && this.searchActive) // something was found -> do a search { this.Search(); } } this.OnSearchSelectKey = function(evt) { var e = (evt) ? evt : window.event; // for IE if (e.keyCode==40 && this.searchIndex<this.SelectItemCount()) // Down { this.searchIndex++; this.OnSelectItem(this.searchIndex); } else if (e.keyCode==38 && this.searchIndex>0) // Up { this.searchIndex--; this.OnSelectItem(this.searchIndex); } else if (e.keyCode==13 || e.keyCode==27) { this.OnSelectItem(this.searchIndex); this.CloseSelectionWindow(); this.DOMSearchField().focus(); } return false; } // --------- Actions // Closes the results window. this.CloseResultsWindow = function() { this.DOMPopupSearchResultsWindow().style.display = 'none'; this.DOMSearchClose().style.display = 'none'; this.Activate(false); } this.CloseSelectionWindow = function() { this.DOMSearchSelectWindow().style.display = 'none'; } // Performs a search. this.Search = function() { this.keyTimeout = 0; // strip leading whitespace var searchValue = this.DOMSearchField().value.replace(/^ +/, ""); var code = searchValue.toLowerCase().charCodeAt(0); var idxChar = searchValue.substr(0, 1).toLowerCase(); if ( 0xD800 <= code && code <= 0xDBFF && searchValue > 1) // surrogate pair { idxChar = searchValue.substr(0, 2); } var resultsPage; var resultsPageWithSearch; var hasResultsPage; var idx = indexSectionsWithContent[this.searchIndex].indexOf(idxChar); if (idx!=-1) { var hexCode=idx.toString(16); resultsPage = this.resultsPath + '/' + indexSectionNames[this.searchIndex] + '_' + hexCode + '.html'; resultsPageWithSearch = resultsPage+'?'+escape(searchValue); hasResultsPage = true; } else // nothing available for this search term { resultsPage = this.resultsPath + '/nomatches.html'; resultsPageWithSearch = resultsPage; hasResultsPage = false; } window.frames.MSearchResults.location = resultsPageWithSearch; var domPopupSearchResultsWindow = this.DOMPopupSearchResultsWindow(); if (domPopupSearchResultsWindow.style.display!='block') { var domSearchBox = this.DOMSearchBox(); this.DOMSearchClose().style.display = 'inline'; if (this.insideFrame) { var domPopupSearchResults = this.DOMPopupSearchResults(); domPopupSearchResultsWindow.style.position = 'relative'; domPopupSearchResultsWindow.style.display = 'block'; var width = document.body.clientWidth - 8; // the -8 is for IE :-( domPopupSearchResultsWindow.style.width = width + 'px'; domPopupSearchResults.style.width = width + 'px'; } else { var domPopupSearchResults = this.DOMPopupSearchResults(); var left = getXPos(domSearchBox) + 150; // domSearchBox.offsetWidth; var top = getYPos(domSearchBox) + 20; // domSearchBox.offsetHeight + 1; domPopupSearchResultsWindow.style.display = 'block'; left -= domPopupSearchResults.offsetWidth; domPopupSearchResultsWindow.style.top = top + 'px'; domPopupSearchResultsWindow.style.left = left + 'px'; } } this.lastSearchValue = searchValue; this.lastResultsPage = resultsPage; } // -------- Activation Functions // Activates or deactivates the search panel, resetting things to // their default values if necessary. this.Activate = function(isActive) { if (isActive || // open it this.DOMPopupSearchResultsWindow().style.display == 'block' ) { this.DOMSearchBox().className = 'MSearchBoxActive'; var searchField = this.DOMSearchField(); if (searchField.value == this.searchLabel) // clear "Search" term upon entry { searchField.value = ''; this.searchActive = true; } } else if (!isActive) // directly remove the panel { this.DOMSearchBox().className = 'MSearchBoxInactive'; this.DOMSearchField().value = this.searchLabel; this.searchActive = false; this.lastSearchValue = '' this.lastResultsPage = ''; } } } // ----------------------------------------------------------------------- // The class that handles everything on the search results page. function SearchResults(name) { // The number of matches from the last run of <Search()>. this.lastMatchCount = 0; this.lastKey = 0; this.repeatOn = false; // Toggles the visibility of the passed element ID. this.FindChildElement = function(id) { var parentElement = document.getElementById(id); var element = parentElement.firstChild; while (element && element!=parentElement) { if (element.nodeName == 'DIV' && element.className == 'SRChildren') { return element; } if (element.nodeName == 'DIV' && element.hasChildNodes()) { element = element.firstChild; } else if (element.nextSibling) { element = element.nextSibling; } else { do { element = element.parentNode; } while (element && element!=parentElement && !element.nextSibling); if (element && element!=parentElement) { element = element.nextSibling; } } } } this.Toggle = function(id) { var element = this.FindChildElement(id); if (element) { if (element.style.display == 'block') { element.style.display = 'none'; } else { element.style.display = 'block'; } } } // Searches for the passed string. If there is no parameter, // it takes it from the URL query. // // Always returns true, since other documents may try to call it // and that may or may not be possible. this.Search = function(search) { if (!search) // get search word from URL { search = window.location.search; search = search.substring(1); // Remove the leading '?' search = unescape(search); } search = search.replace(/^ +/, ""); // strip leading spaces search = search.replace(/ +$/, ""); // strip trailing spaces search = search.toLowerCase(); search = convertToId(search); var resultRows = document.getElementsByTagName("div"); var matches = 0; var i = 0; while (i < resultRows.length) { var row = resultRows.item(i); if (row.className == "SRResult") { var rowMatchName = row.id.toLowerCase(); rowMatchName = rowMatchName.replace(/^sr\d*_/, ''); // strip 'sr123_' if (search.length<=rowMatchName.length && rowMatchName.substr(0, search.length)==search) { row.style.display = 'block'; matches++; } else { row.style.display = 'none'; } } i++; } document.getElementById("Searching").style.display='none'; if (matches == 0) // no results { document.getElementById("NoMatches").style.display='block'; } else // at least one result { document.getElementById("NoMatches").style.display='none'; } this.lastMatchCount = matches; return true; } // return the first item with index index or higher that is visible this.NavNext = function(index) { var focusItem; while (1) { var focusName = 'Item'+index; focusItem = document.getElementById(focusName); if (focusItem && focusItem.parentNode.parentNode.style.display=='block') { break; } else if (!focusItem) // last element { break; } focusItem=null; index++; } return focusItem; } this.NavPrev = function(index) { var focusItem; while (1) { var focusName = 'Item'+index; focusItem = document.getElementById(focusName); if (focusItem && focusItem.parentNode.parentNode.style.display=='block') { break; } else if (!focusItem) // last element { break; } focusItem=null; index--; } return focusItem; } this.ProcessKeys = function(e) { if (e.type == "keydown") { this.repeatOn = false; this.lastKey = e.keyCode; } else if (e.type == "keypress") { if (!this.repeatOn) { if (this.lastKey) this.repeatOn = true; return false; // ignore first keypress after keydown } } else if (e.type == "keyup") { this.lastKey = 0; this.repeatOn = false; } return this.lastKey!=0; } this.Nav = function(evt,itemIndex) { var e = (evt) ? evt : window.event; // for IE if (e.keyCode==13) return true; if (!this.ProcessKeys(e)) return false; if (this.lastKey==38) // Up { var newIndex = itemIndex-1; var focusItem = this.NavPrev(newIndex); if (focusItem) { var child = this.FindChildElement(focusItem.parentNode.parentNode.id); if (child && child.style.display == 'block') // children visible { var n=0; var tmpElem; while (1) // search for last child { tmpElem = document.getElementById('Item'+newIndex+'_c'+n); if (tmpElem) { focusItem = tmpElem; } else // found it! { break; } n++; } } } if (focusItem) { focusItem.focus(); } else // return focus to search field { parent.document.getElementById("MSearchField").focus(); } } else if (this.lastKey==40) // Down { var newIndex = itemIndex+1; var focusItem; var item = document.getElementById('Item'+itemIndex); var elem = this.FindChildElement(item.parentNode.parentNode.id); if (elem && elem.style.display == 'block') // children visible { focusItem = document.getElementById('Item'+itemIndex+'_c0'); } if (!focusItem) focusItem = this.NavNext(newIndex); if (focusItem) focusItem.focus(); } else if (this.lastKey==39) // Right { var item = document.getElementById('Item'+itemIndex); var elem = this.FindChildElement(item.parentNode.parentNode.id); if (elem) elem.style.display = 'block'; } else if (this.lastKey==37) // Left { var item = document.getElementById('Item'+itemIndex); var elem = this.FindChildElement(item.parentNode.parentNode.id); if (elem) elem.style.display = 'none'; } else if (this.lastKey==27) // Escape { parent.searchBox.CloseResultsWindow(); parent.document.getElementById("MSearchField").focus(); } else if (this.lastKey==13) // Enter { return true; } return false; } this.NavChild = function(evt,itemIndex,childIndex) { var e = (evt) ? evt : window.event; // for IE if (e.keyCode==13) return true; if (!this.ProcessKeys(e)) return false; if (this.lastKey==38) // Up { if (childIndex>0) { var newIndex = childIndex-1; document.getElementById('Item'+itemIndex+'_c'+newIndex).focus(); } else // already at first child, jump to parent { document.getElementById('Item'+itemIndex).focus(); } } else if (this.lastKey==40) // Down { var newIndex = childIndex+1; var elem = document.getElementById('Item'+itemIndex+'_c'+newIndex); if (!elem) // last child, jump to parent next parent { elem = this.NavNext(itemIndex+1); } if (elem) { elem.focus(); } } else if (this.lastKey==27) // Escape { parent.searchBox.CloseResultsWindow(); parent.document.getElementById("MSearchField").focus(); } else if (this.lastKey==13) // Enter { return true; } return false; } } function setKeyActions(elem,action) { elem.setAttribute('onkeydown',action); elem.setAttribute('onkeypress',action); elem.setAttribute('onkeyup',action); } function setClassAttr(elem,attr) { elem.setAttribute('class',attr); elem.setAttribute('className',attr); } function createResults() { var results = document.getElementById("SRResults"); for (var e=0; e<searchData.length; e++) { var id = searchData[e][0]; var srResult = document.createElement('div'); srResult.setAttribute('id','SR_'+id); setClassAttr(srResult,'SRResult'); var srEntry = document.createElement('div'); setClassAttr(srEntry,'SREntry'); var srLink = document.createElement('a'); srLink.setAttribute('id','Item'+e); setKeyActions(srLink,'return searchResults.Nav(event,'+e+')'); setClassAttr(srLink,'SRSymbol'); srLink.innerHTML = searchData[e][1][0]; srEntry.appendChild(srLink); if (searchData[e][1].length==2) // single result { srLink.setAttribute('href',searchData[e][1][1][0]); if (searchData[e][1][1][1]) { srLink.setAttribute('target','_parent'); } var srScope = document.createElement('span'); setClassAttr(srScope,'SRScope'); srScope.innerHTML = searchData[e][1][1][2]; srEntry.appendChild(srScope); } else // multiple results { srLink.setAttribute('href','javascript:searchResults.Toggle("SR_'+id+'")'); var srChildren = document.createElement('div'); setClassAttr(srChildren,'SRChildren'); for (var c=0; c<searchData[e][1].length-1; c++) { var srChild = document.createElement('a'); srChild.setAttribute('id','Item'+e+'_c'+c); setKeyActions(srChild,'return searchResults.NavChild(event,'+e+','+c+')'); setClassAttr(srChild,'SRScope'); srChild.setAttribute('href',searchData[e][1][c+1][0]); if (searchData[e][1][c+1][1]) { srChild.setAttribute('target','_parent'); } srChild.innerHTML = searchData[e][1][c+1][2]; srChildren.appendChild(srChild); } srEntry.appendChild(srChildren); } srResult.appendChild(srEntry); results.appendChild(srResult); } } function init_search() { var results = document.getElementById("MSearchSelectWindow"); for (var key in indexSectionLabels) { var link = document.createElement('a'); link.setAttribute('class','SelectItem'); link.setAttribute('onclick','searchBox.OnSelectItem('+key+')'); link.href='javascript:void(0)'; link.innerHTML='<span class="SelectionMark">&#160;</span>'+indexSectionLabels[key]; results.appendChild(link); } searchBox.OnSelectItem(0); }
docs/search/search.js/0
{ "file_path": "docs/search/search.js", "repo_id": "docs", "token_count": 9590 }
4
/*************************************************************************************************** * Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. * SPDX-License-Identifier: BSD-3-Clause * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * **************************************************************************************************/ #pragma once #include <iostream> #include <fstream> #include <sstream> #include "cutlass/cutlass.h" #include "cutlass/conv/device/implicit_gemm_convolution.h" #include "cutlass/reduction/device/reduce_split_k.h" #include "cutlass/reduction/thread/reduction_operators.h" #include "cutlass/util/host_tensor.h" #include "cutlass/util/reference/host/tensor_fill.h" #include "cutlass/util/reference/device/tensor_compare.h" #include "cutlass/util/reference/host/tensor_compare.h" #include "cutlass/util/reference/host/tensor_norm.h" #include "cutlass/util/reference/host/convolution.h" #include "cutlass/util/reference/device/convolution.h" #include "cutlass/util/reference/device/tensor_relu.h" #include "cutlass/core_io.h" #include "cutlass/util/tensor_view_io.h" #include "reference/device/tensor_scale_bias.h" #include "helper.h" #define CHECK_GT(val1, val2) \ if((val1) <= (val2)) \ std::cerr << __FILE__ << " " << __LINE__ << ": CHECK_GT failed\n"; #define CHECK_TRUE(val) \ if(!(val)) \ std::cerr << __FILE__ << " " << __LINE__ << ": CHECK_TRUE failed\n"; template <typename Conv2d0_, typename Conv2d1_> class B2bNonFusedConv2dRun { public: using Conv2d0 = Conv2d0_; using Conv2d1 = Conv2d1_; using ElementAccumulator = typename Conv2d0::ElementAccumulator; using ElementCompute = typename Conv2d0::ElementCompute; static cutlass::conv::Operator const kConvolutionalOperator = Conv2d0::kConvolutionalOperator; static_assert(kConvolutionalOperator == Conv2d1::kConvolutionalOperator, "Fused convolution operators must be the same"); public: /// Initialization cutlass::Distribution::Kind init_A; cutlass::Distribution::Kind init_B; cutlass::Distribution::Kind init_C; cutlass::Distribution::Kind init_Bias; uint64_t seed; cutlass::HostTensor<typename Conv2d0::ElementA, typename Conv2d0::LayoutA> tensor_A0; cutlass::HostTensor<typename Conv2d0::ElementB, typename Conv2d0::LayoutB> tensor_B0; cutlass::HostTensor<typename Conv2d0::ElementC, typename Conv2d0::LayoutC> tensor_C0; cutlass::HostTensor<typename Conv2d0::ElementCompute, typename Conv2d0::LayoutC> tensor_Bias0; cutlass::HostTensor<typename Conv2d0::ElementC, typename Conv2d0::LayoutC> tensor_D0_computed; cutlass::HostTensor<typename Conv2d0::ElementC, typename Conv2d0::LayoutC> tensor_D0_reference; cutlass::HostTensor<typename Conv2d1::ElementB, typename Conv2d1::LayoutB> tensor_B1; cutlass::HostTensor<typename Conv2d1::ElementC, typename Conv2d1::LayoutC> tensor_C1; cutlass::HostTensor<typename Conv2d1::ElementCompute, typename Conv2d0::LayoutC> tensor_Bias1; cutlass::HostTensor<typename Conv2d1::ElementC, typename Conv2d1::LayoutC> tensor_D1_computed; cutlass::HostTensor<typename Conv2d1::ElementC, typename Conv2d1::LayoutC> tensor_D1_reference; public: B2bNonFusedConv2dRun( cutlass::Distribution::Kind init_A_ = cutlass::Distribution::Uniform, cutlass::Distribution::Kind init_B_ = cutlass::Distribution::Uniform, cutlass::Distribution::Kind init_C_ = cutlass::Distribution::Uniform, cutlass::Distribution::Kind init_Bias_ = cutlass::Distribution::Uniform, uint64_t seed_ = 2080 ): init_A(init_A_), init_B(init_B_), init_C(init_C_), init_Bias(init_Bias_), seed(seed_) { } /// Helper to initialize a tensor view template <typename Element, typename Layout> void initialize_tensor( cutlass::TensorView<Element, Layout> view, cutlass::Distribution::Kind dist_kind, uint64_t seed) { if (dist_kind == cutlass::Distribution::Uniform) { int scope; int bits = cutlass::sizeof_bits<Element>::value; if (bits <= 16) { scope = 2; } else { scope = 8; } cutlass::reference::host::TensorFillRandomUniform( view, seed, scope, -scope, 0); } else if (dist_kind == cutlass::Distribution::Identity) { cutlass::reference::host::TensorFillIdentity(view); } else if (dist_kind == cutlass::Distribution::Gaussian) { cutlass::reference::host::TensorFillRandomGaussian(view, seed, 0, 0.5); } else if (dist_kind == cutlass::Distribution::Sequential) { cutlass::reference::host::BlockFillSequential(view.data(), view.capacity()); } else if (dist_kind == cutlass::Distribution::AllZeros) { cutlass::reference::host::TensorFill(view, Element(0)); } else if (dist_kind == cutlass::Distribution::AllOnes) { cutlass::reference::host::TensorFill(view, Element(1)); } else { std::cerr << "Not implemented\n"; } } void initialize( cutlass::conv::Conv2dProblemSize const &problem_size_0, cutlass::conv::Conv2dProblemSize const &problem_size_1, uint64_t seed = 2019) { tensor_A0.resize(implicit_gemm_tensor_a_extent(kConvolutionalOperator, problem_size_0)); tensor_B0.resize(implicit_gemm_tensor_b_extent(kConvolutionalOperator, problem_size_0)); tensor_C0.resize(implicit_gemm_tensor_c_extent(kConvolutionalOperator, problem_size_0)); tensor_Bias0.resize({1, 1, 1, problem_size_0.K}); tensor_D0_computed.resize(implicit_gemm_tensor_c_extent(kConvolutionalOperator, problem_size_0)); tensor_D0_reference.resize(implicit_gemm_tensor_c_extent(kConvolutionalOperator, problem_size_0)); tensor_B1.resize(implicit_gemm_tensor_b_extent(kConvolutionalOperator, problem_size_1)); tensor_C1.resize(implicit_gemm_tensor_c_extent(kConvolutionalOperator, problem_size_1)); tensor_Bias1.resize({1, 1, 1, problem_size_1.K}); tensor_D1_computed.resize(implicit_gemm_tensor_c_extent(kConvolutionalOperator, problem_size_1)); tensor_D1_reference.resize(implicit_gemm_tensor_c_extent(kConvolutionalOperator, problem_size_1)); initialize_tensor(tensor_A0.host_view(), init_A, seed); initialize_tensor(tensor_B0.host_view(), init_B, seed * 17); initialize_tensor(tensor_C0.host_view(), init_C, seed * 39); initialize_tensor(tensor_Bias0.host_view(), init_Bias, seed * 83); initialize_tensor(tensor_B1.host_view(), init_B, seed * 18); initialize_tensor(tensor_C1.host_view(), init_C, seed * 40); initialize_tensor(tensor_Bias1.host_view(), init_Bias, seed * 84); tensor_A0.sync_device(); tensor_B0.sync_device(); tensor_C0.sync_device(); tensor_Bias0.sync_device(); tensor_D0_computed.sync_device(); tensor_D0_reference.sync_device(); tensor_B1.sync_device(); tensor_C1.sync_device(); tensor_Bias1.sync_device(); tensor_D1_computed.sync_device(); tensor_D1_reference.sync_device(); } /// Executes one test bool run( cutlass::conv::Conv2dProblemSize const &problem_size_0, cutlass::conv::Conv2dProblemSize const &problem_size_1, cutlass::conv::SplitKMode const &split_k_mode = cutlass::conv::SplitKMode::kSerial, ElementCompute alpha0 = ElementCompute(1), ElementCompute beta0 = ElementCompute(0), ElementCompute alpha1 = ElementCompute(1), ElementCompute beta1 = ElementCompute(0), bool relu = true, int warm_ups = 1, int runs = 100) { initialize(problem_size_0, problem_size_1); // configure the operator Conv2d0 conv2d_op_0; Conv2d1 conv2d_op_1; typename Conv2d0::Arguments conv2d_args_0( problem_size_0, tensor_A0.device_ref(), tensor_B0.device_ref(), {tensor_Bias0.device_data(), typename Conv2d0::LayoutC::Stride(0)}, tensor_D0_computed.device_ref(), {alpha0, beta0}, split_k_mode ); typename Conv2d1::Arguments conv2d_args_1( problem_size_1, tensor_D0_computed.device_ref(), tensor_B1.device_ref(), {tensor_Bias1.device_data(), typename Conv2d1::LayoutC::Stride(0)}, tensor_D1_computed.device_ref(), {alpha1, beta1}, split_k_mode ); cutlass::Status status = conv2d_op_0.initialize(conv2d_args_0); CUTLASS_CHECK(status); status = conv2d_op_1.initialize(conv2d_args_1); CUTLASS_CHECK(status); for(int i = 0; i < warm_ups; i++) { status = conv2d_op_0(); CUTLASS_CHECK(status); status = conv2d_op_1(); CUTLASS_CHECK(status); } // // Run Conv2d // cudaEvent_t start, stop1, stop2; cudaEventCreate(&start); cudaEventCreate(&stop1); cudaEventCreate(&stop2); cudaEventRecord(start); for(int i = 0; i < runs; i++) { // run conv2d operator status = conv2d_op_0(); CUTLASS_CHECK(status); } cudaEventRecord(stop1); for(int i = 0; i < runs; i++) { // run conv2d operator status = conv2d_op_1(); CUTLASS_CHECK(status); } cudaEventRecord(stop2); cudaDeviceSynchronize(); float conv2d0Time, conv2d1Time, totalTime; cudaEventElapsedTime(&conv2d0Time, start, stop1); cudaEventElapsedTime(&conv2d1Time, stop1, stop2); cudaEventElapsedTime(&totalTime, start, stop2); std::cout << "conv2d 0 time " << conv2d0Time / (float)runs << " ms\n"; std::cout << "conv2d 1 time " << conv2d1Time / (float)runs << " ms\n"; std::cout << "Non-fusion time " << totalTime / (float)runs << " ms\n"; tensor_D0_computed.sync_host(); tensor_D1_computed.sync_host(); bool passed = false; cutlass::reference::device::Conv2d< typename Conv2d0::ElementA, typename Conv2d0::LayoutA, typename Conv2d0::ElementB, typename Conv2d0::LayoutB, typename Conv2d0::ElementC, typename Conv2d0::LayoutC, ElementCompute, ElementAccumulator >( kConvolutionalOperator, problem_size_0, tensor_A0.device_ref(), tensor_B0.device_ref(), {tensor_Bias0.device_data(), typename Conv2d0::LayoutC::Stride(0)}, tensor_D0_reference.device_ref(), alpha0, beta0); if(relu) { cutlass::reference::device::TensorReLu(tensor_D0_reference.device_view()); } cutlass::reference::device::Conv2d< typename Conv2d1::ElementA, typename Conv2d1::LayoutA, typename Conv2d1::ElementB, typename Conv2d1::LayoutB, typename Conv2d1::ElementC, typename Conv2d1::LayoutC, ElementCompute, ElementAccumulator >( kConvolutionalOperator, problem_size_1, tensor_D0_reference.device_ref(), tensor_B1.device_ref(), {tensor_Bias1.device_data(), typename Conv2d1::LayoutC::Stride(0)}, tensor_D1_reference.device_ref(), alpha1, beta1); if(relu) { cutlass::reference::device::TensorReLu(tensor_D1_reference.device_view()); } cudaError_t result = cudaDeviceSynchronize(); CHECK_TRUE(result == cudaSuccess); // sync host (copy device data to host) for dumping error output in case of mismatches tensor_D0_reference.sync_host(); tensor_D1_reference.sync_host(); CHECK_GT(cutlass::reference::host::TensorNorm(tensor_D0_computed.host_view()), 0); CHECK_GT(cutlass::reference::host::TensorNorm(tensor_D0_reference.host_view()), 0); CHECK_GT(cutlass::reference::host::TensorNorm(tensor_D1_computed.host_view()), 0); CHECK_GT(cutlass::reference::host::TensorNorm(tensor_D1_reference.host_view()), 0); passed = cutlass::reference::host::TensorEquals( tensor_D1_computed.host_view(), tensor_D1_reference.host_view()); CHECK_TRUE(passed); if (!passed) { std::stringstream fname; fname << "error_B2bImplicitGemm_device_nonfused.txt"; std::cerr << "Dumping results in " << fname.str() << "\n"; std::ofstream results(fname.str()); results << problem_size_0 << std::endl; results << problem_size_1 << std::endl; results << "\nA0:\n" << tensor_A0.host_view() << "\n" << "\nB0:\n" << tensor_B0.host_view() << "\n" << "\nC0:\n" << tensor_C0.host_view() << "\n" << "\nBias0:\n" << tensor_Bias0.host_view() << "\n" << "\nD0 reference:\n" << tensor_D0_reference.host_view() << "\n" << "\nD0 computed:\n" << tensor_D0_computed.host_view() << "\n" << "\nB1:\n" << tensor_B1.host_view() << "\n" << "\nC1:\n" << tensor_C1.host_view() << "\n" << "\nBias1:\n" << tensor_Bias1.host_view() << "\n" << "\nD1 reference:\n" << tensor_D1_reference.host_view() << "\n" << "\nD1 computed:\n" << tensor_D1_computed.host_view(); } return passed; } }; template <typename B2bConv2d_> class B2bFusedConv2dRun { public: using B2bConv2d = B2bConv2d_; using ElementAccumulator = typename B2bConv2d::ElementAccumulator; using ElementCompute = typename B2bConv2d::ElementCompute; static cutlass::conv::Operator const kConvolutionalOperator = B2bConv2d::kConvolutionalOperator; public: /// Initialization cutlass::Distribution::Kind init_A; cutlass::Distribution::Kind init_B; cutlass::Distribution::Kind init_C; cutlass::Distribution::Kind init_Scale; cutlass::Distribution::Kind init_Bias; uint64_t seed; cutlass::HostTensor<typename B2bConv2d::ElementA, typename B2bConv2d::LayoutA> tensor_A0; cutlass::HostTensor<typename B2bConv2d::ElementB, typename B2bConv2d::LayoutB> tensor_B0; cutlass::HostTensor<typename B2bConv2d::ElementC, typename B2bConv2d::LayoutC> tensor_C0; cutlass::HostTensor<typename B2bConv2d::ElementScaleBias, typename B2bConv2d::LayoutScaleBias> tensor_Scale0; cutlass::HostTensor<typename B2bConv2d::ElementScaleBias, typename B2bConv2d::LayoutScaleBias> tensor_Bias0; cutlass::HostTensor<ElementAccumulator, typename B2bConv2d::LayoutC> tensor_Z0_reference; cutlass::HostTensor<typename B2bConv2d::ElementC, typename B2bConv2d::LayoutC> tensor_D0_reference; cutlass::HostTensor<typename B2bConv2d::ElementB, typename B2bConv2d::LayoutB> tensor_B1; cutlass::HostTensor<typename B2bConv2d::ElementC, typename B2bConv2d::LayoutC> tensor_C1; cutlass::HostTensor<typename B2bConv2d::ElementCompute, typename B2bConv2d::LayoutC> tensor_Bias1; cutlass::HostTensor<typename B2bConv2d::ElementC, typename B2bConv2d::LayoutC> tensor_D1_computed; cutlass::HostTensor<typename B2bConv2d::ElementC, typename B2bConv2d::LayoutC> tensor_D1_reference; public: B2bFusedConv2dRun( cutlass::Distribution::Kind init_A_ = cutlass::Distribution::Uniform, cutlass::Distribution::Kind init_B_ = cutlass::Distribution::Uniform, cutlass::Distribution::Kind init_C_ = cutlass::Distribution::Uniform, cutlass::Distribution::Kind init_Scale_ = cutlass::Distribution::Uniform, cutlass::Distribution::Kind init_Bias_ = cutlass::Distribution::Uniform, uint64_t seed_ = 2080 ): init_A(init_A_), init_B(init_B_), init_C(init_C_), init_Scale(init_Scale_), init_Bias(init_Bias_), seed(seed_) { } /// Helper to initialize a tensor view template <typename Element, typename Layout> void initialize_tensor( cutlass::TensorView<Element, Layout> view, cutlass::Distribution::Kind dist_kind, uint64_t seed) { if (dist_kind == cutlass::Distribution::Uniform) { int scope; int bits = cutlass::sizeof_bits<Element>::value; if (bits <= 16) { scope = 2; } else { scope = 8; } cutlass::reference::host::TensorFillRandomUniform( view, seed, scope, -scope, 0); } else if (dist_kind == cutlass::Distribution::Identity) { cutlass::reference::host::TensorFillIdentity(view); } else if (dist_kind == cutlass::Distribution::Gaussian) { cutlass::reference::host::TensorFillRandomGaussian(view, seed, 0, 0.5); } else if (dist_kind == cutlass::Distribution::Sequential) { cutlass::reference::host::BlockFillSequential(view.data(), view.capacity()); } else if (dist_kind == cutlass::Distribution::AllZeros) { cutlass::reference::host::TensorFill(view, Element(0)); } else if (dist_kind == cutlass::Distribution::AllOnes) { cutlass::reference::host::TensorFill(view, Element(1)); } else { } } void initialize( cutlass::conv::Conv2dProblemSize const &problem_size_0, cutlass::conv::Conv2dProblemSize const &problem_size_1, ElementCompute alpha0, ElementCompute alpha1, uint64_t seed = 2019) { tensor_A0.resize(implicit_gemm_tensor_a_extent(kConvolutionalOperator, problem_size_0)); tensor_B0.resize(implicit_gemm_tensor_b_extent(kConvolutionalOperator, problem_size_0)); tensor_C0.resize(implicit_gemm_tensor_c_extent(kConvolutionalOperator, problem_size_0)); if(alpha0 == ElementCompute(0)) //per-channel scale tensor_Scale0.resize({1, problem_size_0.K}); tensor_Bias0.resize({1, problem_size_0.K}); tensor_Z0_reference.resize(implicit_gemm_tensor_c_extent(kConvolutionalOperator, problem_size_0)); tensor_D0_reference.resize(implicit_gemm_tensor_c_extent(kConvolutionalOperator, problem_size_0)); tensor_B1.resize(implicit_gemm_tensor_b_extent(kConvolutionalOperator, problem_size_1)); tensor_C1.resize(implicit_gemm_tensor_c_extent(kConvolutionalOperator, problem_size_1)); tensor_Bias1.resize({1, 1, 1, problem_size_1.K}); tensor_D1_computed.resize(implicit_gemm_tensor_c_extent(kConvolutionalOperator, problem_size_1)); tensor_D1_reference.resize(implicit_gemm_tensor_c_extent(kConvolutionalOperator, problem_size_1)); initialize_tensor(tensor_A0.host_view(), init_A, seed); initialize_tensor(tensor_B0.host_view(), init_B, seed * 17); initialize_tensor(tensor_C0.host_view(), init_C, seed * 39); if(alpha0 == ElementCompute(0)) //per-channel scale initialize_tensor(tensor_Scale0.host_view(), init_Scale, seed * 61); initialize_tensor(tensor_Bias0.host_view(), init_Bias, seed * 83); initialize_tensor(tensor_B1.host_view(), init_B, seed * 18); initialize_tensor(tensor_C1.host_view(), init_C, seed * 40); initialize_tensor(tensor_Bias1.host_view(), init_Bias, seed * 84); tensor_A0.sync_device(); tensor_B0.sync_device(); tensor_C0.sync_device(); if(alpha0 == ElementCompute(0)) //per-channel scale tensor_Scale0.sync_device(); tensor_Bias0.sync_device(); tensor_D0_reference.sync_device(); tensor_B1.sync_device(); tensor_C1.sync_device(); tensor_Bias1.sync_device(); tensor_D1_computed.sync_device(); tensor_D1_reference.sync_device(); } /// Executes one test bool run( cutlass::conv::Conv2dProblemSize const &problem_size_0, cutlass::conv::Conv2dProblemSize const &problem_size_1, cutlass::conv::SplitKMode const &split_k_mode = cutlass::conv::SplitKMode::kSerial, ElementCompute alpha0 = ElementCompute(1), ElementCompute beta0 = ElementCompute(0), ElementCompute alpha1 = ElementCompute(1), ElementCompute beta1 = ElementCompute(0), bool relu = true, int warm_ups = 1, int runs = 100) { initialize(problem_size_0, problem_size_1, alpha0, alpha1); // configure the operator B2bConv2d b2b_conv2d_op; typename B2bConv2d::Arguments b2b_conv2d_args( problem_size_0, problem_size_1, tensor_A0.device_ref(), tensor_B0.device_ref(), tensor_C0.device_ref(), tensor_Scale0.device_ref(), tensor_Bias0.device_ref(), tensor_B1.device_ref(), {tensor_Bias1.device_data(), typename B2bConv2d::LayoutC::Stride(0)}, tensor_D1_computed.device_ref(), {alpha0, beta0}, {alpha1, beta1}, split_k_mode ); cutlass::Status status = b2b_conv2d_op.can_implement(b2b_conv2d_args); if(status != cutlass::Status::kSuccess) { std::cout << "Problem sizes not supported.\n" << "Requirments:\n" << " problem_size_0.N*P*Q = problem_size_1.N*P*Q\n" << " problem_size_0.K = problem_size_1.C\n" << " problem_size_1.R = problem_size_1.S = 1\n" << " ThreadblockShape0::kN = problem_size_0.K\n" << " ThreadblockShape1::kN = problem_size_1.K" << std::endl; } CUTLASS_CHECK(status); status = b2b_conv2d_op.initialize(b2b_conv2d_args); CUTLASS_CHECK(status); for(int i = 0; i < warm_ups; i++) { status = b2b_conv2d_op(); CUTLASS_CHECK(status); } // // Run the Conv2d // cudaEvent_t start, stop; cudaEventCreate(&start); cudaEventCreate(&stop); cudaEventRecord(start); for(int i = 0; i < runs; i++) { // run conv2d operator status = b2b_conv2d_op(); CUTLASS_CHECK(status); } cudaEventRecord(stop); cudaDeviceSynchronize(); float conv2dTime; cudaEventElapsedTime(&conv2dTime, start, stop); std::cout << "Fusion time " << conv2dTime / (float)runs << " ms\n"; tensor_D1_computed.sync_host(); bool passed = false; cutlass::reference::device::Conv2d< typename B2bConv2d::ElementA, typename B2bConv2d::LayoutA, typename B2bConv2d::ElementB, typename B2bConv2d::LayoutB, ElementAccumulator, typename B2bConv2d::LayoutC, ElementAccumulator, ElementAccumulator >( kConvolutionalOperator, problem_size_0, tensor_A0.device_ref(), tensor_B0.device_ref(), tensor_Z0_reference.device_ref(), tensor_Z0_reference.device_ref(), ElementAccumulator(1), // intermediate alpha = 1 ElementAccumulator(0) // beta = 0 ); cutlass::reference::device::TensorScaleBiasConv2d< ElementAccumulator, typename B2bConv2d::ElementC, typename B2bConv2d::LayoutC, ElementCompute, typename B2bConv2d::LayoutScaleBias >( problem_size_0, tensor_Z0_reference.device_ref(), tensor_D0_reference.device_ref(), alpha0, tensor_Scale0.device_ref(), tensor_Bias0.device_ref() ); if(relu) { cutlass::reference::device::TensorReLu(tensor_D0_reference.device_view()); } cutlass::reference::device::Conv2d< typename B2bConv2d::ElementA, typename B2bConv2d::LayoutA, typename B2bConv2d::ElementB, typename B2bConv2d::LayoutB, typename B2bConv2d::ElementC, typename B2bConv2d::LayoutC, ElementCompute, ElementAccumulator >( kConvolutionalOperator, problem_size_1, tensor_D0_reference.device_ref(), tensor_B1.device_ref(), {tensor_Bias1.device_data(), typename B2bConv2d::LayoutC::Stride(0)}, tensor_D1_reference.device_ref(), alpha1, beta1); if(relu) { cutlass::reference::device::TensorReLu(tensor_D1_reference.device_view()); } cudaError_t result = cudaDeviceSynchronize(); CHECK_TRUE(result == cudaSuccess); // sync host (copy device data to host) for dumping error output in case of mismatches tensor_D0_reference.sync_host(); tensor_D1_reference.sync_host(); CHECK_GT(cutlass::reference::host::TensorNorm(tensor_D0_reference.host_view()), 0); CHECK_GT(cutlass::reference::host::TensorNorm(tensor_D1_computed.host_view()), 0); CHECK_GT(cutlass::reference::host::TensorNorm(tensor_D1_reference.host_view()), 0); passed = cutlass::reference::host::TensorEquals( tensor_D1_computed.host_view(), tensor_D1_reference.host_view()); CHECK_TRUE(passed); if (!passed) { std::stringstream fname; fname << "error_B2bImplicitGemm_device_fused.txt"; std::cerr << "Dumping results in " << fname.str() << "\n"; std::ofstream results(fname.str()); results << problem_size_0 << std::endl; results << problem_size_1 << std::endl; results << "\nA0:\n" << tensor_A0.host_view() << "\n" << "\nB0:\n" << tensor_B0.host_view() << "\n" << "\nC0:\n" << tensor_C0.host_view() << "\n" << "\nScale0:\n" << tensor_Scale0.host_view() << "\n" << "\nBias0:\n" << tensor_Bias0.host_view() << "\n" << "\nB1:\n" << tensor_B1.host_view() << "\n" << "\nC1:\n" << tensor_C1.host_view() << "\n" << "\nBias1:\n" << tensor_Bias1.host_view() << "\n" << "\nD1 reference:\n" << tensor_D1_reference.host_view() << "\n" << "\nD1 computed:\n" << tensor_D1_computed.host_view(); } return passed; } }; /////////////////////////////////////////////////////////////////////////////////////////////////
examples/13_two_tensor_op_fusion/b2b_conv2d_run.h/0
{ "file_path": "examples/13_two_tensor_op_fusion/b2b_conv2d_run.h", "repo_id": "examples", "token_count": 11067 }
5
/*************************************************************************************************** * Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. * SPDX-License-Identifier: BSD-3-Clause * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * **************************************************************************************************/ /*! \file \brief Default kernel-level GEMM definitions combine threadblock-scoped matrix multiply-add with the appropriate threadblock-scoped epilogue. Note, CUTLASS epilogues universally target row-major outputs. Column-major outputs are accommodated by exchanging A and B operands and assuming transposed layouts. Partial specializations here choose 'device::GemmTransposed' to implement this functionality. */ #pragma once #include "cutlass/cutlass.h" #include "cutlass/layout/matrix.h" #include "cutlass/numeric_types.h" #include "cutlass/epilogue/threadblock/epilogue.h" #include "cutlass/epilogue/thread/linear_combination.h" #include "cutlass/gemm/gemm.h" #include "cutlass/gemm/kernel/gemm_pipelined.h" #include "cutlass/gemm/threadblock/default_mma_core_sm75.h" #include "cutlass/gemm/threadblock/default_mma_core_sm70.h" #include "cutlass/gemm/threadblock/default_mma_core_sm80.h" #include "cutlass/gemm/threadblock/default_mma_core_simt.h" #include "cutlass/gemm/threadblock/threadblock_swizzle.h" #include "cutlass/epilogue/threadblock/default_epilogue_tensor_op.h" #include "cutlass/epilogue/threadblock/default_epilogue_volta_tensor_op.h" #include "cutlass/epilogue/threadblock/default_epilogue_simt.h" #include "cutlass/transform/threadblock/predicated_tile_iterator.h" #include "kernel/b2b_gemm.h" #include "kernel/grouped.h" #include "threadblock/default_b2b_mma.h" #include "threadblock/grouped_threadblock_swizzle.h" //////////////////////////////////////////////////////////////////////////////// namespace cutlass { namespace gemm { namespace kernel { //////////////////////////////////////////////////////////////////////////////// template <typename T> using IsGroupedSwizzle = cutlass::gemm::threadblock::detail::IsGroupedSwizzle<T>; template < /// Element type for A matrix operand typename ElementA_, /// Layout type for A matrix operand typename LayoutA_, /// Access granularity of A matrix in units of elements int kAlignmentA, /// Element type for B matrix operand typename ElementB_, /// Layout type for B matrix operand typename LayoutB_, /// Access granularity of B matrix in units of elements int kAlignmentB, /// Element type for C and D matrix operands typename ElementC_, /// Layout type for C and D matrix operands typename LayoutC_, /// Element type for internal accumulation typename ElementAccumulator, /// Operator class tag typename OperatorClass, /// Tag indicating architecture to tune for typename ArchTag, /// Threadblock-level tile size (concept: GemmShape) typename ThreadblockShape0, /// Threadblock-level tile size (concept: GemmShape) typename ThreadblockShape1, /// Warp-level tile size (concept: GemmShape) typename WarpShape0, /// Warp-level tile size (concept: GemmShape) typename WarpShape1, /// Warp-level tile size (concept: GemmShape) typename InstructionShape, /// Epilogue output operator typename EpilogueOutputOp0, /// Epilogue output operator typename EpilogueOutputOp1, /// Threadblock-level swizzling operator typename ThreadblockSwizzle, /// Number of stages used in the pipelined mainloop int Stages, /// Operation performed by GEMM typename Operator, /// Stage accumulator in shared memory bool SmemAccumulator = false, /// Whether or not the operation is grouped typename Enable = void > struct DefaultB2bGemm; //////////////////////////////////////////////////////////////////////////////// /// Partial specialization for Ampere Architecture template < /// Element type for A matrix operand typename ElementA, /// Layout type for A matrix operand typename LayoutA, /// Access granularity of A matrix in units of elements int kAlignmentA, /// Element type for B matrix operand typename ElementB, /// Layout type for B matrix operand typename LayoutB, /// Access granularity of A matrix in units of elements int kAlignmentB, /// Element type for C and D matrix operands typename ElementC, /// Element type for internal accumulation typename ElementAccumulator, /// Threadblock-level tile size (concept: GemmShape) typename ThreadblockShape0, /// Threadblock-level tile size (concept: GemmShape) typename ThreadblockShape1, /// Warp-level tile size (concept: GemmShape) typename WarpShape0, /// Warp-level tile size (concept: GemmShape) typename WarpShape1, /// Warp-level tile size (concept: GemmShape) typename InstructionShape, /// Epilogue output operator typename EpilogueOutputOp0, /// Epilogue output operator typename EpilogueOutputOp1, /// Threadblock-level swizzling operator typename ThreadblockSwizzle, /// Number of stages used in the pipelined mainloop int Stages, /// Operation performed by GEMM typename Operator> struct DefaultB2bGemm<ElementA, LayoutA, kAlignmentA, ElementB, LayoutB, kAlignmentB, ElementC, layout::RowMajor, ElementAccumulator, arch::OpClassTensorOp, arch::Sm80, ThreadblockShape0, ThreadblockShape1, WarpShape0, WarpShape1, InstructionShape, EpilogueOutputOp0, EpilogueOutputOp1, ThreadblockSwizzle, Stages, Operator, false, typename platform::enable_if<!IsGroupedSwizzle<ThreadblockSwizzle>::value>::type> { /// Define the threadblock-scoped matrix multiply-accumulate using B2bMma = typename cutlass::gemm::threadblock::DefaultB2bMma< ElementA, LayoutA, kAlignmentA, ElementB, LayoutB, kAlignmentB, ElementAccumulator, layout::RowMajor, arch::OpClassTensorOp, arch::Sm80, ThreadblockShape0, ThreadblockShape1, WarpShape0, WarpShape1, InstructionShape, Stages, Operator, EpilogueOutputOp0>::ThreadblockB2bMma; static const int kPartitionsK1 = ThreadblockShape1::kK / WarpShape1::kK; /// Define the epilogue using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueTensorOp< ThreadblockShape1, typename B2bMma::Operator1, kPartitionsK1, EpilogueOutputOp1, EpilogueOutputOp1::kCount>::Epilogue; /// Define the kernel-level GEMM operator. using B2bGemmKernel = kernel::B2bGemm<B2bMma, Epilogue, ThreadblockSwizzle>; }; /// Partial specialization for Ampere Architecture with grouped operation template < /// Element type for A matrix operand typename ElementA, /// Layout type for A matrix operand typename LayoutA, /// Access granularity of A matrix in units of elements int kAlignmentA, /// Element type for B matrix operand typename ElementB, /// Layout type for B matrix operand typename LayoutB, /// Access granularity of A matrix in units of elements int kAlignmentB, /// Element type for C and D matrix operands typename ElementC, /// Element type for internal accumulation typename ElementAccumulator, /// Threadblock-level tile size (concept: GemmShape) typename ThreadblockShape0, /// Threadblock-level tile size (concept: GemmShape) typename ThreadblockShape1, /// Warp-level tile size (concept: GemmShape) typename WarpShape0, /// Warp-level tile size (concept: GemmShape) typename WarpShape1, /// Warp-level tile size (concept: GemmShape) typename InstructionShape, /// Epilogue output operator typename EpilogueOutputOp0, /// Epilogue output operator typename EpilogueOutputOp1, /// Threadblock-level swizzling operator typename ThreadblockSwizzle, /// Number of stages used in the pipelined mainloop int Stages, /// Operation performed by GEMM typename Operator> struct DefaultB2bGemm<ElementA, LayoutA, kAlignmentA, ElementB, LayoutB, kAlignmentB, ElementC, layout::RowMajor, ElementAccumulator, arch::OpClassTensorOp, arch::Sm80, ThreadblockShape0, ThreadblockShape1, WarpShape0, WarpShape1, InstructionShape, EpilogueOutputOp0, EpilogueOutputOp1, ThreadblockSwizzle, Stages, Operator, false, typename platform::enable_if<IsGroupedSwizzle<ThreadblockSwizzle>::value>::type> { /// Define the threadblock-scoped matrix multiply-accumulate using B2bMma = typename cutlass::gemm::threadblock::DefaultB2bMma< ElementA, LayoutA, kAlignmentA, ElementB, LayoutB, kAlignmentB, ElementAccumulator, layout::RowMajor, arch::OpClassTensorOp, arch::Sm80, ThreadblockShape0, ThreadblockShape1, WarpShape0, WarpShape1, InstructionShape, Stages, Operator, EpilogueOutputOp0>::ThreadblockB2bMma; static const int kPartitionsK1 = ThreadblockShape1::kK / WarpShape1::kK; /// Define the epilogue using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueTensorOp< ThreadblockShape1, typename B2bMma::Operator1, kPartitionsK1, EpilogueOutputOp1, EpilogueOutputOp1::kCount>::Epilogue; /// Define the kernel-level GEMM operator. using UnderlyingB2bGemmKernel = kernel::B2bGemm<B2bMma, Epilogue, ThreadblockSwizzle>; using B2bGemmKernel = kernel::GroupedKernel<UnderlyingB2bGemmKernel>; }; //////////////////////////////////////////////////////////////////////////////// /// Partial specialization for Turing Architecture template < /// Element type for A matrix operand typename ElementA, /// Layout type for A matrix operand typename LayoutA, /// Access granularity of A matrix in units of elements int kAlignmentA, /// Element type for B matrix operand typename ElementB, /// Layout type for B matrix operand typename LayoutB, /// Access granularity of B matrix in units of elements int kAlignmentB, /// Element type for C and D matrix operands typename ElementC, /// Element type for internal accumulation typename ElementAccumulator, /// Threadblock-level tile size (concept: GemmShape) typename ThreadblockShape0, /// Threadblock-level tile size (concept: GemmShape) typename ThreadblockShape1, /// Warp-level tile size (concept: GemmShape) typename WarpShape0, /// Warp-level tile size (concept: GemmShape) typename WarpShape1, /// Warp-level tile size (concept: GemmShape) typename InstructionShape, /// Epilogue output operator typename EpilogueOutputOp0, /// Epilogue output operator typename EpilogueOutputOp1, /// Threadblock-level swizzling operator typename ThreadblockSwizzle, /// Operation performed by GEMM typename Operator > struct DefaultB2bGemm< ElementA, LayoutA, kAlignmentA, ElementB, LayoutB, kAlignmentB, ElementC, layout::RowMajor, ElementAccumulator, arch::OpClassTensorOp, arch::Sm75, ThreadblockShape0, ThreadblockShape1, WarpShape0, WarpShape1, InstructionShape, EpilogueOutputOp0, EpilogueOutputOp1, ThreadblockSwizzle, 2, Operator, false, typename platform::enable_if<!IsGroupedSwizzle<ThreadblockSwizzle>::value>::type > { /// Define the threadblock-scoped matrix multiply-accumulate using B2bMma = typename cutlass::gemm::threadblock::DefaultB2bMma< ElementA, LayoutA, kAlignmentA, ElementB, LayoutB, kAlignmentB, ElementAccumulator, layout::RowMajor, arch::OpClassTensorOp, arch::Sm75, ThreadblockShape0, ThreadblockShape1, WarpShape0, WarpShape1, InstructionShape, 2, Operator, EpilogueOutputOp0 >::ThreadblockB2bMma; static const int kPartitionsK1 = ThreadblockShape1::kK / WarpShape1::kK; /// Define the epilogue using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueTensorOp< ThreadblockShape1, typename B2bMma::Operator1, kPartitionsK1, EpilogueOutputOp1, EpilogueOutputOp1::kCount >::Epilogue; /// Define the kernel-level GEMM operator. using B2bGemmKernel = kernel::B2bGemm<B2bMma, Epilogue, ThreadblockSwizzle>; }; /// Partial specialization for Ampere Integer Matrix Multiply Interleaved layout template < /// Element type for A matrix operand typename ElementA, /// Access granularity of A matrix in units of elements int kAlignmentA, /// Element type for B matrix operand typename ElementB, /// Access granularity of B matrix in units of elements int kAlignmentB, /// Element type for C and D matrix operands typename ElementC, /// Threadblock-level tile size (concept: GemmShape) typename ThreadblockShape0, /// Threadblock-level tile size (concept: GemmShape) typename ThreadblockShape1, /// Warp-level tile size (concept: GemmShape) typename WarpShape0, /// Warp-level tile size (concept: GemmShape) typename WarpShape1, /// Warp-level tile size (concept: GemmShape) typename InstructionShape, /// Epilogue output operator typename EpilogueOutputOp0, /// Epilogue output operator typename EpilogueOutputOp1, /// Threadblock-level swizzling operator typename ThreadblockSwizzle, /// Number of stages used in the pipelined mainloop int Stages, /// Number of Interleaved k int InterleavedK, /// Operation performed by GEMM typename Operator> struct DefaultB2bGemm< ElementA, layout::ColumnMajorInterleaved<InterleavedK>, kAlignmentA, ElementB, layout::RowMajorInterleaved<InterleavedK>, kAlignmentB, ElementC, layout::ColumnMajorInterleaved<InterleavedK>, int32_t, arch::OpClassTensorOp, arch::Sm80, ThreadblockShape0, ThreadblockShape1, WarpShape0, WarpShape1, InstructionShape, EpilogueOutputOp0, EpilogueOutputOp1, ThreadblockSwizzle, Stages, Operator, false, typename platform::enable_if<!IsGroupedSwizzle<ThreadblockSwizzle>::value>::type> { using LayoutA = layout::ColumnMajorInterleaved<InterleavedK>; using LayoutB = layout::RowMajorInterleaved<InterleavedK>; using LayoutC = layout::ColumnMajorInterleaved<InterleavedK>; using ElementAccumulator = int32_t; /// Define the threadblock-scoped matrix multiply-accumulate using B2bMma = typename cutlass::gemm::threadblock::DefaultB2bMma< ElementA, LayoutA, kAlignmentA, ElementB, LayoutB, kAlignmentB, ElementAccumulator, LayoutC, arch::OpClassTensorOp, arch::Sm80, ThreadblockShape0, ThreadblockShape1, WarpShape0, WarpShape1, InstructionShape, Stages, Operator, EpilogueOutputOp0, true>::ThreadblockB2bMma; static const int kPartitionsK1 = ThreadblockShape1::kK / WarpShape1::kK; /// Define the epilogue using Epilogue = typename cutlass::epilogue::threadblock:: DefaultInterleavedEpilogueTensorOp< ThreadblockShape1, typename B2bMma::Operator1, kPartitionsK1, EpilogueOutputOp1, 64 / sizeof_bits<ElementC>::value, InterleavedK>::Epilogue; /// Define the kernel-level GEMM operator. using B2bGemmKernel = kernel::B2bGemm<B2bMma, Epilogue, ThreadblockSwizzle>; }; //////////////////////////////////////////////////////////////////////////////// /// Partial specialization for Turing Integer Tensor Core Interleaved layout template < /// Element type for A matrix operand typename ElementA, /// Access granularity of A matrix in units of elements int kAlignmentA, /// Element type for B matrix operand typename ElementB, /// Access granularity of B matrix in units of elements int kAlignmentB, /// Element type for C and D matrix operands typename ElementC, /// Threadblock-level tile size (concept: GemmShape) typename ThreadblockShape0, /// Threadblock-level tile size (concept: GemmShape) typename ThreadblockShape1, /// Warp-level tile size (concept: GemmShape) typename WarpShape0, /// Warp-level tile size (concept: GemmShape) typename WarpShape1, /// Warp-level tile size (concept: GemmShape) typename InstructionShape, /// Epilogue output operator typename EpilogueOutputOp0, /// Epilogue output operator typename EpilogueOutputOp1, /// Threadblock-level swizzling operator typename ThreadblockSwizzle, /// Number of Interleaved k int InterleavedK, /// Operation performed by GEMM typename Operator> struct DefaultB2bGemm<ElementA, layout::ColumnMajorInterleaved<InterleavedK>, kAlignmentA, ElementB, layout::RowMajorInterleaved<InterleavedK>, kAlignmentB, ElementC, layout::ColumnMajorInterleaved<InterleavedK>, int32_t, arch::OpClassTensorOp, arch::Sm75, ThreadblockShape0, ThreadblockShape1, WarpShape0, WarpShape1, InstructionShape, EpilogueOutputOp0, EpilogueOutputOp1, ThreadblockSwizzle, 2, Operator, false, typename platform::enable_if<!IsGroupedSwizzle<ThreadblockSwizzle>::value>::type> { using LayoutA = layout::ColumnMajorInterleaved<InterleavedK>; using LayoutB = layout::RowMajorInterleaved<InterleavedK>; using LayoutC = layout::ColumnMajorInterleaved<InterleavedK>; using ElementAccumulator = int32_t; /// Define the threadblock-scoped matrix multiply-accumulate using B2bMma = typename cutlass::gemm::threadblock::DefaultB2bMma< ElementA, LayoutA, kAlignmentA, ElementB, LayoutB, kAlignmentB, ElementAccumulator, LayoutC, arch::OpClassTensorOp, arch::Sm75, ThreadblockShape0, ThreadblockShape1, WarpShape0, WarpShape1, InstructionShape, 2, Operator, EpilogueOutputOp0, true>::ThreadblockB2bMma; static const int kPartitionsK1 = ThreadblockShape1::kK / WarpShape1::kK; /// Define the epilogue for the 2nd Gemm using Epilogue = typename cutlass::epilogue::threadblock:: DefaultInterleavedEpilogueTensorOp< ThreadblockShape1, typename B2bMma::Operator1, kPartitionsK1, EpilogueOutputOp1, 64 / sizeof_bits<ElementC>::value, InterleavedK>::Epilogue; /// Define the kernel-level GEMM operator. using B2bGemmKernel = kernel::B2bGemm<B2bMma, Epilogue, ThreadblockSwizzle>; }; //////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////// } // namespace kernel } // namespace gemm } // namespace cutlass
examples/13_two_tensor_op_fusion/kernel/default_b2b_gemm.h/0
{ "file_path": "examples/13_two_tensor_op_fusion/kernel/default_b2b_gemm.h", "repo_id": "examples", "token_count": 6675 }
6
/*************************************************************************************************** * Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. * SPDX-License-Identifier: BSD-3-Clause * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * **************************************************************************************************/ /*! \file \brief Template for a pipelined GEMM kernel. Does not compute batching or support split-K. */ #pragma once #include "cutlass/cutlass.h" #include "cutlass/numeric_types.h" #include "cutlass/arch/arch.h" #include "cutlass/transform/threadblock/predicated_tile_iterator.h" #include "cutlass/transform/threadblock/predicated_tile_iterator_2dthreadtile.h" #include "cutlass/gemm/threadblock/default_mma_core_sm70.h" #include "cutlass/gemm/threadblock/default_mma_core_sm75.h" #include "cutlass/gemm/threadblock/default_mma_core_sm80.h" #include "cutlass/gemm/warp/mma_tensor_op_tile_access_iterator.h" #include "threadblock/b2b_mma_pipelined_smem_accumulator.h" #include "threadblock/b2b_mma_multistage_smem_accumulator.h" //////////////////////////////////////////////////////////////////////////////// namespace cutlass { namespace gemm { namespace threadblock { //////////////////////////////////////////////////////////////////////////////// /// Specialization for row-major output with 2-stage pipeline /// Accumulator will be staged in shared memory. template < /// Element type for A matrix operand typename ElementA, /// Layout type for A matrix operand typename LayoutA, /// Access granularity of A matrix in units of elements int kAlignmentA, /// Element type for B matrix operand typename ElementB, /// Layout type for B matrix operand typename LayoutB, /// Access granularity of B matrix in units of elements int kAlignmentB, /// Element type for internal accumulation typename ElementAccumulator, /// Tag indicating architecture to tune for typename ArchTag, /// Threadblock-level tile size (concept: GemmShape) typename ThreadblockShape0, /// Threadblock-level tile size (concept: GemmShape) typename ThreadblockShape1, /// Warp-level tile size (concept: GemmShape) typename WarpShape0, /// Warp-level tile size (concept: GemmShape) typename WarpShape1, /// Instruction-level tile size (concept: GemmShape) typename InstructionShape, /// Operation performed by GEMM typename Operator, /// Epilogue output operator typename EpilogueOutputOp> struct DefaultB2bMma<ElementA, LayoutA, kAlignmentA, ElementB, LayoutB, kAlignmentB, ElementAccumulator, layout::RowMajor, arch::OpClassTensorOp, ArchTag, ThreadblockShape0, ThreadblockShape1, WarpShape0, WarpShape1, InstructionShape, 2, Operator, EpilogueOutputOp, false, true> { // Define the MmaCore components using MmaCore0 = typename cutlass::gemm::threadblock::DefaultMmaCore< ThreadblockShape0, WarpShape0, InstructionShape, ElementA, LayoutA, ElementB, LayoutB, ElementAccumulator, layout::RowMajor, arch::OpClassTensorOp, 2, Operator>; using MmaCore1 = typename cutlass::gemm::threadblock::DefaultMmaCore< ThreadblockShape1, WarpShape1, InstructionShape, ElementA, LayoutA, ElementB, LayoutB, ElementAccumulator, layout::RowMajor, arch::OpClassTensorOp, 2, Operator>; // Define iterators over tiles from the A operand using IteratorA0 = cutlass::transform::threadblock::PredicatedTileIterator< cutlass::MatrixShape<MmaCore0::Shape::kM, MmaCore0::Shape::kK>, ElementA, LayoutA, 1, typename MmaCore0::IteratorThreadMapA, kAlignmentA>; // Define iterators over tiles from the B operand using IteratorB0 = cutlass::transform::threadblock::PredicatedTileIterator< cutlass::MatrixShape<MmaCore0::Shape::kK, MmaCore0::Shape::kN>, ElementB, LayoutB, 0, typename MmaCore0::IteratorThreadMapB, kAlignmentB>; // Define iterators over tiles from the B operand using IteratorB1 = cutlass::transform::threadblock::PredicatedTileIterator< cutlass::MatrixShape<MmaCore1::Shape::kK, MmaCore1::Shape::kN>, ElementB, LayoutB, 0, typename MmaCore1::IteratorThreadMapB, kAlignmentB>; // Warp-level GEMM components using WarpMmaTensorOp0 = typename MmaCore0::MmaTensorOp; using WarpMmaTensorOp1 = typename MmaCore1::MmaTensorOp; // Use fragment iterator for the accumulator using SmemAccumulatorLayout = cutlass::layout::RowMajor; using FragmentIteratorAccumulator = cutlass::epilogue::warp::FragmentIteratorTensorOp< WarpShape0, InstructionShape, ElementAccumulator, typename WarpMmaTensorOp0::Policy::Operator::FragmentC, SmemAccumulatorLayout >; /// Define iterators over tiles from scale/bias vectors using ElementScaleBias = typename EpilogueOutputOp::ElementCompute; using LayoutScaleBias = layout::RowMajor; //vector layout doesn't really matter static int const kElementsPerAccess = 2; using IteratorAccumulatorScaleBias = cutlass::transform::threadblock::VectorIterator< cutlass::transform::threadblock::PredicatedVectorAccessIterator< cutlass::MatrixShape<ThreadblockShape0::kM, ThreadblockShape0::kN>, cutlass::MatrixShape<WarpShape0::kM, WarpShape0::kN>, ElementScaleBias, LayoutScaleBias, kElementsPerAccess> >; // Store Accumulator tiles to Shared Memory using SmemIteratorD0 = cutlass::epilogue::warp::TileIteratorTensorOp< WarpShape0, InstructionShape, typename EpilogueOutputOp::ElementOutput, SmemAccumulatorLayout >; static int const kThreadCount = 32; // load warp tile from Shared Memory accumulator using WarpIteratorA1 = cutlass::gemm::warp::MmaTensorOpMultiplicandTileAccessIterator< MatrixShape<WarpShape1::kM, WarpShape1::kK>, cutlass::gemm::Operand::kA, ElementA, SmemAccumulatorLayout, MatrixShape<InstructionShape::kM, InstructionShape::kK>, WarpMmaTensorOp1::Policy::OpDelta::kRow, kThreadCount, true>; // Define the threadblock-scoped pipelined matrix multiply using ThreadblockB2bMma = cutlass::gemm::threadblock::B2bMmaPipelinedSmemAccumulator< typename MmaCore0::Shape, IteratorA0, typename MmaCore0::SmemIteratorA, IteratorB0, typename MmaCore0::SmemIteratorB, IteratorAccumulatorScaleBias, FragmentIteratorAccumulator, SmemIteratorD0, typename MmaCore1::Shape, WarpIteratorA1, IteratorB1, typename MmaCore1::SmemIteratorB, ElementAccumulator, layout::RowMajor, EpilogueOutputOp, typename MmaCore0::MmaPolicy, typename MmaCore1::MmaPolicy>; }; //////////////////////////////////////////////////////////////////////////////// /// Specialization for row-major output for multi-stage /// Accumulator will be staged in shared memory. template < /// Element type for A matrix operand typename ElementA, /// Layout type for A matrix operand typename LayoutA, /// Access granularity of A matrix in units of elements int kAlignmentA, /// Element type for B matrix operand typename ElementB, /// Layout type for B matrix operand typename LayoutB, /// Access granularity of B matrix in units of elements int kAlignmentB, /// Element type for internal accumulation typename ElementAccumulator, /// Tag indicating architecture to tune for typename ArchTag, /// Threadblock-level tile size (concept: GemmShape) typename ThreadblockShape0, /// Threadblock-level tile size (concept: GemmShape) typename ThreadblockShape1, /// Warp-level tile size (concept: GemmShape) typename WarpShape0, /// Warp-level tile size (concept: GemmShape) typename WarpShape1, /// Instruction-level tile size (concept: GemmShape) typename InstructionShape, /// Number of stages used in the multistage mainloop int Stages, /// Operation performed by GEMM typename Operator, /// Epilogue output operator typename EpilogueOutputOp> struct DefaultB2bMma<ElementA, LayoutA, kAlignmentA, ElementB, LayoutB, kAlignmentB, ElementAccumulator, layout::RowMajor, arch::OpClassTensorOp, ArchTag, ThreadblockShape0, ThreadblockShape1, WarpShape0, WarpShape1, InstructionShape, Stages, Operator, EpilogueOutputOp, false, true> { static cutlass::arch::CacheOperation::Kind const CacheOpA = ((sizeof_bits<ElementA>::value * kAlignmentA) == 128) ? cutlass::arch::CacheOperation::Global : cutlass::arch::CacheOperation::Always; static cutlass::arch::CacheOperation::Kind const CacheOpB = ((sizeof_bits<ElementB>::value * kAlignmentB) == 128) ? cutlass::arch::CacheOperation::Global : cutlass::arch::CacheOperation::Always; // Define the MmaCore components using MmaCore0 = typename cutlass::gemm::threadblock::DefaultMmaCore< ThreadblockShape0, WarpShape0, InstructionShape, ElementA, LayoutA, ElementB, LayoutB, ElementAccumulator, layout::RowMajor, arch::OpClassTensorOp, Stages, Operator, false, CacheOpA, CacheOpB>; using MmaCore1 = typename cutlass::gemm::threadblock::DefaultMmaCore< ThreadblockShape1, WarpShape1, InstructionShape, ElementA, LayoutA, ElementB, LayoutB, ElementAccumulator, layout::RowMajor, arch::OpClassTensorOp, Stages, Operator, false, CacheOpA, CacheOpB>; // Define iterators over tiles from the A operand using ThreadMapA0 = typename MmaCore0::IteratorThreadMapA; using AccessTypeA0 = cutlass::Array<ElementA, kAlignmentA>; using IteratorA0 = cutlass::transform::threadblock::PredicatedTileAccessIterator< cutlass::MatrixShape<ThreadblockShape0::kM, ThreadblockShape0::kK>, ElementA, LayoutA, 1, ThreadMapA0, AccessTypeA0>; // Define iterators over tiles from the B operand using ThreadMapB0 = typename MmaCore0::IteratorThreadMapB; using AccessTypeB0 = cutlass::Array<ElementB, kAlignmentB>; using IteratorB0 = cutlass::transform::threadblock::PredicatedTileAccessIterator< cutlass::MatrixShape<ThreadblockShape0::kK, ThreadblockShape0::kN>, ElementB, LayoutB, 0, ThreadMapB0, AccessTypeB0>; // Define iterators over tiles from the B operand using ThreadMapB1 = typename MmaCore1::IteratorThreadMapB; using AccessTypeB1 = cutlass::Array<ElementB, kAlignmentB>; using IteratorB1 = cutlass::transform::threadblock::PredicatedTileAccessIterator< cutlass::MatrixShape<ThreadblockShape1::kK, ThreadblockShape1::kN>, ElementB, LayoutB, 0, ThreadMapB1, AccessTypeB1>; // Warp-level GEMM components using WarpMmaTensorOp0 = typename MmaCore0::MmaTensorOp; using WarpMmaTensorOp1 = typename MmaCore1::MmaTensorOp; // Use fragment iterator for the accumulator using SmemAccumulatorLayout = cutlass::layout::RowMajor; using FragmentIteratorAccumulator = cutlass::epilogue::warp::FragmentIteratorTensorOp< WarpShape0, InstructionShape, ElementAccumulator, typename WarpMmaTensorOp0::Policy::Operator::FragmentC, SmemAccumulatorLayout >; /// Define iterators over tiles from scale/bias vectors using ElementScaleBias = typename EpilogueOutputOp::ElementCompute; using LayoutScaleBias = layout::RowMajor; //vector layout doesn't really matter static int const kElementsPerAccess = 2; using IteratorAccumulatorScaleBias = cutlass::transform::threadblock::VectorIterator< cutlass::transform::threadblock::PredicatedVectorAccessIterator< cutlass::MatrixShape<ThreadblockShape0::kM, ThreadblockShape0::kN>, cutlass::MatrixShape<WarpShape0::kM, WarpShape0::kN>, ElementScaleBias, LayoutScaleBias, kElementsPerAccess> >; // Store Accumulator tiles to Shared Memory using SmemIteratorD0 = cutlass::epilogue::warp::TileIteratorTensorOp< WarpShape0, InstructionShape, typename EpilogueOutputOp::ElementOutput, SmemAccumulatorLayout >; static int const kThreadCount = 32; // load warp tile from Shared Memory accumulator using WarpIteratorA1 = cutlass::gemm::warp::MmaTensorOpMultiplicandTileAccessIterator< MatrixShape<WarpShape1::kM, WarpShape1::kK>, cutlass::gemm::Operand::kA, ElementA, SmemAccumulatorLayout, MatrixShape<InstructionShape::kM, InstructionShape::kK>, WarpMmaTensorOp1::Policy::OpDelta::kRow, kThreadCount, true>; // Define the threadblock-scoped pipelined matrix multiply using ThreadblockB2bMma = cutlass::gemm::threadblock::B2bMmaMultistageSmemAccumulator< typename MmaCore0::Shape, IteratorA0, typename MmaCore0::SmemIteratorA, MmaCore0::kCacheOpA, IteratorB0, typename MmaCore0::SmemIteratorB, MmaCore0::kCacheOpB, IteratorAccumulatorScaleBias, FragmentIteratorAccumulator, SmemIteratorD0, typename MmaCore1::Shape, WarpIteratorA1, IteratorB1, typename MmaCore1::SmemIteratorB, MmaCore1::kCacheOpB, ElementAccumulator, layout::RowMajor, EpilogueOutputOp, typename MmaCore0::MmaPolicy, typename MmaCore1::MmaPolicy, Stages>; }; //////////////////////////////////////////////////////////////////////////////// /// Specialization for column-major-interleaved output with 2-stage pipeline /// Accumulator will be staged in shared memory. template < /// Element type for A matrix operand typename ElementA, /// Layout type for A matrix operand typename LayoutA, /// Access granularity of A matrix in units of elements int kAlignmentA, /// Element type for B matrix operand typename ElementB, /// Layout type for B matrix operand typename LayoutB, /// Access granularity of B matrix in units of elements int kAlignmentB, /// Element type for internal accumulation typename ElementAccumulator, /// Tag indicating architecture to tune for typename OperatorClass, /// Threadblock-level tile size (concept: GemmShape) typename ThreadblockShape0, /// Threadblock-level tile size (concept: GemmShape) typename ThreadblockShape1, /// Warp-level tile size (concept: GemmShape) typename WarpShape0, /// Warp-level tile size (concept: GemmShape) typename WarpShape1, /// Instruction-level tile size (concept: GemmShape) typename InstructionShape, /// Operation performed by GEMM typename Operator, /// Epilogue output operator typename EpilogueOutputOp, /// Number of Interleaved K int InterleavedK> struct DefaultB2bMma<ElementA, LayoutA, kAlignmentA, ElementB, LayoutB, kAlignmentB, ElementAccumulator, layout::ColumnMajorInterleaved<InterleavedK>, OperatorClass, arch::Sm75, ThreadblockShape0, ThreadblockShape1, WarpShape0, WarpShape1, InstructionShape, 2, Operator, EpilogueOutputOp, true, true> { // Define the MmaCore components using MmaCore0 = typename cutlass::gemm::threadblock::DefaultMmaCore< ThreadblockShape0, WarpShape0, InstructionShape, ElementA, LayoutA, ElementB, LayoutB, ElementAccumulator, layout::ColumnMajorInterleaved<InterleavedK>, OperatorClass, 2, Operator, true>; using MmaCore1 = typename cutlass::gemm::threadblock::DefaultMmaCore< ThreadblockShape1, WarpShape1, InstructionShape, ElementA, LayoutA, ElementB, LayoutB, ElementAccumulator, layout::ColumnMajorInterleaved<InterleavedK>, OperatorClass, 2, Operator, true>; static_assert(kAlignmentA == 128 / sizeof_bits<ElementA>::value, "Alignment must match thread data map's vector length"); static_assert(kAlignmentB ==128 / sizeof_bits<ElementB>::value, "Alignment must match thread data map's vector length"); // Define iterators over tiles from the A operand using IteratorA0 = cutlass::transform::threadblock::PredicatedTileIterator< cutlass::MatrixShape<MmaCore0::Shape::kM, MmaCore0::Shape::kK>, ElementA, LayoutA, 1, typename MmaCore0::IteratorThreadMapA>; // Define iterators over tiles from the B operand using IteratorB0 = cutlass::transform::threadblock::PredicatedTileIterator< cutlass::MatrixShape<MmaCore0::Shape::kK, MmaCore0::Shape::kN>, ElementB, LayoutB, 0, typename MmaCore0::IteratorThreadMapB>; // Define iterators over tiles from the B operand using IteratorB1 = cutlass::transform::threadblock::PredicatedTileIterator< cutlass::MatrixShape<MmaCore1::Shape::kK, MmaCore1::Shape::kN>, ElementB, LayoutB, 0, typename MmaCore1::IteratorThreadMapB>; // Warp-level GEMM components using WarpMmaTensorOp0 = typename MmaCore0::MmaTensorOp; using WarpMmaTensorOp1 = typename MmaCore1::MmaTensorOp; // Use fragment iterator for the accumulator using SmemAccumulatorLayout = cutlass::layout::ColumnMajorInterleaved<16>; using FragmentIteratorAccumulator = cutlass::epilogue::warp::FragmentIteratorTensorOp< WarpShape0, InstructionShape, ElementAccumulator, typename WarpMmaTensorOp0::Policy::Operator::FragmentC, SmemAccumulatorLayout >; /// Define iterators over tiles from scale/bias vectors using ElementScaleBias = typename EpilogueOutputOp::ElementCompute; using LayoutScaleBias = layout::RowMajor; //vector layout doesn't really matter static int const kElementsPerAccess = 4; //For interleaved layout using IteratorAccumulatorScaleBias = cutlass::transform::threadblock::VectorIterator< cutlass::transform::threadblock::PredicatedVectorAccessIterator< cutlass::MatrixShape<ThreadblockShape0::kM, ThreadblockShape0::kN>, cutlass::MatrixShape<WarpShape0::kM, WarpShape0::kN>, ElementScaleBias, LayoutScaleBias, kElementsPerAccess> >; // Store Accumulator tiles to Shared Memory using SmemIteratorD0 = cutlass::epilogue::warp::TileIteratorTensorOp< WarpShape0, InstructionShape, typename EpilogueOutputOp::ElementOutput, SmemAccumulatorLayout >; static int const kThreadCount = 32; // load warp tile from Shared Memory accumulator using WarpIteratorA1 = cutlass::gemm::warp::MmaTensorOpMultiplicandTileAccessIterator< MatrixShape<WarpShape1::kM, WarpShape1::kK>, cutlass::gemm::Operand::kA, ElementA, SmemAccumulatorLayout, MatrixShape<InstructionShape::kM, InstructionShape::kK>, WarpMmaTensorOp1::Policy::OpDelta::kRow, kThreadCount, true>; // Define the threadblock-scoped pipelined matrix multiply using ThreadblockB2bMma = cutlass::gemm::threadblock::B2bMmaPipelinedSmemAccumulator< typename MmaCore0::Shape, IteratorA0, typename MmaCore0::SmemIteratorA, IteratorB0, typename MmaCore0::SmemIteratorB, IteratorAccumulatorScaleBias, FragmentIteratorAccumulator, SmemIteratorD0, typename MmaCore1::Shape, WarpIteratorA1, IteratorB1, typename MmaCore1::SmemIteratorB, ElementAccumulator, layout::ColumnMajorInterleaved<InterleavedK>, EpilogueOutputOp, typename MmaCore0::MmaPolicy, typename MmaCore1::MmaPolicy>; }; //////////////////////////////////////////////////////////////////////////////// /// Specialization for column-major-interleaved output with multi-stage /// Accumulator will be staged in shared memory. template < /// Element type for A matrix operand typename ElementA, /// Layout type for A matrix operand typename LayoutA, /// Access granularity of A matrix in units of elements int kAlignmentA, /// Element type for B matrix operand typename ElementB, /// Layout type for B matrix operand typename LayoutB, /// Access granularity of B matrix in units of elements int kAlignmentB, /// Element type for internal accumulation typename ElementAccumulator, /// Tag indicating architecture to tune for typename OperatorClass, /// Tag indicating architecture to tune for typename ArchTag, /// Threadblock-level tile size (concept: GemmShape) typename ThreadblockShape0, /// Threadblock-level tile size (concept: GemmShape) typename ThreadblockShape1, /// Warp-level tile size (concept: GemmShape) typename WarpShape0, /// Warp-level tile size (concept: GemmShape) typename WarpShape1, /// Instruction-level tile size (concept: GemmShape) typename InstructionShape, /// Number of stages used in the multistage mainloop int Stages, /// Operation performed by GEMM typename Operator, /// Epilogue output operator typename EpilogueOutputOp, /// Number of Interleaved K int InterleavedK> struct DefaultB2bMma<ElementA, LayoutA, kAlignmentA, ElementB, LayoutB, kAlignmentB, ElementAccumulator, layout::ColumnMajorInterleaved<InterleavedK>, OperatorClass, ArchTag, ThreadblockShape0, ThreadblockShape1, WarpShape0, WarpShape1, InstructionShape, Stages, Operator, EpilogueOutputOp, true, true> { // Define the MmaCore components using MmaCore0 = typename cutlass::gemm::threadblock::DefaultMmaCore< ThreadblockShape0, WarpShape0, InstructionShape, ElementA, LayoutA, ElementB, LayoutB, ElementAccumulator, layout::ColumnMajorInterleaved<InterleavedK>, OperatorClass, Stages, Operator, true>; using MmaCore1 = typename cutlass::gemm::threadblock::DefaultMmaCore< ThreadblockShape1, WarpShape1, InstructionShape, ElementA, LayoutA, ElementB, LayoutB, ElementAccumulator, layout::ColumnMajorInterleaved<InterleavedK>, OperatorClass, Stages, Operator, true>; // Define iterators over tiles from the A operand using ThreadMapA0 = typename MmaCore0::IteratorThreadMapA; using AccessTypeA = cutlass::Array<ElementA, kAlignmentA>; using IteratorA0 = cutlass::transform::threadblock::PredicatedTileAccessIterator< cutlass::MatrixShape<ThreadblockShape0::kM, ThreadblockShape0::kK>, ElementA, LayoutA, 1, ThreadMapA0, AccessTypeA>; // Define iterators over tiles from the B operand using ThreadMapB0 = typename MmaCore0::IteratorThreadMapB; using AccessTypeB = cutlass::Array<ElementB, kAlignmentB>; using IteratorB0 = cutlass::transform::threadblock::PredicatedTileAccessIterator< cutlass::MatrixShape<ThreadblockShape1::kK, ThreadblockShape1::kN>, ElementB, LayoutB, 0, ThreadMapB0, AccessTypeB>; // Define iterators over tiles from the B operand using ThreadMapB1 = typename MmaCore1::IteratorThreadMapB; using IteratorB1 = cutlass::transform::threadblock::PredicatedTileAccessIterator< cutlass::MatrixShape<ThreadblockShape1::kK, ThreadblockShape1::kN>, ElementB, LayoutB, 0, ThreadMapB1, AccessTypeB>; // Warp-level GEMM components using WarpMmaTensorOp0 = typename MmaCore0::MmaTensorOp; using WarpMmaTensorOp1 = typename MmaCore1::MmaTensorOp; using MmaPolicy0 = typename MmaCore0::MmaPolicy; using MmaPolicy1 = typename MmaCore1::MmaPolicy; // Use fragment iterator for the accumulator using SmemAccumulatorLayout = cutlass::layout::ColumnMajorInterleaved<16>; using FragmentIteratorAccumulator = cutlass::epilogue::warp::FragmentIteratorTensorOp< WarpShape0, InstructionShape, ElementAccumulator, typename WarpMmaTensorOp0::Policy::Operator::FragmentC, SmemAccumulatorLayout >; /// Define iterators over tiles from scale/bias vectors using ElementScaleBias = typename EpilogueOutputOp::ElementCompute; using LayoutScaleBias = layout::RowMajor; //vector layout doesn't really matter static int const kElementsPerAccess = 4; using IteratorAccumulatorScaleBias = cutlass::transform::threadblock::VectorIterator< cutlass::transform::threadblock::PredicatedVectorAccessIterator< cutlass::MatrixShape<ThreadblockShape0::kM, ThreadblockShape0::kN>, cutlass::MatrixShape<WarpShape0::kM, WarpShape0::kN>, ElementScaleBias, LayoutScaleBias, kElementsPerAccess> >; // Store Accumulator tiles to Shared Memory using SmemIteratorD0 = cutlass::epilogue::warp::TileIteratorTensorOp< WarpShape0, InstructionShape, typename EpilogueOutputOp::ElementOutput, SmemAccumulatorLayout >; static int const kThreadCount = 32; // load warp tile from Shared Memory accumulator using WarpIteratorA1 = cutlass::gemm::warp::MmaTensorOpMultiplicandTileAccessIterator< MatrixShape<WarpShape1::kM, WarpShape1::kK>, cutlass::gemm::Operand::kA, ElementA, SmemAccumulatorLayout, MatrixShape<InstructionShape::kM, InstructionShape::kK>, WarpMmaTensorOp1::Policy::OpDelta::kRow, kThreadCount, true >; // Define the threadblock-scoped multistage matrix multiply using ThreadblockB2bMma = cutlass::gemm::threadblock::B2bMmaMultistageSmemAccumulator< typename MmaCore0::Shape, IteratorA0, typename MmaCore0::SmemIteratorA, MmaCore0::kCacheOpA, IteratorB0, typename MmaCore0::SmemIteratorB, MmaCore0::kCacheOpB, IteratorAccumulatorScaleBias, FragmentIteratorAccumulator, SmemIteratorD0, typename MmaCore1::Shape, WarpIteratorA1, IteratorB1, typename MmaCore1::SmemIteratorB, MmaCore1::kCacheOpB, ElementAccumulator, layout::ColumnMajorInterleaved<InterleavedK>, EpilogueOutputOp, typename MmaCore0::MmaPolicy, typename MmaCore1::MmaPolicy, Stages>; }; //////////////////////////////////////////////////////////////////////////////// } // namespace threadblock } // namespace gemm } // namespace cutlass ////////////////////////////////////////////////////////////////////////////////
examples/13_two_tensor_op_fusion/threadblock/default_b2b_mma_smem_accumulator.h/0
{ "file_path": "examples/13_two_tensor_op_fusion/threadblock/default_b2b_mma_smem_accumulator.h", "repo_id": "examples", "token_count": 9543 }
7
/*************************************************************************************************** * Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. * SPDX-License-Identifier: BSD-3-Clause * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * **************************************************************************************************/ /* This example requires NVIDIA Maxwell GPU or beyond. */ // Standard Library includes #include <iostream> #include <sstream> #include <vector> // CUTLASS Includes #include "cutlass/cutlass.h" #include "cutlass/core_io.h" #include "cutlass/functional.h" #include "cutlass/layout/matrix.h" #include "cutlass/gemm/warp/mma_simt.h" #include "cutlass/epilogue/warp/fragment_iterator_simt.h" #include "cutlass/epilogue/warp/tile_iterator_simt.h" // CUTLASS Utility Includes #include "cutlass/util/host_tensor.h" #include "cutlass/util/tensor_view_io.h" #include "cutlass/util/reference/host/gemm.h" #include "cutlass/util/reference/host/tensor_compare.h" #include "cutlass/util/reference/host/tensor_fill.h" #include "cutlass/util/reference/host/tensor_copy.h" #include "cutlass/util/reference/host/gemm_complex.h" /////////////////////////////////////////////////////////////////////////////////////////////////// // Define the overal warp-level problem shape int const kM = 14; int const kN = 27; int const kK = 17; /////////////////////////////////////////////////////////////////////////////////////////////////// // Define a warp-level GEMM operator. // // This template could be part of the CUTLASS Template Library or implemented internally. This // wraps the matrix multiply operation and epilogue with a GEMM-like interface that can be // instantiated in device code. namespace cutlass { namespace gemm { namespace warp { template < typename Shape, typename ElementA, typename LayoutA, typename ElementB, typename LayoutB, typename ElementC, typename LayoutC, typename ElementScalar > class GemmSimt { public: using Policy = cutlass::gemm::warp::MmaSimtPolicy< cutlass::MatrixShape<4, 8>, cutlass::layout::RowMajorInterleaved<2>, cutlass::gemm::GemmShape<4, 4, 1> >; using MmaWarp = cutlass::gemm::warp::MmaSimt< cutlass::gemm::GemmShape<16, 32, 8>, float, cutlass::layout::RowMajor, float, cutlass::layout::ColumnMajor, float, cutlass::layout::RowMajor, Policy >; // Number of 'K groups' int const kKgroups = Shape::kK; using FragmentIterator = cutlass::epilogue::warp::FragmentIteratorSimt< typename MmaWarp::Shape, typename MmaWarp::ThreadMma, layout::RowMajor, // SMEM layout typename MmaWarp::Policy >; using AccumulatorTileIterator = cutlass::epilogue::warp::TileIteratorSimtCanonical< typename MmaWarp::Shape, typename MmaWarp::ThreadMma, float, // ElementAccumulator layout::RowMajor, // SMEM layout typename MmaWarp::Policy >; using TensorRefA = typename MmaWarp::IteratorA::TensorRef; using TensorRefB = typename MmaWarp::IteratorB::TensorRef; using TensorRefC = typename AccumulatorTileIterator::TensorRef; public: CUTLASS_HOST_DEVICE GemmSimt() { } CUTLASS_DEVICE void operator()( ElementScalar alpha, TensorRefA ref_A, TensorRefB ref_B, ElementScalar beta, TensorRefC ref_C, TensorRefC ref_D, int lane_id) const { // Instantiate iterators pointing to slices of the A and B matrices in shared memory typename MmaWarp::IteratorA iter_A(ref_A, {Shape::kM, Shape::kK}, lane_id); typename MmaWarp::IteratorB iter_B(ref_B, {Shape::kK, Shape::kN}, lane_id); // Instantiate and clear accumulator tile holding the C matrix typename MmaWarp::FragmentC accum; accum.clear(); // Instantiate the warp-level matrix multiply operator MmaWarp mma_op; // Instantiate fragments holding the slice of the matrix held by each warp typename MmaWarp::FragmentA frag_A[2]; typename MmaWarp::FragmentB frag_B[2]; // Load fragments from shared memory iter_A.load(frag_A[0]); iter_B.load(frag_B[0]); ++iter_A; ++iter_B; // Load fragments from shared memory CUTLASS_PRAGMA_UNROLL for (int k = 0; k < kKgroups; ++k) { // Load fragments from shared memory iter_A.load(frag_A[(k + 1) % 2]); iter_B.load(frag_B[(k + 1) % 2]); ++iter_A; ++iter_B; // Compute the matrix multiply mma_op(accum, frag_A[k % 2], frag_B[k % 2], accum); } // Instantiate iterators FragmentIterator accum_frag_it(accum); AccumulatorTileIterator source_tile_it(ref_C, {Shape::kM, Shape::kN}, lane_id); AccumulatorTileIterator dest_tile_it(ref_D, {Shape::kM, Shape::kN}, lane_id); // Define function objects for linear scaling operation cutlass::multiplies<typename FragmentIterator::Fragment> mul_source; cutlass::multiply_add<typename FragmentIterator::Fragment> mul_add_accumulator; // Iterate over the epilogue components CUTLASS_PRAGMA_UNROLL for (int idx = 0; idx < FragmentIterator::kIterations; ++idx) { // Define storage for slices of the accumulators typename FragmentIterator::Fragment accum_fragment; typename FragmentIterator::Fragment source_fragment; // Select a slice of accumulators from the accumulator tile accum_frag_it.load(accum_fragment); ++accum_frag_it; // Load a corresponding slice from Shared memory source_tile_it.load(source_fragment); ++source_tile_it; // Compute linear scaling - alpha * AB + beta * C source_fragment = mul_source(beta, source_fragment); accum_fragment = mul_add_accumulator(alpha, accum_fragment, source_fragment); // Store the result to shared memory dest_tile_it.store(accum_fragment); ++dest_tile_it; } } }; } // namespace warp } // namespace gemm } // namespace cutlass /////////////////////////////////////////////////////////////////////////////////////////////////// // Sample kernel demonstrating a collective GEMM operation by a warp on arbitrary matrices held // in Shared Memory. __global__ void kernel( float *D_gmem, float alpha, float const *A_gmem, float const *B_gmem, float beta, float const *C_gmem) { // Define several matrices in shared memory __shared__ float A[kM][kK]; __shared__ float B[kN][kK]; __shared__ float C[kM][kN]; // Copy data into SMEM if (threadIdx.x == 0) { CUTLASS_PRAGMA_NO_UNROLL for (int m = 0; m < kM; ++m) { for (int k = 0; k < kK; ++k) { A[m][k] = A_gmem[m * kK + k]; } } CUTLASS_PRAGMA_NO_UNROLL for (int n = 0; n < kN; ++n) { for (int k = 0; k < kK; ++k) { B[n][k] = B_gmem[n * kK + k]; } } CUTLASS_PRAGMA_NO_UNROLL for (int m = 0; m < kM; ++m) { CUTLASS_PRAGMA_NO_UNROLL for (int n = 0; n < kN; ++n) { C[m][n] = C_gmem[m * kN + n]; } } } __syncthreads(); // // Instantiate a warp-level matrix multiply operator given the fundamental instruction shape (8x8x4), // overall shape, data type of each operand, and layout of each operand. // using GemmSimt = cutlass::gemm::warp::GemmSimt< cutlass::gemm::GemmShape<kM, kN, kK>, float, // Data type of A elements cutlass::layout::RowMajor, // Layout of A matrix float, // Data type of B elements cutlass::layout::ColumnMajor, // Layout of B matrix float, // Data type of C elements cutlass::layout::RowMajor, // Layout of C matrix float // Scalar type of alpha and beta >; // Instantiate the GEMM operator GemmSimt gemm; // Execute the warp-level GEMM operation gemm( alpha, {&A[0][0], kK}, {&B[0][0], kK}, beta, {&C[0][0], kN}, {&C[0][0], kN}, threadIdx.x); __syncthreads(); // Copy data into SMEM if (threadIdx.x == 0) { CUTLASS_PRAGMA_NO_UNROLL for (int m = 0; m < kM; ++m) { CUTLASS_PRAGMA_NO_UNROLL for (int n = 0; n < kN; ++n) { D_gmem[m * kN + n] = C[m][n]; } } } } /////////////////////////////////////////////////////////////////////////////////////////////////// int main(int argc, const char *arg[]) { cutlass::HostTensor<float, cutlass::layout::RowMajor> A({kM, kK}); cutlass::HostTensor<float, cutlass::layout::ColumnMajor> B({kK, kN}); cutlass::HostTensor<float, cutlass::layout::RowMajor> C({kM, kN}); cutlass::HostTensor<float, cutlass::layout::RowMajor> D({kM, kN}); uint64_t seed = 2020; float max = 8; float min = -8; std::cout << "Simt canonical GEMM problem size = (" << cutlass::gemm::GemmShape<kM, kN, kK>() <<")" << std::endl; cutlass::reference::host::TensorFillRandomUniform( A.host_view(), seed, max, min, 0 ); cutlass::reference::host::TensorFillRandomUniform( B.host_view(), seed + 17, max, min, 0 ); #if 0 // Debug: fill A sequentially and B as Identity matrix for debugging cutlass::reference::host::BlockFillSequential( A.host_view().data(), A.host_view().capacity()); cutlass::reference::host::TensorFillIdentity(B.host_view()); #endif cutlass::reference::host::TensorFillRandomUniform( C.host_view(), seed + 31, max, min, 0 ); A.sync_device(); B.sync_device(); C.sync_device(); D.sync_device(); dim3 grid(1, 1); dim3 block(32, 1, 1); float alpha = 1.0f; float beta = 0.0f; kernel<<< grid, block >>>( D.device_data(), alpha, A.device_data(), B.device_data(), beta, C.device_data() ); cudaError_t result = cudaDeviceSynchronize(); if (result != cudaSuccess) { std::cerr << "Failed to synchronize device after kernel launch." << std::endl; return -1; } D.sync_host(); // Compute reference on host cutlass::HostTensor<float, cutlass::layout::RowMajor> D_ref({kM, kN}, false); cutlass::reference::host::TensorCopy(D_ref.host_view(), C.host_view()); cutlass::reference::host::Gemm< float, cutlass::layout::RowMajor, float, cutlass::layout::ColumnMajor, float, cutlass::layout::RowMajor, float, float> reference_gemm; reference_gemm( {kM, kN, kK}, alpha, A.host_ref(), B.host_ref(), beta, D_ref.host_ref(), float() ); // Verify reference matches computed if (!cutlass::reference::host::TensorEquals( D.host_view(), D_ref.host_view())) { std::cerr << "A =\n" << A.host_view() << "\n\nB = \n" << B.host_view() << "\n\nC = " << C.host_view() << "\n\nRef =\n" << D_ref.host_view() << "\n\nD =\n" << D.host_view() << "\n\n"; std::cerr << "Error - device results mismatch host reference." << std::endl; return -1; } std::cout << "Passed" << std::endl; return 0; } ///////////////////////////////////////////////////////////////////////////////////////////////////
examples/20_simt_canonical/simt_canonical.cu/0
{ "file_path": "examples/20_simt_canonical/simt_canonical.cu", "repo_id": "examples", "token_count": 4815 }
8
/*************************************************************************************************** * Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. * SPDX-License-Identifier: BSD-3-Clause * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * **************************************************************************************************/ /*! \file \brief GEMM kernel to support the epilogue visitor model for customized softmax partial reduction epilogue fusion. This source file will likely be moved to `include/cutlass/gemm/kernel/` in the future once its usage has been stabilized. For now, it is included in this example to demonstrate some basic output fusion options. */ #pragma once #include "cutlass/cutlass.h" #include "cutlass/fast_math.h" #include "cutlass/gemm/gemm.h" #include "cutlass/matrix_coord.h" #include "cutlass/complex.h" #include "cutlass/semaphore.h" #include "cutlass/trace.h" ///////////////////////////////////////////////////////////////////////////////////////////////// namespace cutlass { namespace gemm { namespace kernel { ///////////////////////////////////////////////////////////////////////////////////////////////// template < typename Mma_, ///! Threadblock-scoped matrix multiply-accumulate typename Epilogue_, ///! Epilogue typename ThreadblockSwizzle_ ///! Threadblock swizzling function > struct GemmWithEpilogueVisitor { public: using Mma = Mma_; using Epilogue = Epilogue_; using EpilogueVisitor = typename Epilogue::Visitor; using ThreadblockSwizzle = ThreadblockSwizzle_; using ElementA = typename Mma::IteratorA::Element; using LayoutA = typename Mma::IteratorA::Layout; using TensorRefA = TensorRef<ElementA, LayoutA>; using ElementB = typename Mma::IteratorB::Element; using LayoutB = typename Mma::IteratorB::Layout; using TensorRefB = TensorRef<ElementB, LayoutB>; using ElementC = typename EpilogueVisitor::ElementOutput; using LayoutC = typename Epilogue::Layout; using TensorRefC = TensorRef<ElementC, LayoutC>; static ComplexTransform const kTransformA = Mma::kTransformA; static ComplexTransform const kTransformB = Mma::kTransformB; using Operator = typename Mma::Operator; using OperatorClass = typename Mma::Operator::OperatorClass; using ThreadblockShape = typename Mma::Shape; using WarpShape = typename Mma::Operator::Shape; using InstructionShape = typename Mma::Policy::Operator::InstructionShape; using ArchTag = typename Mma::ArchTag; using ElementNorm = typename EpilogueVisitor::ElementNorm; using ElementSum = typename EpilogueVisitor::ElementSum; static int const kStages = Mma::kStages; static int const kAlignmentA = Mma::IteratorA::AccessType::kElements; static int const kAlignmentB = Mma::IteratorB::AccessType::kElements; static int const kAlignmentC = EpilogueVisitor::kElementsPerAccess; /// Warp count (concept: GemmShape) using WarpCount = typename Mma::WarpCount; static int const kThreadCount = 32 * WarpCount::kCount; /// Split-K preserves splits that are 128b aligned static int const kSplitKAlignment = const_max( 128 / sizeof_bits<ElementA>::value, 128 / sizeof_bits<ElementB>::value ); // // Structures // /// Argument structure struct Arguments { // // Data members // GemmUniversalMode mode; GemmCoord problem_size; int batch_count; TensorRefA ref_A; TensorRefB ref_B; TensorRefC ref_C; TensorRefC ref_D; ElementNorm *ptr_Max; ElementSum *ptr_Sum; int64_t batch_stride_A; int64_t batch_stride_B; typename EpilogueVisitor::Arguments epilogue_visitor; // // Methods // Arguments(): mode(GemmUniversalMode::kGemm), batch_count(1) { } /// constructs an arguments structure Arguments( GemmUniversalMode mode_, GemmCoord problem_size_, int batch_count_, TensorRefA ref_A_, TensorRefB ref_B_, TensorRefC ref_C_, TensorRefC ref_D_, ElementNorm *ptr_Max_, ElementSum *ptr_Sum_, int64_t batch_stride_A_, int64_t batch_stride_B_, typename EpilogueVisitor::Arguments epilogue_visitor_ ): mode(mode_), problem_size(problem_size_), batch_count(batch_count_), ref_A(ref_A_), ref_B(ref_B_), ref_C(ref_C_), ref_D(ref_D_), ptr_Max(ptr_Max_), ptr_Sum(ptr_Sum_), batch_stride_A(batch_stride_A_), batch_stride_B(batch_stride_B_), epilogue_visitor(epilogue_visitor_) { } }; // // Structure for precomputing values in host memory and passing to kernels // /// Parameters structure struct Params { cutlass::gemm::GemmCoord problem_size; cutlass::gemm::GemmCoord grid_tiled_shape; int swizzle_log_tile; typename Mma::IteratorA::Params params_A; typename Mma::IteratorB::Params params_B; typename EpilogueVisitor::OutputTileIterator::Params params_C; typename EpilogueVisitor::OutputTileIterator::Params params_D; GemmUniversalMode mode; int batch_count; int gemm_k_size; void * ptr_A; void * ptr_B; ElementC * ptr_C; ElementC * ptr_D; ElementNorm * ptr_Max; ElementSum * ptr_Sum; int64_t batch_stride_A; int64_t batch_stride_B; typename EpilogueVisitor::Params epilogue_visitor; // // Methods // CUTLASS_HOST_DEVICE Params(): swizzle_log_tile(0), params_A(0), params_B(0), params_C(0), params_D(0), batch_count(0), gemm_k_size(0), mode(cutlass::gemm::GemmUniversalMode::kGemm), ptr_A(nullptr), ptr_B(nullptr), ptr_C(nullptr), ptr_D(nullptr), ptr_Max(nullptr), ptr_Sum(nullptr), batch_stride_A(0), batch_stride_B(0) { } Params( Arguments const &args ): problem_size(args.problem_size), swizzle_log_tile(0), params_A(args.ref_A.layout()), params_B(args.ref_B.layout()), params_C(args.ref_C.layout()), params_D(args.ref_D.layout()), mode(args.mode), batch_count(args.batch_count), gemm_k_size(args.problem_size.k()), ptr_A(args.ref_A.data()), ptr_B(args.ref_B.data()), ptr_C(args.ref_C.data()), ptr_D(args.ref_D.data()), ptr_Max(args.ptr_Max), ptr_Sum(args.ptr_Sum), batch_stride_A(args.batch_stride_A), batch_stride_B(args.batch_stride_B), epilogue_visitor(args.epilogue_visitor) { ThreadblockSwizzle threadblock_swizzle; grid_tiled_shape = threadblock_swizzle.get_tiled_shape( args.problem_size, {ThreadblockShape::kM, ThreadblockShape::kN, ThreadblockShape::kK}, args.batch_count); if (args.mode == GemmUniversalMode::kGemm || args.mode == GemmUniversalMode::kGemmSplitKParallel) { int const kAlignK = const_max(const_max(128 / sizeof_bits<ElementA>::value, 128 / sizeof_bits<ElementB>::value), 1); gemm_k_size = round_up(ceil_div(args.problem_size.k(), args.batch_count), kAlignK); if (gemm_k_size) { grid_tiled_shape.k() = ceil_div(args.problem_size.k(), gemm_k_size); } } swizzle_log_tile = threadblock_swizzle.get_log_tile(grid_tiled_shape); } }; /// Shared memory storage structure union SharedStorage { typename Mma::SharedStorage main_loop; struct { typename Epilogue::SharedStorage epilogue; typename EpilogueVisitor::SharedStorage visitor; } epilogue; }; public: // // Methods // CUTLASS_DEVICE GemmWithEpilogueVisitor() { } /// Determines whether kernel satisfies alignment static Status can_implement( cutlass::gemm::GemmCoord const & problem_size) { CUTLASS_TRACE_HOST("GemmWithEpilogueVisitor::can_implement()"); static int const kAlignmentA = Mma::IteratorA::AccessType::kElements; static int const kAlignmentB = Mma::IteratorB::AccessType::kElements; static int const kAlignmentC = Epilogue::OutputTileIterator::kElementsPerAccess; bool isAMisaligned = false; bool isBMisaligned = false; bool isCMisaligned = false; if (platform::is_same<LayoutA, layout::RowMajor>::value) { isAMisaligned = problem_size.k() % kAlignmentA; } else if (platform::is_same<LayoutA, layout::ColumnMajor>::value) { isAMisaligned = problem_size.m() % kAlignmentA; } else if (platform::is_same<LayoutA, layout::ColumnMajorInterleaved<32>>::value || platform::is_same<LayoutA, layout::ColumnMajorInterleaved<64>>::value) { isAMisaligned = problem_size.k() % kAlignmentA; } if (platform::is_same<LayoutB, layout::RowMajor>::value) { isBMisaligned = problem_size.n() % kAlignmentB; } else if (platform::is_same<LayoutB, layout::ColumnMajor>::value) { isBMisaligned = problem_size.k() % kAlignmentB; } else if (platform::is_same<LayoutB, layout::RowMajorInterleaved<32>>::value || platform::is_same<LayoutB, layout::RowMajorInterleaved<64>>::value) { isBMisaligned = problem_size.k() % kAlignmentB; } if (platform::is_same<LayoutC, layout::RowMajor>::value) { isCMisaligned = problem_size.n() % kAlignmentC; } else if (platform::is_same<LayoutC, layout::ColumnMajor>::value) { isCMisaligned = problem_size.m() % kAlignmentC; } else if (platform::is_same<LayoutC, layout::ColumnMajorInterleaved<32>>::value || platform::is_same<LayoutC, layout::ColumnMajorInterleaved<64>>::value) { isCMisaligned = problem_size.n() % kAlignmentC; } if (isAMisaligned) { CUTLASS_TRACE_HOST(" returning kErrorMisalignedOperand for A operand"); return Status::kErrorMisalignedOperand; } if (isBMisaligned) { CUTLASS_TRACE_HOST(" returning kErrorMisalignedOperand for B operand"); return Status::kErrorMisalignedOperand; } if (isCMisaligned) { CUTLASS_TRACE_HOST(" returning kErrorMisalignedOperand for C operand"); return Status::kErrorMisalignedOperand; } CUTLASS_TRACE_HOST(" returning kSuccess"); return Status::kSuccess; } static Status can_implement(Arguments const &args) { return can_implement(args.problem_size); } #define SPLIT_K_ENABLED 1 /// Executes one GEMM CUTLASS_DEVICE void operator()(Params const &params, SharedStorage &shared_storage) { // Compute threadblock location ThreadblockSwizzle threadblock_swizzle; cutlass::gemm::GemmCoord threadblock_tile_offset = threadblock_swizzle.get_tile_offset(params.swizzle_log_tile); // Early exit if CTA is out of range if (params.grid_tiled_shape.m() <= threadblock_tile_offset.m() || params.grid_tiled_shape.n() <= threadblock_tile_offset.n()) { return; } int offset_k = 0; int problem_size_k = params.problem_size.k(); ElementA *ptr_A = static_cast<ElementA *>(params.ptr_A); ElementB *ptr_B = static_cast<ElementB *>(params.ptr_B); #if SPLIT_K_ENABLED // // Fetch pointers based on mode. // if (params.mode == GemmUniversalMode::kGemm || params.mode == GemmUniversalMode::kGemmSplitKParallel) { if (threadblock_tile_offset.k() + 1 < params.grid_tiled_shape.k()) { problem_size_k = (threadblock_tile_offset.k() + 1) * params.gemm_k_size; } offset_k = threadblock_tile_offset.k() * params.gemm_k_size; } else if (params.mode == GemmUniversalMode::kBatched) { ptr_A += threadblock_tile_offset.k() * params.batch_stride_A; ptr_B += threadblock_tile_offset.k() * params.batch_stride_B; } else if (params.mode == GemmUniversalMode::kArray) { ptr_A = static_cast<ElementA * const *>(params.ptr_A)[threadblock_tile_offset.k()]; ptr_B = static_cast<ElementB * const *>(params.ptr_B)[threadblock_tile_offset.k()]; } #endif // Compute initial location in logical coordinates cutlass::MatrixCoord tb_offset_A{ threadblock_tile_offset.m() * Mma::Shape::kM, offset_k, }; cutlass::MatrixCoord tb_offset_B{ offset_k, threadblock_tile_offset.n() * Mma::Shape::kN }; // Compute position within threadblock int thread_idx = threadIdx.x; // Construct iterators to A and B operands typename Mma::IteratorA iterator_A( params.params_A, ptr_A, {params.problem_size.m(), problem_size_k}, thread_idx, tb_offset_A); typename Mma::IteratorB iterator_B( params.params_B, ptr_B, {problem_size_k, params.problem_size.n()}, thread_idx, tb_offset_B); // Broadcast the warp_id computed by lane 0 to ensure dependent code // is compiled as warp-uniform. int warp_idx = __shfl_sync(0xffffffff, threadIdx.x / 32, 0); int lane_idx = threadIdx.x % 32; // // Main loop // // Construct thread-scoped matrix multiply Mma mma(shared_storage.main_loop, thread_idx, warp_idx, lane_idx); typename Mma::FragmentC accumulators; accumulators.clear(); // Compute threadblock-scoped matrix multiply-add int gemm_k_iterations = (problem_size_k - offset_k + Mma::Shape::kK - 1) / Mma::Shape::kK; // Compute threadblock-scoped matrix multiply-add mma( gemm_k_iterations, accumulators, iterator_A, iterator_B, accumulators); // // Masked tile iterators constructed from members // threadblock_tile_offset = threadblock_swizzle.get_tile_offset(params.swizzle_log_tile); //assume identity swizzle MatrixCoord threadblock_offset( threadblock_tile_offset.m() * Mma::Shape::kM, threadblock_tile_offset.n() * Mma::Shape::kN ); int block_idx = threadblock_tile_offset.m() + threadblock_tile_offset.n() * params.grid_tiled_shape.m(); // // Construct the epilogue visitor // EpilogueVisitor epilogue_visitor( params.epilogue_visitor, shared_storage.epilogue.visitor, params.problem_size.mn(), thread_idx, warp_idx, lane_idx, params.params_C, params.params_D, params.ptr_C, params.ptr_D, params.ptr_Max, params.ptr_Sum, threadblock_offset, blockIdx.y *params.problem_size.m() ); if (params.mode == GemmUniversalMode::kGemm) { // Indicate which position in a serial reduction the output operator is currently updating epilogue_visitor.set_k_partition(threadblock_tile_offset.k(), params.grid_tiled_shape.k()); } else if (params.mode == GemmUniversalMode::kBatched || params.mode == GemmUniversalMode::kArray) { epilogue_visitor.set_batch_index(threadblock_tile_offset.k()); } // Construct the epilogue Epilogue epilogue( shared_storage.epilogue.epilogue, thread_idx, warp_idx, lane_idx); // Execute the epilogue operator to update the destination tensor. epilogue(epilogue_visitor, accumulators); } }; ///////////////////////////////////////////////////////////////////////////////////////////////// } // namespace kernel } // namespace gemm } // namespace cutlass /////////////////////////////////////////////////////////////////////////////////////////////////
examples/35_gemm_softmax/gemm_with_epilogue_visitor.h/0
{ "file_path": "examples/35_gemm_softmax/gemm_with_epilogue_visitor.h", "repo_id": "examples", "token_count": 6415 }
9
# Customizable Python Interface Examples This directory contains examples of using the CUTLASS Python interface with a variety of configurations for kernels. For all the tests, add `--print_cuda` to print the underlying CUDA kernel. Use `-h` or `--help` to display the help message. ## GEMM Examples The GEMM examples use numpy to create input tensors and verify the results. ### GEMM F64 Example Example 1: SM80_Device_Gemm_f64t_f64n_f64n_tensor_op_f64_32x32x16_16x16x16 ```python python gemm.py -i 8 8 4 -ta float64 -tb float64 -tc float64 -tacc float64 -m multiply_add -op TensorOp -b 32 32 16 -s 4 -w 2 2 1 -cc 80 -la ColumnMajor -aa 1 -lb RowMajor -ab 1 -lc RowMajor -ac 1 -te float64 -ep LinearCombination -sw IdentitySwizzle1 -p 512 256 128 -alpha 1.0 -beta 0.5 -gm Gemm -k 1 ``` Example 2: SM80_Device_Gemm_f64n_f64t_f64n_tensor_op_f64_64x64x16_32x32x16, split_k(2)_serial ```python python gemm.py -i 8 8 4 -ta float64 -tb float64 -tc float64 -tacc float64 -m multiply_add -op TensorOp -b 64 64 16 -s 4 -w 2 2 1 -cc 80 -la RowMajor -aa 1 -lb ColumnMajor -ab 1 -lc RowMajor -ac 1 -te float64 -ep LinearCombination -sw IdentitySwizzle1 -p 512 256 128 -alpha 1.0 -beta 0.5 -gm Gemm -k 2 ``` ### GEMM F32 Example Example 1: SM80_Device_Gemm_f32n_f32t_f32n_tensor_op_bf16_f32_128x128x32_64x64x32 ```python python gemm.py -i 16 8 8 -ta float32 -tb float32 -tc float32 -tacc float32 -m multiply_add_fast_bf16 -op TensorOp -b 128 128 32 -s 3 -w 2 2 1 -cc 80 -la RowMajor -aa 4 -lb ColumnMajor -ab 4 -lc RowMajor -ac 4 -te float32 -ep LinearCombination -sw IdentitySwizzle1 -p 512 256 128 -alpha 1.0 -beta 0.5 -gm Gemm -k 1 ``` Example 2: SM80_Device_Gemm_f32t_f32t_f32n_tensor_op_f32_128x128x32_64x64x32, split_k(2)_parallel ```python python gemm.py -i 16 8 8 -ta float32 -tb float32 -tc float32 -tacc float32 -m multiply_add -op TensorOp -b 128 128 32 -s 3 -w 2 2 1 -cc 80 -la ColumnMajor -aa 4 -lb ColumnMajor -ab 4 -lc RowMajor -ac 4 -te float32 -ep LinearCombination -sw IdentitySwizzle1 -p 512 256 128 -alpha 1.0 -beta 0.5 -gm GemmSplitKParallel -k 2 ``` Example 3: SM80_Device_Gemm_f32t_f32t_f32n_tensor_op_fast_accurate_f32_64x64x32_32x32x32, split_k(4)_serial ```python python gemm.py -i 16 8 8 -ta float32 -tb float32 -tc float32 -tacc float32 -m multiply_add_fast_f32 -op TensorOp -b 64 64 32 -s 3 -w 2 2 1 -cc 80 -la ColumnMajor -aa 4 -lb ColumnMajor -ab 4 -lc RowMajor -ac 4 -te float32 -ep LinearCombination -sw IdentitySwizzle1 -p 512 256 128 -alpha 1.0 -beta 0.5 -gm Gemm -k 4 ``` ### GEMM F16 Example Example 1: SM80_Device_Gemm_f32t_f32n_f32t_tensor_op_bf16_f32_128x128x32_64x64x32 ```python python gemm.py -i 16 8 16 -ta float16 -tb float16 -tc float32 -tacc float32 -m multiply_add -op TensorOp -b 128 128 32 -s 3 -w 2 2 1 -cc 80 -la ColumnMajor -aa 8 -lb RowMajor -ab 8 -lc ColumnMajor -ac 4 -te float32 -ep LinearCombination -sw IdentitySwizzle4 -p 512 256 128 -alpha 1.0 -beta 0.5 -gm Gemm -k 1 ``` Example 2: SM80_Device_Gemm_f16t_f16t_f16n_tensor_op_f32_128x128x64_64x64x64, split_k(2)_serial ```python python gemm.py -i 16 8 16 -ta float16 -tb float16 -tc float16 -tacc float32 -m multiply_add -op TensorOp -b 128 128 64 -s 3 -w 2 2 1 -cc 80 -la ColumnMajor -aa 8 -lb ColumnMajor -ab 8 -lc RowMajor -ac 8 -te float32 -ep LinearCombination -sw IdentitySwizzle2 -p 512 256 128 -alpha 1.0 -beta 0.5 -gm Gemm -k 2 ``` Example 3: SM80_Device_Gemm_f16t_f16t_f32n_tensor_op_f32_256x128x64_64x64x64, split_k(3)_serial ```python python gemm.py -i 16 8 16 -ta float16 -tb float16 -tc float32 -tacc float32 -m multiply_add -op TensorOp -b 256 128 64 -s 3 -w 4 2 1 -cc 80 -la ColumnMajor -aa 8 -lb ColumnMajor -ab 8 -lc RowMajor -ac 4 -te float32 -ep LinearCombination -sw IdentitySwizzle1 -p 512 256 128 -alpha 1.0 -beta 0.5 -gm GemmSplitKParallel -k 3 ``` ### GEMM BF16 Example Example 1: Device_Gemm_bf16t_bf16t_f32n_tensor_op_f32_64x128x64_32x64x64, split_k(5)_parallel ```python python gemm.py -i 16 8 16 -ta bfloat16 -tb bfloat16 -tc float32 -tacc float32 -m multiply_add -op TensorOp -b 64 128 64 -s 3 -w 2 2 1 -cc 80 -la ColumnMajor -aa 8 -lb ColumnMajor -ab 8 -lc RowMajor -ac 4 -te float32 -ep LinearCombination -sw IdentitySwizzle2 -p 512 256 128 -alpha 1.0 -beta 0.5 -gm GemmSplitKParallel -k 5 ``` ### GEMM Int8 Example Example 1: SM80_Device_Gemm_s8n_s8t_s8n_tensor_op_s32_256x128x128_64x64x128 ```python python gemm.py -i 16 8 32 -ta int8 -tb int8 -tc int8 -tacc int32 -m multiply_add -op TensorOp -b 128 128 128 -s 3 -w 2 2 1 -cc 80 -la RowMajor -aa 16 -lb ColumnMajor -ab 16 -lc RowMajor -ac 16 -te float32 -ep FastLinearCombinationClamp -sw IdentitySwizzle2 -p 512 512 512 -alpha 1.0 -beta 0.0 -gm Gemm -k 1 ``` ### Batched & Array GEMM Example 1: Batched GEMM ```python python gemm.py -i 16 8 8 -ta float32 -tb float32 -tc float32 -tacc float32 -m multiply_add_fast_bf16 -op TensorOp -b 128 128 32 -s 3 -w 2 2 1 -cc 80 -la RowMajor -aa 4 -lb ColumnMajor -ab 4 -lc RowMajor -ac 4 -te float32 -ep LinearCombination -sw BatchedIdentitySwizzle -p 512 256 128 -alpha 1.0 -beta 0.5 -gm Batched -k 1 -batch 3 ``` Example 2: Array GEMM ```python python gemm.py -i 16 8 16 -ta float16 -tb float16 -tc float32 -tacc float32 -m multiply_add -op TensorOp -b 128 128 32 -s 3 -w 2 2 1 -cc 80 -la ColumnMajor -aa 8 -lb RowMajor -ab 8 -lc ColumnMajor -ac 4 -te float32 -ep LinearCombination -sw IdentitySwizzle4 -p 512 256 128 -alpha 1.0 -beta 0.5 -gm Array -k 1 -batch 2 ``` *** ## GEMM Grouped Examples The GEMM Grouped examples use numpy to create input tensors and verify the results. Example 1: SM80_Device_GemmGrouped_f16t_f16t_f32t_tensor_op_f32_128x128x32_64x64x32, device schedule ```python python gemm_grouped.py -i 16 8 16 -ta float16 -tb float16 -tc float32 -tacc float32 -m multiply_add -op TensorOp -b 128 128 32 -s 3 -w 2 2 1 -cc 80 -la ColumnMajor -aa 8 -lb ColumnMajor -ab 8 -lc ColumnMajor -ac 4 -te float32 -ep LinearCombination -p ./grouped_gemm_problem_size.csv -alpha 1.0 -beta 0.0 -pm Device ``` Example 2: SM80_Device_GemmGrouped_f64n_f64n_f64t_tensor_op_f64_64x64x16_32x32x16, host schedule ```python python gemm_grouped.py -i 8 8 4 -ta float64 -tb float64 -tc float64 -tacc float64 -m multiply_add -op TensorOp -b 64 64 16 -s 4 -w 2 2 1 -cc 80 -la RowMajor -aa 1 -lb RowMajor -ab 1 -lc ColumnMajor -ac 1 -te float64 -ep LinearCombination -p ./grouped_gemm_problem_size.csv -alpha 1.0 -beta 1.0 -pm Host ``` Example 3: SM80_Device_GemmGrouped_f32n_f32n_f32n_simt_f32_128x64x8_64x32x1, device schedule ```python python gemm_grouped.py -i 1 1 1 -ta float32 -tb float32 -tc float32 -tacc float32 -m multiply_add -op Simt -b 128 64 8 -s 4 -w 2 2 1 -cc 80 -la RowMajor -aa 1 -lb RowMajor -ab 1 -lc RowMajor -ac 1 -te float32 -ep LinearCombination -p ./grouped_gemm_problem_size.csv -alpha 2.0 -beta 1.0 -pm Device ``` Example 4: SM80_Device_GemmGrouped_f16t_f16t_f32t_tensor_op_f32_128x128x32_64x64x32, device schedule ```python python gemm_grouped.py -i 16 8 16 -ta float16 -tb float16 -tc float32 -tacc float32 -m multiply_add -op TensorOp -b 128 128 32 -s 3 -w 2 2 1 -cc 80 -la ColumnMajor -aa 8 -lb ColumnMajor -ab 8 -lc ColumnMajor -ac 4 -te float32 -ep LinearCombination -p ./grouped_gemm_problem_size.csv -alpha 2.0 -beta 1.0 -pm Device ``` *** ## Conv2d Example The Conv2d examples use pytorch to create input tensors and verify the results. Pytorch can be installed following the [official website](https://pytorch.org/get-started/locally/). ### Conv2d F32 Fprop Example 1: SM80_Device_Conv2d_Fprop_Analytic_ImplicitGemm_tf32nhwc_tf32nhwc_f32nhwc_tensor_op_f32 ```python python conv2d.py -i 16 8 8 -ta float32 -tb float32 -tc float32 -tacc float32 -m multiply_add -op TensorOp -b 128 128 16 -s 3 -w 2 2 1 -cc 80 -la TensorNHWC -aa 4 -lb TensorNHWC -ab 4 -lc TensorNHWC -ac 4 -te float32 -ep LinearCombination -sw IdentitySwizzle1 -co fprop -st Strided -ia optimized -sm Serial -k 1 -nhwc 1 13 17 8 -krsc 24 3 3 8 -pad 0 0 0 0 -stride 2 2 -dilation 1 1 -alpha 1.0 -beta 0.0 ``` Example 2: SM80_Device_Conv2d_Fprop_Optimized_ImplicitGemm_tf32nhwc_tf32nhwc_f32nhwc_tensor_op_f32_align2 ```python python conv2d.py -i 16 8 8 -ta float32 -tb float32 -tc float32 -tacc float32 -m multiply_add -op TensorOp -b 128 128 16 -s 3 -w 2 2 1 -cc 80 -la TensorNHWC -aa 2 -lb TensorNHWC -ab 2 -lc TensorNHWC -ac 2 -te float32 -ep LinearCombination -sw IdentitySwizzle2 -co fprop -st Strided -ia optimized -sm Serial -k 2 -nhwc 1 4 4 12 -krsc 8 3 3 12 -pad 0 0 0 0 -stride 3 3 -dilation 1 1 -alpha 1.0 -beta 1.0 ``` Example 3: SM80_Device_Conv2d_Fprop_Analytic_ImplicitGemm_f32nhwc_f32nhwc_f32nhwc_simt_f32 ```python python conv2d.py -i 1 1 1 -ta float32 -tb float32 -tc float32 -tacc float32 -m multiply_add -op Simt -b 128 128 8 -s 4 -w 4 2 1 -cc 80 -la TensorNHWC -aa 4 -lb TensorNHWC -ab 4 -lc TensorNHWC -ac 1 -te float32 -ep LinearCombination -sw IdentitySwizzle4 -co fprop -st Strided -ia analytic -sm Parallel -k 3 -nhwc 1 71 80 32 -krsc 64 5 5 32 -pad 2 2 2 2 -stride 2 2 -dilation 1 1 -alpha 1.0 -beta 1.0 ``` ### Conv2d F32 Wgrad Example 1: Device_Conv2d_Wgrad_Optimized_ImplicitGemm_tf32nhwc_tf32nhwc_f32nhwc_tensor_op_f32_align1 ```python python conv2d.py -i 16 8 8 -ta float32 -tb float32 -tc float32 -tacc float32 -m multiply_add -op TensorOp -b 128 128 32 -s 3 -w 2 2 1 -cc 80 -la TensorNHWC -aa 1 -lb TensorNHWC -ab 1 -lc TensorNHWC -ac 4 -te float32 -ep LinearCombination -sw IdentitySwizzle1 -co wgrad -st Strided -ia optimized -sm Serial -k 1 -nhwc 1 8 8 1 -krsc 1 3 3 1 -pad 1 1 1 1 -stride 1 1 -dilation 1 1 -alpha 1.0 -beta 0.0 ``` Example 2: Device_Conv2d_Wgrad_Analytic_ImplicitGemm_f32nhwc_f32nhwc_f32nhwc_simt_f32 ```python python conv2d.py -i 1 1 1 -ta float32 -tb float32 -tc float32 -tacc float32 -m multiply_add -op Simt -b 128 128 8 -s 4 -w 2 4 1 -cc 80 -la TensorNHWC -aa 4 -lb TensorNHWC -ab 4 -lc TensorNHWC -ac 1 -te float32 -ep LinearCombination -sw IdentitySwizzle1 -co wgrad -st Strided -ia optimized -sm Serial -k 2 -nhwc 1 27 27 256 -krsc 512 3 3 256 -pad 1 1 1 1 -stride 2 1 -dilation 1 1 -alpha 1.0 -beta 0.0 ``` ### Conv2d F32 Dgrad Example 1: Device_Conv2d_Dgrad_Analytic_ImplicitGemm_tf32nhwc_tf32nhwc_f32nhwc_tensor_op_f32 ```python python conv2d.py -i 16 8 8 -ta float32 -tb float32 -tc float32 -tacc float32 -m multiply_add -op TensorOp -b 128 128 16 -s 3 -w 2 2 1 -cc 80 -la TensorNHWC -aa 4 -lb TensorNHWC -ab 4 -lc TensorNHWC -ac 4 -te float32 -ep LinearCombination -sw StridedDgradIdentitySwizzle1 -co dgrad -st Strided -ia optimized -sm Serial -k 2 -nhwc 1 27 27 256 -krsc 512 3 3 256 -pad 1 1 1 1 -stride 2 1 -dilation 1 1 -alpha 1.0 -beta 0.0 ``` ### Conv2d F16 Fprop Example 1: SM80_Device_Conv2d_Fprop_Analytic_ImplicitGemm_f16nhwc_f16nhwc_f16nhwc_tensor_op_f32 ```python python conv2d.py -i 16 8 16 -ta float16 -tb float16 -tc float16 -tacc float32 -m multiply_add -op TensorOp -b 128 128 64 -s 3 -w 2 2 1 -cc 80 -la TensorNHWC -aa 8 -lb TensorNHWC -ab 8 -lc TensorNHWC -ac 8 -te float32 -ep LinearCombination -sw IdentitySwizzle1 -co fprop -st Strided -ia optimized -sm Serial -k 1 -nhwc 1 27 27 256 -krsc 512 3 3 256 -pad 1 1 1 1 -stride 2 1 -dilation 1 1 -alpha 1.0 -beta 0.0 ``` Example 2: SM80_Device_Conv2d_Fprop_Few_Channels_ImplicitGemm_f16nhwc_f16nhwc_f16nhwc_tensor_op_f32_channels_2 ```python python conv2d.py -i 16 8 16 -ta float16 -tb float16 -tc float16 -tacc float32 -m multiply_add -op TensorOp -b 128 128 64 -s 3 -w 2 2 1 -cc 80 -la TensorNHWC -aa 2 -lb TensorNHWC -ab 2 -lc TensorNHWC -ac 8 -te float32 -ep LinearCombination -sw IdentitySwizzle1 -co fprop -st Strided -ia few_channels -sm Serial -k 1 -nhwc 1 16 16 2 -krsc 16 3 3 2 -pad 1 1 1 1 -stride 2 2 -dilation 1 1 -alpha 1.0 -beta 0.0 ``` Example 3: SM80_Device_Conv2d_Fprop_Fixed_Channels_ImplicitGemm_f16nhwc_f16nhwc_f16nhwc_tensor_op_f32_channels_8 ```python python conv2d.py -i 16 8 16 -ta float16 -tb float16 -tc float16 -tacc float32 -m multiply_add -op TensorOp -b 128 128 64 -s 3 -w 2 2 1 -cc 80 -la TensorNHWC -aa 8 -lb TensorNHWC -ab 8 -lc TensorNHWC -ac 8 -te float32 -ep LinearCombination -sw IdentitySwizzle2 -co fprop -st Strided -ia fixed_channels -sm Serial -k 1 -nhwc 1 8 8 8 -krsc 16 3 3 8 -pad 1 1 1 1 -stride 2 2 -dilation 1 1 -alpha 1.0 -beta 0.0 ``` Example 4: SM80_Device_Conv2d_Strided_Dgrad_Optimized_ImplicitGemm_f16nhwc_f16nhwc_f32nhwc_tensor_op_f32_128x128_32x3_64x64x32_align4 ```python python conv2d.py -i 16 8 16 -ta float16 -tb float16 -tc float16 -tacc float32 -m multiply_add -op TensorOp -b 128 128 32 -s 3 -w 2 2 1 -cc 80 -la TensorNHWC -aa 4 -lb TensorNHWC -ab 4 -lc TensorNHWC -ac 4 -te float32 -ep LinearCombination -sw StridedDgradIdentitySwizzle1 -co dgrad -st Strided -ia optimized -sm Serial -k 1 -nhwc 1 56 56 12 -krsc 8 1 1 12 -pad 0 0 0 0 -stride 2 2 -dilation 1 1 -alpha 1.0 -beta 0.0 ``` ## Epilogue ### Bias To replace C with a bias vector, add `-bias` flag. ### Activation function Example 1: ReLU ```python python gemm.py -i 8 8 4 -ta float64 -tb float64 -tc float64 -tacc float64 -m multiply_add -op TensorOp -b 32 32 16 -s 4 -w 2 2 1 -cc 80 -la ColumnMajor -aa 1 -lb RowMajor -ab 1 -lc RowMajor -ac 1 -te float64 -ep LinearCombination -sw IdentitySwizzle1 -p 512 256 128 -alpha 1.0 -beta 0.5 -gm Gemm -k 1 -bias -activ relu ``` Example 2: leaky ReLU ```python python gemm.py -i 8 8 4 -ta float64 -tb float64 -tc float64 -tacc float64 -m multiply_add -op TensorOp -b 64 64 16 -s 4 -w 2 2 1 -cc 80 -la RowMajor -aa 1 -lb ColumnMajor -ab 1 -lc RowMajor -ac 1 -te float64 -ep LinearCombination -sw IdentitySwizzle1 -p 512 256 128 -alpha 1.0 -beta 0.5 -gm Gemm -k 2 -bias -activ leaky_relu -activ_arg 0.2 ``` Example 3: tanh (alpha=0 to avoid saturation) ```python python gemm.py -i 16 8 8 -ta float32 -tb float32 -tc float32 -tacc float32 -m multiply_add -op TensorOp -b 128 128 32 -s 3 -w 2 2 1 -cc 80 -la ColumnMajor -aa 4 -lb ColumnMajor -ab 4 -lc RowMajor -ac 4 -te float32 -ep LinearCombination -sw IdentitySwizzle1 -p 512 256 128 -alpha 1.0 -beta 0.5 -gm GemmSplitKParallel -k 2 -bias -activ tanh ``` Example 4: sigmoid ```python python gemm_grouped.py -i 8 8 4 -ta float64 -tb float64 -tc float64 -tacc float64 -m multiply_add -op TensorOp -b 64 64 16 -s 4 -w 2 2 1 -cc 80 -la RowMajor -aa 1 -lb RowMajor -ab 1 -lc ColumnMajor -ac 1 -te float64 -ep LinearCombination -p ./grouped_gemm_problem_size.csv -alpha 0.0 -beta 0.5 -pm Host -bias -activ sigmoid -bias -activ sigmoid ``` Example 5: SiLU ```python python conv2d.py -i 16 8 8 -ta float32 -tb float32 -tc float32 -tacc float32 -m multiply_add -op TensorOp -b 128 128 16 -s 3 -w 2 2 1 -cc 80 -la TensorNHWC -aa 2 -lb TensorNHWC -ab 2 -lc TensorNHWC -ac 2 -te float32 -ep LinearCombination -sw IdentitySwizzle2 -co fprop -st Strided -ia optimized -sm Serial -k 2 -nhwc 1 4 4 12 -krsc 8 3 3 12 -pad 0 0 0 0 -stride 3 3 -dilation 1 1 -alpha 0.0 -beta 0.5 -bias -activ silu ``` Example 6: HardSwish ```python python conv2d.py -i 16 8 16 -ta float16 -tb float16 -tc float16 -tacc float32 -m multiply_add -op TensorOp -b 128 128 64 -s 3 -w 2 2 1 -cc 80 -la TensorNHWC -aa 2 -lb TensorNHWC -ab 2 -lc TensorNHWC -ac 8 -te float32 -ep LinearCombination -sw IdentitySwizzle1 -co fprop -st Strided -ia few_channels -sm Serial -k 1 -nhwc 1 16 16 2 -krsc 16 3 3 2 -pad 1 1 1 1 -stride 2 2 -dilation 1 1 -alpha 0.0 -beta 0.5 -bias -activ hardswish ``` Example 7: GELU ```python python gemm.py -i 16 8 16 -ta bfloat16 -tb bfloat16 -tc float32 -tacc float32 -m multiply_add -op TensorOp -b 64 128 64 -s 3 -w 2 2 1 -cc 80 -la ColumnMajor -aa 8 -lb ColumnMajor -ab 8 -lc RowMajor -ac 4 -te float32 -ep LinearCombination -sw IdentitySwizzle2 -p 512 256 128 -alpha 0.0 -beta 0.5 -gm GemmSplitKParallel -k 5 -bias -activ gelu ```
examples/40_cutlass_py/customizable/README.md/0
{ "file_path": "examples/40_cutlass_py/customizable/README.md", "repo_id": "examples", "token_count": 6237 }
10
/*************************************************************************************************** * Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. * SPDX-License-Identifier: BSD-3-Clause * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * **************************************************************************************************/ ///////////////////////////////////////////////////////////////////////////////////////////////// #include <vector> #include <iostream> #include <fstream> #include "kernel_backward.h" #include "cutlass/util/device_memory.h" #include "cutlass/util/host_tensor.h" using Arch = cutlass::arch::Sm80; static constexpr int kMaxK = 128; template <typename ArchTag, typename Element, int kMaxK> struct DefaultKernel { // Some heuristics to select the best kernel (tested on Sm60, Sm70, Sm80) // NOTE: Requires quite a lot of shmem for Sm80+, // so might require tweaking those manually for Sm86/Sm89 static constexpr bool kSupports64x128 = ArchTag::kMinComputeCapability >= 80 || (ArchTag::kMinComputeCapability >= 70 && cutlass::sizeof_bits<Element>::value <= 16); static constexpr int kBlockSizeI = kSupports64x128 && kMaxK > 64 ? 128 : 64; static constexpr bool kIsHalf = cutlass::sizeof_bits<Element>::value <= 16; static constexpr bool kOutputInRF = kIsHalf && kMaxK <= kBlockSizeI; static constexpr bool kPreload = kIsHalf && ArchTag::kMinComputeCapability >= 80 && kOutputInRF; static constexpr int kBlockSizeJ = kPreload && kMaxK > 64 ? 128 : 64; using Kernel = AttentionBackwardKernel< Arch, Element, true, // kIsAligned_ false, // kApplyDropout_ kPreload, // kPreload_ kBlockSizeI, // kBlockSizeI_, kBlockSizeJ, // kBlockSizeJ_, kMaxK, // kMaxK false, // kKeysQueriesAlignedToBlockSize true // kEnableSplitKeys >; }; ///////////////////////////////////////////////////////////////////////////////////////////////// namespace { template <typename T> struct TypeName; template <> struct TypeName<float> { static constexpr const char* Name = "f32"; }; template <> struct TypeName<cutlass::half_t> { static constexpr const char* Name = "f16"; }; template <> struct TypeName<cutlass::bfloat16_t> { static constexpr const char* Name = "b16"; }; void readExpect(std::string const& expected) { std::string read; std::cin >> read; if (read != expected) { std::cerr << "FATAL: Read '" << read << "' but expected '" << expected << "'" << std::endl; std::exit(1); } } /// Helpers to read from stdin template <typename Element> cutlass::HostTensor<Element, cutlass::layout::RowMajor> readTensorOnDevice(std::string const& expectedName) { readExpect("tensor_begin"); readExpect(std::string(TypeName<Element>::Name) + ":" + expectedName); uint64_t len = 0; std::cin >> len; readExpect("file"); std::string filename; std::cin >> filename; cutlass::HostTensor<Element, cutlass::layout::RowMajor> tensor({int64_t(1), int64_t(len / sizeof(Element))}); uint8_t* data = (uint8_t*)tensor.host_data(); std::fstream myFile(filename, std::ios::in | std::ios::binary ); myFile.read((char*)data, len); readExpect("tensor_end"); tensor.sync_device(); return tensor; } int64_t readInt64(std::string const& expectedName) { readExpect(expectedName); int64_t s = 0; std::cin >> s; return s; } float readFloat(std::string const& expectedName) { readExpect(expectedName); float s = 0; std::cin >> s; return s; } // Writing template <typename Element> void writeTensor(std::string const& name, cutlass::HostTensor<Element, cutlass::layout::RowMajor>& tensor) { tensor.sync_host(); // device->host size_t u8len = tensor.size() * sizeof(Element); // Python is expected to provide a file name to write to readExpect("tmpfile"); std::string tmpfile; std::cin >> tmpfile; uint8_t* data = (uint8_t*)tensor.host_data(); std::fstream myFile(tmpfile, std::ios::out | std::ios::binary ); myFile.write((char*)data, u8len); myFile.close(); std::cout << "tensor_begin " << TypeName<Element>::Name << ":" << name << " "; std::cout << u8len << " file " << tmpfile << " tensor_end" << std::endl; } void writeInt64(std::string const& name, int64_t value) { std::cout << name << " " << value << std::endl; } } ///////////////////////////////////////////////////////////////////////////////////////////////// template <typename Element> int runKernel() { using Kernel = typename DefaultKernel<Arch, Element, kMaxK>::Kernel; #define READ_I64(NAME) p.NAME = (decltype(p.NAME))readInt64(#NAME) #define READ_TENSOR_AND_STRIDES_BMH(DT, NAME, NAME_XS) \ auto storage##NAME = readTensorOnDevice<DT>(#NAME); \ p.NAME##_ptr = storage##NAME.device_data(); \ READ_I64(NAME_XS##_strideB); \ READ_I64(NAME_XS##_strideM); \ READ_I64(NAME_XS##_strideH); #define CUDA_CHECK(FN) { \ auto cudaError = FN; \ if (cudaError != cudaSuccess) { \ std::cerr << "FATAL: " #FN " failed: " << cudaGetErrorString(cudaError) << std::endl; \ return -1; \ } \ } typename Kernel::Params p; p.scale = readFloat("scale"); READ_I64(head_dim); READ_I64(head_dim_value); READ_I64(num_queries); READ_I64(num_keys); READ_I64(num_heads); READ_I64(custom_mask_type); READ_I64(num_batches); int64_t repeat_count = readInt64("repeat_count"); READ_I64(num_splits_key); READ_TENSOR_AND_STRIDES_BMH(Element, query, q); READ_TENSOR_AND_STRIDES_BMH(Element, key, k); READ_TENSOR_AND_STRIDES_BMH(Element, value, v); auto lse = readTensorOnDevice<typename Kernel::lse_scalar_t>("logsumexp"); p.logsumexp_ptr = lse.device_data(); p.lse_strideB = readInt64("lse_strideB"); p.lse_strideH = readInt64("lse_strideH"); // output auto stOutput = readTensorOnDevice<Element>("output"); p.output_ptr = stOutput.device_data(); READ_I64(o_strideB); auto o_strideM = readInt64("o_strideM"); if (o_strideM != p.o_strideM()) { std::cerr << "Invalid `o_strideM`: " << o_strideM << " - expected " << p.o_strideM(); return 2; } READ_I64(o_strideH); READ_TENSOR_AND_STRIDES_BMH(Element, grad_output, gO); auto stDelta = readTensorOnDevice<typename Kernel::accum_t>("delta"); p.delta_ptr = stDelta.device_data(); READ_I64(delta_strideB); READ_I64(delta_strideH); // Allocate workspace if (p.workspace_size()) { cudaMalloc(&p.workspace, p.workspace_size()); } // Allocate outputs in BMHK format p.gQKV_strideM_multiplier = 1; p.gQ_strideH = p.head_dim; p.gQ_strideB = p.gQ_strideM() * p.num_queries; p.gK_strideH = p.head_dim; p.gK_strideB = p.gK_strideM() * p.num_keys; p.gV_strideH = p.head_dim_value; p.gV_strideB = p.gV_strideM() * p.num_keys; cutlass::HostTensor<Element, cutlass::layout::RowMajor> gQ({int64_t(1), p.gQ_strideB * p.num_batches}); cutlass::HostTensor<Element, cutlass::layout::RowMajor> gK({int64_t(1), p.gK_strideB * p.num_batches}); cutlass::HostTensor<Element, cutlass::layout::RowMajor> gV({int64_t(1), p.gV_strideB * p.num_batches}); p.grad_query_ptr = gQ.device_data(); p.grad_key_ptr = gK.device_data(); p.grad_value_ptr = gV.device_data(); if (!Kernel::check_supported(p)) { std::cerr << "FATAL: Kernel does not support these inputs" << std::endl; return 2; } // Run kernel cudaDeviceSynchronize(); auto kernel_fn = attention_kernel_backward_batched_impl<Kernel>; size_t smem_bytes = sizeof(typename Kernel::SharedStorage); CUDA_CHECK(cudaFuncSetAttribute(kernel_fn, cudaFuncAttributeMaxDynamicSharedMemorySize, int(smem_bytes))); kernel_fn<<<p.getBlocksGrid(), p.getThreadsGrid(), smem_bytes>>>(p); // Write outputs std::cout << "OK "; writeTensor("grad_query", gQ); writeInt64("gQ_strideB", p.gQ_strideB); writeInt64("gQ_strideM", p.gQ_strideM()); writeInt64("gQ_strideH", p.gQ_strideH); writeTensor("grad_key", gK); writeInt64("gK_strideB", p.gK_strideB); writeInt64("gK_strideM", p.gK_strideM()); writeInt64("gK_strideH", p.gK_strideH); writeTensor("grad_value", gV); writeInt64("gV_strideB", p.gV_strideB); writeInt64("gV_strideM", p.gV_strideM()); writeInt64("gV_strideH", p.gV_strideH); // Timing cudaEvent_t events[2]; for (auto & event : events) { CUDA_CHECK(cudaEventCreate(&event)); } CUDA_CHECK(cudaEventRecord(events[0])); for (int i = 0; i < repeat_count; ++i) { kernel_fn<<<p.getBlocksGrid(), p.getThreadsGrid(), smem_bytes>>>(p); } CUDA_CHECK(cudaEventRecord(events[1])); CUDA_CHECK(cudaEventSynchronize(events[1])); // Measure elapsed runtime float runtime_ms = 0; CUDA_CHECK(cudaEventElapsedTime(&runtime_ms, events[0], events[1])); std::cout << "runtime_ms " << runtime_ms / float(repeat_count) << std::endl; return 0; } int main() { std::ios_base::sync_with_stdio(false); std::string dtype; std::cin >> dtype; std::cerr << "Running kernel with dtype: " << dtype << std::endl; if (dtype == "f16") { return runKernel<cutlass::half_t>(); } else if (dtype == "b16") { return runKernel<cutlass::bfloat16_t>(); } else if (dtype == "f32") { return runKernel<float>(); } else { std::cerr << "FATAL: Unknown dtype: " << dtype << std::endl; return 3; } } /////////////////////////////////////////////////////////////////////////////////////////////////
examples/41_fused_multi_head_attention/fused_multi_head_attention_backward.cu/0
{ "file_path": "examples/41_fused_multi_head_attention/fused_multi_head_attention_backward.cu", "repo_id": "examples", "token_count": 4331 }
11
/*************************************************************************************************** * Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. * SPDX-License-Identifier: BSD-3-Clause * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * **************************************************************************************************/ /*! \file \brief This defines a "fragment" iterator for visiting the fragments of an accumulator tile that participate in one warp-level store operation. Typically, the accumulator tile is the largest single block of register-backed storage within the kernel. Storing it to memory is best accomplished by partitioning it into smaller tiles and storing these sequentially. Round trips through shared memory during the Epilogue phase require partitioning, as shared memory capacity is typically insufficient for a threadblock's total accumulator size. */ #pragma once #include "cutlass/array.h" #include "cutlass/layout/matrix.h" #include "cutlass/epilogue/warp/tensor_op_policy.h" //////////////////////////////////////////////////////////////////////////////// namespace cutlass { namespace epilogue { namespace warp { //////////////////////////////////////////////////////////////////////////////// /// template < typename WarpShape, ///< shape of warp-level GEMM (concept: MatrixShape) typename OperatorShape, ///< matrix multiply operation shape (concept: gemm::GemmShape) typename OperatorElementC, ///< matrix multiply operation data type (concept: data type) typename OperatorFragmentC, ///< matrix multiply operation fragment (concept: Array) typename Layout ///< target shared memory layout > class FusedBiasActFragmentIteratorTensorOp; //////////////////////////////////////////////////////////////////////////////// /// Partial specialization for row-major shared memory template < typename WarpShape_, ///< shape of the warp-level GEMM tile typename OperatorShape_, ///< matrix multiply operation shape (concept: gemm::GemmShape) typename OperatorElementC_, ///< matrix multiply operation data type (concept: data type) typename OperatorFragmentC_ ///< matrix multiply operation fragment (concept: Array) > class FusedBiasActFragmentIteratorTensorOp<WarpShape_, OperatorShape_, OperatorElementC_, OperatorFragmentC_, layout::RowMajor> { public: using WarpShape = WarpShape_; using OperatorShape = OperatorShape_; using OperatorElementC = OperatorElementC_; using OperatorFragmentC = OperatorFragmentC_; using Layout = layout::RowMajor; using Policy = TensorOpPolicy<WarpShape, OperatorShape, Layout>; /// This is the fragment size produced by one access of the iterator. using Fragment = Array< OperatorElementC, Policy::OperatorCount::kColumn * Policy::kElementsPerAccess>; /// This is the complete warp-level accumulator tile. using AccumulatorTile = Array< OperatorElementC, OperatorFragmentC::kElements * Policy::OperatorCount::kRow * Policy::OperatorCount::kColumn>; using OutputAccumulatorTile = AccumulatorTile; /// Number of times this iterator can be incremented static int const kIterations = Policy::kIterations; private: /// Internal access type using AccessType = Array<OperatorElementC, Policy::kElementsPerAccess>; private: // // Data members // /// Accumulator tile AccessType *accumulators_; /// Internal index int index_; public: /// Constructs an iterator CUTLASS_HOST_DEVICE FusedBiasActFragmentIteratorTensorOp(AccumulatorTile &accum): accumulators_(reinterpret_cast<AccessType *>(&accum)), index_(0) { } /// Increments CUTLASS_HOST_DEVICE FusedBiasActFragmentIteratorTensorOp &operator++() { ++index_; return *this; } /// Decrements CUTLASS_HOST_DEVICE FusedBiasActFragmentIteratorTensorOp &operator--() { --index_; return *this; } /// Loads a fragment from the referenced part of the accumulator tile CUTLASS_HOST_DEVICE void load(Fragment &frag, int index_offset = 0) const { int index = index_ + index_offset; AccessType *frag_ptr = reinterpret_cast<AccessType *>(&frag); CUTLASS_PRAGMA_UNROLL for (int n = 0; n < Policy::OperatorCount::kColumn; ++n) { int accumulator_access_offset = index + n * Policy::kAccumulatorColumnStride / Policy::kElementsPerAccess; frag_ptr[n] = accumulators_[accumulator_access_offset]; } } /// Stores a fragment from the referenced part of the accumulator tile CUTLASS_HOST_DEVICE void store(Fragment &frag, int index_offset = 0) const { int index = index_ + index_offset; AccessType *frag_ptr = reinterpret_cast<AccessType *>(&frag); CUTLASS_PRAGMA_UNROLL for (int n = 0; n < Policy::OperatorCount::kColumn; ++n) { int accumulator_access_offset = index + n * Policy::kAccumulatorColumnStride / Policy::kElementsPerAccess; accumulators_[accumulator_access_offset] = frag_ptr[n]; } } }; //////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////// } // namespace warp } // namespace epilogue } // namespace cutlass ////////////////////////////////////////////////////////////////////////////////
examples/44_multi_gemm_ir_and_codegen/fixed_impl/epilogue/warp/fused_bias_act_fragment_iterator_tensor_op.h/0
{ "file_path": "examples/44_multi_gemm_ir_and_codegen/fixed_impl/epilogue/warp/fused_bias_act_fragment_iterator_tensor_op.h", "repo_id": "examples", "token_count": 1960 }
12
/*************************************************************************************************** * Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. * SPDX-License-Identifier: BSD-3-Clause * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * **************************************************************************************************/ #pragma once #define TI(tag) \ cudaEvent_t _event_start_ ##tag; \ cudaEvent_t _event_end_ ##tag; \ float _event_time_ ##tag; \ cudaEventCreate(& _event_start_ ##tag); \ cudaEventCreate(& _event_end_ ##tag); \ cudaEventRecord(_event_start_ ##tag); #define TO(tag, str, times) \ cudaEventRecord(_event_end_ ##tag); \ cudaEventSynchronize(_event_end_ ##tag); \ cudaEventElapsedTime(&_event_time_ ##tag, _event_start_ ##tag, _event_end_ ##tag); \ float _event_time_once_ ##tag = _event_time_ ##tag / times; \ printf("%20s:\t %10.3fus\t", str, _event_time_once_ ##tag * 1000); \ cudaDeviceSynchronize(); \ printf("%20s string: %s\n",str, cudaGetErrorString(cudaGetLastError())); template<typename T> struct memory_unit{ T* host_ptr; T* device_ptr; int size_bytes; int elements; void h2d(){ cudaMemcpy(device_ptr, host_ptr, size_bytes, cudaMemcpyHostToDevice); } void d2h(){ cudaMemcpy(host_ptr, device_ptr, size_bytes, cudaMemcpyDeviceToHost); } void free_all(){ free(host_ptr); cudaFree(device_ptr); } memory_unit(int elements_): size_bytes(elements_ * sizeof(T)), elements(elements_){ host_ptr = (T*) malloc(elements_ * sizeof(T)); cudaMalloc((void**)&device_ptr, elements_ * sizeof(T)); } void init(int abs_range = 1){ for(int i = 0; i < elements; i++){ host_ptr[i] = T(rand() % 100 / float(100) * 2 * abs_range - abs_range); } h2d(); } }; template<typename T> int check_result(T * a, T * b, int N){ int cnt = 0; for(int i = 0; i < N; i ++){ float std = float(a[i]); float my = float(b[i]); if(abs(std - my) / abs(std) > 1e-2) { // printf("my: %f , std: %f\n", my, std); cnt++; } } printf("total err: %d / %d\n", cnt, N); return cnt; }
examples/44_multi_gemm_ir_and_codegen/utils.h/0
{ "file_path": "examples/44_multi_gemm_ir_and_codegen/utils.h", "repo_id": "examples", "token_count": 1365 }
13
/*************************************************************************************************** * Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. * SPDX-License-Identifier: BSD-3-Clause * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * **************************************************************************************************/ /*************************************************************************************************** Example contrasting the Stream-K parallel decomposition for GEMM threadblocks versus the "classic data-parallel" and "Split-K" decompositions + residual add. For more details regarding the Stream-K method, see "Stream-K: Work-centric Parallel Decomposition for Dense Matrix-Matrix Multiplication on the GPU" (https://arxiv.org/abs/2301.03598) Requires NVIDIA Ampere or newer device (SM80+). - To lock persistence mode, power (400W), clocks (1005MHz) for evaluation (assumes device 0 and A100) cutlass$ sudo nvidia-smi -pm 1 -i 0 cutlass$ sudo nvidia-smi -i 0 -pl 400 cutlass$ sudo nvidia-smi -i 0 -lgc 1005 - Build and run: cutlass$ mkdir build cutlass$ cd build cutlass/build$ cmake .. -DCUTLASS_NVCC_ARCHS=80 cutlass/build$ make 47_ampere_gemm_universal_streamk_broadcast cutlass/build$ ./examples/47_ampere_gemm_universal_streamk/47_ampere_gemm_universal_streamk_broadcast - Reset clocks when done: cutlass$ sudo nvidia-smi -rgc **************************************************************************************************/ #include <iostream> #include <string> #include "cutlass/cutlass.h" #include "cutlass/gemm/device/gemm_universal.h" #include "cutlass/gemm/device/gemm_universal_with_broadcast.h" #include "cutlass/gemm/device/gemm_universal_streamk_with_broadcast.h" #include "cutlass/epilogue/thread/linear_combination_residual_block.h" #include "cutlass/util/command_line.h" #include "cutlass/util/host_tensor.h" #include "cutlass/util/reference/device/gemm.h" #include "cutlass/util/reference/host/error_metrics.h" #include "cutlass/util/reference/host/tensor_compare.h" #include "cutlass/util/reference/host/tensor_foreach.h" #include "cutlass/util/reference/host/tensor_copy.h" #include "cutlass/util/reference/host/tensor_fill.h" #include "cutlass/util/tensor_view_io.h" #include "cutlass/epilogue/threadblock/fusion/visitors.hpp" #include "cutlass/gemm/kernel/default_gemm_universal_with_visitor.h" #include "cutlass/gemm/device/gemm_universal_adapter.h" #include "helper.h" ///////////////////////////////////////////////////////////////////////////////////////////////// /// GEMM kernel configurations (cutlass_tensorop_h16816gemm_128x128_32x4_nn_align8) ///////////////////////////////////////////////////////////////////////////////////////////////// // A matrix configuration using ElementA = cutlass::half_t; // Element type for A matrix operand using LayoutA = cutlass::layout::RowMajor; // Layout type for A matrix operand constexpr int AlignmentA = 128 / cutlass::sizeof_bits<ElementA>::value; // Memory access granularity/alignment of A matrix in units of elements (up to 16 bytes) // B matrix configuration using ElementB = cutlass::half_t; // Element type for B matrix operand using LayoutB = cutlass::layout::RowMajor; // Layout type for B matrix operand constexpr int AlignmentB = 128 / cutlass::sizeof_bits<ElementB>::value; // Memory access granularity/alignment of B matrix in units of elements (up to 16 bytes) // C1/C2/D matrix configuration using ElementC = cutlass::half_t; // Element type for C matrix operands using LayoutC = cutlass::layout::RowMajor; // Layout type for C matrix operands constexpr int AlignmentC = 128 / cutlass::sizeof_bits<ElementC>::value; // Memory access granularity/alignment of C matrices in units of elements (up to 16 bytes) // Output matrix configuration using ElementOutput = cutlass::half_t; // Element type for output matrix operands using LayoutOutput = cutlass::layout::RowMajor; // Layout type for output matrix operands // constexpr int AlignmentOutput = 128 / cutlass::sizeof_bits<ElementOutput>::value; // Memory access granularity/alignment of output matrices in units of elements (up to 16 bytes) // Multiply-accumulate blocking/pipelining details using ElementAccumulator = cutlass::half_t; // Element type for internal accumulation using ElementCompute = cutlass::half_t; // Element type for compute using ArchTag = cutlass::arch::Sm80; // Tag indicating the minimum SM that supports the intended feature using OperatorClass = cutlass::arch::OpClassTensorOp; // Operator class tag using ThreadblockShape = cutlass::gemm::GemmShape<128, 128, 32>; // Threadblock-level tile size (concept: GemmShape) using WarpShape = cutlass::gemm::GemmShape<64, 64, 32>; // Warp-level tile size (concept: GemmShape) using InstructionShape = cutlass::gemm::GemmShape<16, 8, 16>; // Instruction-level tile size (concept: GemmShape) constexpr int NumStages = 4; // Number of global->shared pipeline stages used in the GEMM mainloop constexpr int EVTEpilogueStages = 1; // Number of epilogue stages in EVT // Residual block configuration // Epilogue output operator /// Using LinearCombinationResidualBlock /// Models a residual block of the form: UnaryOp(BinaryOp(BinaryOp(ActivationOp(TensorOp(X) + bias), residual1), residual2)) using EpilogueOp = cutlass::epilogue::thread::LinearCombinationResidualBlock< ElementOutput, // Element type for output matrix ElementAccumulator, // Element type from internal accumulation ElementCompute, // Element type from internal accumulation ElementC, // Element type for C1/C2/D matrix operands AlignmentC, // Memory access granularity of C and D matrix in units of elements cutlass::epilogue::thread::Identity, // Activation cutlass::plus, // Binary operation 1 cutlass::epilogue::thread::Identity, // Unary operation cutlass::plus // Binary operation 2 >; // Reference device GEMM implementation type using DeviceGemmReference = cutlass::reference::device::Gemm< ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, ElementAccumulator, ElementAccumulator>; // Classic data-parallel device GEMM implementation type using DeviceGemmBasic = cutlass::gemm::device::GemmUniversalWithBroadcast< ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, ElementAccumulator, OperatorClass, ArchTag, ThreadblockShape, WarpShape, InstructionShape, EpilogueOp, cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<>, NumStages, AlignmentA, AlignmentB>; // StreamK device GEMM implementation type with EVT using namespace cute; using OutputTileThreadMap = cutlass::epilogue::threadblock::OutputTileThreadLayout< ThreadblockShape, WarpShape, ElementC, AlignmentC, EVTEpilogueStages >; using Accum = cutlass::epilogue::threadblock::VisitorAccFetch; using Bias = cutlass::epilogue::threadblock::VisitorRowBroadcast< OutputTileThreadMap, ElementC, cute::Stride<_0, _1, int32_t> // StrideMNL >; using C1 = cutlass::epilogue::threadblock::VisitorAuxLoad< OutputTileThreadMap, ElementC, cute::Stride<int64_t, _1, int64_t> // StrideMNL >; using C2 = cutlass::epilogue::threadblock::VisitorAuxLoad< OutputTileThreadMap, ElementC, cute::Stride<int64_t, _1, int64_t> // StrideMNL >; using Compute0 = cutlass::epilogue::threadblock::VisitorCompute< cutlass::plus, ElementCompute, ElementCompute, cutlass::FloatRoundStyle::round_to_nearest >; using EVTCompute0 = cutlass::epilogue::threadblock::Sm80EVT< Compute0, Accum, Bias>; using Compute1 = cutlass::epilogue::threadblock::VisitorCompute< cutlass::plus, ElementCompute, ElementCompute, cutlass::FloatRoundStyle::round_to_nearest >; using EVTCompute1 = cutlass::epilogue::threadblock::Sm80EVT< Compute1, EVTCompute0, C1>; using Compute2 = cutlass::epilogue::threadblock::VisitorCompute< cutlass::plus, ElementOutput, ElementCompute, cutlass::FloatRoundStyle::round_to_nearest >; using EVTCompute2 = cutlass::epilogue::threadblock::Sm80EVT< Compute2, EVTCompute1, C2>; using D = cutlass::epilogue::threadblock::VisitorAuxStore< OutputTileThreadMap, ElementOutput, cutlass::FloatRoundStyle::round_to_nearest, cute::Stride<int64_t, _1, int64_t> // StrideMNL >; using EVTD = cutlass::epilogue::threadblock::Sm80EVT< D, EVTCompute2>; using EVTKernelStreamK = typename cutlass::gemm::kernel::DefaultGemmWithVisitor< ElementA, LayoutA, cutlass::ComplexTransform::kNone, AlignmentA, ElementB, LayoutB, cutlass::ComplexTransform::kNone, AlignmentB, ElementC, LayoutC, AlignmentC, ElementAccumulator, ElementCompute, cutlass::arch::OpClassTensorOp, cutlass::arch::Sm80, ThreadblockShape, WarpShape, InstructionShape, EVTD, cutlass::gemm::threadblock::ThreadblockSwizzleStreamK, NumStages, cutlass::arch::OpMultiplyAdd, EVTEpilogueStages >::GemmKernel; using DeviceGemmStreamK = cutlass::gemm::device::GemmUniversalAdapter<EVTKernelStreamK>; ///////////////////////////////////////////////////////////////////////////////////////////////// /// Testbed utility types ///////////////////////////////////////////////////////////////////////////////////////////////// /// Result structure struct Result { double avg_runtime_ms; double gflops; cutlass::Status status; cudaError_t error; bool passed; Result( double avg_runtime_ms = 0, double gflops = 0, cutlass::Status status = cutlass::Status::kSuccess, cudaError_t error = cudaSuccess) : avg_runtime_ms(avg_runtime_ms), gflops(gflops), status(status), error(error), passed(true) {} }; /// Command line options parsing struct Options { std::string command_name; bool help; cutlass::gemm::GemmCoord problem_size; float alpha; float beta; int split_k_factor; int avail_sms; int iterations; bool real; cutlass::HostTensor<ElementA, LayoutA> tensor_a; cutlass::HostTensor<ElementB, LayoutB> tensor_b; cutlass::HostTensor<ElementC, LayoutC> tensor_c1; cutlass::HostTensor<ElementC, LayoutC> tensor_c2; cutlass::HostTensor<ElementC, LayoutC> tensor_d; cutlass::HostTensor<ElementC, LayoutC> tensor_ref_d; cutlass::HostTensor<ElementC, LayoutC> tensor_Vector; // cutlass::HostTensor<ElementC, LayoutC> tensor_Tensor; Options(std::string command_name) : command_name(command_name), help(false), problem_size({2048, 2048, 2048}), alpha(1.0f), beta(1.0f), split_k_factor(1), avail_sms(-1), // Number of device SMs to use is unlimited real(false), iterations(10000) {} bool valid() const { return true; } void parse(int argc, char const **args) { cutlass::CommandLine cmd(argc, args); if (cmd.check_cmd_line_flag("help")) { help = true; } cmd.get_cmd_line_argument("m", problem_size.m()); cmd.get_cmd_line_argument("n", problem_size.n()); cmd.get_cmd_line_argument("k", problem_size.k()); cmd.get_cmd_line_argument("alpha", alpha); cmd.get_cmd_line_argument("beta", beta); cmd.get_cmd_line_argument("split", split_k_factor); cmd.get_cmd_line_argument("iterations", iterations); real = cmd.check_cmd_line_flag("real"); } /// Prints the usage statement. std::ostream & print_usage(std::ostream &out) const { out << "Performs a GEMM computation.\n" << "\n" << "Options:\n" << "\n" << " --help If specified, displays this usage statement.\n\n" << " --m=<int> GEMM M dimension\n" << " --n=<int> GEMM N dimension\n" << " --k=<int> GEMM K dimension\n" << " --alpha=<f32> Epilogue scalar alpha\n" << " --beta=<f32> Epilogue scalar beta\n\n" << " --split=<int> Split-K factor to emulate\n\n" << " --real If specified, initializes with real values instead of whole numbers. Errors are to be expected.\n\n" << " --iterations=<int> Number of profiling iterations to perform.\n\n"; out << "\n\nExamples:\n\n" << "$ " << command_name << " --m=1024 --n=512 --k=1024 --alpha=2 --beta=0.707 \n\n"; return out; } /// Compute performance in GFLOP/s double gflops(double runtime_s) const { // Two flops per multiply-add return 2.0 * double(problem_size.product()) / double(1.0e9) / runtime_s; } }; ///////////////////////////////////////////////////////////////////////////////////////////////// /// GEMM evaluation ///////////////////////////////////////////////////////////////////////////////////////////////// /// Populates a DeviceGemmBasic::Arguments structure from the given commandline options typename DeviceGemmBasic::Arguments args_from_options( const DeviceGemmBasic &device_gemm, const Options &options, cutlass::HostTensor<ElementA, LayoutA> &tensor_a, cutlass::HostTensor<ElementB, LayoutB> &tensor_b, cutlass::HostTensor<ElementC, LayoutC> &tensor_c1, cutlass::HostTensor<ElementC, LayoutC> &tensor_c2, cutlass::HostTensor<ElementC, LayoutC> &tensor_d, cutlass::HostTensor<ElementC, LayoutC> &tensor_Vector /*, cutlass::HostTensor<ElementC, LayoutC> &tensor_Tensor */ ) { return typename DeviceGemmBasic::Arguments( cutlass::gemm::GemmUniversalMode::kGemm, // universal mode options.problem_size, // problem_size options.split_k_factor, // batch count / splitk slices { // epilogue parameters ElementAccumulator(options.alpha), ElementAccumulator(options.beta) }, tensor_a.device_data(), // ptr_A tensor_b.device_data(), // ptr_B tensor_c1.device_data(), // ptr_C1 tensor_c2.device_data(), // ptr_C2 tensor_d.device_data(), // ptr_D tensor_Vector.device_data(), // ptr_Vector /* tensor_Tensor.device_data(), */nullptr,// ptr_Tensor options.problem_size.mk().product(), // batch_stride_A options.problem_size.nk().product(), // batch_stride_B options.problem_size.mn().product(), // batch_stride_C1 options.problem_size.mn().product(), // batch_stride_C2 options.problem_size.mn().product(), // batch_stride_D options.problem_size.mn().product(), // batch_stride_Vector options.problem_size.mn().product(), // batch_stride_Tensor tensor_a.layout().stride(0), // stride_a tensor_b.layout().stride(0), // stride_b tensor_c1.layout().stride(0), // stride_c1 tensor_c2.layout().stride(0), // stride_c2 tensor_d.layout().stride(0), // stride_d /*tensor_Vector.layout().stride(0)*/0, // stride_Vector /*tensor_Tensor.layout().stride(0)*/0); // stride_Tensor } /// Populates a DeviceGemmStreamK::Arguments structure from the given commandline options typename DeviceGemmStreamK::Arguments args_from_options( const DeviceGemmStreamK &device_gemm, const Options &options, cutlass::HostTensor<ElementA, LayoutA> &tensor_a, cutlass::HostTensor<ElementB, LayoutB> &tensor_b, cutlass::HostTensor<ElementC, LayoutC> &tensor_c1, cutlass::HostTensor<ElementC, LayoutC> &tensor_c2, cutlass::HostTensor<ElementC, LayoutC> &tensor_d, cutlass::HostTensor<ElementC, LayoutC> &tensor_Vector/*, cutlass::HostTensor<ElementC, LayoutC> &tensor_Tensor*/ ) { typename EVTD::Arguments callback_args{ { { { {}, // Accum {tensor_Vector.device_data(), ElementC(0), {_0{}, _1{}, int32_t(options.problem_size.n())}}, // Bias {} // Compute0 }, // EVTCompute0 {tensor_c1.device_data(), ElementC(0), {options.problem_size.n(), _1{}, options.problem_size.mn().product()}}, // C1 {} // Compute1 }, // EVTCompute1 {tensor_c2.device_data(), ElementC(0), {options.problem_size.n(), _1{}, options.problem_size.mn().product()}}, // C2 {} // Compute2 }, // EVTCompute2 {tensor_d.device_data(), {options.problem_size.n(), _1{}, options.problem_size.mn().product()}}, // D }; // EVTD return typename DeviceGemmStreamK::Arguments( cutlass::gemm::GemmUniversalMode::kGemm, // universal mode options.problem_size, // problem_size options.split_k_factor, // batch count / splitk slices callback_args, // argument of EVT callbacks tensor_a.device_data(), // ptr_A tensor_b.device_data(), // ptr_B nullptr, // ptr_C (unused) nullptr, // ptr_D (unused) options.problem_size.mk().product(), // batch_stride_A options.problem_size.nk().product(), // batch_stride_B 0, // batch_stride_C (unused) 0, // batch_stride_D (unused) tensor_a.layout().stride(0), // stride_a tensor_b.layout().stride(0), // stride_b 0, // stride_c (unused) 0, // stride_d (unused) options.avail_sms); // avail_sms } /// Execute a given example GEMM computation template <typename DeviceGemmT> Result run(std::string description, Options &options) { // Display test description std::cout << std::endl << description << std::endl; // Zero-initialize test output matrix D cutlass::reference::host::TensorFill(options.tensor_d.host_view()); options.tensor_d.sync_device(); // Instantiate CUTLASS kernel depending on templates DeviceGemmT device_gemm; // Create a structure of gemm kernel arguments suitable for invoking an instance of DeviceGemmT auto arguments = args_from_options(device_gemm, options, options.tensor_a, options.tensor_b, options.tensor_c1, options.tensor_c2, options.tensor_d, options.tensor_Vector/*, options.tensor_Tensor*/); // Using the arguments, query for extra workspace required for matrix multiplication computation size_t workspace_size = DeviceGemmT::get_workspace_size(arguments); // Allocate workspace memory cutlass::device_memory::allocation<uint8_t> workspace(workspace_size); // Check the problem size is supported or not CUTLASS_CHECK(device_gemm.can_implement(arguments)); // Initialize CUTLASS kernel with arguments and workspace pointer CUTLASS_CHECK(device_gemm.initialize(arguments, workspace.get())); // Correctness / Warmup iteration CUTLASS_CHECK(device_gemm()); // Copy output data from CUTLASS and reference kernel to host for comparison options.tensor_d.sync_host(); // Check if output from CUTLASS kernel and reference kernel are equal or not Result result; result.passed = cutlass::reference::host::TensorEquals( options.tensor_d.host_view(), options.tensor_ref_d.host_view()); double err = cutlass::reference::host::TensorRelativeErrorMetric( options.tensor_d.host_view(), options.tensor_ref_d.host_view()); std::cout << " Disposition: " << (result.passed ? "Passed" : "Failed") << " \t Relative error: " << err << std::endl; // Run profiling loop if (options.iterations > 0) { GpuTimer timer; timer.start(); for (int iter = 0; iter < options.iterations; ++iter) { CUTLASS_CHECK(device_gemm()); } timer.stop(); // Compute average runtime and GFLOPs. float elapsed_ms = timer.elapsed_millis(); result.avg_runtime_ms = double(elapsed_ms) / double(options.iterations); result.gflops = options.gflops(result.avg_runtime_ms / 1000.0); std::cout << " Avg runtime: " << result.avg_runtime_ms << " ms" << std::endl; std::cout << " GFLOPs: " << result.gflops << std::endl; } // TODO: uncomment when results match //if (!result.passed) { // exit(-1); //} return result; } /// Program entrypoint int main(int argc, const char **argv) { // CUTLASS must be compiled with CUDA 11.0 Toolkit to run these examples. if (!(__CUDACC_VER_MAJOR__ >= 11)) { std::cerr << "Ampere Tensor Core operations must be compiled with CUDA 11.0 Toolkit or later." << std::endl; // Returning zero so this test passes on older Toolkits. Its actions are no-op. return 0; } // Current device must must have compute capability at least 80 cudaDeviceProp props; int current_device_id; CUDA_CHECK(cudaGetDevice(&current_device_id)); CUDA_CHECK(cudaGetDeviceProperties(&props, current_device_id)); if (!((props.major * 10 + props.minor) >= 80)) { std::cerr << "Ampere Tensor Core operations must be run on a machine with compute capability at least 80." << std::endl; // Returning zero so this test passes on older Toolkits. Its actions are no-op. return 0; } // Parse commandline options Options options("ampere_streamk_broadcast_gemm"); options.parse(argc, argv); if (options.help) { options.print_usage(std::cout) << std::endl; return 0; } std::cout << options.iterations << " timing iterations of " << options.problem_size.m() << " x " << options.problem_size.n() << " x " << options.problem_size.k() << " matrix-matrix multiply" << std::endl; if (!options.valid()) { std::cerr << "Invalid problem." << std::endl; return -1; } // // Initialize GEMM datasets // // Initialize tensors using CUTLASS helper functions options.tensor_a.resize(options.problem_size.mk()); // <- Create matrix A with dimensions M x K options.tensor_b.resize(options.problem_size.kn()); // <- Create matrix B with dimensions K x N options.tensor_c1.resize(options.problem_size.mn()); // <- Create matrix C1 with dimensions M x N options.tensor_c2.resize(options.problem_size.mn()); // <- Create matrix C2 with dimensions M x N options.tensor_d.resize(options.problem_size.mn()); // <- Create matrix D with dimensions M x N used to store output from CUTLASS kernel options.tensor_ref_d.resize(options.problem_size.mn()); // <- Create matrix D with dimensions M x N used to store output from reference kernel options.tensor_Vector.resize({1, options.problem_size.n()}); // <- Create broadcast vector with dimensions N x 1 // options.tensor_Tensor.resize(options.problem_size.mn()); // <- Create T matrix with dimensions M x N int _init_bits = options.real ? -1 : 0; // Fill matrix A on host with uniform-random data [-2, 2] cutlass::reference::host::TensorFillRandomUniform( options.tensor_a.host_view(), 1, ElementA(2), ElementA(-2), _init_bits); // Fill matrix B on host with uniform-random data [-2, 2] cutlass::reference::host::TensorFillRandomUniform( options.tensor_b.host_view(), 1, ElementB(2), ElementB(-2), _init_bits); // Fill matrix C1 on host with uniform-random data [-2, 2] cutlass::reference::host::TensorFillRandomUniform( options.tensor_c1.host_view(), 1, ElementC(2), ElementC(-2), _init_bits); // Fill matrix C2 on host with uniform-random data [-2, 2] cutlass::reference::host::TensorFillRandomUniform( options.tensor_c2.host_view(), 1, ElementC(2), ElementC(-2), _init_bits); cutlass::reference::host::TensorFillRandomUniform( options.tensor_Vector.host_view(), 1, ElementC(2), ElementC(-2), _init_bits); // // Compute reference output // // Copy data from host to GPU options.tensor_a.sync_device(); options.tensor_b.sync_device(); options.tensor_c1.sync_device(); options.tensor_c2.sync_device(); options.tensor_Vector.sync_device(); // options.tensor_Tensor.sync_device(); // Zero-initialize reference output matrix D cutlass::reference::host::TensorFill(options.tensor_ref_d.host_view()); options.tensor_ref_d.sync_device(); // Create instantiation for device reference gemm kernel DeviceGemmReference gemm_reference; // Launch device reference gemm kernel gemm_reference( options.problem_size, ElementAccumulator(options.alpha), options.tensor_a.device_ref(), options.tensor_b.device_ref(), ElementAccumulator(options.beta), options.tensor_c1.device_ref(), options.tensor_ref_d.device_ref()); // Wait for kernels to finish CUDA_CHECK(cudaDeviceSynchronize()); // Copy output data from reference kernel to host for comparison options.tensor_ref_d.sync_host(); // Add broadcast vector (without multiplier) // This is only possible because BinaryOp is addition, and UnaryOps are identity. // This makes the addition of broadcast vector commutable. /// identity(plus(identity(alpha * (a * b) + v), beta * c)) == /// alpha * a * b + v + beta * c == /// (alpha * a * b + beta * c) + v == /// GEMM(a, b, c) + v // Vector broadcast on host for (int i=0; i < options.problem_size.m(); ++i) { for (int j=0; j < options.problem_size.n(); ++j) { options.tensor_ref_d.host_view().ref().at({i, j}) += options.tensor_Vector.host_view().ref().at({0, j}); options.tensor_ref_d.host_view().ref().at({i, j}) += options.tensor_c2.host_view().ref().at({i, j}); } } // Sync back with device just in case options.tensor_ref_d.sync_device(); // // Evaluate CUTLASS kernels // // Test default operation if (options.split_k_factor == 1) { // Compare basic data-parallel version versus StreamK version using default load-balancing heuristics Result basic_dp = run<DeviceGemmBasic>("Basic data-parallel GEMM", options); Result streamk_default = run<DeviceGemmStreamK>("StreamK GEMM with default load-balancing", options); printf(" Speedup vs Basic-DP: %.3f\n", (basic_dp.avg_runtime_ms / streamk_default.avg_runtime_ms)); // Show that StreamK can emulate basic data-parallel GEMM when we set the number of SMs to load-balance across = 1 options.avail_sms = 1; // Set loadbalancing width to 1 SM (no load balancing) Result streamk_dp = run<DeviceGemmStreamK>("StreamK emulating basic data-parallel GEMM", options); options.avail_sms = -1; // Reset loadbalancing width to unspecified SMs (i.e., the number of device SMs) printf(" Speedup vs Basic-DP: %.3f\n", (basic_dp.avg_runtime_ms / streamk_dp.avg_runtime_ms)); options.split_k_factor++; // Increment splitting factor for next evaluation } // Show that StreamK can emulate "Split-K" with a tile-splitting factor Result basic_splitk = run<DeviceGemmBasic>( std::string("Basic split-K GEMM with tile-splitting factor ") + std::to_string(options.split_k_factor), options); Result streamk_splitk = run<DeviceGemmStreamK>( std::string("StreamK emulating Split-K GEMM with tile-splitting factor ") + std::to_string(options.split_k_factor), options); printf(" Speedup vs Basic-SplitK: %.3f\n", (basic_splitk.avg_runtime_ms / streamk_splitk.avg_runtime_ms)); return 0; }
examples/47_ampere_gemm_universal_streamk/ampere_gemm_universal_streamk_broadcast.cu/0
{ "file_path": "examples/47_ampere_gemm_universal_streamk/ampere_gemm_universal_streamk_broadcast.cu", "repo_id": "examples", "token_count": 12478 }
14
<jupyter_start><jupyter_text>Basic example of using the CUTLASS Python interfaceThis notebook walks through a basic example of using the CUTLASS Python interface to declare, compile, and run GEMMs.[](https://colab.research.google.com/github/NVIDIA/cutlass/blob/main/examples/python/00_basic_gemm.ipynb) Prerequisites for running on ColabThis notebook requires an NVIDIA GPU. If `nvidia-smi` fails, go to Runtime -> Change runtime type -> Hardware accelerator and confirm a GPU is selected.<jupyter_code>!#nvidia-smi<jupyter_output><empty_output><jupyter_text>If running on Colab, you will need to install the CUTLASS Python interface. To do so, uncomment the following line and run the cell:<jupyter_code>!#pip install nvidia-cutlass<jupyter_output><empty_output><jupyter_text>General setupWe first import various packages needed for the example and construct the input and output tensors that will be used in our example.<jupyter_code>import numpy as np import random import cutlass # This controls whether the C++ GEMM declaration will be printed at each step. # Set to `False` to omit this information. print_module = True m = 128 n = m k = m dtype = np.float16 type_A = np.float16 type_B = np.float16 type_C = np.float16 type_D = np.float16 np.random.seed(1234) random.seed(1234) scope_min = -4 scope_max = 4 tensor_A = np.ceil(np.random.uniform(low=scope_min, high=scope_max, size=(m, k)).astype(type_A)) tensor_B = np.ceil(np.random.uniform(low=scope_min, high=scope_max, size=(k, n)).astype(type_B)) tensor_C = np.ceil(np.random.uniform(low=scope_min, high=scope_max, size=(m, n)).astype(type_C)) alpha = np.float16(1.) beta = np.float16(0.) tensor_D = np.zeros(tensor_C.shape).astype(type_D)<jupyter_output><empty_output><jupyter_text>Declaring and running a GEMMTo get started, one only needs to provide the tensors declared above to the `cutlass.op.Gemm` call.This sets up a default GEMM operation for the given device on which you are running.Assuming that we are running on SM80, this default to using a GEMM that leverages FP16 Tensor Core operations.Calling `plan.run()` will generate the CUTLASS C++ kernel in question, compile it, and run it on the tensors we previously passed in. By setting `print_module` to `true`, the C++ code that is emitted is printed.<jupyter_code># We specify `element_accumulator` here so as to match the kernel run by NumPy below. However, # specifying `element_accumulator` is not required if it is the same as `element` plan = cutlass.Gemm(element=dtype, layout=cutlass.LayoutType.RowMajor, element_accumulator=np.float32) plan.run(tensor_A, tensor_B, tensor_C, tensor_D, print_module=print_module)<jupyter_output><empty_output><jupyter_text>There are many other ways to construct a plan from `cutlass.op.Gemm` (e.g., by specifiying they types and layouts of each operand, by providing representative tensors as inputs). For more details on these, see the documentation in the `cutlass.op.Gemm` constructor. We then compare the output to running the GEMM using NumPy.<jupyter_code>tensor_D_numpy = (alpha * (tensor_A @ tensor_B)) + (beta * tensor_C) np.testing.assert_array_equal(tensor_D, tensor_D_numpy)<jupyter_output><empty_output><jupyter_text>Note that one could use the same kernel just declared for tensors provided by other frameworks beyond NumPy, such as PyTorch or CuPy. Changing operation modesBy default, the CUTLASS Python interface will try to use Tensor Core operations whenever possible. If the configuration provided to `cutlass.op.Gemm` is not supported on Tensor Cores, the interface will fall back to using a SIMT kernel.The operation mode currently in use can be returned via the `plan.opclass` property. In this case Tensor Core operations.<jupyter_code>print(plan.opclass)<jupyter_output><empty_output><jupyter_text>Suppose that we don't want to use Tensor Cores for this GEMM. One can change to using CUTLASS's SIMT GEMMs by setting the plan's `opclass` field.As is shown in the printed output, the emitted kernel uses template parameters that fit CUTLASS's SIMT GEMMs.Also notice that, this time around, we provided tensor parameters to `plan.run()`. One is free to provide different parameters to `plan.run()` than were passed in at the initial call to `cutlass.op.Gemm`, provided that the passed-in tensors have the same data type and layout as those passed in on intialization.<jupyter_code>tensor_D_simt = np.zeros(tensor_C.shape).astype(type_D) plan.opclass = cutlass.OpcodeClass.Simt plan.run(tensor_A, tensor_B, tensor_C, tensor_D_simt, alpha, beta, print_module=print_module)<jupyter_output><empty_output><jupyter_text>If we compare the output of the Tensor Core and SIMT GEMMs we just ran we see that they are equal.<jupyter_code>np.testing.assert_array_equal(tensor_D, tensor_D_simt)<jupyter_output><empty_output><jupyter_text>Running cached kernelsYou may have noticed that the `plan.run()` calls for the previous two kernels took some time to execute. This is because the kernel being emitted had not yet been compiled.CUTLASS caches compiled binaries so that recompilation isn't necessary every time a kernel is run. For example, if we change modes back to using Tensor Cores and call `plan.run()` again (with a different set of tensor parameters), you'll find the call to return much faster.<jupyter_code>m = 2400 n = 3232 k = 4096 tensor_A = np.ceil(np.random.uniform(low=scope_min, high=scope_max, size=(m, k)).astype(type_A)) tensor_B = np.ceil(np.random.uniform(low=scope_min, high=scope_max, size=(k, n)).astype(type_B)) tensor_C = np.ceil(np.random.uniform(low=scope_min, high=scope_max, size=(m, n)).astype(type_C)) tensor_D = np.zeros(tensor_C.shape).astype(type_D) alpha = np.float16(1.) beta = np.float16(2.) plan.opclass = cutlass.OpcodeClass.TensorOp plan.run(tensor_A, tensor_B, tensor_C, tensor_D, alpha, beta, print_module=print_module)<jupyter_output><empty_output><jupyter_text>Running non-default GEMMsThe previous examples showed how it is simple to get started running a default GEMM kernel in CUTLASS. But, what do you do if you want a bit more control over the parameters to the GEMM?Under the hood, CUTLASS enumerates the different GEMM configuration parameters possible for this kernel from the CUTLASS profiler. The code below shows how one can access the tile descriptions for the kernels (e.g., cluster, threadblock, and warp shape).<jupyter_code>tiles = plan.tile_descriptions() print('{} tile descriptions returned'.format(len(tiles))) num_print = 10 print('First {} tile descriptions are:'.format(num_print)) for td in tiles[:num_print]: print(td)<jupyter_output><empty_output><jupyter_text>Next, we'll pick one of these configurations at random and compile and run it.<jupyter_code>tiles = [td for td in tiles if td.threadblock_shape[0] >= 128] idx = random.randint(0, len(tiles)-1) td = tiles[idx] print('Tile description {} is: {}'.format(idx, td)) plan.compile(td) plan.run(tensor_A, tensor_B, tensor_C, tensor_D, alpha, beta, print_module=print_module)<jupyter_output><empty_output><jupyter_text>One can also change the swizzling function used by the kernel. For example, one can modify the kernel to use the stream K feature of CUTLASS via:<jupyter_code># Stream K is exposed through the threadblock swizzle method for pre-SM90 kernels, # and via the tile_scheduler attribute of the TileDescription for post-SM90 kernels if plan.cc < 90: plan.swizzling_functor = cutlass.swizzle.ThreadblockSwizzleStreamK plan.run(tensor_A, tensor_B, tensor_C, tensor_D, alpha, beta, print_module=print_module) else: # Stream-K is currently only supported for warp-specialized cooperative kernels td.kernel_schedule = cutlass.KernelScheduleType.TmaWarpSpecializedCooperative td.epilogue_schedule = cutlass.EpilogueScheduleType.TmaWarpSpecializedCooperative td.tile_scheduler = cutlass.TileSchedulerType.StreamK plan.compile(td) plan.run(tensor_A, tensor_B, tensor_C, tensor_D, alpha, beta, print_module=print_module)<jupyter_output><empty_output><jupyter_text>Handling errorsThe CUTLASS Python interface attempts to catch runtime and compilation errors in Python so as to provide more understandable error messages.Here's an example in which we try to use too many stages for a given GEMM kernel. Normally, this would result in a runtime error due to the GPU having insufficient shared memory to launch the kernel with 8 stages. The CUTLASS Python interface is able to detect this issue before compiling the kernel, and reports it back to the user. Uncomment and run the code below to see this error.<jupyter_code># td = tiles[0] # td.stages = 8 # plan.compile(td)<jupyter_output><empty_output><jupyter_text>Specializations for other data typesVarious CUTLASS kernels specialized for specific data types can also be run via the Python interface.For example, the code below shows how to declare and run a GEMM using the 3xTF32 feature (see corresponding C++ example [here](https://github.com/NVIDIA/cutlass/blob/main/examples/27_ampere_3xtf32_fast_accurate_tensorop_gemm/27_ampere_3xtf32_fast_accurate_tensorop_gemm.cu)).<jupyter_code>from cutlass.backend.utils.device import device_cc # 3xTF32 requires SM80 or higher if device_cc() >= 80: plan = cutlass.op.Gemm(element=np.float32, layout=cutlass.LayoutType.RowMajor) plan.math_operation = cutlass.MathOperation.multiply_add_fast_f32 # Create input/output tensors in FP32 A, B = [np.ones((128, 128)).astype(np.float32) for _ in range(2)] C, D = [np.zeros((128, 128)).astype(np.float32) for _ in range(2)] # Run the GEMM plan.run(A, B, C, D, print_module=print_module)<jupyter_output><empty_output><jupyter_text>Additionally, one can run CUTLASS's FP8 GEMMs if using a frontend library capable of allocating and initializing FP8 tensors (e.g., PyTorch)<jupyter_code>try: import torch except ImportError: print("PyTorch is not available. Skipping FP8 example") import sys; sys.exit(0) if not hasattr(torch, "float8_e4m3fn"): print("Version of PyTorch does not have the float8_e4m3fn data type. Skipping FP8 example") import sys; sys.exit(0) # FP8 is supported through the CUTLASS Python interface on SM90 and higher if device_cc() >= 90: plan = cutlass.op.Gemm(element=torch.float8_e4m3fn, element_C=torch.float32, element_accumulator=torch.float32, layout_A=cutlass.LayoutType.RowMajor, layout_B=cutlass.LayoutType.ColumnMajor, layout_C=cutlass.LayoutType.ColumnMajor) # Create input/output tensors in FP8 A, B = [torch.ones((128, 128)).to(torch.float8_e4m3fn).to("cuda") for _ in range(2)] C, D = [torch.zeros((128, 128)).to(torch.float8_e4m3fn).to("cuda") for _ in range(2)] # Run the GEMM plan.run(A, B, C, D, print_module=print_module)<jupyter_output><empty_output>
examples/python/00_basic_gemm.ipynb/0
{ "file_path": "examples/python/00_basic_gemm.ipynb", "repo_id": "examples", "token_count": 3596 }
15
/*************************************************************************************************** * Copyright (c) 2023 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. * SPDX-License-Identifier: BSD-3-Clause * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * **************************************************************************************************/ /** Common algorithms on (hierarchical) tensors */ #pragma once #include <cute/config.hpp> #include <cute/tensor.hpp> namespace cute { // // for_each // template <class Engine, class Layout, class UnaryOp> CUTE_HOST_DEVICE constexpr void for_each(Tensor<Engine,Layout> const& tensor, UnaryOp&& op) { CUTE_UNROLL for (int i = 0; i < size(tensor); ++i) { op(tensor(i)); } } template <class Engine, class Layout, class UnaryOp> CUTE_HOST_DEVICE constexpr void for_each(Tensor<Engine,Layout>& tensor, UnaryOp&& op) { CUTE_UNROLL for (int i = 0; i < size(tensor); ++i) { op(tensor(i)); } } // Accept mutable temporaries template <class Engine, class Layout, class UnaryOp> CUTE_HOST_DEVICE constexpr void for_each(Tensor<Engine,Layout>&& tensor, UnaryOp&& op) { return for_each(tensor, op); } // // transform // // Similar to std::transform but does not return number of elements affected template <class Engine, class Layout, class UnaryOp> CUTE_HOST_DEVICE constexpr void transform(Tensor<Engine,Layout>& tensor, UnaryOp&& op) { CUTE_UNROLL for (int i = 0; i < size(tensor); ++i) { tensor(i) = op(tensor(i)); } } // Accept mutable temporaries template <class Engine, class Layout, class UnaryOp> CUTE_HOST_DEVICE constexpr void transform(Tensor<Engine,Layout>&& tensor, UnaryOp&& op) { return transform(tensor, op); } // Similar to std::transform transforms one tensors and assigns it to another template <class EngineIn, class LayoutIn, class EngineOut, class LayoutOut, class UnaryOp> CUTE_HOST_DEVICE constexpr void transform(Tensor<EngineIn, LayoutIn > const& tensor_in, Tensor<EngineOut,LayoutOut> & tensor_out, UnaryOp&& op) { CUTE_UNROLL for (int i = 0; i < size(tensor_in); ++i) { tensor_out(i) = op(tensor_in(i)); } } // Accept mutable temporaries template <class EngineIn, class LayoutIn, class EngineOut, class LayoutOut, class UnaryOp> CUTE_HOST_DEVICE constexpr void transform(Tensor<EngineIn, LayoutIn > const& tensor_in, Tensor<EngineOut,LayoutOut> && tensor_out, UnaryOp&& op) { return transform(tensor_in, tensor_out, op); } // Similar to std::transform with a binary operation // Takes two tensors as input and one tensor as output. // Applies the binary_op to tensor_in1 and tensor_in2 and // assigns it to tensor_out template <class EngineIn1, class LayoutIn1, class EngineIn2, class LayoutIn2, class EngineOut, class LayoutOut, class BinaryOp> CUTE_HOST_DEVICE constexpr void transform(Tensor<EngineIn1,LayoutIn1> const& tensor_in1, Tensor<EngineIn2,LayoutIn2> const& tensor_in2, Tensor<EngineOut,LayoutOut> & tensor_out, BinaryOp&& op) { CUTE_UNROLL for (int i = 0; i < size(tensor_in1); ++i) { tensor_out(i) = op(tensor_in1(i), tensor_in2(i)); } } // Accept mutable temporaries template <class EngineIn1, class LayoutIn1, class EngineIn2, class LayoutIn2, class EngineOut, class LayoutOut, class BinaryOp> CUTE_HOST_DEVICE constexpr void transform(Tensor<EngineIn1,LayoutIn1> const& tensor_in1, Tensor<EngineIn2,LayoutIn2> const& tensor_in2, Tensor<EngineOut,LayoutOut> && tensor_out, BinaryOp&& op) { return transform(tensor_in1, tensor_in2, tensor_out, op); } } // end namespace cute
include/cute/algorithm/tensor_algorithms.hpp/0
{ "file_path": "include/cute/algorithm/tensor_algorithms.hpp", "repo_id": "include", "token_count": 1853 }
16
/*************************************************************************************************** * Copyright (c) 2023 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. * SPDX-License-Identifier: BSD-3-Clause * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * **************************************************************************************************/ #pragma once #include <cute/config.hpp> #include <cute/arch/mma.hpp> // Config #if (defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 900) && defined(__CUDA_ARCH_FEAT_SM90_ALL)) # define CUTE_ARCH_MMA_SM90A_ENABLED #endif //////////////////////////////////////////////////////////////////////////////////////////////////// namespace cute { //////////////////////////////////////////////////////////////////////////////////////////////////// // GMMA Descriptor and utilities // GMMA enums and utilities namespace GMMA { enum class LayoutType : uint8_t { INTERLEAVE = 0, B128 = 1, B64 = 2, B32 = 3, }; CUTE_HOST_DEVICE char const* to_string(LayoutType const& t) { switch (t) { case LayoutType::INTERLEAVE: return "INTERLEAVE"; case LayoutType::B128: return "B128"; case LayoutType::B64: return "B64"; case LayoutType::B32: return "B32"; } return nullptr; } #if !defined(__CUDACC_RTC__) // Output operator for all enums in this namespace CUTE_HOST std::ostream& operator<<(std::ostream& os, LayoutType const& t) { char const* s = to_string(t); if (s) { std::operator<<(os, s); // Explicit call to avoid ambiguity } else { os.setstate(std::ios_base::failbit); } return os; } #endif // !defined(__CUDACC_RTC__) } // end namespace GMMA union GmmaDescriptor { CUTE_HOST_DEVICE constexpr GmmaDescriptor() noexcept : desc_(0) {} CUTE_HOST_DEVICE constexpr GmmaDescriptor(uint64_t desc) noexcept : desc_(desc) {} CUTE_HOST_DEVICE constexpr GmmaDescriptor(GmmaDescriptor const& t) noexcept : desc_(t.desc_) {} CUTE_HOST_DEVICE constexpr GmmaDescriptor(GmmaDescriptor && t) noexcept : desc_(t.desc_) {} CUTE_HOST_DEVICE constexpr GmmaDescriptor& operator=(GmmaDescriptor const& t) noexcept { desc_ = t.desc_; return *this; } CUTE_HOST_DEVICE constexpr GmmaDescriptor& operator=(GmmaDescriptor && t) noexcept { desc_ = t.desc_; return *this; } uint64_t desc_; uint32_t reg32_[2]; uint16_t reg16_[4]; // Bitfield implementation avoids the need for shifts in assignment struct { // start_address, bit [0,14), 4LSB not included uint16_t start_address_ : 14, : 2; // 14 bits [0,14), 2 bits unused // leading dimension byte offset, bit [16,30), 4LSB not included // For N: This is the stride from the first col to the second col of the 8x2 brick in INTERLEAVED // Unused for all SWIZZLE_* layouts (and assumed to be 1) // For T: This is the stride from the first 8 rows to the next 8 rows. uint16_t leading_byte_offset_ : 14, : 2; // 14 bits [0,14), 2 bits unused // stride dimension byte offset, bit [32,46), 4LSB not included // For N: This is the stride from the first 8 rows to the next 8 rows. // For T: This is the stride fro mthe first 8 cols to the next 8 cols. uint16_t stride_byte_offset_ : 14, : 2; // 14 bits [0,14), 2 bits unused // base_offset, bit [49,52) // Valid only for SWIZZLE_128B and SWIZZLE_64B uint8_t : 1, base_offset_ : 3, : 4; // 1 bit unused, 3 bits [1,4), 4 bits unused // layout type, bit [62,64) // SWIZZLE_NONE = 0, SWIZZLE_32B = 3, SWIZZLE_64B = 2, SWIZZLE_128B = 1 uint8_t : 6, layout_type_ : 2; // 6 bits unused, 2 bits [6,8) } bitfield; // Decay to a uint64_t CUTE_HOST_DEVICE constexpr operator uint64_t() const noexcept { return desc_; } // Printer CUTE_HOST_DEVICE friend void print(GmmaDescriptor const& t) { #if !defined(__CUDACC_RTC__) printf("GmmaDescriptor: 0x%016llx\n", static_cast<unsigned long long>(t.desc_)); printf(" start_addr : 0x%04x\n", t.bitfield.start_address_); printf(" leading_off: 0x%04x (%d)\n", t.bitfield.leading_byte_offset_, t.bitfield.leading_byte_offset_); printf(" stride_off : 0x%04x (%d)\n", t.bitfield.stride_byte_offset_, t.bitfield.stride_byte_offset_); printf(" base_offset: 0x%01x\n", t.bitfield.base_offset_); printf(" layout_type: 0x%01x (%s)\n", t.bitfield.layout_type_, to_string(static_cast<GMMA::LayoutType>(t.bitfield.layout_type_))); #endif } }; //////////////////////////////////////////////////////////////////////////////////////////////////// } // namespace cute ////////////////////////////////////////////////////////////////////////////////////////////////////
include/cute/arch/mma_sm90_desc.hpp/0
{ "file_path": "include/cute/arch/mma_sm90_desc.hpp", "repo_id": "include", "token_count": 2093 }
17
/*************************************************************************************************** * Copyright (c) 2023 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. * SPDX-License-Identifier: BSD-3-Clause * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * **************************************************************************************************/ #pragma once #include <cute/config.hpp> #include <cute/container/tuple.hpp> #include <cute/numeric/integral_constant.hpp> #include <cute/algorithm/functional.hpp> #include <cute/algorithm/tuple_algorithms.hpp> #include <cute/util/type_traits.hpp> namespace cute { template <class... T> struct ArithmeticTuple : tuple<T...> { template <class... U> CUTE_HOST_DEVICE constexpr ArithmeticTuple(ArithmeticTuple<U...> const& u) : tuple<T...>(static_cast<tuple<U...> const&>(u)) {} template <class... U> CUTE_HOST_DEVICE constexpr ArithmeticTuple(tuple<U...> const& u) : tuple<T...>(u) {} template <class... U> CUTE_HOST_DEVICE constexpr ArithmeticTuple(U const&... u) : tuple<T...>(u...) {} }; template <class... T> struct is_tuple<ArithmeticTuple<T...>> : true_type {}; template <class... Ts> struct is_flat<ArithmeticTuple<Ts...>> : is_flat<tuple<Ts...>> {}; template <class... T> CUTE_HOST_DEVICE constexpr auto make_arithmetic_tuple(T const&... t) { return ArithmeticTuple<T...>(t...); } template <class T> CUTE_HOST_DEVICE constexpr auto as_arithmetic_tuple(T const& t) { if constexpr (is_tuple<T>::value) { return detail::tapply(t, [](auto const& x){ return as_arithmetic_tuple(x); }, [](auto const&... a){ return make_arithmetic_tuple(a...); }, tuple_seq<T>{}); } else { return t; } } // // Numeric operators // // Addition template <class... T, class... U> CUTE_HOST_DEVICE constexpr auto operator+(ArithmeticTuple<T...> const& t, ArithmeticTuple<U...> const& u) { constexpr int R = cute::max(int(sizeof...(T)), int(sizeof...(U))); return transform_apply(append<R>(t,Int<0>{}), append<R>(u,Int<0>{}), plus{}, [](auto const&... a){ return make_arithmetic_tuple(a...); }); } template <class... T, class... U> CUTE_HOST_DEVICE constexpr auto operator+(ArithmeticTuple<T...> const& t, tuple<U...> const& u) { return t + ArithmeticTuple<U...>(u); } template <class... T, class... U> CUTE_HOST_DEVICE constexpr auto operator+(tuple<T...> const& t, ArithmeticTuple<U...> const& u) { return ArithmeticTuple<T...>(t) + u; } // Subtraction template <class... T, class... U> CUTE_HOST_DEVICE constexpr auto operator-(ArithmeticTuple<T...> const& t, ArithmeticTuple<U...> const& u) { constexpr int R = cute::max(int(sizeof...(T)), int(sizeof...(U))); return transform_apply(append<R>(t,Int<0>{}), append<R>(u,Int<0>{}), minus{}, [](auto const&... a){ return make_arithmetic_tuple(a...); }); } template <class... T, class... U> CUTE_HOST_DEVICE constexpr auto operator-(ArithmeticTuple<T...> const& t, tuple<U...> const& u) { return t - ArithmeticTuple<U...>(u); } template <class... T, class... U> CUTE_HOST_DEVICE constexpr auto operator-(tuple<T...> const& t, ArithmeticTuple<U...> const& u) { return ArithmeticTuple<T...>(t) - u; } // Negation template <class... T> CUTE_HOST_DEVICE constexpr auto operator-(ArithmeticTuple<T...> const& t) { return transform_apply(t, negate{}, [](auto const&... a){ return make_arithmetic_tuple(a...); }); } // // Special cases // template <auto t, class... U> CUTE_HOST_DEVICE constexpr ArithmeticTuple<U...> const& operator+(C<t>, ArithmeticTuple<U...> const& u) { static_assert(t == 0, "Arithmetic tuple op+ error!"); return u; } template <class... T, auto u> CUTE_HOST_DEVICE constexpr ArithmeticTuple<T...> const& operator+(ArithmeticTuple<T...> const& t, C<u>) { static_assert(u == 0, "Arithmetic tuple op+ error!"); return t; } template <auto t, class... U> CUTE_HOST_DEVICE constexpr ArithmeticTuple<U...> const& operator-(C<t>, ArithmeticTuple<U...> const& u) { static_assert(t == 0, "Arithmetic tuple op- error!"); return -u; } template <class... T, auto u> CUTE_HOST_DEVICE constexpr ArithmeticTuple<T...> const& operator-(ArithmeticTuple<T...> const& t, C<u>) { static_assert(u == 0, "Arithmetic tuple op- error!"); return t; } // // ArithmeticTupleIterator // template <class ArithTuple> struct ArithmeticTupleIterator { using value_type = ArithTuple; using element_type = ArithTuple; using reference = ArithTuple; ArithTuple coord_; CUTE_HOST_DEVICE constexpr ArithmeticTupleIterator(ArithTuple const& coord = {}) : coord_(coord) {} CUTE_HOST_DEVICE constexpr ArithTuple const& operator*() const { return coord_; } template <class Coord> CUTE_HOST_DEVICE constexpr auto operator[](Coord const& c) const { return *(*this + c); } template <class Coord> CUTE_HOST_DEVICE constexpr auto operator+(Coord const& c) const { return ArithmeticTupleIterator<decltype(coord_ + c)>(coord_ + c); } }; template <class Tuple> CUTE_HOST_DEVICE constexpr auto make_inttuple_iter(Tuple const& t) { return ArithmeticTupleIterator(as_arithmetic_tuple(t)); } template <class T0, class T1, class... Ts> CUTE_HOST_DEVICE constexpr auto make_inttuple_iter(T0 const& t0, T1 const& t1, Ts const&... ts) { return make_inttuple_iter(cute::make_tuple(t0, t1, ts...)); } // // ArithmeticTuple "basis" elements // A ScaledBasis<T,N> is a (at least) rank-N+1 ArithmeticTuple: // (_0,_0,...,T,_0,...) // with value T in the Nth mode template <class T, int N> struct ScaledBasis : private tuple<T> { CUTE_HOST_DEVICE constexpr ScaledBasis(T const& t = {}) : tuple<T>(t) {} CUTE_HOST_DEVICE constexpr decltype(auto) value() { return get<0>(static_cast<tuple<T> &>(*this)); } CUTE_HOST_DEVICE constexpr decltype(auto) value() const { return get<0>(static_cast<tuple<T> const&>(*this)); } CUTE_HOST_DEVICE static constexpr auto mode() { return Int<N>{}; } }; template <class T> struct is_scaled_basis : false_type {}; template <class T, int N> struct is_scaled_basis<ScaledBasis<T,N>> : true_type {}; template <class T, int N> struct is_integral<ScaledBasis<T,N>> : true_type {}; // Get the scalar T out of a ScaledBasis template <class SB> CUTE_HOST_DEVICE constexpr auto basis_value(SB const& e) { if constexpr (is_scaled_basis<SB>::value) { return basis_value(e.value()); } else { return e; } CUTE_GCC_UNREACHABLE; } // Apply the N... pack to another Tuple template <class SB, class Tuple> CUTE_HOST_DEVICE constexpr auto basis_get(SB const& e, Tuple const& t) { if constexpr (is_scaled_basis<SB>::value) { return basis_get(e.value(), get<SB::mode()>(t)); } else { return t; } CUTE_GCC_UNREACHABLE; } namespace detail { template <class T, int... I> CUTE_HOST_DEVICE constexpr auto to_atuple_i(T const& t, seq<I...>) { return make_arithmetic_tuple((void(I),Int<0>{})..., t); } } // end namespace detail // Turn a ScaledBases<T,N> into a rank-N+1 ArithmeticTuple // with N prefix 0s: (_0,_0,...N...,_0,T) template <class T, int N> CUTE_HOST_DEVICE constexpr auto as_arithmetic_tuple(ScaledBasis<T,N> const& t) { return detail::to_atuple_i(as_arithmetic_tuple(t.value()), make_seq<N>{}); } namespace detail { template <int... Ns> struct Basis; template <> struct Basis<> { using type = Int<1>; }; template <int N, int... Ns> struct Basis<N,Ns...> { using type = ScaledBasis<typename Basis<Ns...>::type, N>; }; } // end namespace detail // Shortcut for writing ScaledBasis<ScaledBasis<ScaledBasis<Int<1>, N0>, N1>, ...> // E<> := _1 // E<0> := (_1,_0,_0,...) // E<1> := (_0,_1,_0,...) // E<0,0> := ((_1,_0,_0,...),_0,_0,...) // E<0,1> := ((_0,_1,_0,...),_0,_0,...) // E<1,0> := (_0,(_1,_0,_0,...),_0,...) // E<1,1> := (_0,(_0,_1,_0,...),_0,...) template <int... N> using E = typename detail::Basis<N...>::type; template <class Shape> CUTE_HOST_DEVICE constexpr auto make_basis_like(Shape const& shape) { if constexpr (is_integral<Shape>::value) { return Int<1>{}; } else { // Generate bases for each rank of shape return transform(tuple_seq<Shape>{}, shape, [](auto I, auto si) { // Generate bases for each rank of si and add an i on front using I_type = decltype(I); return transform_leaf(make_basis_like(si), [](auto e) { // MSVC has trouble capturing variables as constexpr, // so that they can be used as template arguments. // This is exactly what the code needs to do with i, unfortunately. // The work-around is to define i inside the inner lambda, // by using just the type from the enclosing scope. constexpr int i = I_type::value; return ScaledBasis<decltype(e), i>{}; }); }); } CUTE_GCC_UNREACHABLE; } // // Arithmetic // template <class T, int M, class U> CUTE_HOST_DEVICE constexpr auto safe_div(ScaledBasis<T,M> const& b, U const& u) { auto t = safe_div(b.value(), u); return ScaledBasis<decltype(t),M>{t}; } template <class T, int M, class U> CUTE_HOST_DEVICE constexpr auto shape_div(ScaledBasis<T,M> const& b, U const& u) { auto t = shape_div(b.value(), u); return ScaledBasis<decltype(t),M>{t}; } // Equality template <class T, int N, class U, int M> CUTE_HOST_DEVICE constexpr auto operator==(ScaledBasis<T,N> const& t, ScaledBasis<U,M> const& u) { return bool_constant<M == N>{} && t.value() == u.value(); } // Not equal to anything else template <class T, int N, class U> CUTE_HOST_DEVICE constexpr false_type operator==(ScaledBasis<T,N> const&, U const&) { return {}; } template <class T, class U, int M> CUTE_HOST_DEVICE constexpr false_type operator==(T const&, ScaledBasis<U,M> const&) { return {}; } // Abs template <class T, int N> CUTE_HOST_DEVICE constexpr auto abs(ScaledBasis<T,N> const& e) { return ScaledBasis<decltype(abs(e.value())),N>{abs(e.value())}; } // Multiplication template <class A, class T, int N> CUTE_HOST_DEVICE constexpr auto operator*(A const& a, ScaledBasis<T,N> const& e) { auto r = a * e.value(); return ScaledBasis<decltype(r),N>{r}; } template <class T, int N, class B> CUTE_HOST_DEVICE constexpr auto operator*(ScaledBasis<T,N> const& e, B const& b) { auto r = e.value() * b; return ScaledBasis<decltype(r),N>{r}; } // Addition template <class T, int N, class U, int M> CUTE_HOST_DEVICE constexpr auto operator+(ScaledBasis<T,N> const& t, ScaledBasis<U,M> const& u) { return as_arithmetic_tuple(t) + as_arithmetic_tuple(u); } template <class T, int N, class... U> CUTE_HOST_DEVICE constexpr auto operator+(ScaledBasis<T,N> const& t, ArithmeticTuple<U...> const& u) { return as_arithmetic_tuple(t) + u; } template <class... T, class U, int M> CUTE_HOST_DEVICE constexpr auto operator+(ArithmeticTuple<T...> const& t, ScaledBasis<U,M> const& u) { return t + as_arithmetic_tuple(u); } template <auto t, class U, int M> CUTE_HOST_DEVICE constexpr auto operator+(C<t>, ScaledBasis<U,M> const& u) { static_assert(t == 0, "ScaledBasis op+ error!"); return u; } template <class T, int N, auto u> CUTE_HOST_DEVICE constexpr auto operator+(ScaledBasis<T,N> const& t, C<u>) { static_assert(u == 0, "ScaledBasis op+ error!"); return t; } // // Display utilities // template <class ArithTuple> CUTE_HOST_DEVICE void print(ArithmeticTupleIterator<ArithTuple> const& iter) { printf("ArithTuple"); print(iter.coord_); } template <class T, int N> CUTE_HOST_DEVICE void print(ScaledBasis<T,N> const& e) { print(e.value()); printf("@%d", N); } #if !defined(__CUDACC_RTC__) template <class ArithTuple> CUTE_HOST std::ostream& operator<<(std::ostream& os, ArithmeticTupleIterator<ArithTuple> const& iter) { return os << "ArithTuple" << iter.coord_; } template <class T, int N> CUTE_HOST std::ostream& operator<<(std::ostream& os, ScaledBasis<T,N> const& e) { return os << e.value() << "@" << N; } #endif } // end namespace cute namespace CUTE_STL_NAMESPACE { template <class... T> struct tuple_size<cute::ArithmeticTuple<T...>> : CUTE_STL_NAMESPACE::integral_constant<size_t, sizeof...(T)> {}; template <size_t I, class... T> struct tuple_element<I, cute::ArithmeticTuple<T...>> : CUTE_STL_NAMESPACE::tuple_element<I, CUTE_STL_NAMESPACE::tuple<T...>> {}; template <class... T> struct tuple_size<const cute::ArithmeticTuple<T...>> : CUTE_STL_NAMESPACE::integral_constant<size_t, sizeof...(T)> {}; template <size_t I, class... T> struct tuple_element<I, const cute::ArithmeticTuple<T...>> : CUTE_STL_NAMESPACE::tuple_element<I, const CUTE_STL_NAMESPACE::tuple<T...>> {}; } // end namespace CUTE_STL_NAMESPACE #ifdef CUTE_STL_NAMESPACE_IS_CUDA_STD namespace std { #if defined(__CUDACC_RTC__) template <class... _Tp> struct tuple_size; template <size_t _Ip, class... _Tp> struct tuple_element; #endif template <class... T> struct tuple_size<cute::ArithmeticTuple<T...>> : CUTE_STL_NAMESPACE::integral_constant<size_t, sizeof...(T)> {}; template <size_t I, class... T> struct tuple_element<I, cute::ArithmeticTuple<T...>> : CUTE_STL_NAMESPACE::tuple_element<I, CUTE_STL_NAMESPACE::tuple<T...>> {}; template <class... T> struct tuple_size<const cute::ArithmeticTuple<T...>> : CUTE_STL_NAMESPACE::integral_constant<size_t, sizeof...(T)> {}; template <size_t I, class... T> struct tuple_element<I, const cute::ArithmeticTuple<T...>> : CUTE_STL_NAMESPACE::tuple_element<I, const CUTE_STL_NAMESPACE::tuple<T...>> {}; } // end namespace std #endif // CUTE_STL_NAMESPACE_IS_CUDA_STD
include/cute/numeric/arithmetic_tuple.hpp/0
{ "file_path": "include/cute/numeric/arithmetic_tuple.hpp", "repo_id": "include", "token_count": 5832 }
18
/*************************************************************************************************** * Copyright (c) 2023 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. * SPDX-License-Identifier: BSD-3-Clause * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * **************************************************************************************************/ #pragma once #include <cute/config.hpp> #include <cute/util/type_traits.hpp> #include <cute/numeric/integral_constant.hpp> #include <cute/numeric/integer_sequence.hpp> #include <cute/container/tuple.hpp> #include <cute/container/array_aligned.hpp> #include <cute/container/array_subbyte.hpp> #include <cute/pointer.hpp> #include <cute/layout.hpp> namespace cute { // // Engine -- owning or non-owning data store // // concept Engine { // using iterator = ; // using value_type = ; // using element_type = ; // using reference = ; // iterator begin(); // }; template <class T, int N> struct ArrayEngine { using Storage = typename conditional<(sizeof_bits<T>::value % 8 == 0), array_aligned<T,N>, array_subbyte<T,N>>::type; using iterator = typename Storage::iterator; using reference = typename iterator_traits<iterator>::reference; using element_type = typename iterator_traits<iterator>::element_type; using value_type = typename iterator_traits<iterator>::value_type; Storage storage_; CUTE_HOST_DEVICE constexpr auto begin() const { return storage_.begin(); } CUTE_HOST_DEVICE constexpr auto begin() { return storage_.begin(); } }; template <class Iterator> struct ViewEngine { using iterator = Iterator; using reference = typename iterator_traits<iterator>::reference; using element_type = typename iterator_traits<iterator>::element_type; using value_type = typename iterator_traits<iterator>::value_type; iterator storage_; CUTE_HOST_DEVICE constexpr iterator const& begin() const { return storage_; } CUTE_HOST_DEVICE constexpr iterator & begin() { return storage_; } }; template <class Iterator> struct ConstViewEngine { using iterator = Iterator; using reference = typename iterator_traits<iterator>::reference; using element_type = typename iterator_traits<iterator>::element_type; using value_type = typename iterator_traits<iterator>::value_type; iterator storage_; CUTE_HOST_DEVICE constexpr iterator const& begin() const { return storage_; } }; // // Tensor // template <class Engine, class Layout> struct Tensor { using iterator = typename Engine::iterator; using value_type = typename Engine::value_type; using element_type = typename Engine::element_type; using reference = typename Engine::reference; using engine_type = Engine; using layout_type = Layout; CUTE_HOST_DEVICE constexpr Tensor() {} template <class Ptr> CUTE_HOST_DEVICE constexpr Tensor(Ptr const& ptr, Layout const& layout) : rep_(layout, ptr) { } // // Accessors // static constexpr int rank = Layout::rank; CUTE_HOST_DEVICE constexpr decltype(auto) tensor() const { return *this; } CUTE_HOST_DEVICE constexpr decltype(auto) layout() const { return get<0>(rep_); } CUTE_HOST_DEVICE constexpr decltype(auto) engine() const { return get<1>(rep_); } CUTE_HOST_DEVICE constexpr decltype(auto) engine() { return get<1>(rep_); } CUTE_HOST_DEVICE constexpr decltype(auto) data() const { return engine().begin(); } CUTE_HOST_DEVICE constexpr decltype(auto) data() { return engine().begin(); } CUTE_HOST_DEVICE constexpr decltype(auto) shape() const { return layout().shape(); } CUTE_HOST_DEVICE constexpr auto size() const { return cute::size(shape()); } CUTE_HOST_DEVICE constexpr decltype(auto) stride() const { return layout().stride(); } // // Indexing op() and op[] // // Index into this tensor like an array by computing the offset via layout() template <class Coord> CUTE_HOST_DEVICE constexpr decltype(auto) operator[](Coord const& coord) { return data()[layout()(coord)]; } template <class Coord> CUTE_HOST_DEVICE constexpr decltype(auto) operator[](Coord const& coord) const { return data()[layout()(coord)]; } template <class Coord> CUTE_HOST_DEVICE constexpr decltype(auto) operator()(Coord const& coord) { if constexpr (has_underscore<Coord>::value) { auto const& [sliced_layout,offset] = slice_and_offset(coord, layout()); return make_tensor(data() + offset, sliced_layout); } else { return data()[layout()(coord)]; } CUTE_GCC_UNREACHABLE; } template <class Coord> CUTE_HOST_DEVICE constexpr decltype(auto) operator()(Coord const& coord) const { if constexpr (has_underscore<Coord>::value) { auto const& [sliced_layout,offset] = slice_and_offset(coord, layout()); return make_tensor(data() + offset, sliced_layout); } else { return data()[layout()(coord)]; } CUTE_GCC_UNREACHABLE; } // op() convenience function for multi-dimensional coordinates template <class Coord0, class Coord1, class... Coords> CUTE_HOST_DEVICE constexpr decltype(auto) operator()(Coord0 const& c0, Coord1 const& c1, Coords const&... cs) { return operator()(make_coord(c0,c1,cs...)); } template <class Coord0, class Coord1, class... Coords> CUTE_HOST_DEVICE constexpr decltype(auto) operator()(Coord0 const& c0, Coord1 const& c1, Coords const&... cs) const { return operator()(make_coord(c0,c1,cs...)); } // // Compose // template <class... Layouts> CUTE_HOST_DEVICE constexpr auto compose(Layouts const&... layouts) { return make_tensor(data(), layout().compose(layouts...)); } template <class... Layouts> CUTE_HOST_DEVICE constexpr auto compose(Layouts const&... layouts) const { return make_tensor(data(), layout().compose(layouts...)); } // // Tile // template <class... Layouts> CUTE_HOST_DEVICE constexpr auto tile(Layouts const&... layouts) { return make_tensor(data(), layout().tile(layouts...)); } template <class... Layouts> CUTE_HOST_DEVICE constexpr auto tile(Layouts const&... layouts) const { return make_tensor(data(), layout().tile(layouts...)); } // // Utility // template <class Int, __CUTE_REQUIRES(is_integral<Int>::value)> CUTE_HOST_DEVICE constexpr auto get_1d_coord(Int const& linear_idx) const { return layout().get_1d_coord(linear_idx); } template <class Int, __CUTE_REQUIRES(is_integral<Int>::value)> CUTE_HOST_DEVICE constexpr auto get_hier_coord(Int const& linear_idx) const { return layout().get_hier_coord(linear_idx); } template <class Int, __CUTE_REQUIRES(is_integral<Int>::value)> CUTE_HOST_DEVICE constexpr auto get_flat_coord(Int const& linear_idx) const { return layout().get_flat_coord(linear_idx); } cute::tuple<layout_type, engine_type> rep_; }; template <class T> struct is_tensor : false_type {}; template <class Engine, class Layout> struct is_tensor<Tensor<Engine,Layout>> : true_type {}; template <class T> constexpr bool is_tensor_v = is_tensor<T>::value; // Customization point for creation of owning and non-owning Tensors template <class T> struct MakeTensor { template <class Layout, __CUTE_REQUIRES(not has_dereference<T>::value && is_layout<Layout>::value)> CUTE_HOST_DEVICE constexpr auto operator()(Layout const& layout) const { static_assert(is_static<Layout>::value, "Dynamic owning tensors not supported"); using Engine = ArrayEngine<T, cosize_v<Layout>>; return Tensor<Engine,Layout>(); } template <class Layout, __CUTE_REQUIRES(has_dereference<T>::value && is_layout<Layout>::value)> CUTE_HOST_DEVICE constexpr auto operator()(T const& iter, Layout const& layout) { using Engine = ViewEngine<T>; return Tensor<Engine,Layout>(iter, layout); } template <class LayoutArg, class... LayoutArgs, __CUTE_REQUIRES(not is_layout<LayoutArg>::value)> CUTE_HOST_DEVICE constexpr auto operator()(LayoutArg const& arg, LayoutArgs const&... args) const { return operator()(make_layout(arg, args...)); } template <class LayoutArg, class... LayoutArgs, __CUTE_REQUIRES(not is_layout<LayoutArg>::value)> CUTE_HOST_DEVICE constexpr auto operator()(T const& iter, LayoutArg const& arg, LayoutArgs const&... args) { return operator()(iter, make_layout(arg, args...)); } }; // // make_tensor // // Make an owning Tensor that will allocate a static array // e.g. make_tensor<float>(Int<12>{}) template <class T, class... Args> CUTE_HOST_DEVICE constexpr auto make_tensor(Args const&... args) { return MakeTensor<T>{}(args...); } // Make a non-owning Tensor that will use a pointer (view) // e.g. make_tensor(vec.data(), 12) template <class Iterator, class... Args> CUTE_HOST_DEVICE constexpr auto make_tensor(Iterator const& iter, Args const&... args) { return MakeTensor<Iterator>{}(iter, args...); } // // make_tensor_like // Make a register tensor the same type and shape and (if possible) order as another tensor // template <class NewT, class Layout> CUTE_HOST_DEVICE constexpr auto make_tensor_like(Layout const& layout) { return make_tensor<NewT>(make_layout_like(layout)); } template <class NewT, class Engine, class Layout> CUTE_HOST_DEVICE constexpr auto make_tensor_like(Tensor<Engine,Layout> const& tensor) { return make_tensor_like<NewT>(tensor.layout()); } template <class Engine, class Layout> CUTE_HOST_DEVICE constexpr auto make_tensor_like(Tensor<Engine,Layout> const& tensor) { return make_tensor_like<typename Engine::value_type>(tensor.layout()); } // // make_fragment_like -- // Make a tensor the same shape and (if possible) order as another tensor, with special // consideration of the 0th mode. The 0th mode is commonly used for MMA_Atoms or Copy_Atoms // so this allocates the 0th mode with LayoutLeft regardless of the reference layout. // template <class NewT, class Layout> CUTE_HOST_DEVICE constexpr auto make_fragment_like(Layout const& layout) { return make_tensor<NewT>(make_fragment_like(layout)); } template <class NewT, class Engine, class Layout> CUTE_HOST_DEVICE constexpr auto make_fragment_like(Tensor<Engine,Layout> const& tensor) { return make_fragment_like<NewT>(tensor.layout()); } template <class Engine, class Layout> CUTE_HOST_DEVICE constexpr auto make_fragment_like(Tensor<Engine,Layout> const& tensor) { return make_fragment_like<typename Engine::value_type>(tensor.layout()); } // // make_counting_tensor // Make a tensor from a layout by binding it to a counting iter with 0-offset of the same profile as the codomain. // template <class Layout, __CUTE_REQUIRES(is_layout<Layout>::value)> CUTE_HOST_DEVICE constexpr auto make_counting_tensor(Layout const& layout) { return make_tensor(make_inttuple_iter(repeat_like(coshape(layout), Int<0>{})), layout); } // // make_identity_tensor // Make a tensor that maps coordinates within a shape to themselves. // template <class Shape> CUTE_HOST_DEVICE constexpr auto make_identity_tensor(Shape const& shape) { return make_counting_tensor(make_identity_layout(shape)); } // // Utilities // // Return the subtensor of a mode template <class Tensor, __CUTE_REQUIRES(is_tensor<remove_cvref_t<Tensor>>::value)> CUTE_HOST_DEVICE constexpr decltype(auto) tensor(Tensor&& tensor) { return static_cast<Tensor&&>(tensor); } template <int I, int... Is, class Tensor, __CUTE_REQUIRES(is_tensor<remove_cvref_t<Tensor>>::value)> CUTE_HOST_DEVICE constexpr decltype(auto) tensor(Tensor&& tensor) { return make_tensor(static_cast<Tensor&&>(tensor).data(), get<I,Is...>(tensor.layout())); } // Return the layout of a mode template <int... Is, class Engine, class Layout> CUTE_HOST_DEVICE constexpr decltype(auto) layout(Tensor<Engine,Layout> const& tensor) { return layout<Is...>(tensor.layout()); } // Return the shape of a mode template <int... Is, class Engine, class Layout> CUTE_HOST_DEVICE constexpr decltype(auto) shape(Tensor<Engine,Layout> const& tensor) { return shape<Is...>(tensor.layout()); } // Return the stride of a mode template <int... Is, class Engine, class Layout> CUTE_HOST_DEVICE constexpr decltype(auto) stride(Tensor<Engine,Layout> const& tensor) { return stride<Is...>(tensor.layout()); } // Return the number of elements in a mode template <int... Is, class Engine, class Layout> CUTE_HOST_DEVICE constexpr decltype(auto) size(Tensor<Engine,Layout> const& tensor) { return size<Is...>(tensor.layout()); } // Return the rank of a mode template <int... Is, class Engine, class Layout> CUTE_HOST_DEVICE constexpr auto rank(Tensor<Engine,Layout> const& tensor) { return rank<Is...>(tensor.layout()); } // Return the depth of a mode template <int... Is, class Engine, class Layout> CUTE_HOST_DEVICE constexpr auto depth(Tensor<Engine, Layout> const& tensor) { return depth<Is...>(tensor.layout()); } // // Operations to manipulate Tensors like a Layout // template <class Tensor, __CUTE_REQUIRES(is_tensor<remove_cvref_t<Tensor>>::value)> CUTE_HOST_DEVICE constexpr auto flatten(Tensor&& tensor) { return make_tensor(static_cast<Tensor&&>(tensor).data(), flatten(tensor.layout())); } template <class Tensor, __CUTE_REQUIRES(is_tensor<remove_cvref_t<Tensor>>::value)> CUTE_HOST_DEVICE constexpr auto coalesce(Tensor&& tensor) { return make_tensor(static_cast<Tensor&&>(tensor).data(), coalesce(tensor.layout())); } template <class Tensor, class Profile, __CUTE_REQUIRES(is_tensor<remove_cvref_t<Tensor>>::value)> CUTE_HOST_DEVICE constexpr auto coalesce(Tensor&& tensor, Profile const& profile) { return make_tensor(static_cast<Tensor&&>(tensor).data(), coalesce(tensor.layout(), profile)); } template <class Tensor, __CUTE_REQUIRES(is_tensor<remove_cvref_t<Tensor>>::value)> CUTE_HOST_DEVICE constexpr auto filter_zeros(Tensor&& tensor) { return make_tensor(static_cast<Tensor&&>(tensor).data(), filter_zeros(tensor.layout())); } template <class Tensor, __CUTE_REQUIRES(is_tensor<remove_cvref_t<Tensor>>::value)> CUTE_HOST_DEVICE constexpr auto filter(Tensor&& tensor) { return make_tensor(static_cast<Tensor&&>(tensor).data(), filter(tensor.layout())); } template <class Tensor, class Profile, __CUTE_REQUIRES(is_tensor<remove_cvref_t<Tensor>>::value)> CUTE_HOST_DEVICE constexpr auto filter(Tensor&& tensor, Profile const& profile) { return make_tensor(static_cast<Tensor&&>(tensor).data(), filter(tensor.layout(), profile)); } // Return a tensor with the same shape as input but offset by a given coordinate template <class Coord, class Tensor, __CUTE_REQUIRES(is_tensor<remove_cvref_t<Tensor>>::value)> CUTE_HOST_DEVICE constexpr auto domain_offset(Coord const& coord, Tensor&& tensor) { auto [layout, ptr_offset] = domain_offset(coord, tensor.layout()); return make_tensor(static_cast<Tensor&&>(tensor).data() + ptr_offset, layout); } // Group the modes [B,E) into a single mode // e.g. group<2,4>(make_tensor<int>(Layout<Shape<_1,_2,_3,_4,_5,_6>>{})) // => make_tensor<int>(Layout<Shape<_1,_2,Shape<_3,_4>,_5,_6>>{}) template <int B, int E, class Tensor, __CUTE_REQUIRES(is_tensor<remove_cvref_t<Tensor>>::value)> CUTE_HOST_DEVICE constexpr auto group_modes(Tensor&& tensor) { return make_tensor(static_cast<Tensor&&>(tensor).data(), group<B,E>(tensor.layout())); } // Return the subtensor of a range of modes template <int B, int E, class Tensor, __CUTE_REQUIRES(is_tensor<remove_cvref_t<Tensor>>::value)> CUTE_HOST_DEVICE constexpr decltype(auto) take(Tensor&& tensor) { return make_tensor(static_cast<Tensor&&>(tensor).data(), take<B,E>(tensor.layout())); } // // Recast // // NOTE: This is very dangerous to do // -- doesn't check dynamic integer divisibility // -- doesn't check alignment template <class NewType, class Tensor> CUTE_HOST_DEVICE constexpr auto recast(Tensor&& tensor) { using OldType = typename remove_cvref_t<Tensor>::value_type; auto old_layout = tensor.layout(); auto new_layout = recast_layout<OldType,NewType>(old_layout); // If this is an upcast of a normal Layout with static negative strides, then offset as well if constexpr (sizeof(OldType) < sizeof(NewType) && not is_composed_layout<decltype(old_layout)>::value) { auto shape_diff = transform(flatten(old_layout.shape()), flatten(new_layout.shape()), minus{}); auto extent_diff = transform(shape_diff, flatten(old_layout.stride()), multiplies{}); auto offset = fold(extent_diff, Int<0>{}, [](auto const& i, auto const& a) { return i + cute::min(a,Int<0>{}); }); return make_tensor(recast_ptr<NewType>(static_cast<Tensor&&>(tensor).data() + offset), new_layout); } else { return make_tensor(recast_ptr<NewType>(static_cast<Tensor&&>(tensor).data() ), new_layout); } CUTE_GCC_UNREACHABLE; } // // max_common_vector // /* Return Int<N> such that N is the maximum number of contiguous elements * that logically correspond in the tensors of @a a and @a b. This is, * the number of elements that could reasonably be vectorized into a single load/store. * * @returns Int<N> with N >= 0 * * A return value of Int<0> indicates that no such conclusion can be made and no * vectorization should be attempted. * * Note that the return value does NOT include alignment concerns such as the pointer value and * the divisbility of dynamic strides. */ template <class SrcEngine, class SrcLayout, class DstEngine, class DstLayout> CUTE_HOST_DEVICE constexpr auto max_common_vector(Tensor<SrcEngine,SrcLayout> const& a, Tensor<DstEngine,DstLayout> const& b) { using SrcType = typename Tensor<SrcEngine,SrcLayout>::value_type; using DstType = typename Tensor<DstEngine,DstLayout>::value_type; using SrcRef = typename Tensor<SrcEngine,SrcLayout>::reference; using DstRef = typename Tensor<SrcEngine,SrcLayout>::reference; // Determine if vectorization candidates at all if constexpr (// Should be the same value_types, else the copy is also performing a cast sizeof_bits_v<SrcType> == sizeof_bits_v<DstType> && // The types should be trivially copyable so that vectorization is valid is_trivially_copyable<SrcType>::value && is_trivially_copyable<DstType>::value && // Should be load/storing real data, rather than implicit iterators or such is_reference<SrcRef>::value && is_reference<DstRef>::value) { return max_common_vector(a.layout(), b.layout()); } else { return Int<0>{}; } CUTE_GCC_UNREACHABLE; } /* Return a layout that points to the maximum number of contiguous elements * that logically correspond in the tensors of @a a and @a b. This is, * the elements that could reasonably be "vectorized" into a single load/store. * * @returns Layout R such that composition(a.layout(), R) and composition(b.layout(), R) * are both identity Layouts. * * Note that the returned layout does NOT include alignment concerns such as the pointer value and * the divisbility of dynamic strides. */ template <class SrcEngine, class SrcLayout, class DstEngine, class DstLayout> CUTE_HOST_DEVICE constexpr auto max_common_layout(Tensor<SrcEngine,SrcLayout> const& a, Tensor<DstEngine,DstLayout> const& b) { using SrcType = typename Tensor<SrcEngine,SrcLayout>::value_type; using DstType = typename Tensor<DstEngine,DstLayout>::value_type; using SrcRef = typename Tensor<SrcEngine,SrcLayout>::reference; using DstRef = typename Tensor<SrcEngine,SrcLayout>::reference; // Determine if vectorization candidates at all if constexpr (// Should be the same value_types, else the copy is also performing a cast sizeof_bits_v<SrcType> == sizeof_bits_v<DstType> && // The types should be trivially copyable so that vectorization is valid is_trivially_copyable<SrcType>::value && is_trivially_copyable<DstType>::value && // Should be load/storing real data, rather than implicit iterators or such is_reference<SrcRef>::value && is_reference<DstRef>::value) { return max_common_layout(a.layout(), b.layout()); } else { return Layout<_1,_0>{}; } CUTE_GCC_UNREACHABLE; } // // Key algebraic operations -- Divide and Product // // Apply a Tiler to the Tensor. // // Consider a Tensor with shape (A,B,x,y) // And a Tiler that is: // // * A Layout with shape (BLK_A,BLK_B) // ** Result Tensor shape ((BLK_A,BLK_B),Rest). // ** That is, the Tensor and Tile are treated as 1D for the tiling. // ** See logical_divide(Layout,Layout) // // * A Tile<Layout...> with shape <BLK_A,BLK_B> // ** Result Tensor shape ((BLK_A,a),(BLK_B,b),x,y). // ** Each mode of the Tile<Layout...> is applied to the corresponding mode of the Tensor. // ** See logical_divide(Layout,Tuple) // // * A Shape (BLK_A,BLK_B) // ** Result Tensor shape ((BLK_A,a),(BLK_B,b),x,y). // ** Equivalent to applying Tile<BLK_A:_1,BLK_B:_1>. // ** See logical_divide(Layout,Tuple) and logical_divide(Layout,Int) // // Note that the Tile<Layout...>/Shape Tilers must be weakly_congruent to the Tensor template <class Tensor, class Tiler, __CUTE_REQUIRES(is_tensor<remove_cvref_t<Tensor>>::value)> CUTE_HOST_DEVICE constexpr auto logical_divide(Tensor && tensor, Tiler const& tiler) // Layout or Tile<Layout...> or Shape { return make_tensor(static_cast<Tensor&&>(tensor).data(), logical_divide(tensor.layout(), tiler)); } // zipped_divide is logical_divide with Tiler modes and Rest modes gathered together: (Tiler,Rest) // When Tiler is Layout, this has no effect as logical_divide results in the same. // When Tiler is Tile<Layout...> or Shape, this zips modes into standard form ((BLK_A,BLK_B),(a,b,x,y)) template <class Tensor, class Tiler, __CUTE_REQUIRES(is_tensor<remove_cvref_t<Tensor>>::value)> CUTE_HOST_DEVICE constexpr auto zipped_divide(Tensor && tensor, Tiler const& tiler) // Layout or Tile<Layout...> or Shape { return make_tensor(static_cast<Tensor&&>(tensor).data(), zipped_divide(tensor.layout(), tiler)); } // tiled_divide is zipped_divide with the second output mode flattened ((BLK_A,BLK_B),a,b,x,y) template <class Tensor, class Tiler, __CUTE_REQUIRES(is_tensor<remove_cvref_t<Tensor>>::value)> CUTE_HOST_DEVICE constexpr auto tiled_divide(Tensor && tensor, Tiler const& tiler) // Layout or Tile<Layout...> or Shape { return make_tensor(static_cast<Tensor&&>(tensor).data(), tiled_divide(tensor.layout(), tiler)); } // flat_divide is zipped_divide with the both modes flattened (BLK_A,BLK_B,a,b,x,y) template <class Tensor, class Tiler, __CUTE_REQUIRES(is_tensor<remove_cvref_t<Tensor>>::value)> CUTE_HOST_DEVICE constexpr auto flat_divide(Tensor && tensor, Tiler const& tiler) // Layout or Tile<Layout...> or Shape { return make_tensor(static_cast<Tensor&&>(tensor).data(), flat_divide(tensor.layout(), tiler)); } // logical_product on a Tensor doesn't make sense since it often increases cosize // though this might make sense for creating Tensors with broadcasted (stride-0) modes // // Tensor partitioning utilities // // Apply a Tiler to the Tensor, then slice out one of those tiles by slicing into the "Rest" modes. // With an inner_partition, you get everything that's inside the Tiler. Everything that the Tiler is pointing to. // Split the modes of tensor according to the Tiler // zipped_divide returns something like ((BLK_A,BLK_B,...),(a,b,...,x,y)) // Then slice into the second mode (the "Rest" mode) with Coord template <class Tensor, class Tiler, class Coord, __CUTE_REQUIRES(is_tensor<remove_cvref_t<Tensor>>::value)> CUTE_HOST_DEVICE constexpr auto inner_partition(Tensor && tensor, Tiler const& tiler, Coord const& coord) { auto tensor_tiled = zipped_divide(static_cast<Tensor&&>(tensor), tiler); constexpr int R0 = decltype(rank<0>(tensor_tiled))::value; // The coord slices into the second mode (the "rest" mode), flatten the first if constexpr (is_tuple<Coord>::value) { // Append trailing modes if coord is tuple constexpr int R1 = decltype(rank<1>(tensor_tiled))::value;; return tensor_tiled(repeat<R0>(_), append<R1>(coord,_)); } else { // Flat indexing if coord is not tuple return tensor_tiled(repeat<R0>(_), coord); } } // Apply a Tiler to the Tensor, then slice out the remainder by slicing into the "Tile" modes. // With an outer_partition, you get everything that's outside the Tiler. The layout of the Tile in the Tensor. // Split the modes of tensor according to the Tiler // zipped_divide returns something like ((BLK_A,BLK_B,...),(a,b,...,x,y)) // Then slice into the first mode (the "Tile" mode) with Coord template <class Tensor, class Tiler, class Coord, __CUTE_REQUIRES(is_tensor<remove_cvref_t<Tensor>>::value)> CUTE_HOST_DEVICE constexpr auto outer_partition(Tensor && tensor, Tiler const& tiler, Coord const& coord) { auto tensor_tiled = zipped_divide(static_cast<Tensor&&>(tensor), tiler); constexpr int R1 = decltype(rank<1>(tensor_tiled))::value; // The coord slices into the first mode (the "tile" mode), flatten the second if constexpr (is_tuple<Coord>::value) { // Append trailing modes if coord is tuple constexpr int R0 = decltype(rank<0>(tensor_tiled))::value; return tensor_tiled(append<R0>(coord,_), repeat<R1>(_)); } else { // Flat indexing if coord is not tuple return tensor_tiled(coord, repeat<R1>(_)); } } // Tile a tensor according to @a tiler and use @a coord to index into the remainder, keeping the tile. // This is typical at the CTA level where tiles of data are extracted: // Tensor data = ... // ( M, N) // Tensor cta_data = local_tile(data, Shape<_32,_64>{}, make_coord(blockIdx.x,blockIdx.y)); // (_32,_64) template <class Tensor, class Tiler, class Coord, __CUTE_REQUIRES(is_tensor<remove_cvref_t<Tensor>>::value)> CUTE_HOST_DEVICE constexpr auto local_tile(Tensor && tensor, Tiler const& tiler, // tiler to apply Coord const& coord) // coord to slice into "remainder" { return inner_partition(static_cast<Tensor&&>(tensor), tiler, coord); } // Same as above, but with a projection parameter to strip out unwanted tiling modes for convenience // when using projections of the same tiler. // This is typical at the CTA level where tiles of data are extracted as projections: // Tensor dataA = ... // (M,K) // Tensor dataB = ... // (N,K) // Tensor dataC = ... // (M,N) // auto cta_tiler = Shape<_32, _64, _4>{}; // auto cta_coord = make_coord(blockIdx.x, blockIdx.y, _); // Tensor ctaA = local_tile(dataA, cta_tiler, cta_coord, Step<_1, X,_1>{}); // (_32,_4,k) // Tensor ctaB = local_tile(dataA, cta_tiler, cta_coord, Step< X,_1,_1>{}); // (_64,_4,k) // Tensor ctaC = local_tile(dataA, cta_tiler, cta_coord, Step<_1,_1, X>{}); // (_32,_64) template <class Tensor, class Tiler, class Coord, class Proj, __CUTE_REQUIRES(is_tensor<remove_cvref_t<Tensor>>::value)> CUTE_HOST_DEVICE auto local_tile(Tensor && tensor, Tiler const& tiler, // tiler to apply Coord const& coord, // coord to slice into "remainder" Proj const& proj) // projection to apply to tiler and coord { return local_tile(static_cast<Tensor&&>(tensor), dice(proj, tiler), dice(proj, coord)); } // Tile a tensor according to the flat shape of a layout that provides the coordinate of the target index. // This is typical at the Thread level where data is partitioned across repeated patterns of threads: // Tensor data = ... // (_16,_64) // Tensor thr_data = local_partition(data, Layout<Shape<_2,_16>>{}, thr_idx); // ( _8, _4) template <class Tensor, class LShape, class LStride, class Index, __CUTE_REQUIRES(is_tensor<remove_cvref_t<Tensor>>::value)> CUTE_HOST_DEVICE auto local_partition(Tensor && tensor, Layout<LShape,LStride> const& tile, // coord -> index Index const& index) // index to slice for { static_assert(is_integral<Index>::value); return outer_partition(static_cast<Tensor&&>(tensor), product_each(shape(tile)), tile.get_flat_coord(index)); } // Same as above, but with a projection parameter to strip out unwanted tiling modes for convenience // when using projections of the same tiler. // This is typical at the Thread level where data is partitioned across projected layouts of threads: // Tensor dataA = ... // (M,K) // Tensor dataB = ... // (N,K) // Tensor dataC = ... // (M,N) // auto thr_layout = Layout<Shape<_2,_16,_1>, Stride<_16,_1,_0>>{}; // Tensor thrA = local_partition(dataA, thr_layout, thr_idx, Step<_1, X,_1>{}); // (M/2,K/1) // Tensor thrB = local_partition(dataB, thr_layout, thr_idx, Step< X,_1,_1>{}); // (N/16,K/1) // Tensor thrC = local_partition(dataC, thr_layout, thr_idx, Step<_1,_1, X>{}); // (M/2,N/16) template <class Tensor, class LShape, class LStride, class Index, class Projection, __CUTE_REQUIRES(is_tensor<remove_cvref_t<Tensor>>::value)> CUTE_HOST_DEVICE auto local_partition(Tensor && tensor, Layout<LShape,LStride> const& tile, // coord -> index Index const& index, // index to slice for Projection const& proj) { return local_partition(static_cast<Tensor&&>(tensor), dice(proj, tile), index); } // // Display utilities // template <class Engine, class Layout> CUTE_HOST_DEVICE void print(Tensor<Engine,Layout> const& tensor) { print(tensor.data()); print(" o "); print(tensor.layout()); } template <class Engine, class Layout> CUTE_HOST_DEVICE void print_tensor(Tensor<Engine,Layout> const& tensor, bool print_type = true) { if (print_type) { print(tensor); print(":\n"); } if constexpr (Layout::rank == 1) { for (int m = 0; m < size(tensor); ++m) { pretty_print(tensor(m)); printf("\n"); } } else if constexpr (Layout::rank == 2) { for (int m = 0; m < size<0>(tensor); ++m) { for (int n = 0; n < size<1>(tensor); ++n) { pretty_print(tensor(m,n)); } printf("\n"); } } else if constexpr (Layout::rank == 3) { print_tensor(tensor(_,_,0), false); for (int k = 1; k < size<2>(tensor); ++k) { for (int i = 0; i < 5*size<1>(tensor); ++i) { print("-"); } print("\n"); print_tensor(tensor(_,_,k), false); } } else if constexpr (Layout::rank == 4) { print_tensor(tensor(_,_,_,0), false); for (int p = 1; p < size<3>(tensor); ++p) { for (int i = 0; i < 5*size<1>(tensor); ++i) { print("="); } print("\n"); print_tensor(tensor(_,_,_,p), false); } } } #if !defined(__CUDACC_RTC__) template <class Engine, class Layout> CUTE_HOST std::ostream& print_tensor_os(std::ostream& os, Tensor<Engine,Layout> const& tensor) { int digits = 9; if constexpr (Layout::rank == 1) { for (int m = 0; m < size(tensor); ++m) { os << std::setw(digits) << tensor(m) << std::endl; } } else if constexpr (Layout::rank == 2) { for (int m = 0; m < size<0>(tensor); ++m) { for (int n = 0; n < size<1>(tensor); ++n) { os << std::setw(digits) << tensor(m,n); } os << std::endl; } } else if constexpr (Layout::rank == 3) { print_tensor_os(os, tensor(_,_,0)); for (int k = 1; k < size<2>(tensor); ++k) { for (int i = 0; i < digits*size<1>(tensor); ++i) { os << "-"; } os << std::endl; print_tensor_os(os, tensor(_,_,k)); } } else if constexpr (Layout::rank == 4) { print_tensor_os(os, tensor(_,_,_,0)); for (int p = 1; p < size<3>(tensor); ++p) { for (int i = 0; i < digits*size<1>(tensor); ++i) { os << "="; } os << std::endl; print_tensor_os(os, tensor(_,_,_,p)); } } return os; } template <class Engine, class Layout> CUTE_HOST std::ostream& operator<<(std::ostream& os, Tensor<Engine,Layout> const& tensor) { os << tensor.layout() << std::endl; return print_tensor_os(os, tensor); } #endif // !defined(__CUDACC_RTC__) } // end namespace cute // // Extended Engines // #include <cute/pointer_swizzle.hpp> #include <cute/pointer_flagged.hpp> // // Tensor Algorithms // #include <cute/algorithm/tensor_algorithms.hpp> #include <cute/algorithm/fill.hpp> #include <cute/algorithm/clear.hpp> #include <cute/algorithm/copy.hpp> #include <cute/algorithm/prefetch.hpp> #include <cute/algorithm/axpby.hpp> #include <cute/algorithm/gemm.hpp> #include <cute/algorithm/cooperative_copy.hpp> #include <cute/algorithm/cooperative_gemm.hpp>
include/cute/tensor.hpp/0
{ "file_path": "include/cute/tensor.hpp", "repo_id": "include", "token_count": 13997 }
19
/*************************************************************************************************** * Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. * SPDX-License-Identifier: BSD-3-Clause * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * **************************************************************************************************/ /*! \file \brief Statically sized array of elements that accommodates all CUTLASS-supported numeric types and is safe to use in a union. */ #pragma once #include "cutlass/cutlass.h" #include "cutlass/functional.h" #include "cutlass/numeric_types.h" namespace cutlass { //////////////////////////////////////////////////////////////////////////////////////////////////// /// Statically sized array for any data type template < typename T, int N, bool RegisterSized = sizeof_bits<T>::value >= 32 > struct Array; //////////////////////////////////////////////////////////////////////////////////////////////////// /// Defines the size of an Array<> in bits template <typename T, int N, bool RegisterSized> struct sizeof_bits<Array<T, N, RegisterSized> > { static constexpr int value = sizeof(Array<T, N, RegisterSized>) * 8; }; //////////////////////////////////////////////////////////////////////////////////////////////////// /// Returns true if the argument is a power of 2 CUTLASS_HOST_DEVICE constexpr bool ispow2(unsigned x) { return x && (!(x & (x - 1))); } //////////////////////////////////////////////////////////////////////////////////////////////////// /// Returns the largest power of two not greater than the argument. CUTLASS_HOST_DEVICE constexpr unsigned floor_pow_2(unsigned x) { return (x == 0 || ispow2(x)) ? x : ((floor_pow_2(x >> 1)) << 1); } //////////////////////////////////////////////////////////////////////////////////////////////////// /// Statically sized array for any data type template < typename T, int N > struct Array<T, N, true> { /// Storage type using Storage = T; /// Element type using Element = T; /// Number of storage elements //static std::size_t const kStorageElements = N; static constexpr size_t kStorageElements = N; /// Number of logical elements static constexpr size_t kElements = N; // // C++ standard members // typedef T value_type; typedef size_t size_type; typedef ptrdiff_t difference_type; typedef value_type &reference; typedef value_type const & const_reference; typedef value_type *pointer; typedef value_type const * const_pointer; // // Iterators // /// Bidirectional iterator over elements class iterator { /// Pointer to object T *ptr_; public: CUTLASS_HOST_DEVICE iterator(): ptr_(nullptr) { } CUTLASS_HOST_DEVICE iterator(T *_ptr): ptr_(_ptr) { } CUTLASS_HOST_DEVICE iterator &operator++() { ++ptr_; return *this; } CUTLASS_HOST_DEVICE iterator &operator--() { --ptr_; return *this; } CUTLASS_HOST_DEVICE iterator operator++(int) { iterator ret(*this); ++ptr_; return ret; } CUTLASS_HOST_DEVICE iterator operator--(int) { iterator ret(*this); --ptr_; return ret; } CUTLASS_HOST_DEVICE T &operator*() const { return *ptr_; } CUTLASS_HOST_DEVICE bool operator==(iterator const &other) const { return ptr_ == other.ptr_; } CUTLASS_HOST_DEVICE bool operator!=(iterator const &other) const { return ptr_ != other.ptr_; } }; /// Bidirectional constant iterator over elements class const_iterator { /// Pointer to object const T *ptr_; public: CUTLASS_HOST_DEVICE const_iterator(): ptr_(nullptr) { } CUTLASS_HOST_DEVICE const_iterator(T const *_ptr): ptr_(_ptr) { } CUTLASS_HOST_DEVICE const_iterator &operator++() { ++ptr_; return *this; } CUTLASS_HOST_DEVICE const_iterator &operator--() { --ptr_; return *this; } CUTLASS_HOST_DEVICE const_iterator operator++(int) { const_iterator ret(*this); ++ptr_; return ret; } CUTLASS_HOST_DEVICE const_iterator operator--(int) { const_iterator ret(*this); --ptr_; return ret; } CUTLASS_HOST_DEVICE T const &operator*() const { return *ptr_; } CUTLASS_HOST_DEVICE bool operator==(const_iterator const &other) const { return ptr_ == other.ptr_; } CUTLASS_HOST_DEVICE bool operator!=(const_iterator const &other) const { return ptr_ != other.ptr_; } }; /// Bidirectional iterator over elements class reverse_iterator { /// Pointer to object T *ptr_; public: CUTLASS_HOST_DEVICE reverse_iterator(): ptr_(nullptr) { } CUTLASS_HOST_DEVICE reverse_iterator(T *_ptr): ptr_(_ptr) { } CUTLASS_HOST_DEVICE reverse_iterator &operator++() { --ptr_; return *this; } CUTLASS_HOST_DEVICE reverse_iterator &operator--() { ++ptr_; return *this; } CUTLASS_HOST_DEVICE reverse_iterator operator++(int) { iterator ret(*this); --ptr_; return ret; } CUTLASS_HOST_DEVICE reverse_iterator operator--(int) { iterator ret(*this); ++ptr_; return ret; } CUTLASS_HOST_DEVICE T &operator*() const { return *(ptr_ - 1); } CUTLASS_HOST_DEVICE bool operator==(reverse_iterator const &other) const { return ptr_ == other.ptr_; } CUTLASS_HOST_DEVICE bool operator!=(reverse_iterator const &other) const { return ptr_ != other.ptr_; } }; /// Bidirectional constant iterator over elements class const_reverse_iterator { /// Pointer to object T const *ptr_; public: CUTLASS_HOST_DEVICE const_reverse_iterator(): ptr_(nullptr) { } CUTLASS_HOST_DEVICE const_reverse_iterator(T const *_ptr): ptr_(_ptr) { } CUTLASS_HOST_DEVICE const_reverse_iterator &operator++() { --ptr_; return *this; } CUTLASS_HOST_DEVICE const_reverse_iterator &operator--() { ++ptr_; return *this; } CUTLASS_HOST_DEVICE const_reverse_iterator operator++(int) { const_reverse_iterator ret(*this); --ptr_; return ret; } CUTLASS_HOST_DEVICE const_reverse_iterator operator--(int) { const_reverse_iterator ret(*this); ++ptr_; return ret; } CUTLASS_HOST_DEVICE T const &operator*() const { return *(ptr_ - 1); } CUTLASS_HOST_DEVICE bool operator==(const_iterator const &other) const { return ptr_ == other.ptr_; } CUTLASS_HOST_DEVICE bool operator!=(const_iterator const &other) const { return ptr_ != other.ptr_; } }; /// Internal storage Storage storage[kElements]; /// Efficient clear method CUTLASS_HOST_DEVICE void clear() { fill(T(0)); } CUTLASS_HOST_DEVICE reference at(size_type pos) { return reinterpret_cast<reference>(storage[pos]); } CUTLASS_HOST_DEVICE const_reference at(size_type pos) const { return reinterpret_cast<const_reference>(storage[pos]); } CUTLASS_HOST_DEVICE reference operator[](size_type pos) { return reinterpret_cast<reference>(storage[pos]); } CUTLASS_HOST_DEVICE const_reference operator[](size_type pos) const { return reinterpret_cast<const_reference>(storage[pos]); } CUTLASS_HOST_DEVICE reference front() { return reinterpret_cast<reference>(storage[0]); } CUTLASS_HOST_DEVICE const_reference front() const { return reinterpret_cast<const_reference>(storage[0]); } CUTLASS_HOST_DEVICE reference back() { return reinterpret_cast<reference>(storage[kStorageElements - 1]); } CUTLASS_HOST_DEVICE const_reference back() const { return reinterpret_cast<const_reference>(storage[kStorageElements - 1]); } CUTLASS_HOST_DEVICE pointer data() { return reinterpret_cast<pointer>(storage); } CUTLASS_HOST_DEVICE const_pointer data() const { return reinterpret_cast<const_pointer>(storage); } CUTLASS_HOST_DEVICE pointer raw_data() { return reinterpret_cast<pointer>(storage); } CUTLASS_HOST_DEVICE const_pointer raw_data() const { return reinterpret_cast<const_pointer>(storage); } CUTLASS_HOST_DEVICE constexpr bool empty() const { return !kElements; } CUTLASS_HOST_DEVICE constexpr size_type size() const { return kElements; } CUTLASS_HOST_DEVICE constexpr size_type max_size() const { return kElements; } CUTLASS_HOST_DEVICE void fill(T const &value) { CUTLASS_PRAGMA_UNROLL for (int i = 0; i < int(kElements); ++i) { storage[i] = static_cast<Storage>(value); } } CUTLASS_HOST_DEVICE iterator begin() { return iterator(storage); } CUTLASS_HOST_DEVICE const_iterator begin() const { return cbegin(); } CUTLASS_HOST_DEVICE const_iterator cbegin() const { return const_iterator(storage); } CUTLASS_HOST_DEVICE iterator end() { return iterator(reinterpret_cast<pointer>(storage + kStorageElements)); } CUTLASS_HOST_DEVICE const_iterator end() const { return cend(); } CUTLASS_HOST_DEVICE const_iterator cend() const { return const_iterator(reinterpret_cast<const_pointer>(storage + kStorageElements)); } CUTLASS_HOST_DEVICE reverse_iterator rbegin() { return reverse_iterator(reinterpret_cast<pointer>(storage + kStorageElements)); } CUTLASS_HOST_DEVICE const_reverse_iterator rbegin() const { return crbegin(); } CUTLASS_HOST_DEVICE const_reverse_iterator crbegin() const { return const_reverse_iterator(reinterpret_cast<const_pointer>(storage + kStorageElements)); } CUTLASS_HOST_DEVICE reverse_iterator rend() { return reverse_iterator(reinterpret_cast<pointer>(storage)); } CUTLASS_HOST_DEVICE const_reverse_iterator rend() const { return crend(); } CUTLASS_HOST_DEVICE const_reverse_iterator crend() const { return const_reverse_iterator(reinterpret_cast<const_pointer>(storage)); } // // Comparison operators // }; //////////////////////////////////////////////////////////////////////////////////////////////////// // Factories //////////////////////////////////////////////////////////////////////////////////////////////////// template <typename Element> CUTLASS_HOST_DEVICE Array<Element, 1> make_Array(Element x) { return {x}; } template <typename Element> CUTLASS_HOST_DEVICE Array<Element, 2> make_Array(Element x, Element y) { return {x,y}; } template <typename Element> CUTLASS_HOST_DEVICE Array<Element, 3> make_Array(Element x, Element y, Element z) { return {x,y,z}; } template <typename Element> CUTLASS_HOST_DEVICE Array<Element, 4> make_Array(Element x, Element y, Element z, Element w) { return {x,y,z,w}; } ///////////////////////////////////////////////////////////////////////////////////////////////// // functional.h numeric specializations ///////////////////////////////////////////////////////////////////////////////////////////////// template <typename T, int N> struct absolute_value_op< Array<T, N> > { CUTLASS_HOST_DEVICE Array<T, N> operator()(Array<T, N> const &lhs) const { Array<T, N> result; absolute_value_op<T> scalar_op; CUTLASS_PRAGMA_UNROLL for (int i = 0; i < N; ++i) { result[i] = scalar_op(lhs[i]); } return result; } }; template <typename T, int N> struct plus<Array<T, N>> { CUTLASS_HOST_DEVICE Array<T, N> operator()(Array<T, N> const &lhs, Array<T, N> const &rhs) const { Array<T, N> result; plus<T> scalar_op; CUTLASS_PRAGMA_UNROLL for (int i = 0; i < N; ++i) { result[i] = scalar_op(lhs[i], rhs[i]); } return result; } CUTLASS_HOST_DEVICE Array<T, N> operator()(Array<T, N> const &lhs, T const &scalar) const { Array<T, N> result; plus<T> scalar_op; CUTLASS_PRAGMA_UNROLL for (int i = 0; i < N; ++i) { result[i] = scalar_op(lhs[i], scalar); } return result; } CUTLASS_HOST_DEVICE Array<T, N> operator()( T const &scalar, Array<T, N> const &rhs) const { Array<T, N> result; plus<T> scalar_op; CUTLASS_PRAGMA_UNROLL for (int i = 0; i < N; ++i) { result[i] = scalar_op(scalar, rhs[i]); } return result; } }; template <typename T, int N> struct minus<Array<T, N>> { CUTLASS_HOST_DEVICE Array<T, N> operator()(Array<T, N> const &lhs, Array<T, N> const &rhs) const { Array<T, N> result; minus<T> scalar_op; CUTLASS_PRAGMA_UNROLL for (int i = 0; i < N; ++i) { result[i] = scalar_op(lhs[i], rhs[i]); } return result; } CUTLASS_HOST_DEVICE Array<T, N> operator()(Array<T, N> const &lhs, T const &scalar) const { Array<T, N> result; minus<T> scalar_op; CUTLASS_PRAGMA_UNROLL for (int i = 0; i < N; ++i) { result[i] = scalar_op(lhs[i], scalar); } return result; } CUTLASS_HOST_DEVICE Array<T, N> operator()( T const &scalar, Array<T, N> const &rhs) const { Array<T, N> result; minus<T> scalar_op; CUTLASS_PRAGMA_UNROLL for (int i = 0; i < N; ++i) { result[i] = scalar_op(scalar, rhs[i]); } return result; } }; template <typename T, int N> struct multiplies<Array<T, N>> { CUTLASS_HOST_DEVICE Array<T, N> operator()(Array<T, N> const &lhs, Array<T, N> const &rhs) const { Array<T, N> result; multiplies<T> scalar_op; CUTLASS_PRAGMA_UNROLL for (int i = 0; i < N; ++i) { result[i] = scalar_op(lhs[i], rhs[i]); } return result; } CUTLASS_HOST_DEVICE Array<T, N> operator()(Array<T, N> const &lhs, T const &scalar) const { Array<T, N> result; multiplies<T> scalar_op; CUTLASS_PRAGMA_UNROLL for (int i = 0; i < N; ++i) { result[i] = scalar_op(lhs[i], scalar); } return result; } CUTLASS_HOST_DEVICE Array<T, N> operator()( T const &scalar, Array<T, N> const &rhs) const { Array<T, N> result; multiplies<T> scalar_op; CUTLASS_PRAGMA_UNROLL for (int i = 0; i < N; ++i) { result[i] = scalar_op(scalar, rhs[i]); } return result; } }; template <typename T, int N, bool PropogateNaN> struct maximum_absolute_value_reduction<Array<T, N>, PropogateNaN> { CUTLASS_HOST_DEVICE T operator() (T const& scalar, Array<T, N> const& rhs) const { T result = scalar; maximum_absolute_value_reduction<T, PropogateNaN> scalar_op; CUTLASS_PRAGMA_UNROLL for (int i = 0; i < N; ++i) { result = scalar_op(result, rhs[i]); } return result; } }; template <typename T, int N> struct scale<Array<T, N>> { T const scaling_factor_; CUTLASS_HOST_DEVICE scale(T scaling_factor) : scaling_factor_(scaling_factor) { } CUTLASS_HOST_DEVICE Array<T, N> operator()(Array<T, N> const & rhs) const { Array<T, N> result; CUTLASS_PRAGMA_UNROLL for (int i = 0; i < N; ++i) { result[i] = rhs[i] * scaling_factor_; } return result; } }; template <typename T, int N> struct divides<Array<T, N>> { CUTLASS_HOST_DEVICE Array<T, N> operator()(Array<T, N> const &lhs, Array<T, N> const &rhs) const { Array<T, N> result; divides<T> scalar_op; CUTLASS_PRAGMA_UNROLL for (int i = 0; i < N; ++i) { result[i] = scalar_op(lhs[i], rhs[i]); } return result; } CUTLASS_HOST_DEVICE Array<T, N> operator()(Array<T, N> const &lhs, T const &scalar) const { Array<T, N> result; divides<T> scalar_op; CUTLASS_PRAGMA_UNROLL for (int i = 0; i < N; ++i) { result[i] = scalar_op(lhs[i], scalar); } return result; } CUTLASS_HOST_DEVICE Array<T, N> operator()( T const &scalar, Array<T, N> const &rhs) const { Array<T, N> result; divides<T> scalar_op; CUTLASS_PRAGMA_UNROLL for (int i = 0; i < N; ++i) { result[i] = scalar_op(scalar, rhs[i]); } return result; } }; template <typename T, int N> struct reciprocal_approximate<Array<T, N>> { CUTLASS_HOST_DEVICE Array<T, N> operator()(Array<T, N> const &lhs) const { Array<T, N> result; reciprocal_approximate<T> scalar_op; CUTLASS_PRAGMA_UNROLL for (int i = 0; i < N; ++i) { result[i] = scalar_op(lhs[i]); } return result; } }; template <typename T, int N> struct maximum<Array<T, N>, false> { CUTLASS_HOST_DEVICE Array<T, N> operator()(Array<T, N> const &lhs, Array<T, N> const &rhs) const { Array<T, N> result; maximum<T, false> scalar_op; CUTLASS_PRAGMA_UNROLL for (int i = 0; i < N; ++i) { result[i] = scalar_op(lhs[i], rhs[i]); } return result; } CUTLASS_HOST_DEVICE Array<T, N> operator()(Array<T, N> const &lhs, T const &scalar) const { Array<T, N> result; maximum<T, false> scalar_op; CUTLASS_PRAGMA_UNROLL for (int i = 0; i < N; ++i) { result[i] = scalar_op(lhs[i], scalar); } return result; } CUTLASS_HOST_DEVICE Array<T, N> operator()(T const &scalar, Array<T, N> const &rhs) const { Array<T, N> result; maximum<T, false> scalar_op; CUTLASS_PRAGMA_UNROLL for (int i = 0; i < N; ++i) { result[i] = scalar_op(scalar, rhs[i]); } return result; } }; template <typename T, int N> struct maximum<Array<T, N>, true> { CUTLASS_HOST_DEVICE Array<T, N> operator()(Array<T, N> const &lhs, Array<T, N> const &rhs) const { Array<T, N> result; maximum<T, true> scalar_op; CUTLASS_PRAGMA_UNROLL for (int i = 0; i < N; ++i) { result[i] = scalar_op(lhs[i], rhs[i]); } return result; } CUTLASS_HOST_DEVICE Array<T, N> operator()(Array<T, N> const &lhs, T const &scalar) const { Array<T, N> result; maximum<T, true> scalar_op; CUTLASS_PRAGMA_UNROLL for (int i = 0; i < N; ++i) { result[i] = scalar_op(lhs[i], scalar); } return result; } CUTLASS_HOST_DEVICE Array<T, N> operator()(T const &scalar, Array<T, N> const &rhs) const { Array<T, N> result; maximum<T, true> scalar_op; CUTLASS_PRAGMA_UNROLL for (int i = 0; i < N; ++i) { result[i] = scalar_op(scalar, rhs[i]); } return result; } }; template <typename T, int N> struct minimum<Array<T, N>, false> { CUTLASS_HOST_DEVICE static T scalar_op(T const &lhs, T const &rhs) { return (rhs < lhs ? rhs : lhs); } CUTLASS_HOST_DEVICE Array<T, N> operator()(Array<T, N> const &lhs, Array<T, N> const &rhs) const { Array<T, N> result; minimum<T, false> scalar_op; CUTLASS_PRAGMA_UNROLL for (int i = 0; i < N; ++i) { result[i] = scalar_op(lhs[i], rhs[i]); } return result; } CUTLASS_HOST_DEVICE Array<T, N> operator()(Array<T, N> const &lhs, T const &scalar) const { Array<T, N> result; minimum<T, false> scalar_op; CUTLASS_PRAGMA_UNROLL for (int i = 0; i < N; ++i) { result[i] = scalar_op(lhs[i], scalar); } return result; } CUTLASS_HOST_DEVICE Array<T, N> operator()(T const &scalar, Array<T, N> const &rhs) const { Array<T, N> result; minimum<T, false> scalar_op; CUTLASS_PRAGMA_UNROLL for (int i = 0; i < N; ++i) { result[i] = scalar_op(scalar, rhs[i]); } return result; } }; template <typename T, int N> struct minimum<Array<T, N>, true> { CUTLASS_HOST_DEVICE static T scalar_op(T const &lhs, T const &rhs) { return (rhs < lhs ? rhs : lhs); } CUTLASS_HOST_DEVICE Array<T, N> operator()(Array<T, N> const &lhs, Array<T, N> const &rhs) const { Array<T, N> result; minimum<T, true> scalar_op; CUTLASS_PRAGMA_UNROLL for (int i = 0; i < N; ++i) { result[i] = scalar_op(lhs[i], rhs[i]); } return result; } CUTLASS_HOST_DEVICE Array<T, N> operator()(Array<T, N> const &lhs, T const &scalar) const { Array<T, N> result; minimum<T, true> scalar_op; CUTLASS_PRAGMA_UNROLL for (int i = 0; i < N; ++i) { result[i] = scalar_op(lhs[i], scalar); } return result; } CUTLASS_HOST_DEVICE Array<T, N> operator()(T const &scalar, Array<T, N> const &rhs) const { Array<T, N> result; minimum<T, true> scalar_op; CUTLASS_PRAGMA_UNROLL for (int i = 0; i < N; ++i) { result[i] = scalar_op(scalar, rhs[i]); } return result; } }; template <typename T, int N> struct negate<Array<T, N>> { CUTLASS_HOST_DEVICE Array<T, N> operator()(Array<T, N> const &lhs) const { Array<T, N> result; negate<T> scalar_op; CUTLASS_PRAGMA_UNROLL for (int i = 0; i < N; ++i) { result[i] = scalar_op(lhs[i]); } return result; } }; /// Fused multiply-add template <typename T, int N> struct multiply_add<Array<T, N>, Array<T, N>, Array<T, N>> { CUTLASS_HOST_DEVICE Array<T, N> operator()(Array<T, N> const &a, Array<T, N> const &b, Array<T, N> const &c) const { Array<T, N> result; multiply_add<T> scalar_op; CUTLASS_PRAGMA_UNROLL for (int i = 0; i < N; ++i) { result[i] = scalar_op(a[i], b[i], c[i]); } return result; } CUTLASS_HOST_DEVICE Array<T, N> operator()(Array<T, N> const &a, T const &scalar, Array<T, N> const &c) const { Array<T, N> result; multiply_add<T> scalar_op; CUTLASS_PRAGMA_UNROLL for (int i = 0; i < N; ++i) { result[i] = scalar_op(a[i], scalar, c[i]); } return result; } CUTLASS_HOST_DEVICE Array<T, N> operator()(T const &scalar, Array<T, N> const &b, Array<T, N> const &c) const { Array<T, N> result; multiply_add<T> scalar_op; CUTLASS_PRAGMA_UNROLL for (int i = 0; i < N; ++i) { result[i] = scalar_op(scalar, b[i], c[i]); } return result; } }; /// Fused square-and-plus template <typename T, int N> struct square_and_plus<Array<T, N>> { CUTLASS_HOST_DEVICE Array<T, N> operator()(Array<T, N> const &lhs, Array<T, N> const &rhs) const { multiply_add<Array<T, N>, Array<T, N>, Array<T, N>> ma_op; return ma_op(rhs, rhs, lhs); } CUTLASS_HOST_DEVICE Array<T, N> operator()(Array<T, N> const &lhs, T const &rhs) const { plus<Array<T, N>> plus_op; multiplies<T> multiplies_op; return plus_op(multiplies_op(rhs, rhs), lhs); } }; /// Inverse-square-root template <typename T, int N> struct inverse_square_root<Array<T, N>> { CUTLASS_HOST_DEVICE Array<T, N> operator()(Array<T, N> const &a) const { Array<T, N> result; inverse_square_root<T> scalar_op; CUTLASS_PRAGMA_UNROLL for (int i = 0; i < N; ++i) { result[i] = scalar_op(a[i]); } return result; } }; template <int N> struct inverse_square_root<Array<half_t, N>> { CUTLASS_HOST_DEVICE Array<half_t, N> operator()(Array<half_t, N> const & a) const { Array<half_t, N> result; #if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 530) __half2 *result_ptr = reinterpret_cast<__half2 *>(&result); __half2 const *a_ptr = reinterpret_cast<__half2 const *>(&a); CUTLASS_PRAGMA_UNROLL for (int i = 0; i < N / 2; ++i) { result_ptr[i] = h2rsqrt(a_ptr[i]); } if constexpr (N % 2) { __half const *a_residual_ptr = reinterpret_cast<__half const *>(&a); __half d_residual = hrsqrt(a_residual_ptr[N - 1]); result[N - 1] = reinterpret_cast<half_t const &>(d_residual); } #else inverse_square_root<half_t> scalar_op; CUTLASS_PRAGMA_UNROLL for (int i = 0; i < N; ++i) { result[i] = scalar_op(a[i]); } #endif return result; } }; /// Fused multiply-add-relu0 template <typename T, int N> struct multiply_add_relu0<Array<T, N>, Array<T, N>, Array<T, N>> { CUTLASS_HOST_DEVICE Array<T, N> operator()(Array<T, N> const &a, Array<T, N> const &b, Array<T, N> const &c) const { Array<T, N> result; multiply_add<T> scalar_op; maximum<T> mx; CUTLASS_PRAGMA_UNROLL for (int i = 0; i < N; ++i) { result[i] = mx(scalar_op(a[i], b[i], c[i]), T(0)); } return result; } CUTLASS_HOST_DEVICE Array<T, N> operator()(Array<T, N> const &a, T const &scalar, Array<T, N> const &c) const { Array<T, N> result; multiply_add<T> scalar_op; maximum<T> mx; CUTLASS_PRAGMA_UNROLL for (int i = 0; i < N; ++i) { result[i] = mx(scalar_op(a[i], scalar, c[i]), T(0)); } return result; } CUTLASS_HOST_DEVICE Array<T, N> operator()(T const &scalar, Array<T, N> const &b, Array<T, N> const &c) const { Array<T, N> result; multiply_add<T> scalar_op; maximum<T> mx; CUTLASS_PRAGMA_UNROLL for (int i = 0; i < N; ++i) { result[i] = mx(scalar_op(scalar, b[i], c[i]), T(0)); } return result; } }; template <typename T, int N> struct conjugate<Array<T, N> > { CUTLASS_HOST_DEVICE Array<T, N> operator()(Array<T, N> const &a) const { conjugate<T> conj_op; Array<T, N> ca; CUTLASS_PRAGMA_UNROLL for (int i = 0; i < N; ++i) { ca[i] = conj_op(a[i]); } return ca; } }; ///////////////////////////////////////////////////////////////////////////////////////////////// // functional.h numeric specializations targeting SIMD instructions in device code. ///////////////////////////////////////////////////////////////////////////////////////////////// template <int N> struct plus<Array<half_t, N>> { CUTLASS_HOST_DEVICE Array<half_t, N> operator()(Array<half_t, N> const & lhs, Array<half_t, N> const &rhs) const { Array<half_t, N> result; #if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 530) __half2 *result_ptr = reinterpret_cast<__half2 *>(&result); __half2 const *lhs_ptr = reinterpret_cast<__half2 const *>(&lhs); __half2 const *rhs_ptr = reinterpret_cast<__half2 const *>(&rhs); CUTLASS_PRAGMA_UNROLL for (int i = 0; i < N / 2; ++i) { result_ptr[i] = __hadd2(lhs_ptr[i], rhs_ptr[i]); } if constexpr (N % 2) { __half const *a_residual_ptr = reinterpret_cast<__half const *>(&lhs); __half const *b_residual_ptr = reinterpret_cast<__half const *>(&rhs); __half d_residual = __hadd(a_residual_ptr[N - 1], b_residual_ptr[N - 1]); result[N - 1] = reinterpret_cast<half_t const &>(d_residual); } #else CUTLASS_PRAGMA_UNROLL for (int i = 0; i < N; ++i) { result[i] = lhs[i] + rhs[i]; } #endif return result; } CUTLASS_HOST_DEVICE Array<half_t, N> operator()(half_t const & lhs, Array<half_t, N> const &rhs) const { Array<half_t, N> result; #if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 530) __half2 *result_ptr = reinterpret_cast<__half2 *>(&result); __half2 lhs_pair = __half2half2(reinterpret_cast<__half const &>(lhs)); __half2 const *rhs_ptr = reinterpret_cast<__half2 const *>(&rhs); CUTLASS_PRAGMA_UNROLL for (int i = 0; i < N / 2; ++i) { result_ptr[i] = __hadd2(lhs_pair, rhs_ptr[i]); } if constexpr (N % 2) { __half const *b_residual_ptr = reinterpret_cast<__half const *>(&rhs); __half d_residual = __hadd(reinterpret_cast<__half const &>(lhs), b_residual_ptr[N - 1]); result[N - 1] = reinterpret_cast<half_t const &>(d_residual); } #else CUTLASS_PRAGMA_UNROLL for (int i = 0; i < N; ++i) { result[i] = lhs + rhs[i]; } #endif return result; } CUTLASS_HOST_DEVICE Array<half_t, N> operator()(Array<half_t, N> const & lhs, half_t const &rhs) const { Array<half_t, N> result; #if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 530) __half2 *result_ptr = reinterpret_cast<__half2 *>(&result); __half2 const *lhs_ptr = reinterpret_cast<__half2 const *>(&lhs); __half2 rhs_pair = __half2half2(reinterpret_cast<__half const &>(rhs)); CUTLASS_PRAGMA_UNROLL for (int i = 0; i < N / 2; ++i) { result_ptr[i] = __hadd2(lhs_ptr[i], rhs_pair); } if constexpr (N % 2) { __half const *a_residual_ptr = reinterpret_cast<__half const *>(&lhs); __half d_residual = __hadd(a_residual_ptr[N - 1], reinterpret_cast<__half const &>(rhs)); result[N - 1] = reinterpret_cast<half_t const &>(d_residual); } #else CUTLASS_PRAGMA_UNROLL for (int i = 0; i < N; ++i) { result[i] = lhs[i] + rhs; } #endif return result; } }; template <int N> struct minus<Array<half_t, N>> { CUTLASS_HOST_DEVICE Array<half_t, N> operator()(Array<half_t, N> const & lhs, Array<half_t, N> const &rhs) const { Array<half_t, N> result; #if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 530) __half2 *result_ptr = reinterpret_cast<__half2 *>(&result); __half2 const *lhs_ptr = reinterpret_cast<__half2 const *>(&lhs); __half2 const *rhs_ptr = reinterpret_cast<__half2 const *>(&rhs); CUTLASS_PRAGMA_UNROLL for (int i = 0; i < N / 2; ++i) { result_ptr[i] = __hsub2(lhs_ptr[i], rhs_ptr[i]); } if constexpr (N % 2) { __half const *a_residual_ptr = reinterpret_cast<__half const *>(&lhs); __half const *b_residual_ptr = reinterpret_cast<__half const *>(&rhs); __half d_residual = __hsub(a_residual_ptr[N - 1], b_residual_ptr[N - 1]); result[N - 1] = reinterpret_cast<half_t const &>(d_residual); } #else CUTLASS_PRAGMA_UNROLL for (int i = 0; i < N; ++i) { result[i] = lhs[i] - rhs[i]; } #endif return result; } CUTLASS_HOST_DEVICE Array<half_t, N> operator()(half_t const & lhs, Array<half_t, N> const &rhs) const { Array<half_t, N> result; #if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 530) __half2 *result_ptr = reinterpret_cast<__half2 *>(&result); __half2 lhs_pair = __half2half2(reinterpret_cast<__half const &>(lhs)); __half2 const *rhs_ptr = reinterpret_cast<__half2 const *>(&rhs); CUTLASS_PRAGMA_UNROLL for (int i = 0; i < N / 2; ++i) { result_ptr[i] = __hsub2(lhs_pair, rhs_ptr[i]); } if constexpr (N % 2) { __half const *b_residual_ptr = reinterpret_cast<__half const *>(&rhs); __half d_residual = __hsub(reinterpret_cast<__half const &>(lhs), b_residual_ptr[N - 1]); result[N - 1] = reinterpret_cast<half_t const &>(d_residual); } #else CUTLASS_PRAGMA_UNROLL for (int i = 0; i < N; ++i) { result[i] = lhs - rhs[i]; } #endif return result; } CUTLASS_HOST_DEVICE Array<half_t, N> operator()(Array<half_t, N> const & lhs, half_t const &rhs) const { Array<half_t, N> result; #if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 530) __half2 *result_ptr = reinterpret_cast<__half2 *>(&result); __half2 const *lhs_ptr = reinterpret_cast<__half2 const *>(&lhs); __half2 rhs_pair = __half2half2(reinterpret_cast<__half const &>(rhs)); CUTLASS_PRAGMA_UNROLL for (int i = 0; i < N / 2; ++i) { result_ptr[i] = __hsub2(lhs_ptr[i], rhs_pair); } if constexpr (N % 2) { __half const *a_residual_ptr = reinterpret_cast<__half const *>(&lhs); __half d_residual = __hsub(a_residual_ptr[N - 1], reinterpret_cast<__half const &>(rhs)); result[N - 1] = reinterpret_cast<half_t const &>(d_residual); } #else CUTLASS_PRAGMA_UNROLL for (int i = 0; i < N; ++i) { result[i] = lhs[i] - rhs; } #endif return result; } }; template <int N> struct multiplies<Array<half_t, N>> { CUTLASS_HOST_DEVICE Array<half_t, N> operator()(Array<half_t, N> const & lhs, Array<half_t, N> const &rhs) const { Array<half_t, N> result; #if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 530) __half2 *result_ptr = reinterpret_cast<__half2 *>(&result); __half2 const *lhs_ptr = reinterpret_cast<__half2 const *>(&lhs); __half2 const *rhs_ptr = reinterpret_cast<__half2 const *>(&rhs); CUTLASS_PRAGMA_UNROLL for (int i = 0; i < N / 2; ++i) { result_ptr[i] = __hmul2(lhs_ptr[i], rhs_ptr[i]); } if constexpr (N % 2) { __half const *a_residual_ptr = reinterpret_cast<__half const *>(&lhs); __half const *b_residual_ptr = reinterpret_cast<__half const *>(&rhs); __half d_residual = __hmul(a_residual_ptr[N - 1], b_residual_ptr[N - 1]); result[N - 1] = reinterpret_cast<half_t const &>(d_residual); } #else CUTLASS_PRAGMA_UNROLL for (int i = 0; i < N; ++i) { result[i] = lhs[i] * rhs[i]; } #endif return result; } CUTLASS_HOST_DEVICE Array<half_t, N> operator()(half_t const & lhs, Array<half_t, N> const &rhs) const { Array<half_t, N> result; #if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 530) __half2 *result_ptr = reinterpret_cast<__half2 *>(&result); __half2 lhs_pair = __half2half2(reinterpret_cast<__half const &>(lhs)); __half2 const *rhs_ptr = reinterpret_cast<__half2 const *>(&rhs); CUTLASS_PRAGMA_UNROLL for (int i = 0; i < N / 2; ++i) { result_ptr[i] = __hmul2(lhs_pair, rhs_ptr[i]); } if constexpr (N % 2) { __half const *b_residual_ptr = reinterpret_cast<__half const *>(&rhs); __half d_residual = __hmul( reinterpret_cast<__half const &>(lhs), b_residual_ptr[N - 1]); result[N - 1] = reinterpret_cast<half_t const &>(d_residual); } #else CUTLASS_PRAGMA_UNROLL for (int i = 0; i < N; ++i) { result[i] = lhs * rhs[i]; } #endif return result; } CUTLASS_HOST_DEVICE Array<half_t, N> operator()(Array<half_t, N> const & lhs, half_t const &rhs) const { Array<half_t, N> result; #if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 530) __half2 *result_ptr = reinterpret_cast<__half2 *>(&result); __half2 const *lhs_ptr = reinterpret_cast<__half2 const *>(&lhs); __half2 rhs_pair = __half2half2(reinterpret_cast<__half const &>(rhs)); CUTLASS_PRAGMA_UNROLL for (int i = 0; i < N / 2; ++i) { result_ptr[i] = __hmul2(lhs_ptr[i], rhs_pair); } if constexpr (N % 2) { __half const *a_residual_ptr = reinterpret_cast<__half const *>(&lhs); __half d_residual = __hmul( a_residual_ptr[N - 1], reinterpret_cast<__half const &>(rhs)); result[N - 1] = reinterpret_cast<half_t const &>(d_residual); } #else CUTLASS_PRAGMA_UNROLL for (int i = 0; i < N; ++i) { result[i] = lhs[i] * rhs; } #endif return result; } }; template <int N> struct divides<Array<half_t, N>> { CUTLASS_HOST_DEVICE Array<half_t, N> operator()(Array<half_t, N> const & lhs, Array<half_t, N> const &rhs) const { Array<half_t, N> result; #if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 530) __half2 *result_ptr = reinterpret_cast<__half2 *>(&result); __half2 const *lhs_ptr = reinterpret_cast<__half2 const *>(&lhs); __half2 const *rhs_ptr = reinterpret_cast<__half2 const *>(&rhs); CUTLASS_PRAGMA_UNROLL for (int i = 0; i < N / 2; ++i) { result_ptr[i] = __h2div(lhs_ptr[i], rhs_ptr[i]); } if constexpr (N % 2) { __half const *a_residual_ptr = reinterpret_cast<__half const *>(&lhs); __half const *b_residual_ptr = reinterpret_cast<__half const *>(&rhs); __half d_residual = __hdiv( a_residual_ptr[N - 1], b_residual_ptr[N - 1]); result[N - 1] = reinterpret_cast<half_t const &>(d_residual); } #else CUTLASS_PRAGMA_UNROLL for (int i = 0; i < N; ++i) { result[i] = lhs[i] / rhs[i]; } #endif return result; } CUTLASS_HOST_DEVICE Array<half_t, N> operator()(half_t const & lhs, Array<half_t, N> const &rhs) const { Array<half_t, N> result; #if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 530) __half2 *result_ptr = reinterpret_cast<__half2 *>(&result); __half2 lhs_pair = __half2half2(reinterpret_cast<__half const &>(lhs)); __half2 const *rhs_ptr = reinterpret_cast<__half2 const *>(&rhs); CUTLASS_PRAGMA_UNROLL for (int i = 0; i < N / 2; ++i) { result_ptr[i] = __h2div(lhs_pair, rhs_ptr[i]); } if constexpr (N % 2) { __half const *b_residual_ptr = reinterpret_cast<__half const *>(&rhs); __half d_residual = __hdiv( reinterpret_cast<__half const &>(lhs), b_residual_ptr[N - 1]); result[N - 1] = reinterpret_cast<half_t const &>(d_residual); } #else CUTLASS_PRAGMA_UNROLL for (int i = 0; i < N; ++i) { result[i] = lhs / rhs[i]; } #endif return result; } CUTLASS_HOST_DEVICE Array<half_t, N> operator()(Array<half_t, N> const & lhs, half_t const &rhs) const { Array<half_t, N> result; #if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 530) __half2 *result_ptr = reinterpret_cast<__half2 *>(&result); __half2 const *lhs_ptr = reinterpret_cast<__half2 const *>(&lhs); __half2 rhs_pair = __half2half2(reinterpret_cast<__half const &>(rhs)); CUTLASS_PRAGMA_UNROLL for (int i = 0; i < N / 2; ++i) { result_ptr[i] = __h2div(lhs_ptr[i], rhs_pair); } if constexpr (N % 2) { __half const *a_residual_ptr = reinterpret_cast<__half const *>(&lhs); __half d_residual = __hdiv( a_residual_ptr[N - 1], reinterpret_cast<__half const &>(rhs)); result[N - 1] = reinterpret_cast<half_t const &>(d_residual); } #else CUTLASS_PRAGMA_UNROLL for (int i = 0; i < N; ++i) { result[i] = lhs[i] / rhs; } #endif return result; } }; template <int N> struct negate<Array<half_t, N>> { CUTLASS_HOST_DEVICE Array<half_t, N> operator()(Array<half_t, N> const & lhs) const { Array<half_t, N> result; #if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 530) __half2 *result_ptr = reinterpret_cast<__half2 *>(&result); __half2 const *source_ptr = reinterpret_cast<__half2 const *>(&lhs); CUTLASS_PRAGMA_UNROLL for (int i = 0; i < N / 2; ++i) { result_ptr[i] = __hneg2(source_ptr[i]); } if constexpr (N % 2) { half_t x = -lhs[N - 1]; __half lhs_val = reinterpret_cast<__half const &>(x); result[N - 1] = reinterpret_cast<half_t const &>(lhs_val); } #else CUTLASS_PRAGMA_UNROLL for (int i = 0; i < N; ++i) { result[i] = -lhs[i]; } #endif return result; } }; /// Fused multiply-add template <int N> struct multiply_add<Array<half_t, N>, Array<half_t, N>, Array<half_t, N>> { CUTLASS_HOST_DEVICE Array<half_t, N> operator()( Array<half_t, N> const &a, Array<half_t, N> const &b, Array<half_t, N> const &c) const { Array<half_t, N> result; #if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 530) __half2 *result_ptr = reinterpret_cast<__half2 *>(&result); __half2 const *a_ptr = reinterpret_cast<__half2 const *>(&a); __half2 const *b_ptr = reinterpret_cast<__half2 const *>(&b); __half2 const *c_ptr = reinterpret_cast<__half2 const *>(&c); CUTLASS_PRAGMA_UNROLL for (int i = 0; i < N / 2; ++i) { result_ptr[i] = __hfma2(a_ptr[i], b_ptr[i], c_ptr[i]); } if constexpr (N % 2) { __half const *a_residual_ptr = reinterpret_cast<__half const *>(&a); __half const *b_residual_ptr = reinterpret_cast<__half const *>(&b); __half const *c_residual_ptr = reinterpret_cast<__half const *>(&c); __half d_residual = __hfma( a_residual_ptr[N - 1], b_residual_ptr[N - 1], c_residual_ptr[N - 1]); result[N - 1] = reinterpret_cast<half_t const &>(d_residual); } #else multiply_add<half_t> op; CUTLASS_PRAGMA_UNROLL for (int i = 0; i < N; ++i) { result[i] = op(a[i], b[i], c[i]); } #endif return result; } CUTLASS_HOST_DEVICE Array<half_t, N> operator()( half_t const &a, Array<half_t, N> const &b, Array<half_t, N> const &c) const { Array<half_t, N> result; #if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 530) __half2 *result_ptr = reinterpret_cast<__half2 *>(&result); __half2 a_pair = __half2half2(reinterpret_cast<__half const &>(a)); __half2 const *b_ptr = reinterpret_cast<__half2 const *>(&b); __half2 const *c_ptr = reinterpret_cast<__half2 const *>(&c); CUTLASS_PRAGMA_UNROLL for (int i = 0; i < N / 2; ++i) { result_ptr[i] = __hfma2(a_pair, b_ptr[i], c_ptr[i]); } if constexpr (N % 2) { __half const *b_residual_ptr = reinterpret_cast<__half const *>(&b); __half const *c_residual_ptr = reinterpret_cast<__half const *>(&c); __half d_residual = __hfma( reinterpret_cast<__half const &>(a), b_residual_ptr[N - 1], c_residual_ptr[N - 1]); result[N - 1] = reinterpret_cast<half_t const &>(d_residual); } #else multiply_add<half_t> op; CUTLASS_PRAGMA_UNROLL for (int i = 0; i < N; ++i) { result[i] = op(a, b[i], c[i]); } #endif return result; } CUTLASS_HOST_DEVICE Array<half_t, N> operator()( Array<half_t, N> const &a, half_t const &b, Array<half_t, N> const &c) const { Array<half_t, N> result; #if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 530) __half2 *result_ptr = reinterpret_cast<__half2 *>(&result); __half2 const *a_ptr = reinterpret_cast<__half2 const *>(&a); __half2 b_pair = __half2half2(reinterpret_cast<__half const &>(b)); __half2 const *c_ptr = reinterpret_cast<__half2 const *>(&c); CUTLASS_PRAGMA_UNROLL for (int i = 0; i < N / 2; ++i) { result_ptr[i] = __hfma2(a_ptr[i], b_pair, c_ptr[i]); } if constexpr (N % 2) { __half const *a_residual_ptr = reinterpret_cast<__half const *>(&a); __half const *c_residual_ptr = reinterpret_cast<__half const *>(&c); __half d_residual = __hfma( a_residual_ptr[N - 1], reinterpret_cast<__half const &>(b), c_residual_ptr[N - 1]); result[N - 1] = reinterpret_cast<half_t const &>(d_residual); } #else multiply_add<half_t> op; CUTLASS_PRAGMA_UNROLL for (int i = 0; i < N; ++i) { result[i] = op(a[i], b, c[i]); } #endif return result; } CUTLASS_HOST_DEVICE Array<half_t, N> operator()( Array<half_t, N> const &a, Array<half_t, N> const &b, half_t const &c) const { Array<half_t, N> result; #if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 530) __half2 *result_ptr = reinterpret_cast<__half2 *>(&result); __half2 const *a_ptr = reinterpret_cast<__half2 const *>(&a); __half2 const *b_ptr = reinterpret_cast<__half2 const *>(&b); __half2 c_pair = __half2half2(reinterpret_cast<__half const &>(c)); CUTLASS_PRAGMA_UNROLL for (int i = 0; i < N / 2; ++i) { result_ptr[i] = __hfma2(a_ptr[i], b_ptr[i], c_pair); } if constexpr (N % 2) { __half const *a_residual_ptr = reinterpret_cast<__half const *>(&a); __half const *b_residual_ptr = reinterpret_cast<__half const *>(&b); __half d_residual = __hfma( a_residual_ptr[N - 1], b_residual_ptr[N - 1], reinterpret_cast<__half const &>(c)); result[N - 1] = reinterpret_cast<half_t const &>(d_residual); } #else multiply_add<half_t> op; CUTLASS_PRAGMA_UNROLL for (int i = 0; i < N; ++i) { result[i] = op(a[i], b[i], c); } #endif return result; } }; /// Fused multiply-add-relu0 template <int N> struct multiply_add_relu0<Array<half_t, N>, Array<half_t, N>, Array<half_t, N>> { CUTLASS_HOST_DEVICE Array<half_t, N> operator()( Array<half_t, N> const &a, Array<half_t, N> const &b, Array<half_t, N> const &c) const { Array<half_t, N> result; #if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 800) __half2 *result_ptr = reinterpret_cast<__half2 *>(&result); __half2 const *a_ptr = reinterpret_cast<__half2 const *>(&a); __half2 const *b_ptr = reinterpret_cast<__half2 const *>(&b); __half2 const *c_ptr = reinterpret_cast<__half2 const *>(&c); CUTLASS_PRAGMA_UNROLL for (int i = 0; i < N / 2; ++i) { result_ptr[i] = __hfma2_relu(a_ptr[i], b_ptr[i], c_ptr[i]); } if constexpr (N % 2) { __half const *a_residual_ptr = reinterpret_cast<__half const *>(&a); __half const *b_residual_ptr = reinterpret_cast<__half const *>(&b); __half const *c_residual_ptr = reinterpret_cast<__half const *>(&c); __half d_residual = __hfma_relu( a_residual_ptr[N - 1], b_residual_ptr[N - 1], c_residual_ptr[N - 1]); result[N - 1] = reinterpret_cast<half_t const &>(d_residual); } #else multiply_add<half_t> op; maximum<half_t> mx; CUTLASS_PRAGMA_UNROLL for (int i = 0; i < N; ++i) { result[i] = mx(op(a[i], b[i], c[i]), (half_t)0); } #endif return result; } CUTLASS_HOST_DEVICE Array<half_t, N> operator()( half_t const &a, Array<half_t, N> const &b, Array<half_t, N> const &c) const { Array<half_t, N> result; #if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 800) __half2 *result_ptr = reinterpret_cast<__half2 *>(&result); __half2 a_pair = __half2half2(reinterpret_cast<__half const &>(a)); __half2 const *b_ptr = reinterpret_cast<__half2 const *>(&b); __half2 const *c_ptr = reinterpret_cast<__half2 const *>(&c); CUTLASS_PRAGMA_UNROLL for (int i = 0; i < N / 2; ++i) { result_ptr[i] = __hfma2_relu(a_pair, b_ptr[i], c_ptr[i]); } if constexpr (N % 2) { __half const *b_residual_ptr = reinterpret_cast<__half const *>(&b); __half const *c_residual_ptr = reinterpret_cast<__half const *>(&c); __half d_residual = __hfma_relu( reinterpret_cast<__half const &>(a), b_residual_ptr[N - 1], c_residual_ptr[N - 1]); result[N - 1] = reinterpret_cast<half_t const &>(d_residual); } #else multiply_add<half_t> op; maximum<half_t> mx; CUTLASS_PRAGMA_UNROLL for (int i = 0; i < N; ++i) { result[i] = mx(op(a, b[i], c[i]), half_t(0)); } #endif return result; } CUTLASS_HOST_DEVICE Array<half_t, N> operator()( Array<half_t, N> const &a, half_t const &b, Array<half_t, N> const &c) const { Array<half_t, N> result; #if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 800) __half2 *result_ptr = reinterpret_cast<__half2 *>(&result); __half2 const *a_ptr = reinterpret_cast<__half2 const *>(&a); __half2 b_pair = __half2half2(reinterpret_cast<__half const &>(b)); __half2 const *c_ptr = reinterpret_cast<__half2 const *>(&c); CUTLASS_PRAGMA_UNROLL for (int i = 0; i < N / 2; ++i) { result_ptr[i] = __hfma2_relu(a_ptr[i], b_pair, c_ptr[i]); } if constexpr (N % 2) { __half const *a_residual_ptr = reinterpret_cast<__half const *>(&a); __half const *c_residual_ptr = reinterpret_cast<__half const *>(&c); __half d_residual = __hfma_relu( a_residual_ptr[N - 1], reinterpret_cast<__half const &>(b), c_residual_ptr[N - 1]); result[N - 1] = reinterpret_cast<half_t const &>(d_residual); } #else multiply_add<half_t> op; maximum<half_t> mx; CUTLASS_PRAGMA_UNROLL for (int i = 0; i < N; ++i) { result[i] = mx(op(a[i], b, c[i]), half_t(0)); } #endif return result; } CUTLASS_HOST_DEVICE Array<half_t, N> operator()( Array<half_t, N> const &a, Array<half_t, N> const &b, half_t const &c) const { Array<half_t, N> result; #if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 800) __half2 *result_ptr = reinterpret_cast<__half2 *>(&result); __half2 const *a_ptr = reinterpret_cast<__half2 const *>(&a); __half2 const *b_ptr = reinterpret_cast<__half2 const *>(&b); __half2 c_pair = __half2half2(reinterpret_cast<__half const &>(c)); CUTLASS_PRAGMA_UNROLL for (int i = 0; i < N / 2; ++i) { result_ptr[i] = __hfma2_relu(a_ptr[i], b_ptr[i], c_pair); } if constexpr (N % 2) { __half const *a_residual_ptr = reinterpret_cast<__half const *>(&a); __half const *b_residual_ptr = reinterpret_cast<__half const *>(&b); __half d_residual = __hfma_relu( a_residual_ptr[N - 1], b_residual_ptr[N - 1], reinterpret_cast<__half const &>(c)); result[N - 1] = reinterpret_cast<half_t const &>(d_residual); } #else multiply_add<half_t> op; maximum<half_t> mx; CUTLASS_PRAGMA_UNROLL for (int i = 0; i < N; ++i) { result[i] = mx(op(a[i], b[i], c), half_t(0)); } #endif return result; } }; template <int N> struct minimum<Array<half_t, N>, false> { CUTLASS_HOST_DEVICE Array<half_t, N> operator()(Array<half_t, N> const & lhs, Array<half_t, N> const &rhs) const { Array<half_t, N> result; #if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 800) __half2 *result_ptr = reinterpret_cast<__half2 *>(&result); __half2 const *lhs_ptr = reinterpret_cast<__half2 const *>(&lhs); __half2 const *rhs_ptr = reinterpret_cast<__half2 const *>(&rhs); CUTLASS_PRAGMA_UNROLL for (int i = 0; i < N / 2; ++i) { result_ptr[i] = __hmin2(lhs_ptr[i], rhs_ptr[i]); } if constexpr (N % 2) { __half const *a_residual_ptr = reinterpret_cast<__half const *>(&lhs); __half const *b_residual_ptr = reinterpret_cast<__half const *>(&rhs); __half d_residual = __hmin( a_residual_ptr[N - 1], b_residual_ptr[N - 1]); result[N - 1] = reinterpret_cast<half_t const &>(d_residual); } #else CUTLASS_PRAGMA_UNROLL for (int i = 0; i < N; ++i) { result[i] = (rhs[i] < lhs[i] ? rhs[i] : lhs[i]); } #endif return result; } CUTLASS_HOST_DEVICE Array<half_t, N> operator()(half_t const & lhs, Array<half_t, N> const &rhs) const { Array<half_t, N> result; #if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 800) __half2 *result_ptr = reinterpret_cast<__half2 *>(&result); __half2 lhs_pair = __half2half2(reinterpret_cast<__half const &>(lhs)); __half2 const *rhs_ptr = reinterpret_cast<__half2 const *>(&rhs); CUTLASS_PRAGMA_UNROLL for (int i = 0; i < N / 2; ++i) { result_ptr[i] = __hmin2(lhs_pair, rhs_ptr[i]); } if constexpr (N % 2) { __half const *b_residual_ptr = reinterpret_cast<__half const *>(&rhs); __half d_residual = __hmin( reinterpret_cast<__half const &>(lhs), b_residual_ptr[N - 1]); result[N - 1] = reinterpret_cast<half_t const &>(d_residual); } #else CUTLASS_PRAGMA_UNROLL for (int i = 0; i < N; ++i) { result[i] = (rhs[i] < lhs ? rhs[i] : lhs); } #endif return result; } CUTLASS_HOST_DEVICE Array<half_t, N> operator()(Array<half_t, N> const & lhs, half_t const &rhs) const { Array<half_t, N> result; #if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 800) __half2 *result_ptr = reinterpret_cast<__half2 *>(&result); __half2 const *lhs_ptr = reinterpret_cast<__half2 const *>(&lhs); __half2 rhs_pair = __half2half2(reinterpret_cast<__half const &>(rhs)); CUTLASS_PRAGMA_UNROLL for (int i = 0; i < N / 2; ++i) { result_ptr[i] = __hmin2(lhs_ptr[i], rhs_pair); } if constexpr (N % 2) { __half const *a_residual_ptr = reinterpret_cast<__half const *>(&lhs); __half d_residual = __hmin( a_residual_ptr[N - 1], reinterpret_cast<__half const &>(rhs)); result[N - 1] = reinterpret_cast<half_t const &>(d_residual); } #else CUTLASS_PRAGMA_UNROLL for (int i = 0; i < N; ++i) { result[i] = (rhs < lhs[i] ? rhs : lhs[i]); } #endif return result; } }; template <int N> struct maximum<Array<half_t, N>, false> { CUTLASS_HOST_DEVICE Array<half_t, N> operator()(Array<half_t, N> const & lhs, Array<half_t, N> const &rhs) const { Array<half_t, N> result; #if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 800) __half2 *result_ptr = reinterpret_cast<__half2 *>(&result); __half2 const *lhs_ptr = reinterpret_cast<__half2 const *>(&lhs); __half2 const *rhs_ptr = reinterpret_cast<__half2 const *>(&rhs); CUTLASS_PRAGMA_UNROLL for (int i = 0; i < N / 2; ++i) { result_ptr[i] = __hmax2(lhs_ptr[i], rhs_ptr[i]); } if constexpr (N % 2) { __half const *a_residual_ptr = reinterpret_cast<__half const *>(&lhs); __half const *b_residual_ptr = reinterpret_cast<__half const *>(&rhs); __half d_residual = __hmax( a_residual_ptr[N - 1], b_residual_ptr[N - 1]); result[N - 1] = reinterpret_cast<half_t const &>(d_residual); } #else CUTLASS_PRAGMA_UNROLL for (int i = 0; i < N; ++i) { result[i] = (lhs[i] < rhs[i] ? rhs[i] : lhs[i]); } #endif return result; } CUTLASS_HOST_DEVICE Array<half_t, N> operator()(half_t const & lhs, Array<half_t, N> const &rhs) const { Array<half_t, N> result; #if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 800) __half2 *result_ptr = reinterpret_cast<__half2 *>(&result); __half2 lhs_pair = __half2half2(reinterpret_cast<__half const &>(lhs)); __half2 const *rhs_ptr = reinterpret_cast<__half2 const *>(&rhs); CUTLASS_PRAGMA_UNROLL for (int i = 0; i < N / 2; ++i) { result_ptr[i] = __hmax2(lhs_pair, rhs_ptr[i]); } if constexpr (N % 2) { __half const *b_residual_ptr = reinterpret_cast<__half const *>(&rhs); __half d_residual = __hmax( reinterpret_cast<__half const &>(lhs), b_residual_ptr[N - 1]); result[N - 1] = reinterpret_cast<half_t const &>(d_residual); } #else CUTLASS_PRAGMA_UNROLL for (int i = 0; i < N; ++i) { result[i] = (lhs < rhs[i] ? rhs[i] : lhs); } #endif return result; } CUTLASS_HOST_DEVICE Array<half_t, N> operator()(Array<half_t, N> const & lhs, half_t const &rhs) const { Array<half_t, N> result; #if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 800) __half2 *result_ptr = reinterpret_cast<__half2 *>(&result); __half2 const *lhs_ptr = reinterpret_cast<__half2 const *>(&lhs); __half2 rhs_pair = __half2half2(reinterpret_cast<__half const &>(rhs)); CUTLASS_PRAGMA_UNROLL for (int i = 0; i < N / 2; ++i) { result_ptr[i] = __hmax2(lhs_ptr[i], rhs_pair); } if constexpr (N % 2) { __half const *a_residual_ptr = reinterpret_cast<__half const *>(&lhs); __half d_residual = __hmax( a_residual_ptr[N - 1], reinterpret_cast<__half const &>(rhs)); result[N - 1] = reinterpret_cast<half_t const &>(d_residual); } #else CUTLASS_PRAGMA_UNROLL for (int i = 0; i < N; ++i) { result[i] = (lhs[i] < rhs ? rhs : lhs[i]); } #endif return result; } }; /// Fused multiply-add template <int N> struct multiply_add<Array<bfloat16_t, N>, Array<bfloat16_t, N>, Array<bfloat16_t, N>> { CUTLASS_HOST_DEVICE Array<bfloat16_t, N> operator()( Array<bfloat16_t, N> const &a, Array<bfloat16_t, N> const &b, Array<bfloat16_t, N> const &c) const { Array<bfloat16_t, N> result; #if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 800) unsigned *result_ptr = reinterpret_cast<unsigned *>(&result); unsigned const *a_ptr = reinterpret_cast<unsigned const *>(&a); unsigned const *b_ptr = reinterpret_cast<unsigned const *>(&b); unsigned const *c_ptr = reinterpret_cast<unsigned const *>(&c); CUTLASS_PRAGMA_UNROLL for (int i = 0; i < N / 2; ++i) { asm ("fma.rn.bf16x2 %0, %1, %2, %3;\n" : "=r"(result_ptr[i]) : "r"(a_ptr[i]), "r"(b_ptr[i]), "r"(c_ptr[i]) ); } if constexpr (N % 2) { uint16_t *result_ptr = reinterpret_cast<uint16_t *>(&result); uint16_t const *a_residual_ptr = reinterpret_cast<uint16_t const *>(&a); uint16_t const *b_residual_ptr = reinterpret_cast<uint16_t const *>(&b); uint16_t const *c_residual_ptr = reinterpret_cast<uint16_t const *>(&c); asm ("fma.rn.bf16 %0, %1, %2, %3;\n" : "=h"(result_ptr[N - 1]) : "h"(a_residual_ptr[N - 1]), "h"(b_residual_ptr[N - 1]), "h"(c_residual_ptr[N - 1]) ); } #else multiply_add<bfloat16_t> op; CUTLASS_PRAGMA_UNROLL for (int i = 0; i < N; ++i) { result[i] = op(a[i], b[i], c[i]); } #endif return result; } CUTLASS_HOST_DEVICE Array<bfloat16_t, N> operator()( bfloat16_t const &a, Array<bfloat16_t, N> const &b, Array<bfloat16_t, N> const &c) const { Array<bfloat16_t, N> result; #if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 800) unsigned *result_ptr = reinterpret_cast<unsigned *>(&result); unsigned const *b_ptr = reinterpret_cast<unsigned const *>(&b); unsigned const *c_ptr = reinterpret_cast<unsigned const *>(&c); unsigned a_packed = static_cast<unsigned>(a.raw()); a_packed = (a_packed | (a_packed << 16)); CUTLASS_PRAGMA_UNROLL for (int i = 0; i < N / 2; ++i) { asm ("fma.rn.bf16x2 %0, %1, %2, %3;\n" : "=r"(result_ptr[i]) : "r"(a_packed), "r"(b_ptr[i]), "r"(c_ptr[i]) ); } if constexpr (N % 2) { uint16_t *result_ptr = reinterpret_cast<uint16_t *>(&result); uint16_t const *a_residual_ptr = reinterpret_cast<uint16_t const *>(&a); uint16_t const *b_residual_ptr = reinterpret_cast<uint16_t const *>(&b); uint16_t const *c_residual_ptr = reinterpret_cast<uint16_t const *>(&c); asm ("fma.rn.bf16 %0, %1, %2, %3;\n" : "=h"(result_ptr[N - 1]) : "h"(a_residual_ptr[0]), "h"(b_residual_ptr[N - 1]), "h"(c_residual_ptr[N - 1]) ); } #else multiply_add<bfloat16_t> op; CUTLASS_PRAGMA_UNROLL for (int i = 0; i < N; ++i) { result[i] = op(a, b[i], c[i]); } #endif return result; } CUTLASS_HOST_DEVICE Array<bfloat16_t, N> operator()( Array<bfloat16_t, N> const &a, bfloat16_t const &b, Array<bfloat16_t, N> const &c) const { Array<bfloat16_t, N> result; #if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 800) unsigned *result_ptr = reinterpret_cast<unsigned *>(&result); unsigned const *a_ptr = reinterpret_cast<unsigned const *>(&a); unsigned const *c_ptr = reinterpret_cast<unsigned const *>(&c); unsigned b_packed = static_cast<unsigned>(b.raw()); b_packed = (b_packed | (b_packed << 16)); CUTLASS_PRAGMA_UNROLL for (int i = 0; i < N / 2; ++i) { asm ("fma.rn.bf16x2 %0, %1, %2, %3;\n" : "=r"(result_ptr[i]) : "r"(a_ptr[i]), "r"(b_packed), "r"(c_ptr[i]) ); } if constexpr (N % 2) { uint16_t *result_ptr = reinterpret_cast<uint16_t *>(&result); uint16_t const *a_residual_ptr = reinterpret_cast<uint16_t const *>(&a); uint16_t const *b_residual_ptr = reinterpret_cast<uint16_t const *>(&b); uint16_t const *c_residual_ptr = reinterpret_cast<uint16_t const *>(&c); asm ("fma.rn.bf16 %0, %1, %2, %3;\n" : "=h"(result_ptr[N - 1]) : "h"(a_residual_ptr[N - 1]), "h"(b_residual_ptr[0]), "h"(c_residual_ptr[N - 1]) ); } #else multiply_add<bfloat16_t> op; CUTLASS_PRAGMA_UNROLL for (int i = 0; i < N; ++i) { result[i] = op(a[i], b, c[i]); } #endif return result; } CUTLASS_HOST_DEVICE Array<bfloat16_t, N> operator()( Array<bfloat16_t, N> const &a, Array<bfloat16_t, N> const &b, bfloat16_t const &c) const { Array<bfloat16_t, N> result; #if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 800) unsigned *result_ptr = reinterpret_cast<unsigned *>(&result); unsigned const *a_ptr = reinterpret_cast<unsigned const *>(&a); unsigned const *b_ptr = reinterpret_cast<unsigned const *>(&b); unsigned c_packed = static_cast<unsigned>(c.raw()); c_packed = (c_packed | (c_packed << 16)); CUTLASS_PRAGMA_UNROLL for (int i = 0; i < N / 2; ++i) { asm ("fma.rn.bf16x2 %0, %1, %2, %3;\n" : "=r"(result_ptr[i]) : "r"(a_ptr[i]), "r"(b_ptr[i]), "r"(c_packed) ); } if constexpr (N % 2) { uint16_t *result_ptr = reinterpret_cast<uint16_t *>(&result); uint16_t const *a_residual_ptr = reinterpret_cast<uint16_t const *>(&a); uint16_t const *b_residual_ptr = reinterpret_cast<uint16_t const *>(&b); uint16_t const *c_residual_ptr = reinterpret_cast<uint16_t const *>(&c); asm ("fma.rn.bf16 %0, %1, %2, %3;\n" : "=h"(result_ptr[N - 1]) : "h"(a_residual_ptr[N - 1]), "h"(b_residual_ptr[N - 1]), "h"(c_residual_ptr[0]) ); } #else multiply_add<bfloat16_t> op; CUTLASS_PRAGMA_UNROLL for (int i = 0; i < N; ++i) { result[i] = op(a[i], b[i], c); } #endif return result; } }; /// bit_and template <int N> struct bit_and<Array<uint1b_t, N>> { CUTLASS_HOST_DEVICE Array<uint1b_t, N> operator()(Array<uint1b_t, N> const &a, Array<uint1b_t, N> const &b) const { using ArrayType = Array<uint1b_t, N>; using Storage = typename ArrayType::Storage; ArrayType result; Storage *result_data = result.raw_data(); Storage const *a_data = a.raw_data(); Storage const *b_data = b.raw_data(); CUTLASS_PRAGMA_UNROLL for (int i = 0; i < ArrayType::kStorageElements; ++i) { result_data[i] = (a_data[i] & b_data[i]); } return result; } }; /// bit_or template <int N> struct bit_or<Array<uint1b_t, N>> { CUTLASS_HOST_DEVICE Array<uint1b_t, N> operator()(Array<uint1b_t, N> const &a, Array<uint1b_t, N> const &b) const { using ArrayType = Array<uint1b_t, N>; using Storage = typename ArrayType::Storage; ArrayType result; Storage *result_data = result.raw_data(); Storage const *a_data = a.raw_data(); Storage const *b_data = b.raw_data(); CUTLASS_PRAGMA_UNROLL for (int i = 0; i < ArrayType::kStorageElements; ++i) { result_data[i] = (a_data[i] | b_data[i]); } return result; } }; /// bit_not template <int N> struct bit_not<Array<uint1b_t, N>> { CUTLASS_HOST_DEVICE Array<uint1b_t, N> operator()(Array<uint1b_t, N> const &a) const { using ArrayType = Array<uint1b_t, N>; using Storage = typename ArrayType::Storage; ArrayType result; Storage *result_data = result.raw_data(); Storage const *a_data = a.raw_data(); CUTLASS_PRAGMA_UNROLL for (int i = 0; i < ArrayType::kStorageElements; ++i) { result_data[i] = (~a_data[i]); } return result; } }; /// bit_xor template <int N> struct bit_xor<Array<uint1b_t, N>> { CUTLASS_HOST_DEVICE Array<uint1b_t, N> operator()(Array<uint1b_t, N> const &a, Array<uint1b_t, N> const &b) const { using ArrayType = Array<uint1b_t, N>; using Storage = typename ArrayType::Storage; ArrayType result; Storage *result_data = result.raw_data(); Storage const *a_data = a.raw_data(); Storage const *b_data = b.raw_data(); CUTLASS_PRAGMA_UNROLL for (int i = 0; i < ArrayType::kStorageElements; ++i) { result_data[i] = (a_data[i] ^ b_data[i]); } return result; } }; ///////////////////////////////////////////////////////////////////////////////////////////////// // Operator overloads ///////////////////////////////////////////////////////////////////////////////////////////////// template <typename T, int N> CUTLASS_HOST_DEVICE Array<T, N> operator+(Array<T, N> const &lhs, Array<T, N> const &rhs) { plus<Array<T, N>> op; return op(lhs, rhs); } template <typename T, int N> CUTLASS_HOST_DEVICE Array<T, N> operator+(T const &lhs, Array<T, N> const &rhs) { plus<Array<T, N>> op; return op(lhs, rhs); } template <typename T, int N> CUTLASS_HOST_DEVICE Array<T, N> operator+(Array<T, N> const &lhs, T const &rhs) { plus<Array<T, N>> op; return op(lhs, rhs); } template <typename T, int N> CUTLASS_HOST_DEVICE Array<T, N> operator-(Array<T, N> const &lhs, Array<T, N> const &rhs) { minus<Array<T, N>> op; return op(lhs, rhs); } template <typename T, int N> CUTLASS_HOST_DEVICE Array<T, N> operator-(Array<T, N> const &lhs) { negate<Array<T, N>> op; return op(lhs); } template <typename T, int N> CUTLASS_HOST_DEVICE Array<T, N> operator*(Array<T, N> const &lhs, Array<T, N> const &rhs) { multiplies<Array<T, N>> op; return op(lhs, rhs); } template <typename T, int N> CUTLASS_HOST_DEVICE Array<T, N> operator*(T lhs, Array<T, N> const &rhs) { multiplies<Array<T, N>> op; return op(lhs, rhs); } template <typename T, int N> CUTLASS_HOST_DEVICE Array<T, N> operator*(Array<T, N> const &lhs, T rhs) { multiplies<Array<T, N>> op; return op(lhs, rhs); } template <typename T, int N> CUTLASS_HOST_DEVICE Array<T, N> operator/(Array<T, N> const &lhs, Array<T, N> const &rhs) { divides<Array<T, N>> op; return op(lhs, rhs); } template <typename T, int N> CUTLASS_HOST_DEVICE Array<T, N> fma(Array<T, N> const &a, Array<T, N> const &b, Array<T, N> const &c) { multiply_add<Array<T, N>> op; return op(a, b, c); } template <typename T, int N> CUTLASS_HOST_DEVICE Array<T, N> fma(T a, Array<T, N> const &b, Array<T, N> const &c) { multiply_add<Array<T, N>> op; return op(a, b, c); } template <typename T, int N> CUTLASS_HOST_DEVICE Array<T, N> fma(Array<T, N> const &a, T b, Array<T, N> const &c) { multiply_add<Array<T, N>> op; return op(a, b, c); } template <typename T, int N> CUTLASS_HOST_DEVICE Array<T, N> fma(Array<T, N> const &a, Array<T, N> const &b, T c) { multiply_add<Array<T, N>> op; return op(a, b, c); } //////////////////////////////////////////////////////////////////////////////////////////////////// } // namespace cutlass //////////////////////////////////////////////////////////////////////////////////////////////////// #include "cutlass/array_subbyte.h" //////////////////////////////////////////////////////////////////////////////////////////////////// namespace cutlass { //////////////////////////////////////////////////////////////////////////////////////////////////// // AlignedArray //////////////////////////////////////////////////////////////////////////////////////////////////// /// Aligned array type template < /// Element type typename T, /// Number of elements in the array int N, /// Alignment requirement in bytes int Alignment = ( sizeof_bits<T>::value * N + 7 ) / 8 > class alignas(Alignment) AlignedArray: public Array<T, N> { public: }; //////////////////////////////////////////////////////////////////////////////////////////////////// } // namespace cutlass ////////////////////////////////////////////////////////////////////////////////////////////////////
include/cutlass/array.h/0
{ "file_path": "include/cutlass/array.h", "repo_id": "include", "token_count": 30495 }
20
/*************************************************************************************************** * Copyright (c) 2023 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. * SPDX-License-Identifier: BSD-3-Clause * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * **************************************************************************************************/ #pragma once #include "cutlass/cutlass.h" #include "cute/tensor_predicate.hpp" #include "cute/arch/cluster_sm90.hpp" #include "cute/arch/copy_sm90.hpp" #include "cute/atom/mma_atom.hpp" #include "cute/atom/copy_traits_sm90_im2col.hpp" #include "cute/numeric/arithmetic_tuple.hpp" #include "cute/algorithm/functional.hpp" #include "cute/algorithm/gemm.hpp" #include "cutlass/conv/convolution.h" #include "cutlass/conv/convnd_problem_shape.hpp" #include "cutlass/conv/dispatch_policy.hpp" #include "cutlass/pipeline/pipeline.hpp" #include "cutlass/util/packed_stride.hpp" ///////////////////////////////////////////////////////////////////////////////////////////////// namespace cutlass::conv::collective { using namespace cute; ///////////////////////////////////////////////////////////////////////////////////////////////// template < conv::Operator ConvOp, int Stages, int NumSpatialDims, class ClusterShape, class KernelSchedule, int PipelineAsyncMmaStages, class TileShape_, class ElementA_, class ElementB_, class TiledMma_, class TileTraitsA_, class TileTraitsB_> struct CollectiveConv< MainloopSm90TmaGmmaWarpSpecializedImplicitGemm< ConvOp, Stages, NumSpatialDims, ClusterShape, KernelSchedule, PipelineAsyncMmaStages>, TileShape_, ElementA_, ElementB_, TiledMma_, TileTraitsA_, TileTraitsB_> { // // Type Aliases // using DispatchPolicy = MainloopSm90TmaGmmaWarpSpecializedImplicitGemm< ConvOp, Stages, NumSpatialDims, ClusterShape, KernelSchedule, PipelineAsyncMmaStages>; using TileShape = TileShape_; using ElementA = ElementA_; using ElementB = ElementB_; using TiledMma = TiledMma_; using ElementAccumulator = typename TiledMma::ValTypeC; using GmemTiledCopyA = typename TileTraitsA_::GmemTiledCopy; using GmemTiledCopyB = typename TileTraitsB_::GmemTiledCopy; using SmemLayoutA = typename TileTraitsA_::SmemLayout; using SmemLayoutB = typename TileTraitsB_::SmemLayout; using ArchTag = typename DispatchPolicy::ArchTag; static constexpr int NumSpatialDimensions = DispatchPolicy::NumSpatialDimensions; static constexpr int NumTensorDimensions = NumSpatialDimensions + 2; // Deduce the kernel-facing stride tuple types based on the dispatch policy // (which is a function of the number of spatial dimensions, the algorithm, etc.) using StrideA = decltype(detail::sm90_dispatch_policy_to_stride_A<DispatchPolicy>()); using StrideB = decltype(detail::sm90_dispatch_policy_to_stride_B<DispatchPolicy>()); using MainloopPipeline = cutlass::PipelineTmaAsync<DispatchPolicy::Stages>; using PipelineParams = typename MainloopPipeline::Params; using PipelineState = typename cutlass::PipelineState<DispatchPolicy::Stages>; // TODO: move pipeline mode tiling into the collective setup phase instead static_assert(rank(SmemLayoutA{}) == 3, "SmemLayout must be rank 3 (M/N, K, PIPE)"); static_assert((size<0>(TileShape{}) == size<0>(SmemLayoutA{})), "SmemLayout must be compatible with the tile shape."); static_assert((size<2>(TileShape{}) == size<1>(SmemLayoutA{})), "SmemLayout must be compatible with the tile shape."); static_assert(rank(SmemLayoutB{}) == 3, "SmemLayout must be rank 3 (M/N, K, PIPE)"); static_assert((size<1>(TileShape{}) == size<0>(SmemLayoutB{})), "SmemLayout must be compatible with the tile shape."); static_assert((size<2>(TileShape{}) == size<1>(SmemLayoutB{})), "SmemLayout must be compatible with the tile shape."); static_assert(DispatchPolicy::Stages >= 2, "Specialization requires Stages set to value 1 or more."); static_assert(cute::is_base_of<cute::GMMA::DescriptorIterator, typename TiledMma::FrgTypeA>::value && cute::is_base_of<cute::GMMA::DescriptorIterator, typename TiledMma::FrgTypeB>::value, "MMA atom must source both A and B operand from smem_desc for this mainloop."); // The tma load mode of wgrad is tiled for tensor A and im2col for tensor B while the tma load mode of fprop and dgrad // kernel is im2col for tensor A and tiled for tensor B. static_assert((ConvOp == conv::Operator::kWgrad && (cute::is_same_v<GmemTiledCopyA, SM90_TMA_LOAD> || cute::is_same_v<GmemTiledCopyA, SM90_TMA_LOAD_MULTICAST>)) || (ConvOp != conv::Operator::kWgrad && (cute::is_same_v<GmemTiledCopyA, SM90_TMA_LOAD_IM2COL> || cute::is_same_v<GmemTiledCopyA, SM90_TMA_LOAD_IM2COL_MULTICAST>)), "GmemTiledCopyA - invalid SM90 TMA copy atom specified."); static_assert((ConvOp == conv::Operator::kWgrad && (cute::is_same_v<GmemTiledCopyB, SM90_TMA_LOAD_IM2COL> || cute::is_same_v<GmemTiledCopyB, SM90_TMA_LOAD_IM2COL_MULTICAST>)) || (ConvOp != conv::Operator::kWgrad && (cute::is_same_v<GmemTiledCopyB, SM90_TMA_LOAD> || cute::is_same_v<GmemTiledCopyB, SM90_TMA_LOAD_MULTICAST>)), "GmemTiledCopyB - invalid SM90 TMA copy atom specified."); // TMA converts f32 input to tf32 when copying from GMEM to SMEM // For all other types, cast to size equivalent uint type to avoid any rounding by TMA. static constexpr bool ConvertF32toTF32A = cute::is_same_v<float, ElementA>; static constexpr bool ConvertF32toTF32B = cute::is_same_v<float, ElementB>; using InternalElementA = cute::conditional_t<ConvertF32toTF32A, tfloat32_t, uint_bit_t<sizeof_bits_v<ElementA>>>; using InternalElementB = cute::conditional_t<ConvertF32toTF32B, tfloat32_t, uint_bit_t<sizeof_bits_v<ElementB>>>; struct SharedStorage { struct TensorStorage : cute::aligned_struct<128> { cute::array_aligned<typename TiledMma::ValTypeA, cute::cosize_v<SmemLayoutA>> smem_A; cute::array_aligned<typename TiledMma::ValTypeB, cute::cosize_v<SmemLayoutB>> smem_B; } tensors; using PipelineStorage = typename MainloopPipeline::SharedStorage; PipelineStorage pipeline; }; using TensorStorage = typename SharedStorage::TensorStorage; using PipelineStorage = typename SharedStorage::PipelineStorage; static constexpr int K_PIPE_MAX = DispatchPolicy::Stages; static constexpr int K_PIPE_MMAS = DispatchPolicy::PipelineAsyncMmaStages; static constexpr uint32_t TmaTransactionBytes = (size<0>(SmemLayoutA{}) * size<1>(SmemLayoutA{}) * static_cast<uint32_t>(sizeof(InternalElementA)))+ (size<0>(SmemLayoutB{}) * size<1>(SmemLayoutB{}) * static_cast<uint32_t>(sizeof(InternalElementB))); // Host side kernel arguments struct Arguments { using ProblemShape = ConvProblemShape<ConvOp, NumSpatialDimensions>; ProblemShape problem_shape{}; ElementA const* ptr_A{nullptr}; ElementB const* ptr_B{nullptr}; }; private: // Note that for fprop and dgrad kernel, the tma load mode is im2col for tensor A and tiled for // tensor B while for wgrad kernel, the tma load mode is tiled for tensor A and im2col for tensor // B since operand A, B is swapped. // Get tma_load_a instantce. template <class TensorA> static constexpr auto get_tma_load_a_instance(TensorA const& tensor_a, typename Arguments::ProblemShape const& problem_shape) { if constexpr (ConvOp == conv::Operator::kFprop || ConvOp == conv::Operator::kDgrad) { // compute the upper and lower corners based on the conv padding auto lower_corner_whd = detail::compute_lower_corner_whd(problem_shape); auto upper_corner_whd = detail::compute_upper_corner_whd(problem_shape); auto lower_srt = detail::compute_lower_srt(problem_shape); // The calculation of gbasis strides for dgrad kernel needs perform negate for dilation values. cute::array<int32_t, NumSpatialDimensions> stride_srt{}; for (int i = 0; i < NumSpatialDimensions; ++i) { stride_srt[i] = ConvOp == conv::Operator::kDgrad ? -problem_shape.dilation[NumSpatialDimensions-1-i] : problem_shape.dilation[NumSpatialDimensions-1-i]; } return make_im2col_tma_copy( GmemTiledCopyA{}, tensor_a, SmemLayoutA{}(_,_,_0{}), product_each(shape(SmemLayoutA{}(_,_,_0{}))), size<1>(ClusterShape{}), shape(lower_corner_whd), shape(upper_corner_whd), cute::reverse(shape(problem_shape.lower_padding)), cute::reverse(shape(problem_shape.upper_padding)), cute::reverse(shape(problem_shape.traversal_stride)), shape(lower_srt), shape(stride_srt)); } // TMA tiled mode for tensor A in wgrad kernel. else if constexpr (ConvOp == conv::Operator::kWgrad) { return make_tma_copy( GmemTiledCopyA{}, tensor_a, SmemLayoutA{}(_,_,_0{}), make_shape(shape<0>(TileShape{}), shape<2>(TileShape{})), size<1>(ClusterShape{})); } } // Get tma_load_b instantce. template <class TensorB> static constexpr auto get_tma_load_b_instance(TensorB const& tensor_b, typename Arguments::ProblemShape const& problem_shape) { if constexpr (ConvOp == conv::Operator::kFprop || ConvOp == conv::Operator::kDgrad) { return make_tma_copy( GmemTiledCopyB{}, tensor_b, SmemLayoutB{}(_,_,_0{}), make_shape(shape<1>(TileShape{}), shape<2>(TileShape{})), size<0>(ClusterShape{})); } // TMA im2col mode for tensor B in wgrad kernel. else if constexpr (ConvOp == conv::Operator::kWgrad) { // compute the upper and lower corners based on the conv padding auto lower_corner_whd = detail::compute_lower_corner_whd(problem_shape); auto upper_corner_whd = detail::compute_upper_corner_whd(problem_shape); auto lower_srt = detail::compute_lower_srt(problem_shape); return make_im2col_tma_copy( GmemTiledCopyB{}, tensor_b, SmemLayoutB{}(_,_,_0{}), product_each(shape(SmemLayoutB{}(_,_,_0{}))), size<0>(ClusterShape{}), shape(lower_corner_whd), shape(upper_corner_whd), cute::reverse(shape(problem_shape.lower_padding)), cute::reverse(shape(problem_shape.upper_padding)), cute::reverse(shape(problem_shape.traversal_stride)), shape(lower_srt), cute::reverse(shape(problem_shape.dilation))); } } public: // Device side kernel params struct Params { using _Submode = decltype(take<0,NumTensorDimensions-1>(typename Arguments::ProblemShape::TensorExtent{})); using ProblemShape = cute::conditional_t<DispatchPolicy::ConvOp == conv::Operator::kWgrad, Shape<int, _Submode, _Submode>, Shape<_Submode, int, _Submode>>; // Assumption: StrideA is congruent with Problem_MK // Select TMA load type according to convolution operator. using TensorShapeA = cute::conditional_t<ConvOp == conv::Operator::kWgrad, decltype(repeat_like(StrideA{}, int32_t(0))), decltype(make_shape(_Submode{}, int(0)))>; using TensorShapeB = cute::conditional_t<ConvOp == conv::Operator::kWgrad, decltype(make_shape(int(0), _Submode{})), decltype(repeat_like(StrideB{}, int32_t(0)))>; using TMA_A = decltype(get_tma_load_a_instance( make_tensor( make_gmem_ptr(static_cast<InternalElementA const*>(nullptr)), make_layout(TensorShapeA{}, StrideA{})), ConvProblemShape<ConvOp, NumSpatialDimensions>{})); using TMA_B = decltype(get_tma_load_b_instance( make_tensor( make_gmem_ptr(static_cast<InternalElementB const*>(nullptr)), make_layout(TensorShapeB{}, StrideB{})), ConvProblemShape<ConvOp, NumSpatialDimensions>{})); // Members TMA_A tma_load_a; TMA_B tma_load_b; ProblemShape problem_shape; }; // // Methods // // Lowers the host side user facing arguments to the kernel facing lauch params static constexpr Params to_underlying_arguments(Arguments const& args, void* workspace) { (void) workspace; // from the flat problem shape arrays of ConvProblemShape<ConvOp, N>, create a rank-3 MNK problem shape tuple // tma desc creation depends on the original untransformed domain. // A extents. auto shape_A_orig = args.problem_shape.get_shape_A(); // B extents. auto shape_B_orig = args.problem_shape.get_shape_B(); // Fill inferred cute strides from flat stride arrays auto dA = make_cute_packed_stride(StrideA{}, args.problem_shape.stride_A, ConvOp); auto dB = make_cute_packed_stride(StrideB{}, args.problem_shape.stride_B, ConvOp); auto ptr_A = reinterpret_cast<InternalElementA const*>(args.ptr_A); auto ptr_B = reinterpret_cast<InternalElementB const*>(args.ptr_B); Tensor tensor_a = make_tensor(make_gmem_ptr(ptr_A), make_layout(shape_A_orig, dA)); Tensor tensor_b = make_tensor(make_gmem_ptr(ptr_B), make_layout(shape_B_orig, dB)); auto tma_load_a = get_tma_load_a_instance(tensor_a, args.problem_shape); auto tma_load_b = get_tma_load_b_instance(tensor_b, args.problem_shape); auto problem_shape_mnk = args.problem_shape.get_transformed_problem_shape_MNK(); return { tma_load_a, tma_load_b, problem_shape_mnk }; } template<class ProblemShape> CUTLASS_HOST_DEVICE static bool can_implement( ProblemShape const& problem_shape, Arguments const& args) { // Activation and Filter channel mode extents much match bool implementable = true; // channel mode is major implementable &= args.problem_shape.stride_A[NumTensorDimensions-1] == 1; implementable &= args.problem_shape.stride_B[NumTensorDimensions-1] == 1; constexpr int tma_alignment_bits = 128; // A extents. auto shape_A_orig = args.problem_shape.get_shape_A(); // B extents. auto shape_B_orig = args.problem_shape.get_shape_B(); constexpr int min_tma_aligned_elements_A = tma_alignment_bits / cutlass::sizeof_bits<ElementA>::value; implementable = implementable && cutlass::detail::check_alignment<min_tma_aligned_elements_A>(shape_A_orig, StrideA{}); constexpr int min_tma_aligned_elements_B = tma_alignment_bits / cutlass::sizeof_bits<ElementB>::value; implementable = implementable && cutlass::detail::check_alignment<min_tma_aligned_elements_B>(shape_B_orig, StrideB{}); if (!implementable) { CUTLASS_TRACE_HOST(" CAN IMPLEMENT: Problem Size doesn't meet the minimum alignment requirements for TMA.\n"); return false; } // Check valid padding values for TMA_LOAD_IM2COL constexpr int padding_limit = (ProblemShape::RankS == 1) ? 65536 : (ProblemShape::RankS == 2 ? 256 : 16); for (int i = 0; i < problem_shape.RankS; ++i) { implementable = implementable && problem_shape.lower_padding[i] <= padding_limit && problem_shape.lower_padding[i] >= 0; implementable = implementable && problem_shape.upper_padding[i] <= padding_limit && problem_shape.upper_padding[i] >= 0; } if (!implementable) { CUTLASS_TRACE_HOST(" CAN IMPLEMENT: Padding values don't meet requirements for TMA LOAD IM2COL.\n"); return false; } if (problem_shape.groups > 1) { CUTLASS_TRACE_HOST(" CAN IMPLEMENT: This kernel does not support conv groups > 1.\n"); return false; } return true; } /// Issue Tma Descriptor Prefetch -- ideally from a single thread for best performance CUTLASS_DEVICE static void prefetch_tma_descriptors(Params const& mainloop_params) { cute::prefetch_tma_descriptor(mainloop_params.tma_load_a.get_tma_descriptor()); cute::prefetch_tma_descriptor(mainloop_params.tma_load_b.get_tma_descriptor()); } /// Perform a collective-scoped matrix multiply-accumulate /// Producer Perspective template < class TensorA, class TMA_LOAD_A, class TensorB, class TMA_LOAD_B, class KTileIterator > CUTLASS_DEVICE void load(MainloopPipeline pipeline, PipelineState smem_pipe_producer_state, TensorA const& gA, TMA_LOAD_A& tma_load_a, TensorB const& gB, TMA_LOAD_B& tma_load_b, KTileIterator k_tile_iter, int k_tile_count, int thad_idx, TensorStorage& shared_tensors) { int warp_idx = canonical_warp_idx_sync(); int warp_idx_in_warp_group = warp_idx % 4; int lane_predicate = cute::elect_one_sync(); if (warp_idx_in_warp_group == 0 and lane_predicate) { Tensor sA = make_tensor(make_smem_ptr(shared_tensors.smem_A.data()), SmemLayoutA{}); // (BLK_M,BLK_K,PIPE) Tensor sB = make_tensor(make_smem_ptr(shared_tensors.smem_B.data()), SmemLayoutB{}); // (BLK_N,BLK_K,PIPE) // // Prepare the TMA loads for A and B // dim3 cluster_local_block_id = cute::block_id_in_cluster(); auto block_tma_a = tma_load_a.get_slice(cluster_local_block_id.y); auto block_tma_b = tma_load_b.get_slice(cluster_local_block_id.x); // Applies the mapping from block_tma_a Tensor tAgA = block_tma_a.partition_S(gA); // (TMA,TMA_M,TMA_K,k) Tensor tAsA = block_tma_a.partition_D(sA); // (TMA,TMA_M,TMA_K,PIPE) Tensor tBgB = block_tma_b.partition_S(gB); // (TMA,TMA_N,TMA_K,k) Tensor tBsB = block_tma_b.partition_D(sB); // (TMA,TMA_N,TMA_K,PIPE) uint16_t mcast_mask_a = 0; uint16_t mcast_mask_b = 0; // Issue TmaLoads // Maps the tile -> block, value if constexpr (cute::is_same_v<GmemTiledCopyA, SM90_TMA_LOAD_IM2COL_MULTICAST> || cute::is_same_v<GmemTiledCopyA, SM90_TMA_LOAD_MULTICAST>) { auto block_layout = Layout<typename DispatchPolicy::ClusterShape>{}; // (m,n) -> block_id for (int n = 0; n < size<1>(block_layout); ++n) { mcast_mask_a |= (uint16_t(1) << block_layout(cluster_local_block_id.x,n,Int<0>{})); } } if constexpr (cute::is_same_v<GmemTiledCopyB, SM90_TMA_LOAD_IM2COL_MULTICAST> || cute::is_same_v<GmemTiledCopyB, SM90_TMA_LOAD_MULTICAST>) { auto block_layout = Layout<typename DispatchPolicy::ClusterShape>{}; // (m,n) -> block_id for (int m = 0; m < size<0>(block_layout); ++m) { mcast_mask_b |= (uint16_t(1) << block_layout(m,cluster_local_block_id.y,Int<0>{})); } } // Mainloop CUTLASS_PRAGMA_NO_UNROLL for ( ; k_tile_count > 0; --k_tile_count) { // LOCK smem_pipe_producer_state for _writing_ pipeline.producer_acquire(smem_pipe_producer_state); // // Copy gmem to smem for *k_tile_iter // using BarrierType = typename MainloopPipeline::ProducerBarrierType; BarrierType* tma_barrier = pipeline.producer_get_barrier(smem_pipe_producer_state); int write_stage = smem_pipe_producer_state.index(); copy(tma_load_a.with(*tma_barrier, mcast_mask_a), tAgA(_,_,_,*k_tile_iter), tAsA(_,_,_,write_stage)); copy(tma_load_b.with(*tma_barrier, mcast_mask_b), tBgB(_,_,_,*k_tile_iter), tBsB(_,_,_,write_stage)); ++k_tile_iter; // Advance smem_pipe_producer_state ++smem_pipe_producer_state; } } } /// Perform a Producer Epilogue to prevent early exit of blocks in a Cluster CUTLASS_DEVICE void load_tail(MainloopPipeline pipeline, PipelineState smem_pipe_producer_state) { int warp_idx = canonical_warp_idx_sync(); int warp_idx_in_warp_group = warp_idx % 4; int lane_predicate = cute::elect_one_sync(); // Issue the epilogue waits if (warp_idx_in_warp_group == 0 and lane_predicate) { /* This helps avoid early exit of blocks in Cluster * Waits for all stages to either be released (all * Consumer UNLOCKs), or if the stage was never used * then would just be acquired since the phase was * still inverted from make_producer_start_state */ pipeline.producer_tail(smem_pipe_producer_state); } } /// Perform a collective-scoped matrix multiply-accumulate /// Consumer Perspective template <class FrgTensorC> CUTLASS_DEVICE void mma(MainloopPipeline pipeline, PipelineState smem_pipe_consumer_state, FrgTensorC& accum, int k_tile_count, int thread_idx, TensorStorage& shared_tensors, Params const& mainloop_params) { static_assert(is_rmem<FrgTensorC>::value, "C tensor must be rmem resident."); Tensor sA = make_tensor(make_smem_ptr(shared_tensors.smem_A.data()), SmemLayoutA{}); // (BLK_M,BLK_K,PIPE) Tensor sB = make_tensor(make_smem_ptr(shared_tensors.smem_B.data()), SmemLayoutB{}); // (BLK_N,BLK_K,PIPE) // // Define C accumulators and A/B partitioning // TiledMma tiled_mma; auto thread_mma = tiled_mma.get_thread_slice(thread_idx); Tensor tCsA = thread_mma.partition_A(sA); // (MMA,MMA_M,MMA_K,PIPE) Tensor tCsB = thread_mma.partition_B(sB); // (MMA,MMA_N,MMA_K,PIPE) // Allocate "fragments/descriptors" Tensor tCrA = thread_mma.make_fragment_A(tCsA); // (MMA,MMA_M,MMA_K,PIPE) Tensor tCrB = thread_mma.make_fragment_B(tCsB); // (MMA,MMA_N,MMA_K,PIPE) CUTE_STATIC_ASSERT_V(size<1>(tCsA) == size<1>(accum)); // M CUTE_STATIC_ASSERT_V(size<1>(tCsB) == size<2>(accum)); // N CUTE_STATIC_ASSERT_V(size<2>(tCsA) == size<2>(tCsB)); // K CUTE_STATIC_ASSERT_V(size<3>(tCsA) == size<3>(tCsB)); // PIPE CUTE_STATIC_ASSERT_V(Int<DispatchPolicy::Stages>{} == size<2>(sA)); // PIPE CUTE_STATIC_ASSERT_V(Int<DispatchPolicy::Stages>{} == size<2>(sB)); // PIPE // // PIPELINED MAIN LOOP // static_assert((0 <= K_PIPE_MMAS) && (K_PIPE_MMAS < K_PIPE_MAX), "ERROR : Incorrect number of MMAs in flight"); // We release buffers to producer warps(dma load) with some mmas in flight PipelineState smem_pipe_release = smem_pipe_consumer_state; // Prologue GMMAs int prologue_mma_count = min(K_PIPE_MMAS, k_tile_count); tiled_mma.accumulate_ = GMMA::ScaleOut::Zero; warpgroup_fence_operand(accum); CUTLASS_PRAGMA_UNROLL for (int k_tile_prologue = prologue_mma_count; k_tile_prologue > 0; --k_tile_prologue) { // WAIT on smem_pipe_consumer_state until its data are available (phase bit flips from rdPhaseBit value) pipeline.consumer_wait(smem_pipe_consumer_state); int read_stage = smem_pipe_consumer_state.index(); warpgroup_arrive(); // Unroll the K mode manually to set scale D to 1 CUTLASS_PRAGMA_UNROLL for (int k_block = 0; k_block < size<2>(tCrA); ++k_block) { // (V,M,K) x (V,N,K) => (V,M,N) cute::gemm(tiled_mma, tCrA(_,_,k_block,read_stage), tCrB(_,_,k_block,read_stage), accum); tiled_mma.accumulate_ = GMMA::ScaleOut::One; } warpgroup_commit_batch(); ++smem_pipe_consumer_state; } warpgroup_fence_operand(accum); // Mainloop GMMAs k_tile_count -= prologue_mma_count; CUTLASS_PRAGMA_NO_UNROLL for ( ; k_tile_count > 0; --k_tile_count) { // WAIT on smem_pipe_consumer_state until its data are available (phase bit flips from rdPhaseBit value) pipeline.consumer_wait(smem_pipe_consumer_state); // // Compute on k_tile // int read_stage = smem_pipe_consumer_state.index(); warpgroup_fence_operand(accum); warpgroup_arrive(); // Unroll the K mode manually to set scale D to 1 CUTLASS_PRAGMA_UNROLL for (int k_block = 0; k_block < size<2>(tCrA); ++k_block) { // (V,M) x (V,N) => (V,M,N) cute::gemm(tiled_mma, tCrA(_,_,k_block,read_stage), tCrB(_,_,k_block,read_stage), accum); tiled_mma.accumulate_ = GMMA::ScaleOut::One; } warpgroup_commit_batch(); /// Wait on the GMMA barrier for K_PIPE_MMAS (or fewer) outstanding to ensure smem_pipe_producer_state is consumed warpgroup_wait<K_PIPE_MMAS>(); warpgroup_fence_operand(accum); // UNLOCK smem_pipe_release, done _computing_ on it pipeline.consumer_release(smem_pipe_release); // Advance smem_pipe_consumer_state and smem_pipe_release ++smem_pipe_consumer_state; ++smem_pipe_release; } warpgroup_fence_operand(accum); } /// Perform a Consumer Epilogue to release all buffers CUTLASS_DEVICE void mma_tail(MainloopPipeline pipeline, PipelineState smem_pipe_release, int k_tile_count) { // Prologue GMMAs int prologue_mma_count = min(K_PIPE_MMAS, k_tile_count); k_tile_count -= prologue_mma_count; smem_pipe_release.advance(k_tile_count); // Wait on all GMMAs to complete warpgroup_wait<0>(); for (int count = 0; count < prologue_mma_count; ++count) { pipeline.consumer_release(smem_pipe_release); // UNLOCK smem_pipe_release, done _computing_ on it ++smem_pipe_release; } } }; ///////////////////////////////////////////////////////////////////////////////////////////////// } // namespace cutlass::conv::collective /////////////////////////////////////////////////////////////////////////////////////////////////
include/cutlass/conv/collective/sm90_implicit_gemm_gmma_ss_warpspecialized.hpp/0
{ "file_path": "include/cutlass/conv/collective/sm90_implicit_gemm_gmma_ss_warpspecialized.hpp", "repo_id": "include", "token_count": 11460 }
21
/*************************************************************************************************** * Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. * SPDX-License-Identifier: BSD-3-Clause * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * **************************************************************************************************/ /*! \file \brief Templates implementing loading of convolution tiles mapped to GEMM B (filter tile) matrix from memory. This iterator assumes TensorNHWC or TensorCxRSKx<Interleave> layout of tensors in Global Memory. The iterator is specialized for each of the three convolution operators: forward propagation (Fprop), backward data gradient (Dgrad), and backward weight gradient (Wgrad). */ #pragma once #include "cutlass/cutlass.h" #include "cutlass/array.h" #include "cutlass/coord.h" #include "cutlass/predicate_vector.h" #include "cutlass/tensor_ref.h" #include "cutlass/tensor_view.h" #include "cutlass/layout/pitch_linear.h" #include "cutlass/layout/tensor.h" #include "cutlass/layout/matrix.h" #include "cutlass/conv/convolution.h" #include "cutlass/conv/conv2d_problem_size.h" #include "cutlass/conv/threadblock/conv2d_params.h" ///////////////////////////////////////////////////////////////////////////////////////////////// namespace cutlass { namespace conv { namespace threadblock { ///////////////////////////////////////////////////////////////////////////////////////////////// template < typename Shape_, typename Element_, typename Layout_, typename ThreadMap_, typename AccessType_ = cutlass::AlignedArray<Element_, ThreadMap_::kElementsPerAccess> > class Conv2dFpropFilterTileAccessIteratorFewChannels { public: // // Types // using Shape = Shape_; using Element = Element_; using Layout = Layout_; using ThreadMap = ThreadMap_; using AccessType = AccessType_; using TensorRef = cutlass::TensorRef<Element, Layout>; using TensorCoord = typename Layout::TensorCoord; using Index = typename Layout::Index; using LongIndex = typename Layout::LongIndex; static IteratorAlgorithm const kIteratorAlgorithm = conv::IteratorAlgorithm::kFewChannels; static StrideSupport const kStrideSupport = conv::StrideSupport::kStrided; static int const kConvDim = 2; using ConvProblemSize = typename conv::Conv2dProblemSize; static int const kElementsPerAccess = ThreadMap::kElementsPerAccess; static int const kPositionsPerTile = Shape::kRow; static int const kAccessesPerVector = ThreadMap::kElementsPerAccess / AccessType::kElements; static bool const kUseFastDivmodPrologue = true; static bool const kUseFastDivmodMainloop = true; static_assert(!(ThreadMap::kElementsPerAccess % AccessType::kElements), "Vectors implied by the thread map must be divisible by the access type."); // // Simplifying assertions // static_assert(ThreadMap::Iterations::kContiguous == 1, "Require Iterations::kContiguous == 1"); // // Parameters structure // using Params = Conv2dFewChannelsParams<Layout>; private: Params const &params_; Conv2dProblemSize const &problem_size_; LongIndex iteration_contiguous_; LongIndex iteration_strided_; LongIndex iteration_vector_; char const *pointer_; int rsc_index_; int offset_k_[ThreadMap::Iterations::kStrided]; public: CUTLASS_HOST_DEVICE Conv2dFpropFilterTileAccessIteratorFewChannels( Params const &params, Conv2dProblemSize const &problem_size, Element const *ptr, int thread_idx, MatrixCoord const &threadblock_offset = MatrixCoord() ): params_(params), problem_size_(problem_size), pointer_(reinterpret_cast<char const *>(ptr)), rsc_index_(0) { layout::PitchLinearCoord thread_coord = ThreadMap::initial_offset(thread_idx); rsc_index_ = (threadblock_offset.row() + thread_coord.contiguous()); CUTLASS_PRAGMA_UNROLL for (int s = 0; s < ThreadMap::Iterations::kStrided; ++s) { offset_k_[s] = threadblock_offset.column() + thread_coord.strided() + s * ThreadMap::Delta::kStrided; } set_iteration_index(0); } /// Overrides the internal iteration index CUTLASS_HOST_DEVICE void set_iteration_index(Index index) { iteration_vector_ = index % kAccessesPerVector; int residual_access = index / kAccessesPerVector; iteration_contiguous_ = residual_access % ThreadMap::Iterations::kContiguous; iteration_strided_ = residual_access / ThreadMap::Iterations::kContiguous; } /// Adds a pointer offset in units of Element CUTLASS_HOST_DEVICE void add_pointer_offset(LongIndex pointer_offset) { pointer_ += pointer_offset * 8 / sizeof_bits<Element>::value; } CUTLASS_HOST_DEVICE void advance() { // moves to the next tile rsc_index_ += kPositionsPerTile * problem_size_.split_k_slices; } /// Returns the coordinate in the filter tensor W that is currently pointed to /// by the iterator. CUTLASS_HOST_DEVICE TensorCoord at() const { int rsc_index = rsc_index_ + iteration_vector_ * AccessType::kElements; int c = 0; int s = 0; int r = 0; if (kUseFastDivmodMainloop) { int rs_index = params_.divmod_C.divmod(c, rsc_index); r = params_.divmod_S.divmod(s, rs_index); } else { c = (rsc_index % problem_size_.C); int rs_index = (rsc_index / problem_size_.C); s = (rs_index % problem_size_.S); r = (rs_index / problem_size_.S); } int k = offset_k_[iteration_strided_]; return TensorCoord(k, r, s, c); } /// Returns true if the current coordinate is within the activations tensor W CUTLASS_HOST_DEVICE bool valid() const { TensorCoord coord = at(); bool in_bounds = coord.n() < problem_size_.K && coord.h() >= 0 && coord.h() < problem_size_.R && coord.c() < problem_size_.C; return in_bounds; } /// Returns a pointer to the vector starting at the current coordinate CUTLASS_HOST_DEVICE AccessType const *get() const { TensorCoord coord = at(); int32_t offset = coord.n() * params_.stride_n + coord.h() * params_.stride_h + coord.w() * params_.stride_w + coord.c(); return reinterpret_cast<AccessType const *>(pointer_ + offset * sizeof_bits<Element>::value / 8); } /// Increments to the next memory access CUTLASS_HOST_DEVICE Conv2dFpropFilterTileAccessIteratorFewChannels &operator++() { ++iteration_vector_; if (iteration_vector_ < kAccessesPerVector) { return *this; } iteration_vector_ = 0; ++iteration_contiguous_; if (iteration_contiguous_ < ThreadMap::Iterations::kContiguous) { return *this; } iteration_contiguous_ = 0; ++iteration_strided_; if (iteration_strided_ < ThreadMap::Iterations::kStrided) { return *this; } iteration_strided_ = 0; return *this; } /// Determines whether the Implicit GEMM can execute the given problem. CUTLASS_HOST_DEVICE static Status can_implement(Conv2dProblemSize const &problem_size) { // check alignment constraint on iterator's contiguous dimension if (problem_size.C % AccessType::kElements) { return Status::kErrorInvalidProblem; } if (platform::is_same<Layout, layout::TensorCxRSKx<32>>::value) { if (problem_size.K % 32) { return Status::kErrorInvalidProblem; } } if (platform::is_same<Layout, layout::TensorCxRSKx<64>>::value) { if (problem_size.K % 64) { return Status::kErrorInvalidProblem; } } return Status::kSuccess; } }; ///////////////////////////////////////////////////////////////////////////////////////////////// } // namespace threadblock } // namespace conv } // namespace cutlass /////////////////////////////////////////////////////////////////////////////////////////////////
include/cutlass/conv/threadblock/conv2d_fprop_filter_tile_access_iterator_few_channels.h/0
{ "file_path": "include/cutlass/conv/threadblock/conv2d_fprop_filter_tile_access_iterator_few_channels.h", "repo_id": "include", "token_count": 3035 }
22
/*************************************************************************************************** * Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. * SPDX-License-Identifier: BSD-3-Clause * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * **************************************************************************************************/ /*! \file \brief Templates implementing loading of convolution tiles mapped to GEMM B (filter tile) matrix from memory. This iterator assumes TensorNHWC or TensorCxRSKx<Interleave> layout of tensors in Global Memory. The iterator is specialized for each of the three convolution operators: forward propagation (Fprop), backward data gradient (Dgrad), and backward weight gradient (Wgrad). */ #pragma once #include "cutlass/cutlass.h" #include "cutlass/array.h" #include "cutlass/coord.h" #include "cutlass/predicate_vector.h" #include "cutlass/tensor_ref.h" #include "cutlass/tensor_view.h" #include "cutlass/layout/pitch_linear.h" #include "cutlass/layout/tensor.h" #include "cutlass/layout/matrix.h" #include "cutlass/conv/convolution.h" #include "cutlass/conv/conv3d_problem_size.h" #include "cutlass/conv/threadblock/conv3d_params.h" ///////////////////////////////////////////////////////////////////////////////////////////////// namespace cutlass { namespace conv { namespace threadblock { ///////////////////////////////////////////////////////////////////////////////////////////////// template < typename Shape_, typename Element_, typename Layout_, typename ThreadMap_, bool IsDeconv_ = false > class Conv3dFpropFilterTileAccessIteratorOptimized{ public: // // Types // using Shape = Shape_; using Element = Element_; using Layout = Layout_; using ThreadMap = ThreadMap_; using AccessType = AlignedArray<Element, ThreadMap::kElementsPerAccess>; using TensorRef = cutlass::TensorRef<Element, Layout>; using TensorCoord = typename Layout::TensorCoord; using Index = typename Layout::Index; using LongIndex = typename Layout::LongIndex; static bool const IsDeconv = IsDeconv_; static IteratorAlgorithm const kIteratorAlgorithm = conv::IteratorAlgorithm::kOptimized; static StrideSupport const kStrideSupport = conv::StrideSupport::kStrided; static int const kConvDim = 3; using ConvProblemSize = typename conv::Conv3dProblemSize; static int const kAccessesPerVector = 1; // // Simplifying assertions // static_assert(ThreadMap::Iterations::kContiguous == 1, "Require Iterations::kContiguous == 1"); // // Parameters structure // struct Params : Conv3dFpropFilterIteratorOptimizedParams<Layout> { CUTLASS_HOST_DEVICE Params() { } CUTLASS_HOST_DEVICE Params(Conv3dFpropFilterIteratorOptimizedParams<Layout> const &base): Conv3dFpropFilterIteratorOptimizedParams<Layout>(base) { } CUTLASS_HOST_DEVICE Params( Conv3dProblemSize const &problem_size, Layout const &layout ): Conv3dFpropFilterIteratorOptimizedParams<Layout>( problem_size, layout, sizeof_bits<Element>::value, {Shape::kRow, Shape::kColumn}, ThreadMap::kThreads, ThreadMap::kElementsPerAccess, {ThreadMap::Iterations::kContiguous, ThreadMap::Iterations::kStrided}, {ThreadMap::Delta::kContiguous, ThreadMap::Delta::kStrided} ) { } }; private: Conv3dFpropFilterIteratorOptimizedParams<Layout> const &params_; Conv3dProblemSize const &problem_size_; LongIndex iteration_contiguous_; LongIndex iteration_strided_; char const *pointer_; uint32_t predicates_; int filter_trs_; int filter_c_; // // Assertions // // We map predicates into bits packed in this uint32_t container static_assert(ThreadMap::Iterations::kStrided < sizeof(predicates_) * 8, "Currently, the number of loads per iteration is limited by the size of the predicates container."); public: CUTLASS_HOST_DEVICE Conv3dFpropFilterTileAccessIteratorOptimized( Conv3dFpropFilterIteratorOptimizedParams<Layout> const &params, Conv3dProblemSize const &problem_size, Element const *ptr, int thread_idx, MatrixCoord const &threadblock_offset = MatrixCoord() ): params_(params), problem_size_(problem_size), pointer_(reinterpret_cast<char const *>(ptr)), predicates_{0}, filter_trs_(0), filter_c_(0) { layout::PitchLinearCoord thread_coord = ThreadMap::initial_offset(thread_idx); filter_c_ = threadblock_offset.row() + thread_coord.contiguous(); Index column = threadblock_offset.column() + thread_coord.strided(); CUTLASS_PRAGMA_UNROLL for (int s = 0; s < ThreadMap::Iterations::kStrided; ++s) { uint32_t pred = ((column + s * ThreadMap::Delta::kStrided < (IsDeconv ? problem_size_.C : problem_size_.K)) ? 1u : 0); predicates_ |= (pred << s); } if (filter_c_ >= (IsDeconv ? problem_size_.K : problem_size_.C)) { predicates_ = 0u; } pointer_ += ( params_.layout({filter_c_, column}) ) * sizeof_bits<Element>::value / 8; set_iteration_index(0); } /// Overrides the internal iteration index CUTLASS_HOST_DEVICE void set_iteration_index(Index index) { iteration_contiguous_ = index % ThreadMap::Iterations::kContiguous; iteration_strided_ = index / ThreadMap::Iterations::kContiguous; } /// Adds a pointer offset in units of Element CUTLASS_HOST_DEVICE void add_pointer_offset(LongIndex pointer_offset) { pointer_ += pointer_offset * sizeof_bits<Element>::value / 8; } CUTLASS_HOST_DEVICE void advance() { LongIndex next = params_.inc_next_trs; // moves to the next tile ++filter_trs_; if (filter_trs_ == params_.TRS) { filter_trs_ = 0; next = params_.inc_next_c; filter_c_ += params_.filter_c_delta; } if (filter_c_ >= (IsDeconv ? problem_size_.K : problem_size_.C)) { predicates_ = 0; } pointer_ += next; } /// Returns true if the current coordinate is within the filter tensor W CUTLASS_HOST_DEVICE bool valid() { return (predicates_ & (1u << iteration_strided_)); } /// Returns a pointer to the vector starting at the current coordinate CUTLASS_HOST_DEVICE AccessType const *get() const { return reinterpret_cast<AccessType const *>(pointer_); } /// Increments to the next memory access CUTLASS_HOST_DEVICE Conv3dFpropFilterTileAccessIteratorOptimized &operator++() { ++iteration_contiguous_; if (iteration_contiguous_ < ThreadMap::Iterations::kContiguous) { return *this; } iteration_contiguous_ = 0; ++iteration_strided_; if (iteration_strided_ < ThreadMap::Iterations::kStrided) { // Move to the next K coordinate within the tile pointer_ += params_.inc_next_k; return *this; } iteration_strided_ = 0; return *this; } /// Determines whether the Implicit GEMM can execute the given problem. CUTLASS_HOST_DEVICE static Status can_implement(Conv3dProblemSize const &problem_size) { auto input_channels = (IsDeconv ? problem_size.K : problem_size.C); // check alignment constraint on iterator's contiguous dimension if (input_channels % (128/sizeof_bits<Element>::value)) { return Status::kErrorInvalidProblem; } return Status::kSuccess; } }; ///////////////////////////////////////////////////////////////////////////////////////////////// } // namespace threadblock } // namespace conv } // namespace cutlass /////////////////////////////////////////////////////////////////////////////////////////////////
include/cutlass/conv/threadblock/conv3d_fprop_filter_tile_access_iterator_optimized.h/0
{ "file_path": "include/cutlass/conv/threadblock/conv3d_fprop_filter_tile_access_iterator_optimized.h", "repo_id": "include", "token_count": 3008 }
23
/*************************************************************************************************** * Copyright (c) 2023 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. * SPDX-License-Identifier: BSD-3-Clause * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * **************************************************************************************************/ /*! \file \brief Visitor tree compute operations for the sm90 TMA warp-specialized (ws) epilogue */ #pragma once #include "cutlass/cutlass.h" #include "cutlass/array.h" #include "cutlass/numeric_conversion.h" #include "cutlass/epilogue/thread/activation.h" #include "cute/tensor.hpp" #include "cutlass/epilogue/fusion/sm90_visitor_tma_warpspecialized.hpp" #include "cutlass/epilogue/fusion/sm90_visitor_load_tma_warpspecialized.hpp" #include "cutlass/epilogue/fusion/sm90_visitor_store_tma_warpspecialized.hpp" ///////////////////////////////////////////////////////////////////////////////////////////////// namespace cutlass::epilogue::fusion { using namespace cute; using namespace detail; ///////////////////////////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////////////////////////// // // N-nary Elementwise Compute Operation // ///////////////////////////////////////////////////////////////////////////////////////////////// // The template argument provided for ComputeFn must be able to accept // exactly one template parameter. In Standard C++, it's OK for // ComputeFn to have other template parameters, as long as those have // defaults. For example, the following struct Foo would work. // // template<class A, class B = A> // struct Foo { // CUTLASS_HOST_DEVICE auto operator() (A a, B b); // }; // // However, some compilers, such as Clang, require that the argument // take _exactly_ one template parameter. This is nonstandard C++ // behavior. One work-around for this case is to create a subclass // with exactly one template parameter, and then use that subclass as // the template argument. // // template<class A> // struct FooHomogeneous : public Foo<A, B> {}; // template< template <class> class ComputeFn, class ElementOutput, class ElementCompute, FloatRoundStyle RoundStyle, class = void > struct Sm90Compute { private: using EmptyArguments = typename Sm90VisitorImpl<>::Arguments; template <class Fn, class = void> struct ComputeArguments { using type = EmptyArguments; }; // partial specialization for compute fns that define an Arguments member, e.g. activation hyperparameters template <class Fn> struct ComputeArguments<Fn, platform::void_t<typename Fn::Arguments>> { using type = typename Fn::Arguments; }; public: struct SharedStorage { }; using Arguments = typename ComputeArguments<ComputeFn<ElementCompute>>::type; using Params = Arguments; template <class ProblemShape> static constexpr Params to_underlying_arguments(ProblemShape const&, Arguments const& args, void*) { return args; } template <class ProblemShape> static size_t get_workspace_size(ProblemShape const&, Arguments const&) { return 0; } template <class ProblemShape> static cutlass::Status initialize_workspace(ProblemShape const& problem_shape, Arguments const& args, void* workspace, cudaStream_t stream, CudaHostAdapter* cuda_adapter = nullptr) { return cutlass::Status::kSuccess; } CUTLASS_DEVICE bool is_producer_load_needed() const { return false; } CUTLASS_DEVICE bool is_C_load_needed() const { return false; } CUTLASS_HOST_DEVICE Sm90Compute() { } CUTLASS_HOST_DEVICE Sm90Compute(Params const& params, SharedStorage const& shared_storage) : params(params) {} Params const params; template <class... Args> CUTLASS_DEVICE auto get_producer_load_callbacks(ProducerLoadArgs<Args...> const& args) { return EmptyProducerLoadCallbacks{}; } struct ConsumerStoreCallbacks : EmptyConsumerStoreCallbacks { CUTLASS_DEVICE ConsumerStoreCallbacks(Params const& params) : params(params) {} Params const& params; template <typename ElementAccumulator, typename... ElementInputs, int FragmentSize> CUTLASS_DEVICE Array<ElementOutput, FragmentSize> visit(Array<ElementAccumulator, FragmentSize> const& frg_acc, int epi_v, int epi_m, int epi_n, Array<ElementInputs, FragmentSize> const&... frg_inputs) { return transform_apply(cute::make_tuple(frg_inputs...), [&] (auto&& frg_input) { using ElementInput = typename cute::remove_cvref_t<decltype(frg_input)>::Element; using ConvertInput = NumericArrayConverter<ElementCompute, ElementInput, FragmentSize, RoundStyle>; ConvertInput convert_input{}; return convert_input(frg_input); }, [&] (auto&&... cvt_frg_inputs) { using ComputeOutput = ComputeFn<Array<ElementCompute, FragmentSize>>; using ConvertOutput = NumericArrayConverter<ElementOutput, ElementCompute, FragmentSize, RoundStyle>; ComputeOutput compute_output{}; ConvertOutput convert_output{}; if constexpr (cute::is_same_v<Arguments, EmptyArguments>) { return convert_output(compute_output(cvt_frg_inputs...)); } else { return convert_output(compute_output(cvt_frg_inputs..., params)); } } ); } }; template < bool ReferenceSrc, // do register tensors reference the src or dst layout of the tiled copy class... Args > CUTLASS_DEVICE auto get_consumer_store_callbacks(ConsumerStoreArgs<Args...> const& args) { return ConsumerStoreCallbacks(params); } }; ///////////////////////////////////////////////////////////////////////////////////////////////// // // Performance Optimized Specializations // ///////////////////////////////////////////////////////////////////////////////////////////////// // beta * C + Z template < class ElementOutput, class ElementCompute, FloatRoundStyle RoundStyle, class InputScaleOp, // beta class ElementSource, // C class InputAddOp // Z > struct Sm90TreeVisitor< Sm90Compute<homogeneous_multiply_add, ElementOutput, ElementCompute, RoundStyle, cute::void_t<decltype(declval<InputScaleOp>().is_zero())>>, InputScaleOp, Sm90SrcFetch<ElementSource>, InputAddOp > : Sm90VisitorImpl< InputScaleOp, Sm90SrcFetch<ElementSource>, InputAddOp, Sm90Compute<homogeneous_multiply_add, ElementOutput, ElementCompute, RoundStyle> > { using Impl = Sm90VisitorImpl< InputScaleOp, Sm90SrcFetch<ElementSource>, InputAddOp, Sm90Compute<homogeneous_multiply_add, ElementOutput, ElementCompute, RoundStyle> >; using Params = typename Impl::Params; using SharedStorage = typename Impl::SharedStorage; CUTLASS_HOST_DEVICE Sm90TreeVisitor() {} CUTLASS_HOST_DEVICE Sm90TreeVisitor( Params const& params, SharedStorage const& shared_storage) : Impl(params, shared_storage) {} CUTLASS_DEVICE bool is_producer_load_needed() const { auto const& added_op = get<2>(Impl::ops); return is_C_load_needed() || added_op.is_producer_load_needed(); } CUTLASS_DEVICE bool is_C_load_needed() const { auto const& scale_op = get<0>(Impl::ops); auto const& src_op = get<1>(Impl::ops); auto const& added_op = get<2>(Impl::ops); return (not scale_op.is_zero() && src_op.is_C_load_needed()) || added_op.is_C_load_needed(); } template <class CallbacksImpl> struct ConsumerStoreCallbacks : CallbacksImpl { CUTLASS_DEVICE ConsumerStoreCallbacks(bool is_C_load_needed, CallbacksImpl&& impl) : is_C_load_needed(is_C_load_needed), CallbacksImpl(cute::forward<CallbacksImpl>(impl)) { } bool is_C_load_needed; template <typename ElementAccumulator, int FragmentSize> CUTLASS_DEVICE Array<ElementOutput, FragmentSize> visit(Array<ElementAccumulator, FragmentSize> const& frg_acc, int epi_v, int epi_m, int epi_n) { Array frg_added = get<2>(CallbacksImpl::callbacks_tuple).visit(frg_acc, epi_v, epi_m, epi_n); using ElementZ = typename decltype(frg_added)::Element; using ConvertZ = NumericArrayConverter<ElementCompute, ElementZ, FragmentSize, RoundStyle>; using ConvertI = NumericArrayConverter<ElementOutput, ElementCompute, FragmentSize, RoundStyle>; ConvertZ convert_Z{}; ConvertI convert_I{}; Array frg_I = convert_Z(frg_added); if (is_C_load_needed) { Array frg_scalar = get<0>(CallbacksImpl::callbacks_tuple).visit(frg_acc, epi_v, epi_m, epi_n); Array frg_source = get<1>(CallbacksImpl::callbacks_tuple).visit(frg_acc, epi_v, epi_m, epi_n); using ElementX = typename decltype(frg_scalar)::Element; using ElementY = typename decltype(frg_source)::Element; using ConvertX = NumericArrayConverter<ElementCompute, ElementX, FragmentSize, RoundStyle>; using ConvertY = NumericArrayConverter<ElementCompute, ElementY, FragmentSize, RoundStyle>; using ComputeI = multiply_add<Array<ElementCompute, FragmentSize>>; ConvertX convert_X{}; ConvertY convert_Y{}; ComputeI compute_I{}; frg_I = compute_I(convert_X(frg_scalar), convert_Y(frg_source), frg_I); } return convert_I(frg_I); } }; template < bool ReferenceSrc, // do register tensors reference the src or dst layout of the tiled copy class... Args > CUTLASS_DEVICE auto get_consumer_store_callbacks(ConsumerStoreArgs<Args...> const& args) { auto callbacks_tuple = Impl::template get_consumer_store_callbacks<ReferenceSrc>(args); return ConsumerStoreCallbacks<decltype(callbacks_tuple)>( is_C_load_needed(), std::move(callbacks_tuple)); } }; // ReLU with aux bit tensor dReLU/dZ // Aux(i) = Z(i) >= 0 ? 1 : 0 namespace detail { // Placeholder node so we can retain standard EVT structure template <class StrideMNL> struct Sm90ReLUAuxStore : Sm90VisitorImpl<> { struct SharedStorage {}; struct Arguments { cutlass::uint1b_t* ptr_aux = nullptr; StrideMNL dAux = {}; }; using Params = Arguments; template <class ProblemShape> static constexpr Params to_underlying_arguments(ProblemShape const& problem_shape, Arguments const& args, void* workspace) { return args; } template <class ProblemShape> static size_t get_workspace_size(ProblemShape const& problem_shape, Arguments const& args) { return 0; } template <class ProblemShape> static cutlass::Status initialize_workspace(ProblemShape const& problem_shape, Arguments const& args, void* workspace, cudaStream_t stream, CudaHostAdapter* cuda_adapter = nullptr) { return cutlass::Status::kSuccess; } CUTLASS_HOST_DEVICE Sm90ReLUAuxStore() { } CUTLASS_HOST_DEVICE Sm90ReLUAuxStore(Params const& params, SharedStorage const& shared_storage) { } }; } // namespace detail // Specialization on the generic compute+aux EVT template < // Compute node template <class> class Activation, class ElementOutput, class ElementCompute, FloatRoundStyle RoundStyle, // Aux node int Stages, class EpilogueTile, class StrideMNL, class SmemLayoutAtom, class CopyOpR2S, int Alignment, bool EnableNullptr, // Input node class InputOp > struct Sm90TreeVisitor< Sm90Compute<Activation, ElementOutput, ElementCompute, RoundStyle, cute::enable_if_t<cute::is_same_v<Activation<ElementCompute>, cutlass::epilogue::thread::ReLu<ElementCompute>> || cute::is_same_v<Activation<ElementCompute>, cutlass::epilogue::thread::Clamp<ElementCompute>> >>, Sm90TreeVisitor< Sm90AuxStore< Stages, EpilogueTile, cutlass::uint1b_t, RoundStyle, StrideMNL, SmemLayoutAtom, CopyOpR2S, Alignment, EnableNullptr >, InputOp > > : Sm90VisitorImpl< Sm90VisitorImpl< InputOp, detail::Sm90ReLUAuxStore<StrideMNL> >, Sm90Compute<Activation, ElementOutput, ElementCompute, RoundStyle> > { using Impl = Sm90VisitorImpl< Sm90VisitorImpl< InputOp, detail::Sm90ReLUAuxStore<StrideMNL> >, Sm90Compute<Activation, ElementOutput, ElementCompute, RoundStyle> >; using Params = typename Impl::Params; using SharedStorage = typename Impl::SharedStorage; CUTLASS_HOST_DEVICE Sm90TreeVisitor() {} CUTLASS_HOST_DEVICE Sm90TreeVisitor(Params const& params_, SharedStorage const& shared_storage) : params(params_), Impl(params_, shared_storage) {} Params const& params; template <class RTensor, class GTensor, class CTensor, class ResidueMN, class CallbacksImpl> struct ConsumerStoreCallbacks : CallbacksImpl { CUTLASS_DEVICE ConsumerStoreCallbacks( RTensor&& tC_rAux, GTensor&& tC_gAux, CTensor tC_cAux, ResidueMN residue_mn, Params const& params, CallbacksImpl&& impl) : tC_rAux(cute::forward<RTensor>(tC_rAux)), tC_gAux(cute::forward<GTensor>(tC_gAux)), tC_cAux(tC_cAux), residue_mn(residue_mn), params(params), CallbacksImpl(cute::forward<CallbacksImpl>(impl)) {} RTensor tC_rAux; // (CPY,CPY_M,CPY_N,EPI_M,EPI_N) GTensor tC_gAux; // (CPY,CPY_M,CPY_N,EPI_M,EPI_N) CTensor tC_cAux; // (CPY,CPY_M,CPY_N,EPI_M,EPI_N) ResidueMN residue_mn; Params const& params; template <typename ElementAccumulator, int FragmentSize> CUTLASS_DEVICE Array<ElementOutput, FragmentSize> visit(Array<ElementAccumulator, FragmentSize> const& frg_acc, int epi_v, int epi_m, int epi_n) { // Unpack callbacks + params auto& [callbacks_input_aux, callbacks_compute] = CallbacksImpl::callbacks_tuple; auto& [callbacks_input, callbacks_aux] = callbacks_input_aux.callbacks_tuple; auto const& [params_input_aux, params_compute] = params; auto const& [params_input, params_aux] = params_input_aux; // Visit the input node Array frg_input = callbacks_input.visit(frg_acc, epi_v, epi_m, epi_n); // Compute activation + aux using ElementInput = typename decltype(frg_input)::Element; using ConvertInput = NumericArrayConverter<ElementCompute, ElementInput, FragmentSize, RoundStyle>; using ConvertAux = PackPredicates<FragmentSize>; using ComputeOutput = Activation<ElementCompute>; using ConvertOutput = NumericArrayConverter<ElementOutput, ElementCompute, FragmentSize, RoundStyle>; ConvertInput convert_input{}; ComputeOutput relu{}; ConvertAux convert_aux{}; ConvertOutput convert_output{}; Array frg_compute = convert_input(frg_input); bool frg_aux[FragmentSize]; CUTLASS_PRAGMA_UNROLL for (int i = 0; i < FragmentSize; ++i) { ElementCompute pre_relu = frg_compute[i]; if constexpr (cute::is_same_v<Activation<ElementCompute>, cutlass::epilogue::thread::Clamp<ElementCompute>>) { frg_compute[i] = relu(frg_compute[i], params_compute); } else { frg_compute[i] = relu(frg_compute[i]); } frg_aux[i] = frg_compute[i] == pre_relu; } static_assert(FragmentSize % 8 == 0, "Predicate vector must be byte-aligned"); Tensor tC_rAux_frg = recast<typename ConvertAux::result_type>(coalesce(tC_rAux(_,_,_,epi_m,epi_n))); // (EPI_V) tC_rAux_frg(epi_v) = convert_aux(frg_aux); return convert_output(frg_compute); } CUTLASS_DEVICE void end() { // Unpack callbacks + params auto& [callbacks_input_aux, callbacks_compute] = CallbacksImpl::callbacks_tuple; auto& [callbacks_input, callbacks_aux] = callbacks_input_aux.callbacks_tuple; auto const& [params_input_aux, params_compute] = params; auto const& [params_input, params_aux] = params_input_aux; // Visit the input node callbacks_input.end(); // Nullptr is no-op if constexpr (EnableNullptr) { if (params_aux.ptr_aux == nullptr) { return; } } // Copy vectorizes into byte-aligned stores constexpr int V = cute::min(Alignment, decltype(max_common_vector(tC_rAux, tC_gAux))::value); if constexpr (V > 0 && V % 8 == 0) { using VecType = uint_bit_t<V>; Tensor tC_rAux_vec = recast<VecType>(tC_rAux); Tensor tC_gAux_vec = recast<VecType>(tC_gAux); Tensor tC_cAux_vec = tC_cAux.compose(make_layout(Int<size(tC_rAux_vec)>{}, Int<V>{})); // only works if vector is logically sequential auto predicate_fn = [&] (auto&&... coords) { return elem_less(tC_cAux_vec(coords...), residue_mn); }; copy_if(FunctionPredTensor(predicate_fn), tC_rAux_vec, tC_gAux_vec); } // sub-byte vectorization, must serialize threads else { // Assumes no inter-warp sharing of bytes (most copy layouts should satisfy this) int lane_idx = canonical_lane_idx(); auto predicate_fn = [&] (auto&&... coords) { return elem_less(tC_cAux(coords...), residue_mn); }; CUTLASS_PRAGMA_NO_UNROLL for (int i = 0; i < NumThreadsPerWarp; ++i) { if (lane_idx == i) { copy_if(FunctionPredTensor(predicate_fn), tC_rAux, tC_gAux); } __syncwarp(); } } } }; template < bool ReferenceSrc, // do register tensors reference the src or dst layout of the tiled copy class... Args > CUTLASS_DEVICE auto get_consumer_store_callbacks(ConsumerStoreArgs<Args...> const& args) { // Unpack params auto const& [params_input_aux, params_compute] = params; auto const& [params_input, params_aux] = params_input_aux; auto [M, N, K, L] = args.problem_shape_mnkl; auto [m, n, k, l] = args.tile_coord_mnkl; gmem_ptr ptr_aux = make_gmem_ptr(subbyte_iterator<cutlass::uint1b_t>(params_aux.ptr_aux)); Tensor mAux = make_tensor(ptr_aux, make_layout(make_shape(M,N,L), params_aux.dAux)); // (M,N,L) Tensor gAux = local_tile(mAux, take<0,2>(args.tile_shape_mnk), make_coord(m,n,l)); // (CTA_M,CTA_N) Tensor tC_gAux = sm90_partition_for_epilogue<ReferenceSrc>( // (CPY,CPY_M,CPY_N,EPI_M,EPI_N) gAux, args.epi_tile, args.tiled_copy, args.thread_idx); Tensor tC_rAux = make_tensor<cutlass::uint1b_t>(shape(tC_gAux)); // (CPY,CPY_M,CPY_N,EPI_M,EPI_N) auto callbacks_impl = Impl::template get_consumer_store_callbacks<ReferenceSrc>(args); return ConsumerStoreCallbacks<decltype(tC_rAux), decltype(tC_gAux), decltype(args.tCcD), decltype(args.residue_mn), decltype(callbacks_impl)>( cute::move(tC_rAux), cute::move(tC_gAux), args.tCcD, args.residue_mn, params, cute::move(callbacks_impl)); } }; // Aux load for uint1b_t template < int Stages, class EpilogueTile, class StrideMNL, class SmemLayoutAtom, class CopyOpS2R, int Alignment, bool EnableNullptr > struct Sm90AuxLoad< Stages, EpilogueTile, cutlass::uint1b_t, StrideMNL, SmemLayoutAtom, CopyOpS2R, Alignment, EnableNullptr > { static_assert(Alignment % 128 == 0, "sub-16B alignment not supported yet"); struct SharedStorage {}; struct Arguments { cutlass::uint1b_t const* ptr_aux = nullptr; cutlass::uint1b_t null_default = cutlass::uint1b_t(0); StrideMNL dAux = {}; }; using Params = Arguments; template <class ProblemShape> static constexpr Params to_underlying_arguments(ProblemShape const& problem_shape, Arguments const& args, void* workspace) { return args; } template <class ProblemShape> static size_t get_workspace_size(ProblemShape const& problem_shape, Arguments const& args) { return 0; } template <class ProblemShape> static cutlass::Status initialize_workspace(ProblemShape const& problem_shape, Arguments const& args, void* workspace, cudaStream_t stream, CudaHostAdapter* cuda_adapter = nullptr) { return cutlass::Status::kSuccess; } CUTLASS_HOST_DEVICE Sm90AuxLoad() { } CUTLASS_HOST_DEVICE Sm90AuxLoad(Params const& params, SharedStorage const&) : params(params) { } Params const params; CUTLASS_DEVICE bool is_producer_load_needed() const { return false; } CUTLASS_DEVICE bool is_C_load_needed() const { return false; } template <class... Args> CUTLASS_DEVICE auto get_producer_load_callbacks(ProducerLoadArgs<Args...> const& args) { return EmptyProducerLoadCallbacks{}; } template <class RTensor, class GTensor, class CTensor, class ResidueMN> struct ConsumerStoreCallbacks : EmptyConsumerStoreCallbacks { CUTLASS_DEVICE ConsumerStoreCallbacks(RTensor&& tC_rAux_, GTensor&& tC_gAux_, CTensor tC_cAux_, ResidueMN residue_mn_, Params const& params_) : tC_rAux(cute::forward<RTensor>(tC_rAux_)), tC_gAux(cute::forward<GTensor>(tC_gAux_)), tC_cAux(tC_cAux_), residue_mn(residue_mn_), params(params_) {} RTensor tC_rAux; // (CPY,CPY_M,CPY_N,{EPI_M,EPI_N}) GTensor tC_gAux; // (CPY,CPY_M,CPY_N,EPI_M,EPI_N) CTensor tC_cAux; // (CPY,CPY_M,CPY_N,EPI_M,EPI_N) ResidueMN residue_mn; Params const& params; CUTLASS_DEVICE void begin() { if constexpr (decltype(cute::rank(tC_rAux))::value == 5) { if constexpr (EnableNullptr) { if (params.ptr_aux == nullptr) { return; } } constexpr int V = cute::min(Alignment, decltype(max_common_vector(tC_rAux, tC_gAux))::value); if constexpr (V > 0) { using VecType = uint_bit_t<V>; Tensor tC_gAux_vec = recast<VecType>(tC_gAux); Tensor tC_rAux_vec = recast<VecType>(tC_rAux); Tensor tC_cAux_vec = tC_cAux.compose(make_layout(Int<size(tC_rAux_vec)>{}, Int<V>{})); // only works if vector is logically sequential auto predicate_fn = [&] (auto&&... coords) { return elem_less(tC_cAux_vec(coords...), residue_mn); }; copy_if(FunctionPredTensor(predicate_fn), tC_gAux_vec, tC_rAux_vec); } else { auto predicate_fn = [&] (auto&&... coords) { return elem_less(tC_cAux(coords...), residue_mn); }; copy_if(FunctionPredTensor(predicate_fn), tC_gAux, tC_rAux); } } } CUTLASS_DEVICE void previsit(int epi_m, int epi_n, int load_iteration, bool is_producer_load_needed) { if constexpr (decltype(cute::rank(tC_rAux))::value == 3) { if constexpr (EnableNullptr) { if (params.ptr_aux == nullptr) { return; } } auto predicate_fn = [&] (auto&&... coords) { return elem_less(tC_cAux(_,_,_,epi_m,epi_n)(coords...), residue_mn); }; copy_if(FunctionPredTensor(predicate_fn), tC_gAux(_,_,_,epi_m,epi_n), tC_rAux); } } template <typename ElementAccumulator, int FragmentSize> CUTLASS_DEVICE auto visit(Array<ElementAccumulator, FragmentSize> const& frg_acc, int epi_v, int epi_m, int epi_n) { using ElementRegister = typename remove_cvref_t<RTensor>::value_type; if constexpr (decltype(cute::rank(tC_rAux))::value == 3) { return recast<Array<ElementRegister, FragmentSize>>(coalesce(tC_rAux))(epi_v); } else { return recast<Array<ElementRegister, FragmentSize>>(coalesce(tC_rAux(_,_,_,epi_m,epi_n)))(epi_v); } } }; template < bool ReferenceSrc, // do register tensors reference the src or dst layout of the tiled copy class... Args > CUTLASS_DEVICE auto get_consumer_store_callbacks(ConsumerStoreArgs<Args...> const& args) { auto [M, N, K, L] = args.problem_shape_mnkl; auto [m, n, k, l] = args.tile_coord_mnkl; gmem_ptr ptr_aux = make_gmem_ptr(subbyte_iterator<cutlass::uint1b_t const>(params.ptr_aux)); Tensor mAux = make_tensor(ptr_aux, make_layout(make_shape(M,N,L), params.dAux)); // (M,N,L) Tensor gAux = local_tile(mAux, take<0,2>(args.tile_shape_mnk), make_coord(m,n,l)); // (CTA_M,CTA_N) Tensor tC_gAux = sm90_partition_for_epilogue<ReferenceSrc>( // (CPY,CPY_M,CPY_N,EPI_M,EPI_N) gAux, args.epi_tile, args.tiled_copy, args.thread_idx); // If byte-unaligned vectorization, store in registers as uint32_t to reduce redundant pack+unpack instruction sequences constexpr int V = decltype(max_common_vector(tC_gAux.layout(), make_layout(tC_gAux.shape())))::value; Tensor tC_rAux = [&] () { if constexpr (V % 8 != 0) { return make_tensor<uint32_t>(take<0,3>(shape(tC_gAux))); // (CPY,CPY_M,CPY_N) } else { return make_tensor<cutlass::uint1b_t>(shape(tC_gAux)); // (CPY,CPY_M,CPY_N,EPI_M,EPI_N) } }(); if constexpr (EnableNullptr) { if (params.ptr_aux == nullptr) { fill(tC_rAux, params.null_default); } } return ConsumerStoreCallbacks<decltype(tC_rAux), decltype(tC_gAux), decltype(args.tCcD), decltype(args.residue_mn)>( cute::move(tC_rAux), cute::move(tC_gAux), args.tCcD, args.residue_mn, params); } }; // dReLU specialization template< class ElementOutput, class ElementCompute, FloatRoundStyle RoundStyle > struct Sm90Compute< cutlass::epilogue::thread::dReLU, ElementOutput, ElementCompute, RoundStyle > : Sm90VisitorImpl<> { using Sm90VisitorImpl<>::Sm90VisitorImpl; struct ConsumerStoreCallbacks : EmptyConsumerStoreCallbacks { template <typename ElementAccumulator, typename ElementInput, typename ElementAux, int FragmentSize> CUTLASS_DEVICE Array<ElementOutput, FragmentSize> visit(Array<ElementAccumulator, FragmentSize> const& frg_acc, int epi_v, int epi_m, int epi_n, Array<ElementInput , FragmentSize> const& frg_input, Array<ElementAux , FragmentSize> const& frg_aux) { using ConvertInput = NumericArrayConverter<ElementCompute, ElementInput, FragmentSize, RoundStyle>; using ComputeOutput = cutlass::epilogue::thread::dReLU<Array<ElementCompute, FragmentSize>>; using ConvertOutput = NumericArrayConverter<ElementOutput, ElementCompute, FragmentSize, RoundStyle>; ConvertInput convert_input{}; ComputeOutput compute_output{}; ConvertOutput convert_output{}; return convert_output(compute_output(convert_input(frg_input), frg_aux)); // don't convert frg_aux for dReLU } }; template < bool ReferenceSrc, // do register tensors reference the src or dst layout of the tiled copy class... Args > CUTLASS_DEVICE auto get_consumer_store_callbacks(ConsumerStoreArgs<Args...> const& args) { return ConsumerStoreCallbacks(); } }; ///////////////////////////////////////////////////////////////////////////////////////////////// } // namespace cutlass::epilogue::fusion /////////////////////////////////////////////////////////////////////////////////////////////////
include/cutlass/epilogue/fusion/sm90_visitor_compute_tma_warpspecialized.hpp/0
{ "file_path": "include/cutlass/epilogue/fusion/sm90_visitor_compute_tma_warpspecialized.hpp", "repo_id": "include", "token_count": 11719 }
24
/*************************************************************************************************** * Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. * SPDX-License-Identifier: BSD-3-Clause * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * **************************************************************************************************/ /*! \file \brief Constructs a default epilogue for planar complex outputs. This template reuses components for real-valued epilogues and applies them to planar complex output matrices. */ #pragma once #include "cutlass/cutlass.h" #include "cutlass/numeric_types.h" #include "cutlass/array.h" #include "cutlass/array_planar_complex.h" #include "cutlass/arch/arch.h" #include "cutlass/epilogue/thread/linear_combination_planar_complex.h" #include "cutlass/epilogue/threadblock/default_epilogue_simt.h" #include "cutlass/epilogue/threadblock/default_epilogue_volta_tensor_op.h" #include "cutlass/epilogue/threadblock/default_epilogue_tensor_op.h" #include "cutlass/epilogue/threadblock/epilogue_planar_complex.h" ///////////////////////////////////////////////////////////////////////////////////////////////// namespace cutlass { namespace epilogue { namespace threadblock { ///////////////////////////////////////////////////////////////////////////////////////////////// /// Defines sensible defaults for epilogues. template < typename ThreadblockShape_, typename WarpMma_, typename OpcodeClass_, typename ArchTag_, int PartitionsK, typename OutputOp_, int ElementsPerAccess > struct DefaultEpiloguePlanarComplex; ///////////////////////////////////////////////////////////////////////////////////////////////// /// Defines sensible defaults for epilogues. template < typename ThreadblockShape_, typename WarpMmaOperator_, int PartitionsK, typename OutputOp_, int ElementsPerAccess > struct DefaultEpiloguePlanarComplex< ThreadblockShape_, WarpMmaOperator_, arch::OpClassTensorOp, arch::Sm70, PartitionsK, OutputOp_, ElementsPerAccess> { using RealEpilogue = DefaultEpilogueVoltaTensorOp< ThreadblockShape_, WarpMmaOperator_, PartitionsK, OutputOp_, ElementsPerAccess >; using Epilogue = EpiloguePlanarComplex< ThreadblockShape_, WarpMmaOperator_, PartitionsK, typename RealEpilogue::OutputTileIterator, typename RealEpilogue::AccumulatorFragmentIterator, typename RealEpilogue::WarpTileIterator, typename RealEpilogue::SharedLoadIterator, OutputOp_, typename RealEpilogue::Padding >; }; ///////////////////////////////////////////////////////////////////////////////////////////////// /// Defines sensible defaults for epilogues. template < typename ThreadblockShape_, typename WarpMmaOperator_, int PartitionsK, typename OutputOp_, int ElementsPerAccess > struct DefaultEpiloguePlanarComplex< ThreadblockShape_, WarpMmaOperator_, arch::OpClassTensorOp, arch::Sm75, PartitionsK, OutputOp_, ElementsPerAccess> { using RealEpilogue = DefaultEpilogueTensorOp< ThreadblockShape_, WarpMmaOperator_, PartitionsK, OutputOp_, ElementsPerAccess >; using Epilogue = EpiloguePlanarComplex< ThreadblockShape_, WarpMmaOperator_, PartitionsK, typename RealEpilogue::OutputTileIterator, typename RealEpilogue::AccumulatorFragmentIterator, typename RealEpilogue::WarpTileIterator, typename RealEpilogue::SharedLoadIterator, OutputOp_, typename RealEpilogue::Padding >; }; ///////////////////////////////////////////////////////////////////////////////////////////////// /// Defines sensible defaults for epilogues. template < typename ThreadblockShape_, typename WarpMmaOperator_, int PartitionsK, typename OutputOp_, int ElementsPerAccess > struct DefaultEpiloguePlanarComplex< ThreadblockShape_, WarpMmaOperator_, arch::OpClassTensorOp, arch::Sm80, PartitionsK, OutputOp_, ElementsPerAccess> { using RealEpilogue = DefaultEpilogueTensorOp< ThreadblockShape_, WarpMmaOperator_, PartitionsK, OutputOp_, ElementsPerAccess >; using Epilogue = EpiloguePlanarComplex< ThreadblockShape_, WarpMmaOperator_, PartitionsK, typename RealEpilogue::OutputTileIterator, typename RealEpilogue::AccumulatorFragmentIterator, typename RealEpilogue::WarpTileIterator, typename RealEpilogue::SharedLoadIterator, OutputOp_, typename RealEpilogue::Padding >; }; ///////////////////////////////////////////////////////////////////////////////////////////////// /// Defines sensible defaults for epilogues. template < typename ThreadblockShape_, typename WarpMmaOperator_, typename ArchTag_, int PartitionsK, typename OutputOp_, int ElementsPerAccess > struct DefaultEpiloguePlanarComplex< ThreadblockShape_, WarpMmaOperator_, arch::OpClassSimt, ArchTag_, PartitionsK, OutputOp_, ElementsPerAccess> { using RealEpilogue = DefaultEpilogueSimt< ThreadblockShape_, WarpMmaOperator_, OutputOp_, ElementsPerAccess >; using Epilogue = EpiloguePlanarComplex< ThreadblockShape_, WarpMmaOperator_, PartitionsK, typename RealEpilogue::OutputTileIterator, typename RealEpilogue::AccumulatorFragmentIterator, typename RealEpilogue::WarpTileIterator, typename RealEpilogue::SharedLoadIterator, OutputOp_, typename RealEpilogue::Padding >; }; ///////////////////////////////////////////////////////////////////////////////////////////////// } // namespace threadblock } // namespace epilogue } // namespace cutlass /////////////////////////////////////////////////////////////////////////////////////////////////
include/cutlass/epilogue/threadblock/default_epilogue_planar_complex.h/0
{ "file_path": "include/cutlass/epilogue/threadblock/default_epilogue_planar_complex.h", "repo_id": "include", "token_count": 2191 }
25
/*************************************************************************************************** * Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. * SPDX-License-Identifier: BSD-3-Clause * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * **************************************************************************************************/ /*! \file \brief Basic subset of epilogue functionality for supporting StreamK decompositions */ #pragma once #include "cutlass/cutlass.h" #include "cutlass/functional.h" #include "cutlass/block_striped.h" //////////////////////////////////////////////////////////////////////////////// namespace cutlass { namespace epilogue { namespace threadblock { //////////////////////////////////////////////////////////////////////////////// /// StreamK epilogue functionality for cross-block accumulator fragment reduction template < typename Shape, ///< Shape of threadblock tile (concept: GemmShape) int PartitionsK, typename WarpMmaOperator, ///< Warp-level MMA operator (concept: gemm::warp::MmaTensorOp) typename AccumulatorFragmentIterator> ///< Iterator for enumerating fragments within the per-thread tile of raw accumulators class EpilogueBaseStreamK { protected: /// The per-thread tile of raw accumulators using AccumulatorTile = typename AccumulatorFragmentIterator::AccumulatorTile; /// Number of warps using WarpCount = gemm::GemmShape< Shape::kM / WarpMmaOperator::Shape::kM, Shape::kN / WarpMmaOperator::Shape::kN, PartitionsK>; /// Number of threads per block static int const kBlockThreads = 32 * WarpCount::kCount; /// Numerical accumulation element type using ElementAccumulator = typename WarpMmaOperator::ElementC; /// Fragment type used by the accumulator tile's fragment iterator using AccumulatorFragment = typename AccumulatorFragmentIterator::Fragment; public: /// Number of AccumulatorTile fragments per thread static int const kAccumulatorFragments = AccumulatorFragmentIterator::Policy::kIterations; protected: /// Number of AccumulatorTile fragments per block output tile static int const kOutputTileFragments = kBlockThreads * kAccumulatorFragments; /// Block-striped transfer utility for sharing AccumulatorFragment using BlockStripedT = BlockStriped<kBlockThreads, AccumulatorFragment>; /// AccumulatorFragment stride in the shared workspace between different peer blocks (each thread block can share accumulators for up to two block output tiles) static const int kPeerFragmentStride = kOutputTileFragments * 2; public: /// Workspace bytes per thread block static size_t const kWorkspaceBytesPerBlock =sizeof(AccumulatorFragment) * kPeerFragmentStride; public: /// Thread index in the threadblock int thread_idx; public: /// Constructor CUTLASS_DEVICE EpilogueBaseStreamK( int thread_idx) ///< ID of a thread within the threadblock : thread_idx(thread_idx) {} /// Aggregates the accumulator sets shared by peer blocks in the global workspace CUTLASS_DEVICE void reduce( AccumulatorFragment &accum_fragment, ///< [out] sum of all shared accumulator fragments for these peer partials int peer_idx_begin, int peer_idx_end, int reduce_fragment_idx, void *workspace_ptr) { plus<AccumulatorFragment> add_fragments; AccumulatorFragment *fragment_workspace = reinterpret_cast<AccumulatorFragment *>(workspace_ptr); int fragment_offset = (peer_idx_begin * kPeerFragmentStride) + (reduce_fragment_idx * kBlockThreads); // Load first peer fragment BlockStripedT::load(accum_fragment, fragment_workspace + fragment_offset, this->thread_idx); fragment_offset += kPeerFragmentStride; // Move to next peer fragment_offset += kOutputTileFragments; // Move to the set of fragments for this peer's "non-started" output tile // Reduce fragments from additional peers #pragma unroll 2 for (; fragment_offset < peer_idx_end * kPeerFragmentStride; fragment_offset += kPeerFragmentStride) { // Load peer fragment AccumulatorFragment addend_fragment; BlockStripedT::load(addend_fragment, fragment_workspace + fragment_offset, this->thread_idx); // Add peer fragment accum_fragment = add_fragments(accum_fragment, addend_fragment); } } /// Shares the accumulator set with peers in the global workspace CUTLASS_DEVICE void share( int peer_idx, void *workspace_ptr, AccumulatorTile const &accumulators, bool started_tile) ///< Whether this thread block computed the first work volume for the current output tile { AccumulatorFragment *fragment_workspace = reinterpret_cast<AccumulatorFragment *>(workspace_ptr); int fragment_offset = peer_idx * kPeerFragmentStride; if (!started_tile) { // Move to the set of fragments for the "non-started" output tile fragment_offset += kOutputTileFragments; } AccumulatorFragmentIterator accum_fragment_iterator(accumulators); // Convert raw accumulator tile to fragments and store CUTLASS_PRAGMA_UNROLL for (int iter = 0; iter < kAccumulatorFragments; ++iter) { // Acquire reordered accumulator fragment AccumulatorFragment accum_fragment; accum_fragment_iterator.load(accum_fragment); ++accum_fragment_iterator; // Store accumulator fragment BlockStripedT::store(fragment_workspace + fragment_offset, accum_fragment, this->thread_idx); fragment_offset += kBlockThreads; } } }; //////////////////////////////////////////////////////////////////////////////// } // namespace threadblock } // namespace epilogue } // namespace cutlass ////////////////////////////////////////////////////////////////////////////////
include/cutlass/epilogue/threadblock/epilogue_base_streamk.h/0
{ "file_path": "include/cutlass/epilogue/threadblock/epilogue_base_streamk.h", "repo_id": "include", "token_count": 2346 }
26
/*************************************************************************************************** * Copyright (c) 2023 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. * SPDX-License-Identifier: BSD-3-Clause * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * **************************************************************************************************/ /*! \file \brief Visitor tree load operations for the CUTLASS 2x epilogue */ #pragma once #include "cutlass/epilogue/threadblock/fusion/visitor_2x.hpp" #include "cute/tensor.hpp" ///////////////////////////////////////////////////////////////////////////////////////////////// namespace cutlass::epilogue::threadblock { using namespace cute; using namespace detail; using X = Underscore; ///////////////////////////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////////////////////////// // // Elementwise Fetch Operations // ///////////////////////////////////////////////////////////////////////////////////////////////// // returns accumulator struct VisitorAccFetch : VisitorImpl2x<> { using VisitorImpl2x<>::VisitorImpl2x; struct Callbacks : EmptyCallbacks { template <class ElementAccumulator, int FragmentSize> CUTLASS_DEVICE Array<ElementAccumulator, FragmentSize> visit(int iter_idx, int row_idx, int column_idx, int frg_idx, Array<ElementAccumulator, FragmentSize> const& frg_acc) { return frg_acc; } }; template <class ProblemShape> CUTLASS_DEVICE auto get_callbacks( gemm::GemmCoord threadblock_tile_offset, int thread_idx, ProblemShape problem_shape ) { return Callbacks{}; } }; ///////////////////////////////////////////////////////////////////////////////////////////////// // // Broadcast Load Operations // ///////////////////////////////////////////////////////////////////////////////////////////////// // Scalar broadcast template< class Element, class StrideMNL = Stride<_0,_0,_0>, int BroadcastCount = 1, template <class> class ReductionFn = multiplies > struct VisitorScalarBroadcast { static_assert( (cute::is_same_v<StrideMNL, Stride<_0,_0,_0>>) || // scalar broadcast, e.g. alpha (cute::is_same_v<StrideMNL, Stride<_0,_0,_1>>) || (cute::is_same_v<StrideMNL, Stride<_0,_0,int>>)); // batched scalar broadcast, e.g. per-batch alpha struct SharedStorage { }; struct Arguments { Element scalars[BroadcastCount] = {}; Element const* scalar_ptrs[BroadcastCount] = {}; StrideMNL dScalar = {}; }; using Params = Arguments; template <class ProblemShape> static constexpr Params to_underlying_arguments(ProblemShape const& problem_shape, Arguments const& args, void* workspace) { return args; } template <class ProblemShape> static size_t get_workspace_size(ProblemShape const& problem_shape, Arguments const& args) { return 0; } CUTLASS_HOST_DEVICE VisitorScalarBroadcast() { } CUTLASS_HOST_DEVICE VisitorScalarBroadcast(Params const& params, SharedStorage const& shared_storage) : params_ptr(&params) { // Get the scalar for non-batched broadcast if constexpr (cute::is_same_v<StrideMNL, Stride<_0,_0,_0>>) { update_scalar(); } } Element scalar; Params const* params_ptr; struct Callbacks: EmptyCallbacks { CUTLASS_DEVICE Callbacks(Element scalar) : scalar(scalar) {} Element scalar; template <class ElementAccumulator, int FragmentSize> CUTLASS_DEVICE auto // returns an Array visit(int iter_idx, int row_idx, int column_idx, int frg_idx, Array<ElementAccumulator, FragmentSize> const& frg_acc) { Array<Element, FragmentSize> frg_scalar; frg_scalar.fill(scalar); return frg_scalar; } }; template <class ProblemShape> CUTLASS_DEVICE auto get_callbacks( gemm::GemmCoord threadblock_tile_offset, int thread_idx, ProblemShape problem_shape ) { // Get the scalar for batched broadcast if constexpr ( cute::is_same_v<StrideMNL, Stride<_0,_0,_1>> || cute::is_same_v<StrideMNL, Stride<_0,_0,int>>) { update_scalar(threadblock_tile_offset.k()); } return Callbacks(scalar); } private: CUTLASS_DEVICE void update_scalar(int l_coord = 0) { int l_offset = l_coord * size<2>(params_ptr->dScalar); if (params_ptr->scalar_ptrs[0] != nullptr) { scalar = params_ptr->scalar_ptrs[0][l_offset]; } else { // batch stride is ignored for nullptr fallback scalar = params_ptr->scalars[0]; } // Do reduction over multiple broadcasts if necessary ReductionFn<Element> reduction_fn; CUTLASS_PRAGMA_UNROLL for (int i = 1; i < BroadcastCount; ++i) { if (params_ptr->scalar_ptrs[i] != nullptr) { scalar = reduction_fn(scalar, params_ptr->scalar_ptrs[i][l_offset]); } else { // batch stride is ignored for nullptr fallback scalar = reduction_fn(scalar, params_ptr->scalars[i]); } } } }; ///////////////////////////////////////////////////////////////////////////////////////////////// // // Elementwise Load Operations // ///////////////////////////////////////////////////////////////////////////////////////////////// template< class ThreadMap, class Element, class StrideMNL > struct VisitorAuxLoad{ struct Arguments { Element* ptr_aux = nullptr; Element null_default = Element(0); StrideMNL dAux = {}; }; using Params = Arguments; template <class ProblemShape> static constexpr Params to_underlying_arguments(ProblemShape const& problem_shape, Arguments const& args, void* workspace) { return args; } template <class ProblemShape> static size_t get_workspace_size(ProblemShape const& problem_shape, Arguments const& args) { return 0; } // Software pipeline stages static const int Stages = ThreadMap::Stages; struct SharedStorage {}; // Global load type static int constexpr vec_bits = ThreadMap::kElementsPerAccess * sizeof_bits<Element>::value; using VecType = uint_bit_t<cute::min(128, vec_bits)>; static int constexpr VecLength = sizeof(VecType) / sizeof(Element); CUTLASS_HOST_DEVICE VisitorAuxLoad() { } CUTLASS_HOST_DEVICE VisitorAuxLoad(Params const& params, SharedStorage const& shared_storage) : params_ptr(&params) { } Params const* params_ptr; template <class GTensor, class RTensor, class CTensor, class ProblemShape> struct Callbacks : EmptyCallbacks { CUTLASS_DEVICE Callbacks( GTensor&& tC_gAux, RTensor&& tC_rAux, CTensor&& tC_cAux, ProblemShape problem_shape, Params const* params_ptr ): tC_gAux(cute::forward<GTensor>(tC_gAux)), tC_rAux(cute::forward<RTensor>(tC_rAux)), tC_cAux(cute::forward<CTensor>(tC_cAux)), problem_shape(problem_shape), params_ptr(params_ptr) { } GTensor tC_gAux; RTensor tC_rAux; CTensor tC_cAux; Params const* params_ptr; ProblemShape problem_shape; CUTLASS_DEVICE void begin_step(int step_idx) { clear(tC_rAux(_,_,_,step_idx%Stages)); auto src_v = filter(tC_gAux(_,_,_,step_idx)); auto coord_v = filter(tC_cAux(_,_,_,step_idx)); auto dst_v = filter(tC_rAux(_,_,_,step_idx%Stages)); CUTLASS_PRAGMA_UNROLL for (int i = 0; i < size(src_v); ++i) { bool guard = elem_less(coord_v(i), problem_shape); cutlass::arch::global_load<VecType, sizeof(VecType)>(dst_v(i), (void const*)&src_v(i), guard); } } template <class ElementAccumulator, int FragmentSize> CUTLASS_DEVICE auto // returns an Array visit(int iter_idx, int row_idx, int column_idx, int frg_idx, Array<ElementAccumulator, FragmentSize> const& frg_acc) { Tensor tC_rAux_frg = recast<Array<Element, FragmentSize>>(coalesce(tC_rAux(_,_,_,iter_idx%Stages))); return tC_rAux_frg(frg_idx); } }; template <class ProblemShape> CUTLASS_DEVICE auto get_callbacks( gemm::GemmCoord threadblock_tile_offset, int thread_idx, ProblemShape problem_shape ) { Tensor mAux = make_tensor( make_gmem_ptr(params_ptr->ptr_aux), problem_shape, params_ptr->dAux); // (M,N,L) // VECTOR, FRAGMENT_COLUMN, FRAGMENT_ROW, ITERATION_ROW, ITERATION_GROUP, ITERATION_CLUSTER Tensor tC_gAux = recast<VecType>( group_modes<3,6>(ThreadMap::partition(mAux, thread_idx, threadblock_tile_offset))); // VECTOR, FRAGMENT_COLUMN, FRAGMENT_ROW, Stages Tensor tC_rAux = make_tensor<VecType>( make_layout(flatten(make_shape(take<0,3>(tC_gAux.shape()), Int<Stages>{})))); // Generate the pred tensor Tensor cAux = make_identity_tensor(mAux.shape()); Tensor tC_cAux = outer_partition( group_modes<3,6>(ThreadMap::partition(cAux, thread_idx, threadblock_tile_offset)), Shape<Int<VecLength>>{}, (_0{}) ); return Callbacks< decltype(tC_gAux), decltype(tC_rAux), decltype(tC_cAux), ProblemShape>( cute::move(tC_gAux), cute::move(tC_rAux), cute::move(tC_cAux), problem_shape, params_ptr ); } }; ///////////////////////////////////////////////////////////////////////////////////////////////// // Row vector broadcast template< class ThreadMap, class Element, class StrideMNL > struct VisitorRowBroadcast { struct Arguments { Element const* ptr_row = nullptr; Element null_default = Element(0); StrideMNL dRow = {}; }; using Params = Arguments; template <class ProblemShape> static constexpr Params to_underlying_arguments(ProblemShape const& problem_shape, Arguments const& args, void* workspace) { return args; } template <class ProblemShape> static size_t get_workspace_size(ProblemShape const& problem_shape, Arguments const& args) { return 0; } struct SharedStorage {}; // Global load type static int constexpr vec_bits = ThreadMap::kElementsPerAccess * sizeof_bits<Element>::value; using VecType = uint_bit_t<cute::min(128, vec_bits)>; static int constexpr VecLength = sizeof(VecType) / sizeof(Element); CUTLASS_HOST_DEVICE VisitorRowBroadcast() { } CUTLASS_HOST_DEVICE VisitorRowBroadcast(Params const& params, SharedStorage const& shared_storage) : params_ptr(&params) { } Params const* params_ptr; template <class GTensor, class RTensor, class CTensor, class ProblemShape> struct Callbacks : EmptyCallbacks { CUTLASS_DEVICE Callbacks( GTensor&& tC_gRow, RTensor&& tC_rRow, CTensor&& tC_cRow, ProblemShape problem_shape, Params const* params_ptr ): tC_gRow(cute::forward<GTensor>(tC_gRow)), tC_rRow(cute::forward<RTensor>(tC_rRow)), tC_cRow(cute::forward<CTensor>(tC_cRow)), n(get<1>(problem_shape)), params_ptr(params_ptr) { } GTensor tC_gRow; RTensor tC_rRow; CTensor tC_cRow; Params const* params_ptr; int n; CUTLASS_DEVICE void begin_epilogue() { clear(tC_rRow); auto src_v = filter(tC_gRow); auto coord_v = filter(tC_cRow); auto dst_v = filter(tC_rRow); CUTLASS_PRAGMA_UNROLL for (int i = 0; i < size(src_v); ++i) { bool guard = get<1>(coord_v(i)) < n; cutlass::arch::global_load<VecType, sizeof(VecType)>(dst_v(i), (void const*)&src_v(i), guard); } } template <class ElementAccumulator, int FragmentSize> CUTLASS_DEVICE auto // returns an Array visit(int iter_idx, int row_idx, int column_idx, int frg_idx, Array<ElementAccumulator, FragmentSize> const& frg_acc) { Tensor rRow_frg = recast<Array<Element, FragmentSize>>(coalesce(tC_rRow)); return rRow_frg(column_idx); } }; template <class ProblemShape> CUTLASS_DEVICE auto get_callbacks( gemm::GemmCoord threadblock_tile_offset, int thread_idx, ProblemShape problem_shape ) { Tensor mRow = make_tensor( make_gmem_ptr(params_ptr->ptr_row), problem_shape, params_ptr->dRow); // VECTOR, FRAGMENT_COLUMN Tensor tC_gRow = recast<VecType>( ThreadMap::partition(mRow, thread_idx, threadblock_tile_offset) )(_,_,_0{},_0{},_0{},_0{}); Tensor tC_rRow = make_tensor_like(tC_gRow); // Generate the pred tensor Tensor cRow = make_identity_tensor(mRow.shape()); Tensor tC_cRow = outer_partition( ThreadMap::partition(cRow, thread_idx, threadblock_tile_offset)(_,_,_0{},_0{},_0{},_0{}), Shape<Int<VecLength>>{}, (_0{}) ); return Callbacks< decltype(tC_gRow), decltype(tC_rRow), decltype(tC_cRow), ProblemShape>( cute::move(tC_gRow), cute::move(tC_rRow), cute::move(tC_cRow), problem_shape, params_ptr ); } }; ///////////////////////////////////////////////////////////////////////////////////////////////// // Column vector broadcast template< class ThreadMap, class Element, class StrideMNL = Stride<_1,_0,_0> > struct VisitorColBroadcast { struct Arguments { Element const* ptr_col = nullptr; Element null_default = Element(0); StrideMNL dCol = {}; }; using Params = Arguments; template <class ProblemShape> static constexpr Params to_underlying_arguments(ProblemShape const& problem_shape, Arguments const& args, void* workspace) { return args; } template <class ProblemShape> static size_t get_workspace_size(ProblemShape const& problem_shape, Arguments const& args) { return 0; } struct SharedStorage { }; CUTLASS_HOST_DEVICE VisitorColBroadcast() { } CUTLASS_HOST_DEVICE VisitorColBroadcast(Params const& params, SharedStorage const& shared_storage) : params_ptr(&params) { } Params const* params_ptr; template <class GTensor, class RTensor, class CTensor, class ProblemShape> struct Callbacks : EmptyCallbacks { CUTLASS_DEVICE Callbacks( GTensor&& tC_gCol, RTensor&& tC_rCol, CTensor&& tC_cCol, ProblemShape problem_shape, Params const* params_ptr ): tC_gCol(cute::forward<GTensor>(tC_gCol)), tC_rCol(cute::forward<RTensor>(tC_rCol)), tC_cCol(cute::forward<CTensor>(tC_cCol)), m(get<0>(problem_shape)), params_ptr(params_ptr) { } GTensor tC_gCol; RTensor tC_rCol; CTensor tC_cCol; Params const* params_ptr; int m; CUTLASS_DEVICE void begin_epilogue() { clear(tC_rCol); Tensor pred = make_tensor<bool>(shape(tC_gCol)); CUTLASS_PRAGMA_UNROLL for (int i = 0; i < size(pred); ++i) { pred(i) = get<0>(tC_cCol(i)) < m; } copy_if(pred, tC_gCol, tC_rCol); } template <class ElementAccumulator, int FragmentSize> CUTLASS_DEVICE auto // returns an Array visit(int iter_idx, int row_idx, int column_idx, int frg_idx, Array<ElementAccumulator, FragmentSize> const& frg_acc) { Array<Element, FragmentSize> frg_col; frg_col.fill(tC_rCol(row_idx,iter_idx)); return frg_col; } }; template <class ProblemShape> CUTLASS_DEVICE auto get_callbacks( gemm::GemmCoord threadblock_tile_offset, int thread_idx, ProblemShape problem_shape ) { Tensor mCol = make_tensor( make_gmem_ptr(params_ptr->ptr_col), problem_shape, params_ptr->dCol); // VECTOR, FRAGMENT_COLUMN, FRAGMENT_ROW, ITERATION_ROW, ITERATION_GROUP, ITERATION_CLUSTER Tensor tC_gCol = group_modes<1,4>( ThreadMap::partition(mCol, thread_idx, threadblock_tile_offset)(_0{},_0{},_,_,_,_)); Tensor tC_rCol = make_tensor_like(tC_gCol); // Generate the pred tensor Tensor cCol = make_identity_tensor(mCol.shape()); Tensor tC_cCol = group_modes<1,4>( ThreadMap::partition(cCol, thread_idx, threadblock_tile_offset)(_0{},_0{},_,_,_,_)); return Callbacks< decltype(tC_gCol), decltype(tC_rCol), decltype(tC_cCol), ProblemShape>( cute::move(tC_gCol), cute::move(tC_rCol), cute::move(tC_cCol), problem_shape, params_ptr ); } }; ///////////////////////////////////////////////////////////////////////////////////////////////// } // namespace cutlass::epilogue::threadblock /////////////////////////////////////////////////////////////////////////////////////////////////
include/cutlass/epilogue/threadblock/fusion/visitor_load.hpp/0
{ "file_path": "include/cutlass/epilogue/threadblock/fusion/visitor_load.hpp", "repo_id": "include", "token_count": 6834 }
27
/*************************************************************************************************** * Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. * SPDX-License-Identifier: BSD-3-Clause * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * **************************************************************************************************/ /*! \file \brief Epilogue for threadblock scoped GEMMs using Tensor Ops optimized for mixed-precision. This assumes the shared memory tile is in a permuted layout which avoids bank conflicts on loading. When the fragment is loaded into registers, it matches the row-major thread map assumed by the predicated tile iterator writing to global memory. The epilogue rearranges the result of a matrix product through shared memory to match canonical tensor layouts in global memory. Epilogues support conversion and reduction operations. */ #pragma once #include "cutlass/cutlass.h" #include "cutlass/numeric_types.h" #include "cutlass/array.h" #include "cutlass/layout/matrix.h" #include "cutlass/matrix_shape.h" #include "cutlass/tensor_ref.h" #include "cutlass/epilogue/threadblock/output_tile_thread_map.h" ///////////////////////////////////////////////////////////////////////////////////////////////// namespace cutlass { namespace epilogue { namespace threadblock { ///////////////////////////////////////////////////////////////////////////////////////////////// /// Tile iterator used to load output tile from shared memory in epilogue. /// /// Satisfies: ReadableTileIterator /// template < typename ThreadMap_, ///< Thread map (conept: OutputTileThreadMap) typename Element_, ///< Accumulator data type int ElementSizeBits_, ///< Size of accumulator in bits int OutputSizeBits_, ///< Size of output element in bits int ElementsPerAccess, ///< Vector length of output vector int ContiguousLanes, ///< Number of lanes in the warp writing to contiguous elements /// in the global memory tensor bool EightBitsOutputOrLess = (OutputSizeBits_ <= 8) > class SharedLoadIteratorMixed; ///////////////////////////////////////////////////////////////////////////////////////////////// /// Tile iterator used to load output tile from shared memory in epilogue. /// /// Satisfies: ReadableTileIterator /// template < typename ThreadMap_, ///< Thread map (conept: OutputTileThreadMap) typename Element_ ///< Accumulator data type > class SharedLoadIteratorMixed<ThreadMap_, Element_, 32, 16, 8, 8, false> { public: using ThreadMap = ThreadMap_; using Shape = typename ThreadMap::Shape; using Element = Element_; using Layout = layout::RowMajor; using TensorRef = TensorRef<Element, Layout>; using ConstTensorRef = typename TensorRef::ConstTensorRef; using Index = typename Layout::Index; using LongIndex = typename Layout::LongIndex; using TensorCoord = MatrixCoord; static int const kElementsPerAccess = ThreadMap::kElementsPerAccess; static int const kAlignment = ThreadMap::kElementsPerAccess * sizeof_bits<Element_>::value / 8; static int const kThreads = ThreadMap::kThreads; /// Fragment object using Fragment = Array< Element, ThreadMap::Iterations::kColumn * ThreadMap::Iterations::kRow * ThreadMap::Iterations::kGroup * ThreadMap::Iterations::kCluster * ThreadMap::kElementsPerAccess>; /// Memory access size using AccessType = AlignedArray< Element, ThreadMap::kElementsPerAccess, kAlignment>; /// Vector type used for SMEM loads using LoadType = AlignedArray< Element, const_min(128 / sizeof_bits<Element>::value, ThreadMap::kElementsPerAccess), const_min(16, kAlignment) >; static int const kLoadsPerAccess = AccessType::kElements / LoadType::kElements; private: // // Data members // /// Byte-level pointer LoadType const *pointers_[kLoadsPerAccess]; /// Stride along adjacent rows in units of LoadType int stride_; public: // // Methods // /// Constructor CUTLASS_DEVICE SharedLoadIteratorMixed( TensorRef ref, int thread_idx ): stride_((ref.stride(0) / LoadType::kElements)) { TensorCoord thread_offset = ThreadMap::initial_offset(thread_idx); // Initialize pointers CUTLASS_PRAGMA_UNROLL for (int i = 0; i < kLoadsPerAccess; ++i) { pointers_[i] = reinterpret_cast<LoadType const *>(ref.data()); int col_idx = (thread_offset.column() / kElementsPerAccess) * kLoadsPerAccess; int bank_offset = (col_idx * int(sizeof(LoadType)) / 128) % kLoadsPerAccess; col_idx += (bank_offset + i) % kLoadsPerAccess; pointers_[i] += thread_offset.row() * stride_ + col_idx; } } /// Adds a pointer offset in units of Element CUTLASS_HOST_DEVICE void add_pointer_offset(LongIndex pointer_offset) { CUTLASS_PRAGMA_UNROLL for (int i = 0; i < kLoadsPerAccess; ++i) { pointers_[i] += pointer_offset / LoadType::kElements; } } CUTLASS_DEVICE void add_tile_offset(TensorCoord const &offset) { CUTLASS_PRAGMA_UNROLL for (int i = 0; i < kLoadsPerAccess; ++i) { pointers_[i] += offset.row() * Shape::kRow * stride_ + offset.column() * Shape::kColumn / LoadType::kElements; } } /// Loads a fragment from memory CUTLASS_DEVICE void load_with_pointer_offset(Fragment &frag, Index pointer_offset) const { CUTLASS_PRAGMA_UNROLL for (int cluster = 0; cluster < ThreadMap::Iterations::kCluster; ++cluster) { CUTLASS_PRAGMA_UNROLL for (int group = 0; group < ThreadMap::Iterations::kGroup; ++group) { CUTLASS_PRAGMA_UNROLL for (int row = 0; row < ThreadMap::Iterations::kRow; ++row) { int row_ptr_offset = row * ThreadMap::Delta::kRow * stride_ + group * ThreadMap::Delta::kGroup* stride_ + cluster * ThreadMap::Delta::kCluster * stride_ + pointer_offset / LoadType::kElements; int frag_row_idx = (row + ThreadMap::Iterations::kRow * (group + ThreadMap::Iterations::kGroup * cluster)); LoadType *frag_ptr = reinterpret_cast<LoadType *>(&frag); CUTLASS_PRAGMA_UNROLL for (int column = 0; column < ThreadMap::Iterations::kColumn; ++column) { int frag_idx = frag_row_idx * ThreadMap::Iterations::kColumn + column; CUTLASS_PRAGMA_UNROLL for (int v = 0; v < kLoadsPerAccess; ++v) { int vector_idx = (column * ThreadMap::Delta::kColumn / kElementsPerAccess * kLoadsPerAccess); LoadType const *memory_pointer = pointers_[v] + row_ptr_offset; frag_ptr[frag_idx * kLoadsPerAccess + v] = memory_pointer[vector_idx]; } } } } } } /// Set base smem address CUTLASS_DEVICE void set_smem_base_address(Index address) {} /// Loads a fragment CUTLASS_DEVICE void load(Fragment &frag) const { load_with_pointer_offset(frag, 0); } }; ///////////////////////////////////////////////////////////////////////////////////////////////// /// Partial specialization for /// int32_t x 16 => int8_t/int4b_t x 16 and /// float x 16 => float_e4m3_t/float_e5m2_t x 16 template < typename ThreadMap_, ///< Thread map (concept: OutputTileThreadMap) typename Element_, int OutputSizeBits_ ///< Size of output element in bits > class SharedLoadIteratorMixed<ThreadMap_, Element_, 32, OutputSizeBits_, 16, 8, true> { public: using ThreadMap = ThreadMap_; using Shape = typename ThreadMap::Shape; using Element = Element_; static_assert(sizeof_bits<Element>::value == 32, "Element size in bits must be 32."); using Layout = layout::RowMajor; using TensorRef = TensorRef<Element, Layout>; using ConstTensorRef = typename TensorRef::ConstTensorRef; using Index = typename Layout::Index; using LongIndex = typename Layout::LongIndex; using TensorCoord = MatrixCoord; static int const kElementsPerAccess = ThreadMap::kElementsPerAccess; static int const kAlignment = 16; static int const kThreads = ThreadMap::kThreads; /// Fragment object using Fragment = Array< Element, ThreadMap::Iterations::kColumn * ThreadMap::Iterations::kRow * ThreadMap::Iterations::kGroup * ThreadMap::Iterations::kCluster * ThreadMap::kElementsPerAccess>; /// Memory access size using AccessType = AlignedArray< Element, 16, kAlignment>; /// Vector type used for SMEM loads using LoadType = AlignedArray< Element, 4, 16 >; static int const kLoadsPerAccess = 4; private: // // Data members // /// Byte-level pointer LoadType const *pointers_[kLoadsPerAccess]; /// Stride along adjacent rows in units of LoadType int stride_; public: // // Methods // /// Constructor CUTLASS_DEVICE SharedLoadIteratorMixed( TensorRef ref, int thread_idx ): stride_((ref.stride(0) / LoadType::kElements)) { TensorCoord thread_offset = ThreadMap::initial_offset(thread_idx); // Initialize pointers LoadType const *base_ptr = reinterpret_cast<LoadType const *>(ref.data()) + thread_offset.row() * stride_; int lane_col_idx = thread_offset.column() / 16; CUTLASS_PRAGMA_UNROLL for (int i = 0; i < kLoadsPerAccess; ++i) { int lane_offset = (lane_col_idx % 2) * 4 | ((lane_col_idx / 2) * 8) | ((lane_col_idx / 2) ^ i); pointers_[i] = base_ptr + lane_offset; } } /// Adds a pointer offset in units of Element CUTLASS_HOST_DEVICE void add_pointer_offset(LongIndex pointer_offset) { CUTLASS_PRAGMA_UNROLL for (int i = 0; i < kLoadsPerAccess; ++i) { pointers_[i] += pointer_offset / LoadType::kElements; } } CUTLASS_DEVICE void add_tile_offset(TensorCoord const &offset) { CUTLASS_PRAGMA_UNROLL for (int i = 0; i < kLoadsPerAccess; ++i) { pointers_[i] += offset.row() * Shape::kRow * stride_ + offset.column() * Shape::kColumn / LoadType::kElements; } } /// Loads a fragment from memory CUTLASS_DEVICE void load_with_pointer_offset(Fragment &frag, Index pointer_offset) { CUTLASS_PRAGMA_UNROLL for (int cluster = 0; cluster < ThreadMap::Iterations::kCluster; ++cluster) { CUTLASS_PRAGMA_UNROLL for (int group = 0; group < ThreadMap::Iterations::kGroup; ++group) { CUTLASS_PRAGMA_UNROLL for (int row = 0; row < ThreadMap::Iterations::kRow; ++row) { int row_ptr_offset = row * ThreadMap::Delta::kRow * stride_ + group * ThreadMap::Delta::kGroup* stride_ + cluster * ThreadMap::Delta::kCluster * stride_ + pointer_offset / LoadType::kElements; int frag_row_idx = (row + ThreadMap::Iterations::kRow * (group + ThreadMap::Iterations::kGroup * cluster)); LoadType *frag_ptr = reinterpret_cast<LoadType *>(&frag); CUTLASS_PRAGMA_UNROLL for (int column = 0; column < ThreadMap::Iterations::kColumn; ++column) { int frag_idx = frag_row_idx * ThreadMap::Iterations::kColumn + column; CUTLASS_PRAGMA_UNROLL for (int v = 0; v < kLoadsPerAccess; ++v) { LoadType const *memory_pointer = pointers_[v]; frag_ptr[frag_idx * kLoadsPerAccess + v] = memory_pointer[row_ptr_offset]; } } } } } } /// Set base smem address CUTLASS_DEVICE void set_smem_base_address(Index address) {} /// Loads a fragment CUTLASS_DEVICE void load(Fragment &frag) { load_with_pointer_offset(frag, 0); } }; ///////////////////////////////////////////////////////////////////////////////////////////////// /// Partial specialization for: /// int32_t x 8 => int8_t/int4b_t x 8 and /// float x 8 => float_e4m3_t/float_e5m2_t x 8 template < typename ThreadMap_, ///< Thread map (concept: OutputTileThreadMap) typename Element_, int OutputSizeBits_ > class SharedLoadIteratorMixed<ThreadMap_, Element_, 32, OutputSizeBits_, 8, 8, true> { public: using ThreadMap = ThreadMap_; using Shape = typename ThreadMap::Shape; using Element = Element_; static_assert(sizeof_bits<Element>::value == 32, "Element size in bits must be 32."); using Layout = layout::RowMajor; using TensorRef = TensorRef<Element, Layout>; using ConstTensorRef = typename TensorRef::ConstTensorRef; using Index = typename Layout::Index; using LongIndex = typename Layout::LongIndex; using TensorCoord = MatrixCoord; static int const kElementsPerAccess = ThreadMap::kElementsPerAccess; static int const kAlignment = 8; static int const kThreads = ThreadMap::kThreads; /// Fragment object using Fragment = Array< Element, ThreadMap::Iterations::kColumn * ThreadMap::Iterations::kRow * ThreadMap::Iterations::kGroup * ThreadMap::Iterations::kCluster * ThreadMap::kElementsPerAccess>; /// Memory access size using AccessType = AlignedArray< Element, 8, kAlignment>; /// Vector type used for SMEM loads using LoadType = AlignedArray< Element, 4, 16 >; static int const kLoadsPerAccess = 2; private: // // Data members // /// Byte-level pointer LoadType const *pointers_[kLoadsPerAccess]; /// Stride along adjacent rows in units of LoadType int stride_; public: // // Methods // /// Constructor CUTLASS_DEVICE SharedLoadIteratorMixed( TensorRef ref, int thread_idx ): stride_((ref.stride(0) / LoadType::kElements)) { TensorCoord thread_offset = ThreadMap::initial_offset(thread_idx); // Initialize pointers LoadType const *base_ptr = reinterpret_cast<LoadType const *>(ref.data()) + thread_offset.row() * stride_; int lane_col_idx = thread_offset.column() / 8; CUTLASS_PRAGMA_UNROLL for (int i = 0; i < kLoadsPerAccess; ++i) { int lane_offset = (lane_col_idx % 8) * 2 | ((lane_col_idx / 4) ^ i); pointers_[i] = base_ptr + lane_offset; } } /// Adds a pointer offset in units of Element CUTLASS_HOST_DEVICE void add_pointer_offset(LongIndex pointer_offset) { CUTLASS_PRAGMA_UNROLL for (int i = 0; i < kLoadsPerAccess; ++i) { pointers_[i] += pointer_offset / LoadType::kElements; } } CUTLASS_DEVICE void add_tile_offset(TensorCoord const &offset) { CUTLASS_PRAGMA_UNROLL for (int i = 0; i < kLoadsPerAccess; ++i) { pointers_[i] += offset.row() * Shape::kRow * stride_ + offset.column() * Shape::kColumn / LoadType::kElements; } } /// Loads a fragment from memory CUTLASS_DEVICE void load_with_pointer_offset(Fragment &frag, Index pointer_offset) { CUTLASS_PRAGMA_UNROLL for (int cluster = 0; cluster < ThreadMap::Iterations::kCluster; ++cluster) { CUTLASS_PRAGMA_UNROLL for (int group = 0; group < ThreadMap::Iterations::kGroup; ++group) { CUTLASS_PRAGMA_UNROLL for (int row = 0; row < ThreadMap::Iterations::kRow; ++row) { int row_ptr_offset = row * ThreadMap::Delta::kRow * stride_ + group * ThreadMap::Delta::kGroup* stride_ + cluster * ThreadMap::Delta::kCluster * stride_ + pointer_offset / LoadType::kElements; int frag_row_idx = (row + ThreadMap::Iterations::kRow * (group + ThreadMap::Iterations::kGroup * cluster)); LoadType *frag_ptr = reinterpret_cast<LoadType *>(&frag); CUTLASS_PRAGMA_UNROLL for (int column = 0; column < ThreadMap::Iterations::kColumn; ++column) { int frag_idx = frag_row_idx * ThreadMap::Iterations::kColumn + column; CUTLASS_PRAGMA_UNROLL for (int v = 0; v < kLoadsPerAccess; ++v) { LoadType const *memory_pointer = pointers_[v]; frag_ptr[frag_idx * kLoadsPerAccess + v] = memory_pointer[row_ptr_offset]; } } } } } } /// Set base smem address CUTLASS_DEVICE void set_smem_base_address(Index address) {} /// Loads a fragment CUTLASS_DEVICE void load(Fragment &frag) { load_with_pointer_offset(frag, 0); } }; ///////////////////////////////////////////////////////////////////////////////////////////////// } // namespace threadblock } // namespace epilogue } // namespace cutlass /////////////////////////////////////////////////////////////////////////////////////////////////
include/cutlass/epilogue/threadblock/shared_load_iterator_mixed.h/0
{ "file_path": "include/cutlass/epilogue/threadblock/shared_load_iterator_mixed.h", "repo_id": "include", "token_count": 6682 }
28
/*************************************************************************************************** * Copyright (c) 2023 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. * SPDX-License-Identifier: BSD-3-Clause * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * **************************************************************************************************/ #pragma once #include "cutlass/cutlass.h" #include "cutlass/numeric_conversion.h" #include "cutlass/gemm/gemm.h" #include "cutlass/detail/dependent_false.hpp" #include "cutlass/gemm/dispatch_policy.hpp" #include "cutlass/numeric_types.h" #include "cutlass/detail/layout.hpp" #include "cutlass/pipeline/pipeline.hpp" #include "cutlass/transform/collective/sm90_wgmma_transpose.hpp" #include "cutlass/trace.h" #include "cutlass/detail/collective.hpp" #include "cute/arch/cluster_sm90.hpp" #include "cute/arch/copy_sm90.hpp" #include "cute/algorithm/functional.hpp" #include "cute/atom/mma_atom.hpp" #include "cute/atom/copy_traits_sm90_tma.hpp" #include "cute/algorithm/gemm.hpp" #include "cute/tensor_predicate.hpp" #include "cute/numeric/arithmetic_tuple.hpp" #include "cutlass/pipeline/pipeline.hpp" #include "cutlass/trace.h" #include "cutlass/detail/collective.hpp" ///////////////////////////////////////////////////////////////////////////////////////////////// namespace cutlass::gemm::collective { using namespace cute; ///////////////////////////////////////////////////////////////////////////////////////////////// // WarpSpecialized Mainloop that source A operand from registers template < int Stages, class ClusterShape, class KernelSchedule, class TileShape_, class ElementAOptionalTuple, class StrideA_, class ElementBOptionalTuple, class StrideB_, class TiledMma_, class GmemTiledCopyA_, class SmemLayoutAtomA_, class SmemCopyAtomA_, class TransformA_, class GmemTiledCopyB_, class SmemLayoutAtomB_, class SmemCopyAtomB_, class TransformB_> struct CollectiveMma< MainloopSm90TmaGmmaRmemAWarpSpecializedMixedInput<Stages, ClusterShape, KernelSchedule>, TileShape_, ElementAOptionalTuple, StrideA_, ElementBOptionalTuple, StrideB_, TiledMma_, GmemTiledCopyA_, SmemLayoutAtomA_, SmemCopyAtomA_, TransformA_, GmemTiledCopyB_, SmemLayoutAtomB_, SmemCopyAtomB_, TransformB_> { private: template <class PointerType> static constexpr auto get_logical_ptr(PointerType const* ptr) { if constexpr (cute::sizeof_bits_v<PointerType> < 8) { return subbyte_iterator<PointerType const>(ptr); } else { return ptr; } } enum class ConversionMode { DirectConvert, ConvertAndScale, ConvertAndScaleWithZero }; using ScaleA = detail::deduce_mixed_width_dtype_t<1, ElementAOptionalTuple>; using ScaleB = detail::deduce_mixed_width_dtype_t<1, ElementBOptionalTuple>; using ZeroA = detail::deduce_mixed_width_dtype_t<2, ElementAOptionalTuple>; using ZeroB = detail::deduce_mixed_width_dtype_t<2, ElementBOptionalTuple>; public: // // Type Aliases // using DispatchPolicy = MainloopSm90TmaGmmaRmemAWarpSpecializedMixedInput<Stages, ClusterShape, KernelSchedule>; using TileShape = TileShape_; static_assert(cute::is_tuple<ElementAOptionalTuple>::value ^ cute::is_tuple<ElementBOptionalTuple>::value, "Either A OR B must be a tuple. It must take the from {ElementOperand, [ElementScale], [ElementZero]}. Inputs in [] are optional."); using ElementA = detail::deduce_mixed_width_dtype_t<0, ElementAOptionalTuple>; using ElementB = detail::deduce_mixed_width_dtype_t<0, ElementBOptionalTuple>; static constexpr bool IsATransformed = cute::is_tuple<ElementAOptionalTuple>::value; using ElementScale = cute::conditional_t<IsATransformed, ScaleA, ScaleB>; using ElementZero = cute::conditional_t<IsATransformed, ZeroA, ZeroB>; // For cases where we can't have a void type, we can use this to allow the code to compile when the scale / zero is void. using NonVoidElementScale = cute::conditional_t<cute::is_void_v<ElementScale>, float, ElementScale>; using NonVoidElementZero = cute::conditional_t<cute::is_void_v<ElementZero>, float, ElementZero>; using StrideA = StrideA_; using StrideB = StrideB_; // These are always MN major using StrideScale = cute::Stride<cute::Int<1>, int64_t, int64_t>; // For cases where we can't have a void scale, we can use this to allow the code to compile when the scale is void. using NonVoidStrideScale = cute::conditional_t<cute::is_void_v<StrideScale>, cute::Stride<_1, int64_t, int64_t>, StrideScale>; static_assert((IsATransformed && cutlass::gemm::detail::is_k_major<StrideA>()) || (!IsATransformed && cutlass::gemm::detail::is_k_major<StrideB>()), "The transformed type must be K-major."); static_assert(( IsATransformed && (sizeof(ElementB) == 2)) || (!IsATransformed && (sizeof(ElementA) == 2)) || (cutlass::gemm::detail::is_k_major<StrideA>() && cutlass::gemm::detail::is_k_major<StrideB>()), "The unscaled element must be 2 bytes OR both inputs must be K-major"); static_assert(cutlass::gemm::detail::is_mn_major<NonVoidStrideScale>(), "Scale must be MN major [Col Major if A is scaled, Row Major if B is scaled]."); using CtaShape_MNK = decltype(shape_div(TileShape{}, ClusterShape{})); using TiledMma = TiledMma_; using ElementAccumulator = typename TiledMma::ValTypeC; using GmemTiledCopyA = GmemTiledCopyA_; using GmemTiledCopyB = GmemTiledCopyB_; using GmemTiledCopyScale = cute::SM90_TMA_LOAD; using SmemLayoutAtomA = SmemLayoutAtomA_; using SmemLayoutAtomB = SmemLayoutAtomB_; // Scale layout atom set after swapping. using SmemCopyAtomA = SmemCopyAtomA_; using SmemCopyAtomB = SmemCopyAtomB_; using SmemCopyAtomScale = Copy_Atom<cute::DefaultCopy, NonVoidElementScale>; // We must ensure the type to be scaled goes to RF static constexpr bool SwapAB = !IsATransformed; using InternalSmemLayoutAtomA = cute::conditional_t<!SwapAB, SmemLayoutAtomA, SmemLayoutAtomB>; using InternalSmemLayoutAtomB = cute::conditional_t<!SwapAB, SmemLayoutAtomB, SmemLayoutAtomA>; using InternalSmemCopyAtomA = cute::conditional_t<!SwapAB, SmemCopyAtomA, SmemCopyAtomB>; using InternalSmemCopyAtomB = cute::conditional_t<!SwapAB, SmemCopyAtomB, SmemCopyAtomA>; // TMA converts f32 input to tf32 when copying from GMEM to SMEM // For all other types, cast to size equivalent uint type to avoid any rounding by TMA. static constexpr bool ConvertF32toTF32A = cute::is_same_v<float, ElementA>; static constexpr bool ConvertF32toTF32B = cute::is_same_v<float, ElementB>; using ConvertedElementA = cute::conditional_t<ConvertF32toTF32A, tfloat32_t, uint_bit_t<sizeof_bits_v<ElementA>>>; using ConvertedElementB = cute::conditional_t<ConvertF32toTF32B, tfloat32_t, uint_bit_t<sizeof_bits_v<ElementB>>>; using RealInternalElementA = cute::conditional_t<!SwapAB, ElementA, ElementB>; using RealInternalElementB = cute::conditional_t<!SwapAB, ElementB, ElementA>; using InternalElementA = cute::conditional_t<!SwapAB, ConvertedElementA, ConvertedElementB>; using InternalElementB = cute::conditional_t<!SwapAB, ConvertedElementB, ConvertedElementA>; using InternalStrideA = cute::conditional_t<!SwapAB, StrideA, StrideB>; using InternalStrideB = cute::conditional_t<!SwapAB, StrideB, StrideA>; using TransformA = TransformA_; using TransformB = TransformB_; using InternalTransformA = cute::conditional_t<!SwapAB, TransformA, TransformB>; using InternalTransformB = cute::conditional_t<!SwapAB, TransformB, TransformA>; static constexpr int IsSubbyteA = cute::sizeof_bits_v<InternalElementA> < 8; using TmaElementA = cute::conditional_t<IsSubbyteA, uint8_t, InternalElementA>; using ArchTag = typename DispatchPolicy::ArchTag; using MainloopPipeline = cutlass::PipelineTmaAsync< DispatchPolicy::Stages>; using PipelineState = cutlass::PipelineState<DispatchPolicy::Stages>; using PipelineParams = typename MainloopPipeline::Params; using SmemLayoutAtomScale = Layout<Shape<decltype(cute::shape<0>(InternalSmemLayoutAtomA{})), cute::Int<1>>>; using ScaleTileShape = decltype(make_shape(shape<0>(TileShape{}), shape<1>(SmemLayoutAtomScale{}))); static_assert(cute::rank(InternalSmemLayoutAtomA{}) == 2, "SmemLayoutAtom must be rank 2 (M/N, K)"); static_assert((size<0>(TileShape{}) % size<0>(InternalSmemLayoutAtomA{})) == 0, "SmemLayoutAtom must evenly divide tile shape."); static_assert((size<2>(TileShape{}) % size<1>(InternalSmemLayoutAtomA{})) == 0, "SmemLayoutAtom must evenly divide tile shape."); static_assert(cute::rank(InternalSmemLayoutAtomB{}) == 2, "SmemLayoutAtom must be rank 2 (M/N, K)"); static_assert((size<1>(TileShape{}) % size<0>(InternalSmemLayoutAtomB{})) == 0, "SmemLayoutAtom must evenly divide tile shape."); static_assert((size<2>(TileShape{}) % size<1>(InternalSmemLayoutAtomB{})) == 0, "SmemLayoutAtom must evenly divide tile shape."); static_assert(rank(SmemLayoutAtomScale{}) == 2, "SmemLayoutAtomScale must be rank 2"); static_assert((size<0>(TileShape{}) % size<0>(SmemLayoutAtomScale{})) == 0, "SmemLayoutAtomScale must equal the tile shape."); static_assert((size<2>(TileShape{}) % size<1>(SmemLayoutAtomScale{})) == 0, "SmemLayoutAtomScale must evenly divide tile k shape."); // Tile along modes in a way that maximizes the TMA box size. using SmemLayoutA = decltype(tile_to_shape( InternalSmemLayoutAtomA{}, make_shape(shape<0>(TileShape{}), shape<2>(TileShape{}), Int<DispatchPolicy::Stages>{}), cute::conditional_t< ::cutlass::gemm::detail::is_major<0,InternalStrideA>(), Step<_2,_1,_3>, Step<_1,_2,_3>>{})); using SmemLayoutB = decltype(tile_to_shape( InternalSmemLayoutAtomB{}, make_shape(shape<1>(TileShape{}), shape<2>(TileShape{}), Int<DispatchPolicy::Stages>{}), cute::conditional_t< ::cutlass::gemm::detail::is_major<0,InternalStrideB>(), Step<_2,_1,_3>, Step<_1,_2,_3>>{})); // It is assumed that the scales and zero-points share the same smem layout using SmemLayoutScale = decltype(tile_to_shape( SmemLayoutAtomScale{}, make_shape(shape<0>(ScaleTileShape{}), shape<1>(ScaleTileShape{}), Int<Stages>{}), cute::conditional_t< ::cutlass::gemm::detail::is_major<0,NonVoidStrideScale>(), Step<_2,_1,_3>, Step<_1,_2,_3>>{})); static_assert(DispatchPolicy::Stages >= 2, "Specialization requires Stages set to value 2 or more."); static_assert(not cute::is_base_of<cute::GMMA::DescriptorIterator, typename TiledMma::FrgTypeA>::value && cute::is_base_of<cute::GMMA::DescriptorIterator, typename TiledMma::FrgTypeB>::value, "MMA atom must source A from rmem and B operand from smem_desc for this mainloop."); static_assert(cute::is_same_v<GmemTiledCopyA, SM90_TMA_LOAD> || cute::is_same_v<GmemTiledCopyA, SM90_TMA_LOAD_MULTICAST>, "GmemTiledCopy - invalid SM90 TMA copy atom specified."); static_assert(cute::is_same_v<GmemTiledCopyB, SM90_TMA_LOAD> || cute::is_same_v<GmemTiledCopyB, SM90_TMA_LOAD_MULTICAST>, "GmemTiledCopy - invalid SM90 TMA copy atom specified."); // To relax them, we need to handle loading more than 1 row of scales for every main loop iteration. // We must also handle updating the pipeline transaction bytes on the fly. // NOTE: Deleting this assertion without required changes will cause the code to hang. static_assert(size<1>(SmemLayoutAtomScale{}) == 1, "size<1>(SmemLayoutAtomScale) must be 1."); private: static constexpr ConversionMode get_conversion_mode() { if constexpr (cute::is_void_v<ElementScale>) { return ConversionMode::DirectConvert; } else if constexpr (cute::is_void_v<ElementZero>) { return ConversionMode::ConvertAndScale; } else { return ConversionMode::ConvertAndScaleWithZero; } } static constexpr ConversionMode KernelConversionMode = get_conversion_mode(); static constexpr bool ModeHasScales = KernelConversionMode == ConversionMode::ConvertAndScale || KernelConversionMode == ConversionMode::ConvertAndScaleWithZero; static constexpr auto elements_per_smem_scale() { if constexpr (KernelConversionMode == ConversionMode::DirectConvert) { return 0; } else if constexpr (ModeHasScales) { return cute::cosize_v<SmemLayoutScale>; } else { static_assert(cutlass::detail::dependent_false<KernelSchedule>, "Type not handled in scale smem allocation."); } } static constexpr auto elements_per_smem_zero() { if constexpr (KernelConversionMode == ConversionMode::DirectConvert || KernelConversionMode == ConversionMode::ConvertAndScale ) { return 0; } else if constexpr (KernelConversionMode == ConversionMode::ConvertAndScaleWithZero) { return cute::cosize_v<SmemLayoutScale>; } else { static_assert(cutlass::detail::dependent_false<KernelSchedule>, "Type not handled in scale smem allocation."); } } // These methods use some the public members of the class. For that reason, we define them after the public section. static constexpr uint32_t compute_tma_transaction_bytes() { constexpr uint32_t a_bytes = cutlass::bits_to_bytes(size<0>(SmemLayoutA{}) * size<1>(SmemLayoutA{}) * static_cast<uint32_t>(cute::sizeof_bits_v<InternalElementA>)); constexpr uint32_t b_bytes = cutlass::bits_to_bytes(size<0>(SmemLayoutB{}) * size<1>(SmemLayoutB{}) * static_cast<uint32_t>(cute::sizeof_bits_v<InternalElementB>)); constexpr uint32_t baseline_bytes = a_bytes + b_bytes; if constexpr (KernelConversionMode == ConversionMode::DirectConvert) { return baseline_bytes; } else if constexpr (ModeHasScales) { constexpr uint32_t scale_tx_bytes = cutlass::bits_to_bytes(size<0>(SmemLayoutScale{}) * size<1>(SmemLayoutScale{}) * static_cast<uint32_t>(cute::sizeof_bits_v<ElementScale>)); static_assert(scale_tx_bytes % 128 == 0, "Each scale stage must be 128B aligned."); // required by TMA if constexpr (KernelConversionMode == ConversionMode::ConvertAndScale) { return baseline_bytes + scale_tx_bytes; } else if constexpr (KernelConversionMode == ConversionMode::ConvertAndScaleWithZero) { // Scale and zero share smem layout constexpr uint32_t zero_tx_bytes = cutlass::bits_to_bytes(size<0>(SmemLayoutScale{}) * size<1>(SmemLayoutScale{}) * static_cast<uint32_t>(cute::sizeof_bits_v<ElementZero>)); static_assert(zero_tx_bytes % 128 == 0, "Each zero stage must be 128B aligned."); // required by TMA return baseline_bytes + scale_tx_bytes + zero_tx_bytes; } else { static_assert(cutlass::detail::dependent_false<KernelSchedule>, "Type not handled in tma transaction bytes computation."); } } else { static_assert(cutlass::detail::dependent_false<KernelSchedule>, "Type not handled in tma transaction bytes computation."); } } public: static constexpr size_t SmemAlignmentA = cutlass::detail::alignment_for_swizzle(SmemLayoutA{}); static constexpr size_t SmemAlignmentB = cutlass::detail::alignment_for_swizzle(SmemLayoutB{}); // Just pick the max alignment of A and B since it is required to be at least 128B static constexpr size_t SmemAlignmentScale = cute::max(SmemAlignmentA, SmemAlignmentB); static_assert(SmemAlignmentA >= 128 and SmemAlignmentB >= 128, "Require at least 128B alignment"); struct SharedStorage { static constexpr int scale_elements = elements_per_smem_scale(); static constexpr int zero_elements = elements_per_smem_zero(); struct TensorStorage : cute::aligned_struct<cute::max(SmemAlignmentA, SmemAlignmentB)> { cute::ArrayEngine<RealInternalElementA, cute::cosize_v<SmemLayoutA>> smem_A; cute::ArrayEngine<typename TiledMma::ValTypeB, cute::cosize_v<SmemLayoutB>> smem_B; cute::ArrayEngine<NonVoidElementScale, scale_elements> smem_scale; cute::ArrayEngine<NonVoidElementZero, zero_elements> smem_zero; } tensors; using PipelineStorage = typename MainloopPipeline::SharedStorage; PipelineStorage pipeline; }; using TensorStorage = typename SharedStorage::TensorStorage; using PipelineStorage = typename SharedStorage::PipelineStorage; // Host side kernel arguments struct Arguments { ElementA const* ptr_A = nullptr; StrideA dA{}; ElementB const* ptr_B = nullptr; StrideB dB{}; ElementScale const* ptr_S = nullptr; NonVoidStrideScale dS{}; int group_size = 0; ElementZero const* ptr_Z = nullptr; uint32_t mma_promotion_interval = 4; }; // Device side kernel params struct Params { private: using Outer = CollectiveMma<DispatchPolicy, TileShape_, ElementAOptionalTuple, StrideA_, ElementBOptionalTuple, StrideB_, TiledMma_, GmemTiledCopyA_, SmemLayoutAtomA_, SmemCopyAtomA_, TransformA_, GmemTiledCopyB_, SmemLayoutAtomB_, SmemCopyAtomB_, TransformB_>; public: // Assumption: StrideA is congruent with Problem_MK using TMA_A = decltype(make_tma_copy<TmaElementA>( GmemTiledCopyA{}, make_tensor(Outer::get_logical_ptr(static_cast<InternalElementA const*>(nullptr)), repeat_like(InternalStrideA{}, int32_t(0)), InternalStrideA{}), SmemLayoutA{}(_,_,cute::Int<0>{}), make_shape(shape<0>(TileShape{}), shape<2>(TileShape{})), size<1>(ClusterShape{}))); // mcast along N mode for this M load, if any using TMA_Scale = decltype(make_tma_copy( GmemTiledCopyScale{}, make_tensor(Outer::get_logical_ptr(static_cast<NonVoidElementScale const*>(nullptr)), repeat_like(NonVoidStrideScale{}, int32_t(0)), NonVoidStrideScale{}), SmemLayoutScale{}(_,_,cute::Int<0>{}), ScaleTileShape{}, _1{})); // mcast along N mode for this M load, if any. Scale is ALWAYS loaded with A for RF kernel using TMA_Zero = decltype(make_tma_copy( GmemTiledCopyScale{}, make_tensor(Outer::get_logical_ptr(static_cast<NonVoidElementZero const*>(nullptr)), repeat_like(NonVoidStrideScale{}, int32_t(0)), NonVoidStrideScale{}), SmemLayoutScale{}(_,_,cute::Int<0>{}), ScaleTileShape{}, _1{})); // mcast along N mode for this M load, if any. Scale is ALWAYS loaded with A for RF kernel // Assumption: StrideB is congruent with Problem_NK using TMA_B = decltype(make_tma_copy( GmemTiledCopyB{}, make_tensor(Outer::get_logical_ptr(static_cast<InternalElementB const*>(nullptr)), repeat_like(InternalStrideB{}, int32_t(0)), InternalStrideB{}), SmemLayoutB{}(_,_,cute::Int<0>{}), make_shape(shape<1>(TileShape{}), shape<2>(TileShape{})), size<0>(ClusterShape{}))); // mcast along M mode for this N load, if any TMA_A tma_load_a; TMA_B tma_load_b; TMA_Scale tma_load_scale; TMA_Zero tma_load_zero; int64_t scale_k; int group_size; }; // // Methods // template <class ProblemShape> static constexpr Params to_underlying_arguments(ProblemShape const& problem_shape, Arguments const& args, void* workspace) { (void) workspace; // Optionally append 1s until problem shape is rank-4 (MNKL), in case it is only rank-3 (MNK) auto problem_shape_MNKL = append<4>(problem_shape, 1); auto [M,N,K,L] = problem_shape_MNKL; if constexpr (SwapAB) { M = get<1>(problem_shape_MNKL); N = get<0>(problem_shape_MNKL); } InternalElementA const* ptr_A; InternalStrideA dA; InternalElementB const* ptr_B; InternalStrideB dB; if constexpr (not SwapAB) { ptr_A = reinterpret_cast<InternalElementA const*>(args.ptr_A); ptr_B = reinterpret_cast<InternalElementB const*>(args.ptr_B); dA = args.dA; dB = args.dB; } else { ptr_A = reinterpret_cast<InternalElementA const*>(args.ptr_B); ptr_B = reinterpret_cast<InternalElementB const*>(args.ptr_A); dA = args.dB; dB = args.dA; } Tensor tensor_a = make_tensor(get_logical_ptr(ptr_A), make_layout(make_shape(M,K,L), dA)); Tensor tensor_b = make_tensor(get_logical_ptr(ptr_B), make_layout(make_shape(N,K,L), dB)); typename Params::TMA_A tma_load_a = make_tma_copy<TmaElementA>( GmemTiledCopyA{}, tensor_a, SmemLayoutA{}(_,_,cute::Int<0>{}), make_shape(shape<0>(TileShape{}), shape<2>(TileShape{})), size<1>(ClusterShape{})); // mcast along N mode for this M load, if any typename Params::TMA_B tma_load_b = make_tma_copy( GmemTiledCopyB{}, tensor_b, SmemLayoutB{}(_,_,cute::Int<0>{}), make_shape(shape<1>(TileShape{}), shape<2>(TileShape{})), size<0>(ClusterShape{})); // mcast along M mode for this N load, if any typename Params::TMA_Scale tma_load_scale; typename Params::TMA_Zero tma_load_zero; if constexpr (KernelConversionMode == ConversionMode::DirectConvert) { return { tma_load_a, tma_load_b, tma_load_scale, tma_load_zero, 0, 0 }; } else if constexpr (ModeHasScales) { auto scale_k = (K + args.group_size - 1) / args.group_size; ElementScale const* ptr_S = args.ptr_S; StrideScale dS = args.dS; Tensor tensor_scale = make_tensor(get_logical_ptr(ptr_S), make_layout(make_shape(M,scale_k,L), dS)); tma_load_scale = make_tma_copy( GmemTiledCopyScale{}, tensor_scale, SmemLayoutScale{}(_,_,cute::Int<0>{}), ScaleTileShape{}, _1{}); // mcast along N mode for this M load, if any if constexpr(KernelConversionMode == ConversionMode::ConvertAndScale) { return { tma_load_a, tma_load_b, tma_load_scale, tma_load_zero, scale_k, args.group_size }; } else if constexpr(KernelConversionMode == ConversionMode::ConvertAndScaleWithZero) { Tensor tensor_zero = make_tensor(get_logical_ptr(args.ptr_Z), make_layout(make_shape(M,scale_k,L), dS)); tma_load_zero = make_tma_copy( GmemTiledCopyScale{}, tensor_zero, SmemLayoutScale{}(_,_,cute::Int<0>{}), ScaleTileShape{}, _1{}); // mcast along N mode for this M load, if any return { tma_load_a, tma_load_b, tma_load_scale, tma_load_zero, scale_k, args.group_size }; } else { static_assert(cutlass::detail::dependent_false<KernelSchedule>, "Conversion mode not handled in to_underlying_arguments."); } } else { static_assert(cutlass::detail::dependent_false<KernelSchedule>, "Conversion mode not handled in to_underlying_arguments."); } } template<class ProblemShape> CUTLASS_HOST_DEVICE static bool can_implement( ProblemShape const& problem_shape, [[maybe_unused]] Arguments const& args) { constexpr int tma_alignment_bits = 128; auto problem_shape_MNKL = append<4>(problem_shape, 1); auto [M,N,K,L] = problem_shape_MNKL; bool implementable = true; constexpr int min_tma_aligned_elements_A = tma_alignment_bits / cutlass::sizeof_bits<ElementA>::value; implementable = implementable && cutlass::detail::check_alignment<min_tma_aligned_elements_A>(cute::make_shape(M,K,L), StrideA{}); constexpr int min_tma_aligned_elements_B = tma_alignment_bits / cutlass::sizeof_bits<ElementB>::value; implementable = implementable && cutlass::detail::check_alignment<min_tma_aligned_elements_B>(cute::make_shape(N,K,L), StrideB{}); if constexpr (KernelConversionMode == ConversionMode::DirectConvert) { implementable = implementable && (args.ptr_S == nullptr); implementable = implementable && (args.ptr_Z == nullptr); } else if constexpr (ModeHasScales) { const int scale_mn = SwapAB ? N : M; const int scale_k = (K + args.group_size - 1) / args.group_size; constexpr int min_tma_aligned_elements_scale = tma_alignment_bits / cutlass::sizeof_bits<ElementScale>::value; implementable = implementable && cutlass::detail::check_alignment<min_tma_aligned_elements_scale>(cute::make_shape(scale_mn,scale_k,L), StrideScale{}); implementable = implementable && (args.group_size == K || ((args.group_size % size<2>(TileShape{})) == 0)); implementable = implementable && args.group_size != 0; implementable = implementable && (args.ptr_S != nullptr); if constexpr (KernelConversionMode == ConversionMode::ConvertAndScale) { implementable = implementable && (args.ptr_Z == nullptr); } else if constexpr (KernelConversionMode == ConversionMode::ConvertAndScaleWithZero) { constexpr int min_tma_aligned_elements_zero = tma_alignment_bits / cutlass::sizeof_bits<ElementZero>::value; implementable = implementable && cutlass::detail::check_alignment<min_tma_aligned_elements_zero>(cute::make_shape(scale_mn,scale_k,L), StrideScale{}); implementable = implementable && (args.ptr_Z != nullptr); } else { static_assert(cutlass::detail::dependent_false<KernelSchedule>, "Conversion mode not handled in can_implement."); } } else { static_assert(cutlass::detail::dependent_false<KernelSchedule>, "Conversion mode not handled in can_implement."); } if (!implementable) { CUTLASS_TRACE_HOST(" CAN IMPLEMENT: Problem Size doesn't meet the minimum alignment requirements for TMA.\n"); } return implementable; } static constexpr int K_PIPE_MAX = DispatchPolicy::Stages; static constexpr uint32_t TmaTransactionBytes = compute_tma_transaction_bytes(); /// Issue Tma Descriptor Prefetch -- ideally from a single thread for best performance CUTLASS_DEVICE static void prefetch_tma_descriptors(Params const& mainloop_params) { cute::prefetch_tma_descriptor(mainloop_params.tma_load_a.get_tma_descriptor()); cute::prefetch_tma_descriptor(mainloop_params.tma_load_b.get_tma_descriptor()); if constexpr (KernelConversionMode == ConversionMode::DirectConvert) { // Nothing extra to do } else if constexpr (KernelConversionMode == ConversionMode::ConvertAndScale) { cute::prefetch_tma_descriptor(mainloop_params.tma_load_scale.get_tma_descriptor()); } else if constexpr (KernelConversionMode == ConversionMode::ConvertAndScaleWithZero) { cute::prefetch_tma_descriptor(mainloop_params.tma_load_scale.get_tma_descriptor()); cute::prefetch_tma_descriptor(mainloop_params.tma_load_zero.get_tma_descriptor()); } else { static_assert(cutlass::detail::dependent_false<KernelSchedule>, "Conversion mode not handled in TMA prefetch."); } } /// Set up the data needed by this collective for load and mma. /// Returns a tuple of tensors. The collective and the kernel layer have the contract /// Returned tuple must contain at least two elements, with the first two elements being: /// gA_mkl - The tma tensor, A after a local tile so it has shape (BLK_M,BLK_K,m,k,l) /// gB_nkl - The tma tensor, B after a local tile so it has shape (BLK_N,BLK_K,n,k,l) /// The rest of the tensors can be specified as needed by this collective. template <class ProblemShape_MNKL> CUTLASS_DEVICE auto load_init(ProblemShape_MNKL const& problem_shape_MNKL, Params const& mainloop_params) const { using X = Underscore; // Separate out problem shape for convenience auto [M,N,K,L] = problem_shape_MNKL; // TMA requires special handling of strides to deal with coord codomain mapping // Represent the full tensors -- get these from TMA Tensor mA_mkl = mainloop_params.tma_load_a.get_tma_tensor(make_shape(M,K,L)); // (m,k,l) Tensor mB_nkl = mainloop_params.tma_load_b.get_tma_tensor(make_shape(N,K,L)); // (n,k,l) // Make tiled views, defer the slice Tensor gA_mkl = local_tile(mA_mkl, TileShape{}, make_coord(_,_,_), Step<_1, X,_1>{}); // (BLK_M,BLK_K,m,k,l) Tensor gB_nkl = local_tile(mB_nkl, TileShape{}, make_coord(_,_,_), Step< X,_1,_1>{}); // (BLK_N,BLK_K,n,k,l) if constexpr (KernelConversionMode == ConversionMode::DirectConvert) { return cute::make_tuple(gA_mkl, gB_nkl); } else if constexpr (ModeHasScales) { auto scale_k = mainloop_params.scale_k; Tensor mS_mkl = mainloop_params.tma_load_scale.get_tma_tensor(make_shape(M,scale_k,L)); // (m,scale_k,l) Tensor gS_mkl = local_tile(mS_mkl, ScaleTileShape{}, make_coord(_,_)); // (BLK_M,BLK_Scale_K,m,scale_k,l) if constexpr (KernelConversionMode == ConversionMode::ConvertAndScale) { return cute::make_tuple(gA_mkl, gB_nkl, gS_mkl); } else if constexpr (KernelConversionMode == ConversionMode::ConvertAndScaleWithZero) { Tensor mZ_mkl = mainloop_params.tma_load_zero.get_tma_tensor(make_shape(M,scale_k,L)); // (m,scale_k,l) Tensor gZ_mkl = local_tile(mZ_mkl, ScaleTileShape{}, make_coord(_,_)); // (BLK_M,BLK_Scale_K,m,scale_k,l) return cute::make_tuple(gA_mkl, gB_nkl, gS_mkl, gZ_mkl); } else { static_assert(cutlass::detail::dependent_false<KernelSchedule>, "Conversion mode not handled in load_init."); } } else { static_assert(cutlass::detail::dependent_false<KernelSchedule>, "Conversion mode not handled in load_init."); } } /// Perform a collective-scoped matrix multiply-accumulate /// Producer Perspective /// This overload gets triggered when we have scales. template < class... Ts, class KTileIterator, class BlockCoord > CUTLASS_DEVICE void load( Params const& mainloop_params, MainloopPipeline pipeline, PipelineState smem_pipe_write, cute::tuple<Ts...> const& load_inputs, BlockCoord const& blk_coord, KTileIterator k_tile_iter, int k_tile_count, int thread_idx, uint32_t block_rank_in_cluster, TensorStorage& shared_tensors) { if constexpr (KernelConversionMode == ConversionMode::DirectConvert) { static_assert(sizeof... (Ts) == 2, "Direct convert needs two inputs"); } else if constexpr (KernelConversionMode == ConversionMode::ConvertAndScale) { static_assert(sizeof... (Ts) == 3, "Scaled convert needs three inputs"); } else if constexpr (KernelConversionMode == ConversionMode::ConvertAndScaleWithZero) { static_assert(sizeof... (Ts) == 4, "Scaled and zero convert needs four inputs"); } else { static_assert(cutlass::detail::dependent_false<KernelSchedule>, "Conversion mode not handled in TMA load."); } int lane_predicate = cute::elect_one_sync(); if (lane_predicate) { Tensor sA_ = make_tensor(make_smem_ptr(shared_tensors.smem_A.begin()), SmemLayoutA{}); // (BLK_M,BLK_K,PIPE) Tensor sB_ = make_tensor(make_smem_ptr(shared_tensors.smem_B.begin()), SmemLayoutB{}); // (BLK_N,BLK_K,PIPE) Tensor sA = as_position_independent_swizzle_tensor(sA_); // (BLK_M,BLK_K,PIPE) Tensor sB = as_position_independent_swizzle_tensor(sB_); // (BLK_N,BLK_K,PIPE) // // Prepare the TMA loads for A, B and Scales // constexpr uint32_t cluster_shape_x = get<0>(ClusterShape()); uint2 cluster_local_block_id = {block_rank_in_cluster % cluster_shape_x, block_rank_in_cluster / cluster_shape_x}; Tensor gA_mkl = get<0>(load_inputs); Tensor gB_nkl = get<1>(load_inputs); auto block_tma_a = mainloop_params.tma_load_a.get_slice(cluster_local_block_id.y); auto block_tma_b = mainloop_params.tma_load_b.get_slice(cluster_local_block_id.x); // Partition the inputs based on the current block coordinates. auto [m_coord, n_coord, k_coord, l_coord] = blk_coord; Tensor gA = gA_mkl(_,_,m_coord,_,l_coord); // (BLK_M,BLK_K,k) Tensor gB = gB_nkl(_,_,n_coord,_,l_coord); // (BLK_N,BLK_K,k) // Applies the mapping from block_tma_a Tensor tAgA = block_tma_a.partition_S(gA); // (TMA,TMA_M,TMA_K,k) Tensor tAsA = block_tma_a.partition_D(sA); // (TMA,TMA_M,TMA_K,PIPE) Tensor tBgB = block_tma_b.partition_S(gB); // (TMA,TMA_N,TMA_K,k) Tensor tBsB = block_tma_b.partition_D(sB); // (TMA,TMA_N,TMA_K,PIPE) uint16_t mcast_mask_a = 0; uint16_t mcast_mask_b = 0; uint16_t mcast_mask_s = 0; // Issue TmaLoads // Maps the tile -> block, value if constexpr (cute::is_same_v<GmemTiledCopyA, SM90_TMA_LOAD_MULTICAST>) { auto block_layout = Layout<typename DispatchPolicy::ClusterShape>{}; // (m,n) -> block_id for (int n = 0; n < size<1>(block_layout); ++n) { mcast_mask_a |= (uint16_t(1) << block_layout(cluster_local_block_id.x,n,Int<0>{})); } } if constexpr (cute::is_same_v<GmemTiledCopyB, SM90_TMA_LOAD_MULTICAST>) { auto block_layout = Layout<typename DispatchPolicy::ClusterShape>{}; // (m,n) -> block_id for (int m = 0; m < size<0>(block_layout); ++m) { mcast_mask_b |= (uint16_t(1) << block_layout(m,cluster_local_block_id.y,Int<0>{})); } } auto extra_input_partitions = partition_extra_tma_inputs(mainloop_params, load_inputs, shared_tensors, cluster_local_block_id, m_coord, l_coord); // Mainloop CUTLASS_PRAGMA_NO_UNROLL for ( ; k_tile_count > 0; --k_tile_count) { // LOCK smem_pipe_write for _writing_ pipeline.producer_acquire(smem_pipe_write); // // Copy gmem to smem for *k_tile_iter // using BarrierType = typename MainloopPipeline::ProducerBarrierType; BarrierType* tma_barrier = pipeline.producer_get_barrier(smem_pipe_write); int write_stage = smem_pipe_write.index(); copy(mainloop_params.tma_load_a.with(*tma_barrier, mcast_mask_a), tAgA(_,_,_,*k_tile_iter), tAsA(_,_,_,write_stage)); copy(mainloop_params.tma_load_b.with(*tma_barrier, mcast_mask_b), tBgB(_,_,_,*k_tile_iter), tBsB(_,_,_,write_stage)); if constexpr (KernelConversionMode == ConversionMode::DirectConvert) { // Nothing extra to do. } else if constexpr (ModeHasScales) { auto tSgS = get<0>(extra_input_partitions); auto tSsS = get<1>(extra_input_partitions); // Temporary factor which will determine which k tile to reload from gmem. Needed so we don't modify tma transaction bytes // on the fly. // We must do a ceiling divide here to correctly handle with group_size == K. In that case, we don't require that K // is a multiple of the threadblock tile K const int ReloadFactor = (mainloop_params.group_size + size<2>(TileShape{}) - 1) / size<2>(TileShape{}); const int scale_load_k = *k_tile_iter / ReloadFactor; // This will always be 0 when group_size == K. copy(mainloop_params.tma_load_scale.with(*tma_barrier, mcast_mask_s), tSgS(_,_,_,scale_load_k), tSsS(_,_,_,write_stage)); if constexpr (KernelConversionMode == ConversionMode::ConvertAndScale) { // Nothing extra to do } else if constexpr (KernelConversionMode == ConversionMode::ConvertAndScaleWithZero) { auto tZgZ = get<2>(extra_input_partitions); auto tZsZ = get<3>(extra_input_partitions); copy(mainloop_params.tma_load_zero.with(*tma_barrier, mcast_mask_s), tZgZ(_,_,_,scale_load_k), tZsZ(_,_,_,write_stage)); } else { static_assert(cutlass::detail::dependent_false<KernelSchedule>, "Conversion mode not handled for TMA copy op."); } } else { static_assert(cutlass::detail::dependent_false<KernelSchedule>, "Conversion mode not handled for TMA copy op."); } ++k_tile_iter; // Advance smem_pipe_write ++smem_pipe_write; } } } /// Perform a Producer Epilogue to prevent early exit of blocks in a Cluster CUTLASS_DEVICE void load_tail(MainloopPipeline pipeline, PipelineState smem_pipe_write) { int lane_predicate = cute::elect_one_sync(); // Issue the epilogue waits if (lane_predicate) { /* This helps avoid early exit of blocks in Cluster * Waits for all stages to either be released (all * Consumer UNLOCKs), or if the stage was never used * then would just be acquired since the phase was * still inverted from make_producer_start_state */ pipeline.producer_tail(smem_pipe_write); } } /// Perform a collective-scoped matrix multiply-accumulate /// Consumer Perspective template < class FrgTensorC > CUTLASS_DEVICE void mma(MainloopPipeline pipeline, PipelineState smem_pipe_read, FrgTensorC& accum, int k_tile_count, int thread_idx, TensorStorage& shared_tensors, Params const& mainloop_params) { static_assert(is_rmem<FrgTensorC>::value, "C tensor must be rmem resident."); static_assert(cute::rank(SmemLayoutA{}) == 3, "Smem layout must be rank 3."); static_assert(cute::rank(SmemLayoutB{}) == 3, "Smem layout must be rank 3."); static_assert(cute::rank(InternalSmemLayoutAtomA{}) == 2, "InternalSmemLayoutAtomA must be rank 2."); static_assert(cute::rank(InternalSmemLayoutAtomB{}) == 2, "InternalSmemLayoutAtomB must be rank 2."); static_assert(!cute::is_void_v<InternalSmemCopyAtomA>, "SM90 GMMA mainloops must specify a non-void copy atom for RF sourced instructions."); static_assert(cute::is_void_v<InternalSmemCopyAtomB>, "SM90 GMMA mainloops cannot have a non-void copy atom for smem sourced instructions."); // Obtain warp index int warp_idx = canonical_warp_idx_sync(); [[maybe_unused]] int warp_group_thread_idx = thread_idx % 128; Tensor sA_ = make_tensor(make_smem_ptr(shared_tensors.smem_A.begin()), SmemLayoutA{}); // (BLK_M,BLK_K,PIPE) Tensor sA = as_position_independent_swizzle_tensor(sA_); // (BLK_M,BLK_K,PIPE) Tensor sB = make_tensor(make_smem_ptr(shared_tensors.smem_B.begin()), SmemLayoutB{}); // (BLK_N,BLK_K,PIPE) // // Define C accumulators and A/B partitioning // TiledMma tiled_mma; auto thread_mma = tiled_mma.get_thread_slice(thread_idx); Tensor tCsA = thread_mma.partition_A(sA); // Allocate fragments and descriptors Tensor tCrA_mma = thread_mma.partition_fragment_A(sA(_,_,Int<0>{})); // (MMA,MMA_M,MMA_K,PIPE) Tensor tCrA_load = make_fragment_like<RealInternalElementA>(tCrA_mma); Tensor tCsB = thread_mma.partition_B(sB); // (MMA,MMA_N,MMA_K,PIPE) Tensor tCrB = thread_mma.make_fragment_B(tCsB); // (MMA,MMA_N,MMA_K,PIPE) // // Copy Atom A retiling // auto smem_tiled_copy_A = make_tiled_copy_A(InternalSmemCopyAtomA{}, tiled_mma); auto smem_thr_copy_A = smem_tiled_copy_A.get_thread_slice(warp_group_thread_idx); Tensor tCrA_copy_view = smem_thr_copy_A.retile_D(tCrA_load); // (CPY,CPY_M,CPY_K) // Compute the max vector length that can be used to copy A. This will match the vector width of the // conversions used. It helps by allowing the compiler to convert using the same register that was used // to load the data from smem. This significantly reduces the need to move data among registers. // Note that this is correct even if copy fails to vectorize, since the granularity at which we perform // the conversion does not impact correctness. using A_CPY_VEC = decltype(max_common_vector(tCsA, tCrA_copy_view)); // Partition of thread -> shared and thread -> RF auto partitioned_extra_info = partition_extra_mma_info(thread_mma, shared_tensors); auto copy_partitions_extra_info = retile_extra_mma_info(tiled_mma, partitioned_extra_info, warp_group_thread_idx); CUTE_STATIC_ASSERT_V(size<1>(tCsA) == size<1>(tCrA_copy_view)); // CPY_M CUTE_STATIC_ASSERT_V(size<2>(tCsA) == size<2>(tCrA_copy_view)); // CPY_K CUTE_STATIC_ASSERT_V(size<1>(tCrA_mma) == size<1>(accum)); // MMA_M CUTE_STATIC_ASSERT_V(size<1>(tCsB) == size<2>(accum)); // N CUTE_STATIC_ASSERT_V(size<2>(tCsA) == size<2>(tCsB)); // K CUTE_STATIC_ASSERT_V(size<3>(tCsA) == size<3>(tCsB)); // PIPE CUTE_STATIC_ASSERT_V(Int<DispatchPolicy::Stages>{} == size<2>(sA)); // PIPE CUTE_STATIC_ASSERT_V(Int<DispatchPolicy::Stages>{} == size<2>(sB)); // PIPE // // PIPELINED MAIN LOOP // // We release buffers to producer warps(dma load) with some mmas in flight PipelineState smem_pipe_release = smem_pipe_read; tiled_mma.accumulate_ = GMMA::ScaleOut::Zero; warpgroup_fence_operand(accum); constexpr int K_BLOCK_MAX = size<2>(tCrA_load); ConsumerToken barrier_token = {BarrierStatus::WaitAgain}; // first k tile { barrier_token = pipeline.consumer_try_wait(smem_pipe_read); pipeline.consumer_wait(smem_pipe_read, barrier_token); int read_stage = smem_pipe_read.index(); ++smem_pipe_read; barrier_token = pipeline.consumer_try_wait(smem_pipe_read); // copy smem->rmem for A operand copy_A_and_extra_info(smem_tiled_copy_A, tCsA, tCrA_copy_view, partitioned_extra_info, copy_partitions_extra_info, 0, read_stage); transform_A_kblock(tCrA_load, A_CPY_VEC{}, tCrA_mma, partitioned_extra_info, 0); // Unroll the K mode manually to set scale D to 1 CUTLASS_PRAGMA_UNROLL for (int k_block = 0; k_block < K_BLOCK_MAX; ++k_block) { if (k_block < K_BLOCK_MAX - 1) { copy_A_and_extra_info(smem_tiled_copy_A, tCsA, tCrA_copy_view, partitioned_extra_info, copy_partitions_extra_info, k_block + 1, read_stage); transform_A_kblock(tCrA_load, A_CPY_VEC{}, tCrA_mma, partitioned_extra_info, k_block + 1); } warpgroup_arrive(); // (V,M) x (V,N) => (V,M,N) cute::gemm(tiled_mma, tCrA_mma(_,_,k_block), tCrB(_,_,k_block,read_stage), accum); tiled_mma.accumulate_ = GMMA::ScaleOut::One; warpgroup_commit_batch(); } --k_tile_count; if (k_tile_count > 0) { // Wait for K_BLOCK_MAX - 1 to be in flight to ensure that it is safe to overwrite the A registers for the first mma. warpgroup_wait<K_BLOCK_MAX - 1>(); pipeline.consumer_wait(smem_pipe_read, barrier_token); copy_A_and_extra_info(smem_tiled_copy_A, tCsA, tCrA_copy_view, partitioned_extra_info, copy_partitions_extra_info, 0, smem_pipe_read.index()); transform_A_kblock(tCrA_load, A_CPY_VEC{}, tCrA_mma, partitioned_extra_info, 0); } } if (k_tile_count == 0) { return; } warpgroup_fence_operand(accum); // Mainloop GMMAs CUTLASS_PRAGMA_NO_UNROLL for ( ; k_tile_count > 1; --k_tile_count) { // // Compute on k_tile // int read_stage = smem_pipe_read.index(); ++smem_pipe_read; warpgroup_fence_operand(accum); // Unroll the K mode manually to set scale D to 1 CUTLASS_PRAGMA_UNROLL for (int k_block = 0; k_block < K_BLOCK_MAX; ++k_block) { warpgroup_arrive(); // (V,M) x (V,N) => (V,M,N) cute::gemm(tiled_mma, tCrA_mma(_,_,k_block), tCrB(_,_,k_block,read_stage), accum); tiled_mma.accumulate_ = GMMA::ScaleOut::One; warpgroup_commit_batch(); warpgroup_wait<K_BLOCK_MAX - 1>(); if (k_block == K_BLOCK_MAX - 1) { // We have K_BLOCK_MAX - 1 GMMA instructions pending for this stage, so we can release prior barrier pipeline.consumer_release(smem_pipe_release); // UNLOCK smem_pipe_release, done _computing_ on it ++smem_pipe_release; } if (k_block == 0) { barrier_token = pipeline.consumer_try_wait(smem_pipe_read); } if (k_block == K_BLOCK_MAX - 1) { pipeline.consumer_wait(smem_pipe_read, barrier_token); copy_A_and_extra_info(smem_tiled_copy_A, tCsA, tCrA_copy_view, partitioned_extra_info, copy_partitions_extra_info, 0, smem_pipe_read.index()); transform_A_kblock(tCrA_load, A_CPY_VEC{}, tCrA_mma, partitioned_extra_info, 0); } else { copy_A_and_extra_info(smem_tiled_copy_A, tCsA, tCrA_copy_view, partitioned_extra_info, copy_partitions_extra_info, k_block + 1, read_stage); transform_A_kblock(tCrA_load, A_CPY_VEC{}, tCrA_mma, partitioned_extra_info, k_block + 1); } } warpgroup_fence_operand(accum); } warpgroup_fence_operand(accum); { // // Compute on k_tile // int read_stage = smem_pipe_read.index(); warpgroup_fence_operand(accum); // Unroll the K mode manually to set scale D to 1 CUTLASS_PRAGMA_UNROLL for (int k_block = 0; k_block < K_BLOCK_MAX; ++k_block) { warpgroup_arrive(); // (V,M) x (V,N) => (V,M,N) cute::gemm(tiled_mma, tCrA_mma(_,_,k_block), tCrB(_,_,k_block,read_stage), accum); tiled_mma.accumulate_ = GMMA::ScaleOut::One; warpgroup_commit_batch(); warpgroup_wait<K_BLOCK_MAX - 1>(); if (k_block == K_BLOCK_MAX - 1) { // release prior barrier pipeline.consumer_release(smem_pipe_release); // UNLOCK smem_pipe_release, done _computing_ on it ++smem_pipe_release; } if (k_block < K_BLOCK_MAX - 1) { copy_A_and_extra_info(smem_tiled_copy_A, tCsA, tCrA_copy_view, partitioned_extra_info, copy_partitions_extra_info, k_block + 1, read_stage); transform_A_kblock(tCrA_load, A_CPY_VEC{}, tCrA_mma, partitioned_extra_info, k_block + 1); } } } warpgroup_fence_operand(accum); } /// Perform a Consumer Epilogue to release all buffers CUTLASS_DEVICE void mma_tail(MainloopPipeline pipeline, PipelineState smem_pipe_release, int k_tile_count) { // Prologue GMMAs int prologue_mma_count = 1; k_tile_count -= prologue_mma_count; smem_pipe_release.advance(k_tile_count); // Wait on all GMMAs to complete warpgroup_wait<0>(); for (int count = 0; count < prologue_mma_count; ++count) { pipeline.consumer_release(smem_pipe_release); // UNLOCK smem_pipe_release, done _computing_ on it ++smem_pipe_release; } } private: /// Utilities for any additional inputs inside of the TMA load template <class... Ts> CUTLASS_DEVICE auto partition_extra_tma_inputs( Params const& mainloop_params, cute::tuple<Ts...> const& load_inputs, TensorStorage& shared_tensors, uint2 const& cluster_local_block_id, int const m_coord, int const l_coord) { if constexpr (KernelConversionMode == ConversionMode::DirectConvert) { return cute::tuple{}; } else if constexpr (ModeHasScales) { Tensor sS = make_tensor(make_smem_ptr(shared_tensors.smem_scale.begin()), SmemLayoutScale{}); // (BLK_M,BLK_K,PIPE) Tensor gS_mkl = get<2>(load_inputs); auto block_tma_s = mainloop_params.tma_load_scale.get_slice(cluster_local_block_id.y); Tensor gS = gS_mkl(_,_,m_coord,_,l_coord); // (BLK_M,BLK_K,k) Tensor tSgS = block_tma_s.partition_S(gS); // (TMA,TMA_M,TMA_K,k) Tensor tSsS = block_tma_s.partition_D(sS); // (TMA,TMA_M,TMA_K,PIPE) if constexpr (KernelConversionMode == ConversionMode::ConvertAndScale) { return cute::make_tuple(tSgS, tSsS); } else if constexpr (KernelConversionMode == ConversionMode::ConvertAndScaleWithZero) { Tensor sZ = make_tensor(make_smem_ptr(shared_tensors.smem_zero.begin()), SmemLayoutScale{}); // (BLK_M,BLK_K,PIPE) Tensor gZ_mkl = get<3>(load_inputs); auto block_tma_z = mainloop_params.tma_load_zero.get_slice(cluster_local_block_id.y); Tensor gZ = gZ_mkl(_,_,m_coord,_,l_coord); // (BLK_M,BLK_K,k) Tensor tZgZ = block_tma_z.partition_S(gZ); // (TMA,TMA_M,TMA_K,k) Tensor tZsZ = block_tma_z.partition_D(sZ); // (TMA,TMA_M,TMA_K,PIPE) return cute::make_tuple(tSgS, tSsS, tZgZ, tZsZ); } else { static_assert(cutlass::detail::dependent_false<KernelSchedule>, "Conversion mode not handled for input partitioning."); } } else { static_assert(cutlass::detail::dependent_false<KernelSchedule>, "Conversion mode not handled for input partitioning."); } } /// Utilities for partitioning extra inputs for loading from smem in the mainloop. template <class ThreadMma> CUTLASS_DEVICE auto partition_extra_mma_info( ThreadMma const& thread_mma, TensorStorage& shared_tensors) { if constexpr (KernelConversionMode == ConversionMode::DirectConvert) { // noting to do return cute::tuple{}; } else if constexpr (ModeHasScales) { Tensor sS = make_tensor(make_smem_ptr(shared_tensors.smem_scale.begin()), SmemLayoutScale{}); // (BLK_M,BLK_SCALE_K,PIPE) Tensor tCsS = thread_mma.partition_A(sS); Tensor tCrS = make_tensor<ElementScale>(thread_mma.partition_fragment_A(sS(_,_,Int<0>{})).shape()); if constexpr (KernelConversionMode == ConversionMode::ConvertAndScale) { return cute::make_tuple(tCsS, tCrS); } else if constexpr (KernelConversionMode == ConversionMode::ConvertAndScaleWithZero) { Tensor sZ = make_tensor(make_smem_ptr(shared_tensors.smem_zero.begin()), SmemLayoutScale{}); // (BLK_M,BLK_SCALE_K,PIPE) Tensor tCsZ = thread_mma.partition_A(sZ); Tensor tCrZ = make_tensor<ElementZero>(thread_mma.partition_fragment_A(sZ(_,_,Int<0>{})).shape()); return cute::make_tuple(tCsS, tCrS, tCsZ, tCrZ); } else { static_assert(cutlass::detail::dependent_false<KernelSchedule>, "Conversion mode not handled in A -> RF path."); } } else { static_assert(cutlass::detail::dependent_false<KernelSchedule>, "Conversion mode not handled in A -> RF path."); } } /// Returns the tiled copy and copy views for the extra inputs. template <class TiledMma, class... Ts> CUTLASS_DEVICE auto retile_extra_mma_info( TiledMma const& tiled_mma, cute::tuple<Ts...>& partitioned_extra_info, int const warp_group_thread_idx) { if constexpr (KernelConversionMode == ConversionMode::DirectConvert) { // noting to do return cute::tuple{}; } else if constexpr (ModeHasScales) { auto smem_tiled_copy_S = make_tiled_copy_A(SmemCopyAtomScale{}, tiled_mma); auto smem_thr_copy_S = smem_tiled_copy_S.get_thread_slice(warp_group_thread_idx); Tensor tCrS_copy_view = smem_thr_copy_S.retile_D(cute::get<1>(partitioned_extra_info)); // (CPY,CPY_M,CPY_K) if constexpr (KernelConversionMode == ConversionMode::ConvertAndScale) { return cute::make_tuple(smem_tiled_copy_S, tCrS_copy_view); } else if constexpr (KernelConversionMode == ConversionMode::ConvertAndScaleWithZero) { Tensor tCrZ_copy_view = smem_thr_copy_S.retile_D(cute::get<3>(partitioned_extra_info)); // (CPY,CPY_M,CPY_K) return cute::make_tuple(smem_tiled_copy_S, tCrS_copy_view, tCrZ_copy_view); } else { static_assert(cutlass::detail::dependent_false<KernelSchedule>, "Conversion mode not handled in A -> RF path."); } } else { static_assert(cutlass::detail::dependent_false<KernelSchedule>, "Conversion mode not handled in A -> RF path."); } } /// Utilities to copy A and extra inputs from smem to RF template <class SmemTiledCopyA, class TensorASmemView, class TensorACopyView, class... Ts, class... Us > CUTLASS_DEVICE void copy_A_and_extra_info( SmemTiledCopyA const& smem_tiled_copy_A, TensorASmemView const& tCsA, TensorACopyView& tCrA_copy_view, cute::tuple<Ts...> const& partitioned_mma_extra_info, cute::tuple<Us...> const& tiled_copy_and_views, int k_block, int read_stage) { copy(smem_tiled_copy_A, tCsA(_,_,k_block,read_stage), tCrA_copy_view(_,_,k_block)); if (k_block == 0) { // We are starting a new k-tile so copy the scale if constexpr (KernelConversionMode == ConversionMode::DirectConvert) { // nothing to do } else if constexpr (ModeHasScales) { auto smem_tiled_copy_S = cute::get<0>(tiled_copy_and_views); auto tCrS_copy_view = cute::get<1>(tiled_copy_and_views); auto tCsS = cute::get<0>(partitioned_mma_extra_info); copy(smem_tiled_copy_S, tCsS(_,_,k_block,read_stage), tCrS_copy_view(_,_,k_block)); if constexpr (KernelConversionMode == ConversionMode::ConvertAndScale) { // Nothing extra to do } else if constexpr (KernelConversionMode == ConversionMode::ConvertAndScaleWithZero) { auto tCsZ = cute::get<2>(partitioned_mma_extra_info); auto tCrZ_copy_view = cute::get<2>(tiled_copy_and_views); copy(smem_tiled_copy_S, tCsZ(_,_,k_block,read_stage), tCrZ_copy_view(_,_,k_block)); } else { static_assert(cutlass::detail::dependent_false<KernelSchedule>, "Conversion mode not handled in A -> RF path."); } } else { static_assert(cutlass::detail::dependent_false<KernelSchedule>, "Conversion mode not handled in A -> RF path."); } } } /// Utilities to transform A. template <class TCrA_load, int VectorWidthA, class TCrA_mma, class... Ts> CUTLASS_DEVICE void transform_A_kblock( TCrA_load const& tCrA_load, cute::Int<VectorWidthA> vec_A, TCrA_mma& tCrA_mma, cute::tuple<Ts...> const& partitioned_extra_info, int const k_block) { if constexpr (KernelConversionMode == ConversionMode::DirectConvert) { transform_internal_A(tCrA_load(_, _, k_block), vec_A, tCrA_mma(_, _, k_block)); } else if constexpr (KernelConversionMode == ConversionMode::ConvertAndScale) { auto tCrS = cute::get<1>(partitioned_extra_info); transform_internal_A(tCrA_load(_, _, k_block), vec_A, make_fragment_like<ElementScale>(tCrA_mma)(_, _, k_block), tCrS(_, _, 0), tCrA_mma(_, _, k_block)); } else if constexpr (KernelConversionMode == ConversionMode::ConvertAndScaleWithZero) { auto tCrS = cute::get<1>(partitioned_extra_info); auto tCrZ = cute::get<3>(partitioned_extra_info); transform_internal_A(tCrA_load(_, _, k_block), vec_A, make_fragment_like<ElementScale>(tCrA_mma)(_, _, k_block), tCrS(_, _, 0), tCrZ(_, _, 0), make_fragment_like<ElementScale>(tCrZ)(_, _, 0), tCrA_mma(_, _, k_block)); } else { static_assert(cutlass::detail::dependent_false<KernelSchedule>, "No A data is loaded."); } } /// Utilities for transforming the A operand prior to issuing tensorcore math. template <class EngineIn, class EngineOut, class TensorLayout, int ConversionVectorWidth = cosize_v<TensorLayout>> CUTLASS_DEVICE void convert_tensor( Tensor<EngineIn,TensorLayout> const& in, Tensor<EngineOut,TensorLayout>& out, cute::Int<ConversionVectorWidth> width = {}) { /// This is an element-wise conversion where we expect both tensors to have the same layout. /// As a result, we can cast as a cutlass array to use the fast numeric converters without /// worrying about indexing into the layout. constexpr int N = cosize_v<TensorLayout>; /// The inputs must be backed by registers & be statically sized. static_assert(is_rmem<EngineIn>::value, "Input tensor for A conversion must come from registers"); static_assert(is_rmem<EngineOut>::value, "Output tensor for A conversion must come from registers"); static_assert(is_static_v<TensorLayout>, "Tensor layout for the conversion must be static"); static_assert(cosize_v<TensorLayout> == size(TensorLayout{}), "Cosize and size of the layout must be equal."); static_assert(N % ConversionVectorWidth == 0, "Conversion vector width must divide cosize of the tensor layout."); using SrcType = typename EngineIn::value_type; using DstType = typename EngineOut::value_type; using SrcArray = cutlass::Array<SrcType, ConversionVectorWidth>; using DstArray = cutlass::Array<DstType, ConversionVectorWidth>; constexpr cutlass::FloatRoundStyle RoundStyle = cutlass::FloatRoundStyle::round_to_nearest; using Converter = cutlass::NumericArrayConverter<DstType, SrcType, ConversionVectorWidth, RoundStyle>; constexpr int NumIterations = N / ConversionVectorWidth; for (int ii = 0; ii < NumIterations; ++ii) { SrcArray const* src_array_ptr = reinterpret_cast<SrcArray const*>(raw_pointer_cast(in.data())) + ii; DstArray* dst_array_ptr = reinterpret_cast<DstArray*>(raw_pointer_cast(out.data())) + ii; *dst_array_ptr = Converter::convert(*src_array_ptr); } } template <class EngineIn, class EngineOut, class TensorLayout, int A_VectorConversionWidth> CUTLASS_DEVICE void transform_internal_A( Tensor<EngineIn,TensorLayout>&& in, cute::Int<A_VectorConversionWidth> a_vec_width, Tensor<EngineOut,TensorLayout>&& out) { convert_tensor(in, out, a_vec_width); } template <class EngineIn, class EngineInputBuffer, class EngineScale, class EngineOut, class TensorLayout, int A_VectorConversionWidth> CUTLASS_DEVICE void transform_internal_A( Tensor<EngineIn,TensorLayout>&& in, cute::Int<A_VectorConversionWidth> a_vec_width, Tensor<EngineInputBuffer,TensorLayout>&& converted_inputs, Tensor<EngineScale,TensorLayout>&& scales, Tensor<EngineOut,TensorLayout>&& out) { static_assert(cute::is_same_v<typename EngineInputBuffer::value_type, typename EngineScale::value_type>, "Type of the engine input buffer must equal the scale buffer"); // First, we upcast the inputs to the scale type convert_tensor(in, converted_inputs, a_vec_width); // Apply scales and broadcast across inputs, store in converted_inputs cute::transform(converted_inputs, scales, converted_inputs, cute::multiplies{}); // Finally, we convert the scaled inputs to the mma type. convert_tensor(converted_inputs, out); } template <class EngineIn, class EngineInputBuffer, class EngineScale, class EngineZero, class EngineZeroBuffer, class EngineOut, class TensorLayout, int A_VectorConversionWidth> CUTLASS_DEVICE void transform_internal_A( Tensor<EngineIn,TensorLayout>&& in, cute::Int<A_VectorConversionWidth> a_vec_width, Tensor<EngineInputBuffer,TensorLayout>&& converted_inputs, Tensor<EngineScale,TensorLayout>&& scales, Tensor<EngineZero,TensorLayout>&& zeros, Tensor<EngineZeroBuffer,TensorLayout>&& converted_zeros, Tensor<EngineOut,TensorLayout>&& out) { static_assert(cute::is_same_v<typename EngineInputBuffer::value_type, typename EngineScale::value_type>, "Type of the engine input buffer must equal the scale buffer"); static_assert(cute::is_same_v<typename EngineZeroBuffer::value_type, typename EngineScale::value_type>, "Type of the engine zero buffer must equal the scale buffer"); // First, we upcast the inputs to the scale type convert_tensor(in, converted_inputs, a_vec_width); convert_tensor(zeros, converted_zeros); // Apply scales and broadcast across inputs, store in converted_inputs cute::transform(converted_inputs, scales, converted_inputs, cute::multiplies{}); cute::transform(converted_inputs, converted_zeros, converted_inputs, cute::plus{}); // Finally, we convert the scaled inputs to the mma type. convert_tensor(converted_inputs, out); } }; ///////////////////////////////////////////////////////////////////////////////////////////////// } // namespace cutlass::gemm::collective /////////////////////////////////////////////////////////////////////////////////////////////////
include/cutlass/gemm/collective/sm90_mma_tma_gmma_rs_warpspecialized_mixed_input.hpp/0
{ "file_path": "include/cutlass/gemm/collective/sm90_mma_tma_gmma_rs_warpspecialized_mixed_input.hpp", "repo_id": "include", "token_count": 26780 }
29
/*************************************************************************************************** * Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. * SPDX-License-Identifier: BSD-3-Clause * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * **************************************************************************************************/ /*! \file \brief Template for GEMM performing a reduction over K partitions in parallel. */ #pragma once #include "cutlass/cutlass.h" #include "cutlass/numeric_types.h" #include "cutlass/arch/arch.h" #include "cutlass/device_kernel.h" #include "cutlass/gemm/threadblock/threadblock_swizzle.h" #include "cutlass/gemm/kernel/gemm.h" #include "cutlass/gemm/kernel/default_gemm_splitk_parallel.h" #include "cutlass/gemm/device/default_gemm_configuration.h" #include "cutlass/epilogue/thread/conversion_op.h" #include "cutlass/reduction/kernel/reduce_split_k.h" #include "cutlass/reduction/thread/reduction_operators.h" //////////////////////////////////////////////////////////////////////////////// namespace cutlass { namespace gemm { namespace device { //////////////////////////////////////////////////////////////////////////////// /*! Gemm device-level operator performing parallel reduction over the K partition. */ template < /// Element type for A matrix operand typename ElementA_, /// Layout type for A matrix operand typename LayoutA_, /// Element type for B matrix operand typename ElementB_, /// Layout type for B matrix operand typename LayoutB_, /// Element type for C and D matrix operands typename ElementC_, /// Layout type for C and D matrix operands typename LayoutC_, /// Element type for internal accumulation typename ElementAccumulator_ = ElementC_, /// Operator class tag typename OperatorClass_ = arch::OpClassSimt, /// Tag indicating architecture to tune for. This is the minimum SM that /// supports the intended feature. The device kernel can be built /// targeting any SM larger than this number. typename ArchTag_ = arch::Sm70, /// Threadblock-level tile size (concept: GemmShape) typename ThreadblockShape_ = typename DefaultGemmConfiguration< OperatorClass_, ArchTag_, ElementA_, ElementB_, ElementC_, ElementAccumulator_>::ThreadblockShape, /// Warp-level tile size (concept: GemmShape) typename WarpShape_ = typename DefaultGemmConfiguration< OperatorClass_, ArchTag_, ElementA_, ElementB_, ElementC_, ElementAccumulator_>::WarpShape, /// Instruction-level tile size (concept: GemmShape) typename InstructionShape_ = typename DefaultGemmConfiguration< OperatorClass_, ArchTag_, ElementA_, ElementB_, ElementC_, ElementAccumulator_>::InstructionShape, /// Epilogue output operator typename EpilogueOutputOp_ = typename DefaultGemmConfiguration< OperatorClass_, ArchTag_, ElementA_, ElementB_, ElementC_, ElementAccumulator_>::EpilogueOutputOp, /// Epilogue output operator typename ConvertScaledOp_ = cutlass::epilogue::thread::Convert< ElementAccumulator_, DefaultGemmConfiguration<OperatorClass_, ArchTag_, ElementA_, ElementB_, ElementAccumulator_, ElementAccumulator_>::EpilogueOutputOp::kCount, ElementAccumulator_>, /// Reduction operator typename ReductionOp_ = cutlass::reduction::thread::ReduceAdd< ElementAccumulator_, typename EpilogueOutputOp_::ElementAccumulator, EpilogueOutputOp_::kCount>, /// Threadblock-level swizzling operator typename ThreadblockSwizzle_ = threadblock::GemmSplitKHorizontalThreadblockSwizzle, /// Number of stages used in the pipelined mainloop int Stages = DefaultGemmConfiguration<OperatorClass_, ArchTag_, ElementA_, ElementB_, ElementC_, ElementAccumulator_>::kStages, /// Access granularity of A matrix in units of elements int kAlignmentA = DefaultGemmConfiguration<OperatorClass_, ArchTag_, ElementA_, ElementB_, ElementC_, ElementAccumulator_>::kAlignmentA, /// Access granularity of B matrix in units of elements int kAlignmentB = DefaultGemmConfiguration<OperatorClass_, ArchTag_, ElementA_, ElementB_, ElementC_, ElementAccumulator_>::kAlignmentB, /// Operation performed by GEMM typename Operator_ = typename DefaultGemmConfiguration< OperatorClass_, ArchTag_, ElementA_, ElementB_, ElementC_, ElementAccumulator_>::Operator> class GemmSplitKParallel { public: using ElementA = ElementA_; using LayoutA = LayoutA_; using ElementB = ElementB_; using LayoutB = LayoutB_; using ElementC = ElementC_; using LayoutC = LayoutC_; using ElementAccumulator = ElementAccumulator_; using OperatorClass = OperatorClass_; using ArchTag = ArchTag_; using ThreadblockShape = ThreadblockShape_; using WarpShape = WarpShape_; using InstructionShape = InstructionShape_; using ConvertScaledOp = ConvertScaledOp_; using EpilogueOutputOp = EpilogueOutputOp_; using ReductionOp = ReductionOp_; using ThreadblockSwizzle = ThreadblockSwizzle_; using Operator = Operator_; static int const kStages = Stages; /// GEMM kernel using GemmKernel = typename kernel::DefaultGemmSplitKParallel< ElementA, LayoutA, kAlignmentA, ElementB, LayoutB, kAlignmentB, ElementAccumulator, LayoutC, ElementAccumulator, OperatorClass, ArchTag, ThreadblockShape, WarpShape, InstructionShape, ConvertScaledOp, ThreadblockSwizzle, kStages, Operator >::GemmKernel; /// Reduction kernel using ReductionKernel = cutlass::reduction::kernel::ReduceSplitK< cutlass::MatrixShape<4, 32 * EpilogueOutputOp::kCount>, EpilogueOutputOp, ReductionOp >; // // // /// Argument structure struct Arguments { // // Data members // GemmCoord problem_size; TensorRef<ElementA const, LayoutA> ref_A; TensorRef<ElementB const, LayoutB> ref_B; TensorRef<ElementC const, LayoutC> ref_C; TensorRef<ElementC, LayoutC> ref_D; typename EpilogueOutputOp::Params epilogue; int split_k_slices; typename ConvertScaledOp::Params convert; typename ReductionOp::Params reduction; // // Methods // /// Default ctor CUTLASS_HOST_DEVICE Arguments() { } /// Constructs an Arguments structure CUTLASS_HOST_DEVICE Arguments( GemmCoord problem_size_, TensorRef<ElementA const, LayoutA> ref_A_, TensorRef<ElementB const, LayoutB> ref_B_, TensorRef<ElementC const, LayoutC> ref_C_, TensorRef<ElementC, LayoutC> ref_D_, typename EpilogueOutputOp::Params epilogue_ = typename EpilogueOutputOp::Params(), int split_k_slices = 1, typename ConvertScaledOp::Params convert_ = typename ConvertScaledOp::Params(), typename ReductionOp::Params reduction_ = typename ReductionOp::Params() ): problem_size(problem_size_), ref_A(ref_A_), ref_B(ref_B_), ref_C(ref_C_), ref_D(ref_D_), epilogue(epilogue_), split_k_slices(split_k_slices), convert(convert_), reduction(reduction_) { } }; private: /// Kernel parameters object typename GemmKernel::Params gemm_params_; /// Reduction kernel parameters object typename ReductionKernel::Params reduction_params_; public: /// Constructs the GEMM. GemmSplitKParallel() { } /// Determines whether the GEMM can execute the given problem. static Status can_implement(Arguments const &args) { return Status::kSuccess; } /// Gets the workspace size static size_t get_workspace_size(Arguments const &args) { // Determine grid shape ThreadblockSwizzle threadblock_swizzle; cutlass::gemm::GemmCoord grid_shape = threadblock_swizzle.get_tiled_shape( args.problem_size, {ThreadblockShape::kM, ThreadblockShape::kN, ThreadblockShape::kK}, args.split_k_slices); return sizeof(ElementAccumulator_) * size_t(args.problem_size.m()) * size_t(args.problem_size.n()) * grid_shape.k(); } /// Initializes GEMM state from arguments. Status initialize(Arguments const &args, void *workspace) { // Determine grid shape ThreadblockSwizzle threadblock_swizzle; cutlass::gemm::GemmCoord grid_shape = threadblock_swizzle.get_tiled_shape( args.problem_size, {ThreadblockShape::kM, ThreadblockShape::kN, ThreadblockShape::kK}, args.split_k_slices); // Define a reference to the workspace - this is an aligned region in device memory. if (!workspace) { return Status::kErrorWorkspaceNull; } TensorRef<ElementAccumulator_, layout::RowMajor> ref_workspace( static_cast<ElementAccumulator_ *>(workspace), args.problem_size.n()); int64_t partition_stride = int64_t(args.problem_size.m()) * int64_t(args.problem_size.n()); // Initialize the Params structure gemm_params_ = typename GemmKernel::Params{ args.problem_size, grid_shape, args.ref_A.non_const_ref(), args.ref_B.non_const_ref(), ref_workspace, args.convert, partition_stride }; reduction_params_ = typename ReductionKernel::Params( args.problem_size.mn(), grid_shape.k(), partition_stride, ref_workspace, args.ref_D, args.ref_C.non_const_ref(), args.epilogue ); return Status::kSuccess; } /// Lightweight update given a subset of arguments Status update(Arguments const &args, void *workspace = nullptr) { if (!workspace) { return Status::kErrorWorkspaceNull; } gemm_params_.ref_A.reset(args.ref_A.data()); gemm_params_.ref_B.reset(args.ref_B.data()); gemm_params_.ref_D.reset(workspace); reduction_params_.ref_D.reset(args.ref_D.data()); reduction_params_.ref_C.reset(args.ref_C.data()); return Status::kSuccess; } /// Runs the kernel using initialized state. Status run(cudaStream_t stream = nullptr) { // // Launch GEMM kernel // ThreadblockSwizzle threadblock_swizzle; dim3 grid = threadblock_swizzle.get_grid_shape(gemm_params_.grid_tiled_shape); dim3 block(GemmKernel::kThreadCount, 1, 1); cudaError_t result; int smem_size = int(sizeof(typename GemmKernel::SharedStorage)); if (smem_size >= (48 << 10)) { result = cudaFuncSetAttribute( Kernel<GemmKernel>, cudaFuncAttributeMaxDynamicSharedMemorySize, smem_size); if (result != cudaSuccess) { return Status::kErrorInternal; } } Kernel<GemmKernel><<<grid, block, smem_size, stream>>>(gemm_params_); result = cudaGetLastError(); if (result != cudaSuccess) { return Status::kErrorInternal; } // // Launch reduction kernel // block = ReductionKernel::block_shape(); grid = ReductionKernel::grid_shape(gemm_params_.problem_size.mn()); Kernel<ReductionKernel><<< grid, block, 0, stream >>>(reduction_params_); result = cudaGetLastError(); if (result != cudaSuccess) { return Status::kErrorInternal; } return result == cudaSuccess ? Status::kSuccess : Status::kErrorInternal; } /// Runs the kernel using initialized state. Status operator()(cudaStream_t stream = nullptr) { return run(stream); } /// Runs the kernel using initialized state. Status operator()( Arguments const &args, void *workspace = nullptr, cudaStream_t stream = nullptr) { Status status = initialize(args, workspace); if (status == Status::kSuccess) { status = run(stream); } return status; } }; //////////////////////////////////////////////////////////////////////////////// /// Partial specialization for column-major output template < /// Element type for A matrix operand typename ElementA_, /// Layout type for A matrix operand typename LayoutA_, /// Element type for B matrix operand typename ElementB_, /// Layout type for B matrix operand typename LayoutB_, /// Element type for C and D matrix operands typename ElementC_, /// Element type for internal accumulation typename ElementAccumulator_, /// Operator class tag typename OperatorClass_, /// Tag indicating architecture to tune for. This is the minimum SM that /// supports the intended feature. The device kernel can be built /// targeting any SM larger than this number. typename ArchTag_, /// Threadblock-level tile size (concept: GemmShape) typename ThreadblockShape_, /// Warp-level tile size (concept: GemmShape) typename WarpShape_, /// Instruction-level tile size (concept: GemmShape) typename InstructionShape_, /// Epilogue output operator typename EpilogueOutputOp_, /// Epilogue output operator typename ConvertScaledOp_, /// Reduction operator typename ReductionOp_, /// Threadblock-level swizzling operator typename ThreadblockSwizzle_, /// Number of stages used in the pipelined mainloop int Stages, int kAlignmentA, int kAlignmentB, /// Operation performed by GEMM typename Operator_> class GemmSplitKParallel<ElementA_, LayoutA_, ElementB_, LayoutB_, ElementC_, layout::ColumnMajor, ElementAccumulator_, OperatorClass_, ArchTag_, ThreadblockShape_, WarpShape_, InstructionShape_, EpilogueOutputOp_, ConvertScaledOp_, ReductionOp_, ThreadblockSwizzle_, Stages, kAlignmentA, kAlignmentB, Operator_> { public: using ElementA = ElementA_; using LayoutA = LayoutA_; using ElementB = ElementB_; using LayoutB = LayoutB_; using ElementC = ElementC_; using LayoutC = layout::ColumnMajor; using ElementAccumulator = ElementAccumulator_; using OperatorClass = OperatorClass_; using ArchTag = ArchTag_; using ThreadblockShape = ThreadblockShape_; using WarpShape = WarpShape_; using InstructionShape = InstructionShape_; using ConvertScaledOp = ConvertScaledOp_; using EpilogueOutputOp = EpilogueOutputOp_; using ReductionOp = ReductionOp_; using ThreadblockSwizzle = ThreadblockSwizzle_; using Operator = Operator_; static int const kStages = Stages; using UnderlyingOperator = GemmSplitKParallel< ElementB, typename layout::LayoutTranspose<LayoutB>::type, ElementA, typename layout::LayoutTranspose<LayoutA>::type, ElementC, layout::RowMajor, ElementAccumulator, OperatorClass, ArchTag, ThreadblockShape, WarpShape, InstructionShape, EpilogueOutputOp, ConvertScaledOp, ReductionOp, ThreadblockSwizzle, Stages, kAlignmentA, kAlignmentB, Operator >; using UnderlyingArguments = typename UnderlyingOperator::Arguments; using GemmKernel = typename UnderlyingOperator::GemmKernel; using ReductionKernel = typename UnderlyingOperator::ReductionKernel; /// Argument structure struct Arguments { // // Data members // GemmCoord problem_size; TensorRef<ElementA const, LayoutA> ref_A; TensorRef<ElementB const, LayoutB> ref_B; TensorRef<ElementC const, LayoutC> ref_C; TensorRef<ElementC, LayoutC> ref_D; typename EpilogueOutputOp::Params epilogue; int split_k_slices; typename ConvertScaledOp::Params convert; typename ReductionOp::Params reduction; // // Methods // /// Default ctor CUTLASS_HOST_DEVICE Arguments() { } /// Constructs an Arguments structure CUTLASS_HOST_DEVICE Arguments( GemmCoord problem_size_, TensorRef<ElementA const, LayoutA> ref_A_, TensorRef<ElementB const, LayoutB> ref_B_, TensorRef<ElementC const, LayoutC> ref_C_, TensorRef<ElementC, LayoutC> ref_D_, typename EpilogueOutputOp::Params epilogue_ = typename EpilogueOutputOp::Params(), int split_k_slices = 1, typename ConvertScaledOp::Params convert_ = typename ConvertScaledOp::Params(), typename ReductionOp::Params reduction_ = typename ReductionOp::Params() ): problem_size(problem_size_), ref_A(ref_A_), ref_B(ref_B_), ref_C(ref_C_), ref_D(ref_D_), epilogue(epilogue_), split_k_slices(split_k_slices), convert(convert_), reduction(reduction_) { } }; private: /// Kernel parameters object UnderlyingOperator underlying_operator_; public: /// Constructs the GEMM. GemmSplitKParallel() { } /// Helper to construct a transposed equivalent for the underying GEMM operator static UnderlyingArguments to_underlying_arguments(Arguments const &args) { return UnderlyingArguments( {args.problem_size.n(), args.problem_size.m(), args.problem_size.k()}, {args.ref_B.data(), args.ref_B.stride(0)}, {args.ref_A.data(), args.ref_A.stride(0)}, {args.ref_C.data(), args.ref_C.stride(0)}, {args.ref_D.data(), args.ref_D.stride(0)}, args.epilogue, args.split_k_slices, args.convert, args.reduction ); } /// Determines whether the GEMM can execute the given problem. static Status can_implement(Arguments const &args) { return UnderlyingOperator::can_implement(to_underlying_arguments(args)); } /// Gets the workspace size static size_t get_workspace_size(Arguments const &args) { return UnderlyingOperator::get_workspace_size(to_underlying_arguments(args)); } /// Initializes GEMM state from arguments. Status initialize(Arguments const &args, void *workspace) { return underlying_operator_.initialize(to_underlying_arguments(args), workspace); } /// Lightweight update given a subset of arguments Status update(Arguments const &args, void *workspace = nullptr) { return underlying_operator_.update(to_underlying_arguments(args), workspace); } /// Runs the kernel using initialized state. Status run(cudaStream_t stream = nullptr) { return underlying_operator_.run(stream); } /// Runs the kernel using initialized state. Status operator()(cudaStream_t stream = nullptr) { return run(stream); } /// Runs the kernel using initialized state. Status operator()( Arguments const &args, void *workspace = nullptr, cudaStream_t stream = nullptr) { Status status = initialize(args, workspace, stream); if (status == Status::kSuccess) { status = run(stream); } return status; } }; //////////////////////////////////////////////////////////////////////////////// } // namespace device } // namespace gemm } // namespace cutlass ////////////////////////////////////////////////////////////////////////////////
include/cutlass/gemm/device/gemm_splitk_parallel.h/0
{ "file_path": "include/cutlass/gemm/device/gemm_splitk_parallel.h", "repo_id": "include", "token_count": 7350 }
30
/*************************************************************************************************** * Copyright (c) 2024 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. * SPDX-License-Identifier: BSD-3-Clause * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * **************************************************************************************************/ /*! \file \brief Sparse GEMM kernel with an epilogue that computes the absolute maximum value of the output and a pre-activation-function auxiliary output. The auxiliary output is also (optionally) stored to global memory. */ #pragma once #include "cutlass/cutlass.h" #include "cutlass/gemm/gemm.h" #include "cutlass/gemm/kernel/params_sparse_base.h" #include "cutlass/matrix_coord.h" #include "cutlass/semaphore.h" ///////////////////////////////////////////////////////////////////////////////////////////////// namespace cutlass { namespace gemm { namespace kernel { ///////////////////////////////////////////////////////////////////////////////////////////////// template < typename Mma_, ///! Threadblock-scoped matrix multiply-accumulate typename Epilogue_, ///! Epilogue typename ThreadblockSwizzle_, ///! Threadblock swizzling function bool SplitKSerial ///! If true, code supporting split-K via serial reduction is enabled. > struct SparseGemmWithAbsmax { using Mma = Mma_; using Epilogue = Epilogue_; using OutputOp = typename Epilogue::OutputOp; using ThreadblockSwizzle = ThreadblockSwizzle_; static bool const kSplitKSerial = SplitKSerial; static int const kSparse = Mma::kSparse; static int const kMetaSizeInBits = Mma::kMetaSizeInBits; static int const kMaxID2 = Mma::kMaxID2; static int const kElementsPerElementE = Mma::kElementsPerElementE; using ElementE = typename Mma::ElementE; using LayoutE = typename Mma::LayoutE; using LayoutC = typename Epilogue::OutputTileIterator::Layout; /// Warp count (concept: GemmShape) using WarpCount = typename Mma::WarpCount; static int const kThreadCount = 32 * WarpCount::kCount; using ParamsA = typename Mma::IteratorA::Params; using TensorRefA = typename Mma::IteratorA::TensorRef; using ParamsB = typename Mma::IteratorB::Params; using TensorRefB = typename Mma::IteratorB::TensorRef; using ParamsE = typename Mma::IteratorE::Params; using TensorRefE = typename Mma::IteratorE::TensorRef; using ParamsC = typename Epilogue::OutputTileIterator::Params; using TensorRefC = typename Epilogue::OutputTileIterator::TensorRef; using ParamsD = typename Epilogue::OutputTileIterator::Params; using TensorRefD = typename Epilogue::OutputTileIterator::TensorRef; using ParamsAux = typename Epilogue::AuxOutputTileIterator::Params; using TensorRefAux = typename Epilogue::AuxOutputTileIterator::TensorRef; /// Argument structure struct Arguments { // // Data members // GemmCoord problem_size; TensorRefA ref_A; TensorRefB ref_B; TensorRefC ref_C; TensorRefD ref_D; TensorRefE ref_E; TensorRefAux ref_Aux; void* ptr_Vector; typename LayoutC::Stride::Index ldr; typename Epilogue::OutputOp::Params epilogue; int split_k_slices; // // Methods // /// Default ctor CUTLASS_HOST_DEVICE Arguments(): problem_size(0, 0, 0), split_k_slices(1) { } /// Constructs an Arguments structure CUTLASS_HOST_DEVICE Arguments( GemmCoord problem_size_, TensorRefA ref_A_, TensorRefB ref_B_, TensorRefC ref_C_, TensorRefD ref_D_, TensorRefE ref_E_, TensorRefAux ref_Aux_, void* ptr_Vector_, typename LayoutC::Stride::Index ldr_, typename OutputOp::Params epilogue_ = typename OutputOp::Params(), int split_k_slices = 1 ): problem_size(problem_size_), ref_A(ref_A_), ref_B(ref_B_), ref_C(ref_C_), ref_D(ref_D_), ref_E(ref_E_), ref_Aux(ref_Aux_), ptr_Vector(ptr_Vector_), ldr(ldr_), epilogue(epilogue_), split_k_slices(split_k_slices) { } }; /// Parameters structure struct Params : public SparseParamsBase< ThreadblockSwizzle, ParamsA, TensorRefA, ParamsB, TensorRefB, ParamsE, TensorRefE> { using Base = SparseParamsBase< ThreadblockSwizzle, ParamsA, TensorRefA, ParamsB, TensorRefB, ParamsE, TensorRefE>; // // Data members // ParamsC params_C; TensorRefC ref_C; ParamsD params_D; TensorRefD ref_D; ParamsAux params_Aux; TensorRefAux ref_Aux; void* ptr_Vector; typename LayoutC::Stride::Index ldr; typename OutputOp::Params output_op; int *semaphore; // // Methods // CUTLASS_HOST_DEVICE Params() { } CUTLASS_HOST_DEVICE Params( cutlass::gemm::GemmCoord const & problem_size, cutlass::gemm::GemmCoord const & grid_tiled_shape, TensorRefA ref_A, TensorRefB ref_B, TensorRefC ref_C, TensorRefD ref_D, TensorRefE ref_E, TensorRefAux ref_Aux, void* ptr_Vector, typename LayoutC::Stride::Index ldr, typename OutputOp::Params output_op = typename OutputOp::Params(), int *workspace = nullptr ): Base(problem_size, grid_tiled_shape, ref_A, ref_B, ref_E, Mma::Shape::kK), params_C(ref_C.layout()), ref_C(ref_C), params_D(ref_D.layout()), ref_D(ref_D), output_op(output_op), ref_Aux(ref_Aux), params_Aux(ref_Aux.layout()), ptr_Vector(ptr_Vector), ldr(ldr) { semaphore = workspace; } }; /// Shared memory storage structure union SharedStorage { typename Mma::SharedStorage main_loop; typename Epilogue::SharedStorage epilogue; }; // // Methods // CUTLASS_HOST_DEVICE SparseGemmWithAbsmax() { } /// Determines whether kernel satisfies alignment static Status can_implement( cutlass::gemm::GemmCoord const & problem_size, typename Mma::IteratorA::TensorRef ref_A, typename Mma::IteratorB::TensorRef ref_B, typename Epilogue::OutputTileIterator::TensorRef ref_C, typename Epilogue::OutputTileIterator::TensorRef ref_D, typename Mma::IteratorE::TensorRef ref_E) { static int const kAlignmentA = Mma::IteratorA::AccessType::kElements; static int const kAlignmentB = Mma::IteratorB::AccessType::kElements; static int const kAlignmentC = Epilogue::OutputTileIterator::kElementsPerAccess; static int const kAlignmentE = Mma::IteratorE::AccessType::kElements; if (!TensorRef_aligned(ref_A, kAlignmentA)) { return Status::kErrorMisalignedOperand; } if (!TensorRef_aligned(ref_B, kAlignmentB)) { return Status::kErrorMisalignedOperand; } if (!TensorRef_aligned(ref_C, kAlignmentC)) { return Status::kErrorMisalignedOperand; } if (!TensorRef_aligned(ref_D, kAlignmentC)) { return Status::kErrorMisalignedOperand; } if (!TensorRef_aligned(ref_E, kAlignmentE)) { return Status::kErrorMisalignedOperand; } if ((problem_size.m() % kAlignmentA) || ((problem_size.k() / kSparse) % kAlignmentA) || (problem_size.n() % kAlignmentB) || (problem_size.k() % kAlignmentB) || (problem_size.m() % kAlignmentC) || (problem_size.n() % kAlignmentC) || (problem_size.m() % kAlignmentE) || ((problem_size.k() / kSparse) % kAlignmentE)) { return Status::kErrorMisalignedOperand; } // The k dimension has to be the multiple of the Threadblock k because out // of bound meta data would be initialized to 0 by acync.zfill but 0 is not // a valid meta data. if (problem_size.k() % Mma::Shape::kK) { return Status::kErrorMisalignedOperand; } // M dimension has to be multiple of 32 (sparse float) or 16 (sparse int) // because of the row reordering of operand E static int const kAlignmentM = (sizeof(ElementE) == 2) ? 32 : 16; if (problem_size.m() % kAlignmentM) { return Status::kErrorMisalignedOperand; } return Status::kSuccess; } /// Executes one GEMM CUTLASS_DEVICE void operator()(Params const &params, SharedStorage &shared_storage) { // Compute threadblock location ThreadblockSwizzle threadblock_swizzle; cutlass::gemm::GemmCoord threadblock_tile_offset = threadblock_swizzle.get_tile_offset(params.swizzle_log_tile); // Early exit if CTA is out of range if (params.grid_tiled_shape.m() <= threadblock_tile_offset.m() || params.grid_tiled_shape.n() <= threadblock_tile_offset.n()) { return; } // Compute initial location in logical coordinates cutlass::MatrixCoord tb_offset_A{ threadblock_tile_offset.m() * Mma::Shape::kM, threadblock_tile_offset.k() * params.gemm_k_size / kSparse, }; cutlass::MatrixCoord tb_offset_B{ threadblock_tile_offset.k() * params.gemm_k_size, threadblock_tile_offset.n() * Mma::Shape::kN }; cutlass::MatrixCoord tb_offset_E{ threadblock_tile_offset.m() * Mma::Shape::kM, threadblock_tile_offset.k() * params.gemm_k_size / kSparse, }; // Problem size is a function of threadblock index in the K dimension int problem_size_k = min( params.problem_size.k(), (threadblock_tile_offset.k() + 1) * params.gemm_k_size); // Compute threadblock-scoped matrix multiply-add int gemm_k_iterations = (problem_size_k - tb_offset_B.row() + Mma::Shape::kK - 1) / Mma::Shape::kK; // Compute position within threadblock int thread_idx = threadIdx.x; // Construct iterators to A, B, and E operands typename Mma::IteratorA iterator_A( params.params_A, params.ref_A.data(), {params.problem_size.m(), problem_size_k / kSparse}, thread_idx, tb_offset_A); typename Mma::IteratorB iterator_B( params.params_B, params.ref_B.data(), {problem_size_k, params.problem_size.n()}, thread_idx, tb_offset_B); typename Mma::IteratorE iterator_E( params.params_E, params.ref_E.data(), {params.problem_size.m(), problem_size_k / kSparse / kElementsPerElementE}, thread_idx, tb_offset_E); // Broadcast the warp_id computed by lane 0 to ensure dependent code // is compiled as warp-uniform. int warp_idx = canonical_warp_idx_sync(); int lane_idx = threadIdx.x % 32; // // Main loop // // Construct thread-scoped matrix multiply Mma mma(shared_storage.main_loop, thread_idx, warp_idx, lane_idx); typename Mma::FragmentC accumulators; accumulators.clear(); if (!kSplitKSerial || gemm_k_iterations > 0) { // Compute threadblock-scoped matrix multiply-add mma(gemm_k_iterations, accumulators, iterator_A, iterator_B, iterator_E, accumulators); } // // Epilogue // OutputOp output_op(params.output_op); // // Masked tile iterators constructed from members // threadblock_tile_offset = threadblock_swizzle.get_tile_offset(params.swizzle_log_tile); //assume identity swizzle MatrixCoord threadblock_offset( threadblock_tile_offset.m() * Mma::Shape::kM, threadblock_tile_offset.n() * Mma::Shape::kN ); int block_idx = threadblock_tile_offset.m() + threadblock_tile_offset.n() * params.grid_tiled_shape.m(); // Construct the semaphore. Semaphore semaphore(params.semaphore + block_idx, thread_idx); // If performing a reduction via split-K, fetch the initial synchronization if (kSplitKSerial && params.grid_tiled_shape.k() > 1) { // Fetch the synchronization lock initially but do not block. semaphore.fetch(); // Indicate which position in a serial reduction the output operator is currently updating output_op.set_k_partition(threadblock_tile_offset.k(), params.grid_tiled_shape.k()); } typename Epilogue::ElementVector *ptr_Vector = static_cast<typename Epilogue::ElementVector *>(params.ptr_Vector); // Move to appropriate location for this output tile if (ptr_Vector) { ptr_Vector += threadblock_offset.column() + threadblock_tile_offset.m() * params.ldr; } // Tile iterator loading from source tensor. typename Epilogue::OutputTileIterator iterator_C( params.params_C, params.ref_C.data(), params.problem_size.mn(), thread_idx, threadblock_offset ); // Tile iterator writing to destination tensor. typename Epilogue::OutputTileIterator iterator_D( params.params_D, params.ref_D.data(), params.problem_size.mn(), thread_idx, threadblock_offset ); // Tile iterator writing to auxiliary destination tensor. typename Epilogue::AuxOutputTileIterator iterator_Aux( params.params_Aux, // Only the final block writes the auxiliary tensor ((kSplitKSerial && params.grid_tiled_shape.k() > 1) && (params.grid_tiled_shape.k() != threadblock_tile_offset.k() + 1)) ? nullptr : params.ref_Aux.data(), params.problem_size.mn(), thread_idx, threadblock_offset ); Epilogue epilogue( shared_storage.epilogue, thread_idx, warp_idx, lane_idx); // Wait on the semaphore - this latency may have been covered by iterator construction if (kSplitKSerial && params.grid_tiled_shape.k() > 1) { // For subsequent threadblocks, the source matrix is held in the 'D' tensor. if (threadblock_tile_offset.k()) { iterator_C = iterator_D; } semaphore.wait(threadblock_tile_offset.k()); __threadfence(); } // Execute the epilogue operator to update the destination tensor. epilogue(output_op, // Only the final block uses Vector ((kSplitKSerial && params.grid_tiled_shape.k() > 1) && (params.grid_tiled_shape.k() != threadblock_tile_offset.k() + 1)) ? nullptr : ptr_Vector, iterator_D, accumulators, iterator_C, iterator_Aux, params.problem_size.mn(), threadblock_offset); // // Release the semaphore // if (kSplitKSerial && params.grid_tiled_shape.k() > 1) { int lock = 0; if (params.grid_tiled_shape.k() == threadblock_tile_offset.k() + 1) { // The final threadblock resets the semaphore for subsequent grids. lock = 0; } else { // Otherwise, the semaphore is incremented lock = threadblock_tile_offset.k() + 1; } __threadfence(); semaphore.release(lock); } } }; ///////////////////////////////////////////////////////////////////////////////////////////////// } // namespace kernel } // namespace gemm } // namespace cutlass
include/cutlass/gemm/kernel/sparse_gemm_with_absmax.h/0
{ "file_path": "include/cutlass/gemm/kernel/sparse_gemm_with_absmax.h", "repo_id": "include", "token_count": 6338 }
31
/*************************************************************************************************** * Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. * SPDX-License-Identifier: BSD-3-Clause * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * **************************************************************************************************/ /*! \file \brief Defines basic properties needed by CTA-level GEMMs assuming expectations about data layout of the global memory fragments, data types, and internal tile sizes. Partial specializations for threadblock::Mma operations targeting TensorOp instructions. */ #pragma once #include "cutlass/cutlass.h" #include "cutlass/array.h" #include "cutlass/numeric_types.h" #include "cutlass/matrix_shape.h" #include "cutlass/layout/tensor_op_multiplicand_sm70.h" #include "cutlass/transform/pitch_linear_thread_map.h" #include "cutlass/transform/threadblock/regular_tile_iterator_tensor_op_sm70.h" #include "cutlass/gemm/warp/mma_tensor_op_sm70.h" #include "cutlass/gemm/threadblock/default_mma_core.h" ///////////////////////////////////////////////////////////////////////////////////////////////// namespace cutlass { namespace gemm { namespace threadblock { ///////////////////////////////////////////////////////////////////////////////////////////////// /// Partial specialization: /// /// A: column-major /// B: row-major /// Operator: tensor op class /// /// This uses the default warp-level operator given tile sizes template < /// Shape of threadblock-scoped matrix multiply operator (concept: /// GemmShape) typename Shape_, /// Shape of warp-level matrix multiply operator (concept: GemmShape) typename WarpShape_, /// Data type of A operand typename ElementA_, /// Data type of B operand typename ElementB_, /// Data type of accumulator typename ElementC_, /// Layout of accumulator typename LayoutC_, /// Operation performed by GEMM typename Operator_> struct DefaultMmaCore<Shape_, WarpShape_, GemmShape<8, 8, 4>, ElementA_, layout::ColumnMajor, ElementB_, layout::RowMajor, ElementC_, LayoutC_, arch::OpClassTensorOp, 2, Operator_ > { using Shape = Shape_; using WarpShape = WarpShape_; using InstructionShape = GemmShape<8, 8, 4>; using ElementA = ElementA_; using LayoutA = layout::ColumnMajor; using ElementB = ElementB_; using LayoutB = layout::RowMajor; using ElementC = ElementC_; using LayoutC = LayoutC_; using OperatorClass = arch::OpClassTensorOp; /// Default Operator using Operator = Operator_; /// Number of warps present using WarpCount = GemmShape< Shape::kM / WarpShape::kM, Shape::kN / WarpShape::kN, Shape::kK / WarpShape::kK >; // Divisility requirements static_assert( !(Shape::kM % WarpShape::kM) && !(Shape::kN % WarpShape::kN), "Threadblock-scoped GEMM should be divisible by warp-scoped GEMM size." ); /// Number of threads per warp static int const kWarpSize = warp::WarpSize<arch::OpClassTensorOp>::value; /// Number of threads total static int const kThreads = WarpCount::kCount * kWarpSize; /// Size of a threadblock-scoped access static int const kAccessSizeInBits = 128; // // Shared memory layouts // using SmemLayoutA = layout::ColumnMajorVoltaTensorOpMultiplicandCongruous< sizeof_bits<ElementA>::value>; // Shared memory layout using SmemLayoutB = layout::RowMajorVoltaTensorOpMultiplicandBCongruous< sizeof_bits<ElementB>::value>; // // Iterators to write to shared memory // /// ThreadMap of iterator A using IteratorThreadMapA = transform::PitchLinearWarpRakedThreadMap< layout::PitchLinearShape<Shape::kM, Shape::kK>, kThreads, layout::PitchLinearShape<8, 4>, kAccessSizeInBits / sizeof_bits<ElementA>::value >; /// Shared memory iterator to A operand using SmemIteratorA = transform::threadblock::RegularTileIterator< MatrixShape<Shape::kM, Shape::kK>, ElementA, SmemLayoutA, 1, IteratorThreadMapA >; /// Policy of iterator B using IteratorThreadMapB = transform::PitchLinearWarpRakedThreadMap< layout::PitchLinearShape<Shape::kN, Shape::kK>, kThreads, layout::PitchLinearShape<8, 4>, kAccessSizeInBits / sizeof_bits<ElementB>::value >; /// Shared memory iterator to B operand using SmemIteratorB = transform::threadblock::RegularTileIterator< MatrixShape<Shape::kK, Shape::kN>, ElementB, SmemLayoutB, 0, IteratorThreadMapB >; // // Warp-level matrix multiply operator // // Define the warp-level tensor op using Policy = cutlass::gemm::warp::MmaTensorOpPolicy< cutlass::arch::Mma< cutlass::gemm::GemmShape<16, 16, 4>, 32, ElementA, LayoutA, ElementB, LayoutB, ElementC, cutlass::layout::RowMajor, cutlass::arch::OpMultiplyAdd >, cutlass::MatrixShape<1, 1> >; using MmaTensorOp = cutlass::gemm::warp::MmaVoltaTensorOp< WarpShape, ElementA, SmemLayoutA, ElementB, SmemLayoutB, ElementC, LayoutC, Policy >; /// Policy used to define MmaPipelined using MmaPolicy = MmaPolicy< MmaTensorOp, MatrixShape<0, 0>, MatrixShape<0, 0>, WarpCount::kK >; }; /// Partial specialization: /// /// A: row-major /// B: column-major /// Operator: tensor op class /// /// This uses the default warp-level operator given tile sizes template < /// Shape of threadblock-scoped matrix multiply operator (concept: /// GemmShape) typename Shape_, /// Shape of warp-level matrix multiply operator (concept: GemmShape) typename WarpShape_, /// Data type of A operand typename ElementA_, /// Data type of B operand typename ElementB_, /// Data type of accumulator typename ElementC_, /// Layout of accumulator typename LayoutC_, /// Operation performed by GEMM typename Operator_> struct DefaultMmaCore<Shape_, WarpShape_, GemmShape<8, 8, 4>, ElementA_, layout::RowMajor, ElementB_, layout::ColumnMajor, ElementC_, LayoutC_, arch::OpClassTensorOp, 2, Operator_ > { using Shape = Shape_; using WarpShape = WarpShape_; using InstructionShape = GemmShape<8, 8, 4>; using ElementA = ElementA_; using LayoutA = layout::RowMajor; using ElementB = ElementB_; using LayoutB = layout::ColumnMajor; using ElementC = ElementC_; using LayoutC = LayoutC_; using OperatorClass = arch::OpClassTensorOp; /// Default Operator using Operator = Operator_; /// Number of warps present using WarpCount = GemmShape< Shape::kM / WarpShape::kM, Shape::kN / WarpShape::kN, Shape::kK / WarpShape::kK >; // Divisility requirements static_assert( !(Shape::kM % WarpShape::kM) && !(Shape::kN % WarpShape::kN), "Threadblock-scoped GEMM should be divisible by warp-scoped GEMM size." ); /// Number of threads per warp static int const kWarpSize = warp::WarpSize<arch::OpClassTensorOp>::value; /// Number of threads total static int const kThreads = WarpCount::kCount * kWarpSize; /// Size of a threadblock-scoped access static int const kAccessSizeInBits = 128; // // Shared memory layouts // using SmemLayoutA = layout::RowMajorVoltaTensorOpMultiplicandCrosswise< sizeof_bits<ElementA>::value, Shape::kK>; // Shared memory layout using SmemLayoutB = layout::ColumnMajorVoltaTensorOpMultiplicandCrosswise< sizeof_bits<ElementB>::value, Shape::kK>; // // Iterators to write to shared memory // /// ThreadMap of iterator A using IteratorThreadMapA = transform::PitchLinearWarpRakedThreadMap< layout::PitchLinearShape<Shape::kK, Shape::kM>, kThreads, layout::PitchLinearShape<4, 8>, kAccessSizeInBits / sizeof_bits<ElementA>::value >; /// Shared memory iterator to A operand using SmemIteratorA = transform::threadblock::RegularTileIterator< MatrixShape<Shape::kM, Shape::kK>, ElementA, SmemLayoutA, 0, IteratorThreadMapA >; /// ThreadMap of iterator B using IteratorThreadMapB = transform::PitchLinearWarpRakedThreadMap< layout::PitchLinearShape<Shape::kK, Shape::kN>, kThreads, layout::PitchLinearShape<4, 8>, kAccessSizeInBits / sizeof_bits<ElementB>::value >; /// Shared memory iterator to B operand using SmemIteratorB = transform::threadblock::RegularTileIterator< MatrixShape<Shape::kK, Shape::kN>, ElementB, SmemLayoutB, 1, IteratorThreadMapB >; // // Warp-level matrix multiply operator // // Define the warp-level tensor op using Policy = cutlass::gemm::warp::MmaTensorOpPolicy< cutlass::arch::Mma< cutlass::gemm::GemmShape<16, 16, 4>, 32, ElementA, LayoutA, ElementB, LayoutB, ElementC, cutlass::layout::RowMajor, cutlass::arch::OpMultiplyAdd >, cutlass::MatrixShape<1, 1> >; using MmaTensorOp = cutlass::gemm::warp::MmaVoltaTensorOp< WarpShape, ElementA, SmemLayoutA, ElementB, SmemLayoutB, ElementC, LayoutC, Policy >; /// Policy used to define MmaPipelined using MmaPolicy = MmaPolicy< MmaTensorOp, MatrixShape<0, 0>, MatrixShape<0, 0>, WarpCount::kK >; }; ///////////////////////////////////////////////////////////////////////////////////////////////// /// Partial specialization: /// /// A: row-major /// B: row-major /// Operator: tensor op class /// /// This uses the default warp-level operator given tile sizes template < /// Shape of threadblock-scoped matrix multiply operator (concept: /// GemmShape) typename Shape_, /// Shape of warp-level matrix multiply operator (concept: GemmShape) typename WarpShape_, /// Data type of A operand typename ElementA_, /// Data type of B operand typename ElementB_, /// Data type of accumulator typename ElementC_, /// Layout of accumulator typename LayoutC_, /// Operation performed by GEMM typename Operator_> struct DefaultMmaCore<Shape_, WarpShape_, GemmShape<8, 8, 4>, ElementA_, layout::RowMajor, ElementB_, layout::RowMajor, ElementC_, LayoutC_, arch::OpClassTensorOp, 2, Operator_ > { using Shape = Shape_; using WarpShape = WarpShape_; using InstructionShape = GemmShape<8, 8, 4>; using ElementA = ElementA_; using LayoutA = layout::RowMajor; using ElementB = ElementB_; using LayoutB = layout::RowMajor; using ElementC = ElementC_; using LayoutC = LayoutC_; using OperatorClass = arch::OpClassTensorOp; /// Default Operator using Operator = Operator_; /// Number of warps present using WarpCount = GemmShape< Shape::kM / WarpShape::kM, Shape::kN / WarpShape::kN, Shape::kK / WarpShape::kK >; // Divisility requirements static_assert( !(Shape::kM % WarpShape::kM) && !(Shape::kN % WarpShape::kN), "Threadblock-scoped GEMM should be divisible by warp-scoped GEMM size." ); /// Number of threads per warp static int const kWarpSize = warp::WarpSize<arch::OpClassTensorOp>::value; /// Number of threads total static int const kThreads = WarpCount::kCount * kWarpSize; /// Size of a threadblock-scoped access static int const kAccessSizeInBits = 128; // // Shared memory layouts // using SmemLayoutA = layout::RowMajorVoltaTensorOpMultiplicandCrosswise< sizeof_bits<ElementA>::value, Shape::kK>; // Shared memory layout using SmemLayoutB = layout::RowMajorVoltaTensorOpMultiplicandBCongruous< sizeof_bits<ElementB>::value>; // // Iterators to write to shared memory // /// ThreadMap of iterator A using IteratorThreadMapA = transform::PitchLinearWarpRakedThreadMap< layout::PitchLinearShape<Shape::kK, Shape::kM>, kThreads, layout::PitchLinearShape<4, 8>, kAccessSizeInBits / sizeof_bits<ElementA>::value >; /// Shared memory iterator to A operand using SmemIteratorA = transform::threadblock::RegularTileIterator< MatrixShape<Shape::kM, Shape::kK>, ElementA, SmemLayoutA, 0, IteratorThreadMapA >; /// Policy of iterator B using IteratorThreadMapB = transform::PitchLinearWarpRakedThreadMap< layout::PitchLinearShape<Shape::kN, Shape::kK>, kThreads, layout::PitchLinearShape<8, 4>, kAccessSizeInBits / sizeof_bits<ElementB>::value >; /// Shared memory iterator to B operand using SmemIteratorB = transform::threadblock::RegularTileIterator< MatrixShape<Shape::kK, Shape::kN>, ElementB, SmemLayoutB, 0, IteratorThreadMapB >; // // Warp-level matrix multiply operator // // Define the warp-level tensor op using Policy = cutlass::gemm::warp::MmaTensorOpPolicy< cutlass::arch::Mma< cutlass::gemm::GemmShape<16, 16, 4>, 32, ElementA, LayoutA, ElementB, LayoutB, ElementC, cutlass::layout::RowMajor, cutlass::arch::OpMultiplyAdd >, cutlass::MatrixShape<1, 1> >; using MmaTensorOp = cutlass::gemm::warp::MmaVoltaTensorOp< WarpShape, ElementA, SmemLayoutA, ElementB, SmemLayoutB, ElementC, LayoutC, Policy >; /// Policy used to define MmaPipelined using MmaPolicy = MmaPolicy< MmaTensorOp, MatrixShape<0, 0>, MatrixShape<0, 0>, WarpCount::kK >; }; ///////////////////////////////////////////////////////////////////////////////////////////////// /// Partial specialization: /// /// A: column-major /// B: column-major /// Operator: tensor op class /// /// This uses the default warp-level operator given tile sizes template < /// Shape of threadblock-scoped matrix multiply operator (concept: /// GemmShape) typename Shape_, /// Shape of warp-level matrix multiply operator (concept: GemmShape) typename WarpShape_, /// Data type of A operand typename ElementA_, /// Data type of B operand typename ElementB_, /// Data type of accumulator typename ElementC_, /// Layout of accumulator typename LayoutC_, /// Operation performed by GEMM typename Operator_> struct DefaultMmaCore<Shape_, WarpShape_, GemmShape<8, 8, 4>, ElementA_, layout::ColumnMajor, ElementB_, layout::ColumnMajor, ElementC_, LayoutC_, arch::OpClassTensorOp, 2, Operator_ > { using Shape = Shape_; using WarpShape = WarpShape_; using InstructionShape = GemmShape<8, 8, 4>; using ElementA = ElementA_; using LayoutA = layout::ColumnMajor; using ElementB = ElementB_; using LayoutB = layout::ColumnMajor; using ElementC = ElementC_; using LayoutC = LayoutC_; using OperatorClass = arch::OpClassTensorOp; /// Default Operator using Operator = Operator_; /// Number of warps present using WarpCount = GemmShape< Shape::kM / WarpShape::kM, Shape::kN / WarpShape::kN, Shape::kK / WarpShape::kK >; // Divisility requirements static_assert( !(Shape::kM % WarpShape::kM) && !(Shape::kN % WarpShape::kN), "Threadblock-scoped GEMM should be divisible by warp-scoped GEMM size." ); /// Number of threads per warp static int const kWarpSize = warp::WarpSize<arch::OpClassTensorOp>::value; /// Number of threads total static int const kThreads = WarpCount::kCount * kWarpSize; /// Size of a threadblock-scoped access static int const kAccessSizeInBits = 128; // // Shared memory layouts // using SmemLayoutA = layout::ColumnMajorVoltaTensorOpMultiplicandCongruous< sizeof_bits<ElementA>::value>; // Shared memory layout using SmemLayoutB = layout::ColumnMajorVoltaTensorOpMultiplicandCrosswise< sizeof_bits<ElementB>::value, Shape::kK>; // // Iterators to write to shared memory // /// ThreadMap of iterator A using IteratorThreadMapA = transform::PitchLinearWarpRakedThreadMap< layout::PitchLinearShape<Shape::kM, Shape::kK>, kThreads, layout::PitchLinearShape<8, 4>, kAccessSizeInBits / sizeof_bits<ElementA>::value >; /// Shared memory iterator to A operand using SmemIteratorA = transform::threadblock::RegularTileIterator< MatrixShape<Shape::kM, Shape::kK>, ElementA, SmemLayoutA, 1, IteratorThreadMapA >; /// ThreadMap of iterator B using IteratorThreadMapB = transform::PitchLinearWarpRakedThreadMap< layout::PitchLinearShape<Shape::kK, Shape::kN>, kThreads, layout::PitchLinearShape<4, 8>, kAccessSizeInBits / sizeof_bits<ElementB>::value >; /// Shared memory iterator to B operand using SmemIteratorB = transform::threadblock::RegularTileIterator< MatrixShape<Shape::kK, Shape::kN>, ElementB, SmemLayoutB, 1, IteratorThreadMapB >; // // Warp-level matrix multiply operator // // Define the warp-level tensor op using Policy = cutlass::gemm::warp::MmaTensorOpPolicy< cutlass::arch::Mma< cutlass::gemm::GemmShape<16, 16, 4>, 32, ElementA, LayoutA, ElementB, LayoutB, ElementC, cutlass::layout::RowMajor, cutlass::arch::OpMultiplyAdd >, cutlass::MatrixShape<1, 1> >; using MmaTensorOp = cutlass::gemm::warp::MmaVoltaTensorOp< WarpShape, ElementA, SmemLayoutA, ElementB, SmemLayoutB, ElementC, LayoutC, Policy >; /// Policy used to define MmaPipelined using MmaPolicy = MmaPolicy< MmaTensorOp, MatrixShape<0, 0>, MatrixShape<0, 0>, WarpCount::kK >; }; } // namespace threadblock } // namespace gemm } // namespace cutlass
include/cutlass/gemm/threadblock/default_mma_core_sm70.h/0
{ "file_path": "include/cutlass/gemm/threadblock/default_mma_core_sm70.h", "repo_id": "include", "token_count": 6940 }
32
/*************************************************************************************************** * Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. * SPDX-License-Identifier: BSD-3-Clause * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * **************************************************************************************************/ /*! \file \brief Template for a double-buffered threadblock-scoped GEMM kernel. */ #pragma once #include "cutlass/aligned_buffer.h" #include "cutlass/arch/memory.h" #include "cutlass/array.h" #include "cutlass/cutlass.h" #include "cutlass/gemm/gemm.h" #include "cutlass/matrix_shape.h" #include "cutlass/numeric_types.h" //////////////////////////////////////////////////////////////////////////////// namespace cutlass { namespace gemm { namespace threadblock { //////////////////////////////////////////////////////////////////////////////// /// Policy object describing MmaTensorOp template < /// Warp-level GEMM operator (concept: gemm::warp::Mma) typename Operator_, /// Padding used for A operand in shared memory (concept: MatrixShape) typename SmemPaddingA_, /// Padding used for B operand in shared memory (concept: MatrixShape) typename SmemPaddingB_, /// Padding used for E operand in shared memory (concept: MatrixShape) typename SmemPaddingE_, /// Number of partitions of K dimension of GEMM int PartitionsK = 1> struct SparseMmaPolicy { /// Warp-level GEMM operator (concept: gemm::warp::MmaTensorOp or gemm::warp::MmaSimt) using Operator = Operator_; /// Padding used for A operand in shared memory using SmemPaddingA = SmemPaddingA_; /// Padding used for B operand in shared memory using SmemPaddingB = SmemPaddingB_; /// Padding used for B operand in shared memory using SmemPaddingE = SmemPaddingE_; /// Number of partitions of K dimension static int const kPartitionsK = PartitionsK; }; //////////////////////////////////////////////////////////////////////////////// /// Structure to compute the matrix product targeting CUDA cores and SIMT math /// instructions. template < /// Size of the Gemm problem - concept: gemm::GemmShape<> typename Shape_, /// Policy describing tuning details (concept: MmaPolicy) typename Policy_, /// Number of stages, int Stages, /// Used for partial specialization typename Enable = bool> class SparseMmaBase { public: ///< Size of the Gemm problem - concept: gemm::GemmShape<> using Shape = Shape_; ///< Policy describing tuning details using Policy = Policy_; // // Dependent types // /// Warp-level Mma using Operator = typename Policy::Operator; /// Shape describing the overall GEMM computed from shared memory /// by each warp. using WarpGemm = typename Policy::Operator::Shape; /// Shape describing the number of warps filling the CTA using WarpCount = GemmShape<Shape::kM / WarpGemm::kM, Shape::kN / WarpGemm::kN, Shape::kK / WarpGemm::kK>; /// Number of warp-level GEMM oeprations static int const kWarpGemmIterations = (WarpGemm::kK / Operator::Policy::MmaShape::kK); static_assert(kWarpGemmIterations > 1, "The pipelined structure requires at least two warp-level " "GEMM operations."); static_assert((kWarpGemmIterations % 2) == 0, "Inner loop iteration must be an even number."); /// Number of stages static int const kStages = Stages; static int const kSparse = Operator::kSparse; static int const kElementsPerElementE = Operator::kElementsPerElementE; /// Tensor reference to the A operand using TensorRefA = TensorRef<typename Operator::ElementA, typename Operator::LayoutA>; /// Tensor reference to the B operand using TensorRefB = TensorRef<typename Operator::ElementB, typename Operator::LayoutB>; /// Tensor reference to the E operand using TensorRefE = TensorRef<typename Operator::ElementE, typename Operator::LayoutE>; // // Nested structs // /// Shared storage object needed by threadblock-scoped GEMM class SharedStorage { public: // // Type definitions // /// Shape of the A matrix operand in shared memory using ShapeA = MatrixShape<Shape::kM + Policy::SmemPaddingA::kRow, Shape::kK / kSparse * kStages + Policy::SmemPaddingA::kColumn>; /// Shape of the B matrix operand in shared memory using ShapeB = MatrixShape<Shape::kK * kStages + Policy::SmemPaddingB::kRow, Shape::kN + Policy::SmemPaddingB::kColumn>; /// Shape of the E matrix operand in shared memory using ShapeE = MatrixShape<Shape::kM * 2 + Policy::SmemPaddingE::kRow, Shape::kK / kSparse / kElementsPerElementE / 2 * kStages + Policy::SmemPaddingE::kColumn>; public: // // Data members // /// Buffer for A operand AlignedBuffer<typename Operator::ElementA, ShapeA::kCount> operand_A; /// Buffer for B operand AlignedBuffer<typename Operator::ElementB, ShapeB::kCount> operand_B; /// Buffer for E operand AlignedBuffer<typename Operator::ElementE, ShapeE::kCount> operand_E; public: // // Methods // /// Returns a layout object for the A matrix CUTLASS_DEVICE static typename Operator::LayoutA LayoutA() { return Operator::LayoutA::packed({ShapeA::kRow, ShapeA::kColumn}); } /// Returns a layout object for the B matrix CUTLASS_HOST_DEVICE static typename Operator::LayoutB LayoutB() { return Operator::LayoutB::packed({ShapeB::kRow, ShapeB::kColumn}); } /// Returns a layout object for the E matrix CUTLASS_HOST_DEVICE static typename Operator::LayoutE LayoutE() { return Operator::LayoutE::packed({ShapeE::kRow, ShapeE::kColumn}); } /// Returns a TensorRef to the A operand CUTLASS_HOST_DEVICE TensorRefA operand_A_ref() { return TensorRefA{operand_A.data(), LayoutA()}; } /// Returns a TensorRef to the B operand CUTLASS_HOST_DEVICE TensorRefB operand_B_ref() { return TensorRefB{operand_B.data(), LayoutB()}; } /// Returns a TensorRef to the E operand CUTLASS_HOST_DEVICE TensorRefE operand_E_ref() { return TensorRefE{operand_E.data(), LayoutE()}; } }; protected: // // Data members // /// Iterator to load a warp-scoped tile of A operand from shared memory typename Operator::IteratorA warp_tile_iterator_A_; /// Iterator to load a warp-scoped tile of B operand from shared memory typename Operator::IteratorB warp_tile_iterator_B_; /// Iterator to load a warp-scoped tile of E operand from shared memory typename Operator::IteratorE warp_tile_iterator_E_; public: /// Construct from tensor references CUTLASS_DEVICE SparseMmaBase( ///< Shared storage needed for internal use by threadblock-scoped GEMM SharedStorage &shared_storage, ///< ID within the threadblock int thread_idx, ///< ID of warp int warp_idx, ///< ID of each thread within a warp int lane_idx ): warp_tile_iterator_A_(shared_storage.operand_A_ref(), lane_idx), warp_tile_iterator_B_(shared_storage.operand_B_ref(), lane_idx), warp_tile_iterator_E_(shared_storage.operand_E_ref(), lane_idx) { } }; ///////////////////////////////////////////////////////////////////////////////////////////////// } // namespace threadblock } // namespace gemm } // namespace cutlass /////////////////////////////////////////////////////////////////////////////////////////////////
include/cutlass/gemm/threadblock/mma_sparse_base.h/0
{ "file_path": "include/cutlass/gemm/threadblock/mma_sparse_base.h", "repo_id": "include", "token_count": 3072 }
33
/*************************************************************************************************** * Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. * SPDX-License-Identifier: BSD-3-Clause * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * **************************************************************************************************/ /*! \file \brief Templates implementing warp-level matrix multiply-accumulate operations targeting Tensor Cores. */ #pragma once #include "cutlass/cutlass.h" #include "cutlass/array.h" #include "cutlass/complex.h" #include "cutlass/numeric_types.h" #include "cutlass/matrix_shape.h" #include "cutlass/arch/memory_sm75.h" #include "cutlass/arch/mma_sm75.h" #include "cutlass/arch/mma_sm80.h" #include "cutlass/gemm/gemm.h" #include "cutlass/gemm/warp/mma.h" #include "cutlass/gemm/warp/mma_tensor_op_policy.h" #include "cutlass/gemm/warp/mma_tensor_op.h" #include "cutlass/gemm/warp/mma_tensor_op_tile_iterator.h" #include "cutlass/gemm/warp/mma_gaussian_complex_tensor_op_tile_iterator_sm80.h" ///////////////////////////////////////////////////////////////////////////////////////////////// namespace cutlass { namespace gemm { namespace warp { ///////////////////////////////////////////////////////////////////////////////////////////////// template < /// Size of the Gemm problem - concept: gemm::GemmShape<> typename Shape_, /// Data type of A elements typename RealElementA, /// Layout of A matrix (concept: MatrixLayout) typename LayoutA_, /// Data type of B elements typename RealElementB, /// Layout of B matrix (concept: MatrixLayout) typename LayoutB_, /// Element type of C matrix typename RealElementC, /// Layout of C matrix (concept: MatrixLayout) typename LayoutC_, /// Policy describing warp-level MmaTensorOp (concept: MmaTensorOp policy) typename Policy_, /// Complex transform on A operand ComplexTransform TransformA = ComplexTransform::kNone, /// Complex transform on B operand ComplexTransform TransformB = ComplexTransform::kNone, /// Do source operands need more than one elements bool GeneralizedOperatorElements = false, /// Used for partial specialization typename Enable = bool > class MmaGaussianComplexTensorOp; ///////////////////////////////////////////////////////////////////////////////////////////////// /// Partial specialization for complex*complex+complex => complex using real-valued TensorOps template < /// Size of the Gemm problem - concept: gemm::GemmShape<> typename Shape_, /// Data type of A elements typename RealElementA, /// Layout of A matrix (concept: MatrixLayout) typename LayoutA_, /// Data type of B elements typename RealElementB, /// Layout of B matrix (concept: MatrixLayout) typename LayoutB_, /// Element type of C matrix typename RealElementC, /// Layout of C matrix (concept: MatrixLayout) typename LayoutC_, /// Policy describing warp-level MmaTensorOp (concept: MmaTensorOp policy) typename Policy_, /// Complex transform on A operand ComplexTransform TransformA, /// Complex transform on B operand ComplexTransform TransformB > class MmaGaussianComplexTensorOp< Shape_, complex<RealElementA>, LayoutA_, complex<RealElementB>, LayoutB_, complex<RealElementC>, LayoutC_, Policy_, TransformA, TransformB> { public: /// Shape of warp-level matrix operation (concept: GemmShape) using Shape = Shape_; /// Data type of multiplicand A using ElementA = complex<RealElementA>; /// Layout of multiplicand A using LayoutA = LayoutA_; /// Data type of multiplicand B using ElementB = complex<RealElementB>; /// Layout of multiplicand B using LayoutB = LayoutB_; /// Data type of accumulator matrix C using ElementC = complex<RealElementC>; /// Layout of accumulator matrix C using LayoutC = LayoutC_; /// Shape of the warp in units of thread (concept: MmaLanePolicySimt) using Policy = Policy_; /// Underlying matrix multiply operator (concept: arch::Mma) using ArchMmaOperator = typename Policy::Operator; /// Shape of underlying instruction using InstructionShape = typename ArchMmaOperator::Shape; /// Underlying arch tag using ArchTag = typename ArchMmaOperator::ArchTag; /// Indicates class of matrix operator using OperatorClass = arch::OpClassTensorOp; /// Indicates math operator using MathOperator = arch::OpMultiplyAddGaussianComplex; /// Complex transform on A operand static ComplexTransform const kTransformA = TransformA; /// Complex transform on B operand static ComplexTransform const kTransformB = TransformB; /// Number of threads participating in warp-level matrix product static int const kThreadCount = 32; public: /// Iterates over the A operand in memory using IteratorA = MmaTensorOpMultiplicandTileIterator< MatrixShape<Shape::kM, Shape::kK>, Operand::kA, ElementA, LayoutA, MatrixShape<ArchMmaOperator::Shape::kM, ArchMmaOperator::Shape::kK>, Policy::OpDelta::kRow, 32, 1 >; /// Storage for A tile using FragmentA = typename IteratorA::Fragment; /// Storage for transformed A tile using TransformedFragmentA = FragmentA; /// Iterates over the B operand in memory using IteratorB = MmaTensorOpMultiplicandTileIterator< MatrixShape<Shape::kK, Shape::kN>, Operand::kB, ElementB, LayoutB, MatrixShape<ArchMmaOperator::Shape::kK, ArchMmaOperator::Shape::kN>, Policy::OpDelta::kColumn, 32, 1 >; /// Storage for B tile using FragmentB = typename IteratorB::Fragment; /// Storage for transformed B tile using TransformedFragmentB = FragmentB; static_assert( !(Shape::kM % ArchMmaOperator::Shape::kM) && !(Shape::kN % ArchMmaOperator::Shape::kN), "Shape of warp-level Mma must be divisible by operator shape."); /// Number of mma operations performed using MmaIterations = MatrixShape< Shape::kM / ArchMmaOperator::Shape::kM, Shape::kN / ArchMmaOperator::Shape::kN >; /// Iterates over the C operand in memory using IteratorC = MmaTensorOpGaussianComplexAccumulatorTileIterator< MatrixShape<Shape::kM, Shape::kN>, ElementC, LayoutC, typename ArchMmaOperator::Shape, typename Policy::OpDelta>; /// Storage for C tile, the accumulator. Note, regardless of multiplicand type, this /// storage arrangement is to be considered 'gaussian complex' in the sense that the accumulation is /// done in three parts namely part1, part2, and part3. The parts 1, 2, and 3 are stored consecutively /// in InteratorC::Frament. This matches the structure of Tensor Cores which are always real-valued matrix multiplies. using FragmentC = typename IteratorC::Fragment; static_assert( FragmentC::kElements == 3 * MmaIterations::kCount * ArchMmaOperator::FragmentC::kElements, "Unexpected gaussian complex fragment length."); private: // // Data members // /// Underlying real-valued matrix multiply operator (concept: arch::Mma) ArchMmaOperator mma; public: // // Methods // /// Ctor CUTLASS_DEVICE MmaGaussianComplexTensorOp() {} /// Performs a warp-level matrix multiply-accumulate operation CUTLASS_DEVICE void operator()( FragmentC &D, FragmentA const &A, FragmentB const &B, FragmentC const &C ) const { // Alias types for underlying real-valued matrix multiply operator using MmaOperandA = typename ArchMmaOperator::FragmentA; using MmaOperandB = typename ArchMmaOperator::FragmentB; using MmaOperandC = typename ArchMmaOperator::FragmentC; static_assert(MmaOperandA::kElements == 1, "This implementation only supports math instructions in which exactly one element is needed for the A operand." "We can geneneralize later."); static_assert(MmaOperandB::kElements == 1, "This implementation only supports math instructions in which exactly one element is needed for the B operand." "We can geneneralize later."); D = C; CUTLASS_PRAGMA_UNROLL for (int m = 0; m < MmaIterations::kRow; ++m) { // mma(accum.part1(), (a.real() + a.imag()), b.real(), accum.part1()); CUTLASS_PRAGMA_UNROLL for (int n = 0; n < MmaIterations::kColumn; ++n) { // Pack operands together. This may result in actual MOVs MmaOperandA operand_Asum; MmaOperandB operand_Br; operand_Asum[0] = A[m].real() + ((kTransformA == ComplexTransform::kConjugate) ? -A[m].imag() : +A[m].imag()); operand_Br[0] = B[n].real(); // accumulator part1 MmaOperandC *accum = reinterpret_cast<MmaOperandC *>(&D) + (m + n * MmaIterations::kRow); mma(*accum, operand_Asum, operand_Br, *accum); } // mma(accum.part2(), -a.real(), (b.real() - b.imag()), accum.part2()); CUTLASS_PRAGMA_UNROLL for (int n = MmaIterations::kColumn - 1; n >= 0; --n) { // Pack operands together. This may result in actual MOVs MmaOperandA operand_Ar; MmaOperandB operand_Bdiff; operand_Ar[0] = -A[m].real(); operand_Bdiff[0] = B[n].real() - ((kTransformB == ComplexTransform::kConjugate) ? -B[n].imag() : +B[n].imag()); // accumulator part2 MmaOperandC *accum = reinterpret_cast<MmaOperandC *>(&D) + (m + n * MmaIterations::kRow) + MmaIterations::kCount; mma(*accum, operand_Ar, operand_Bdiff, *accum); } // mma(accum.part3(), a.imag(), (b.real() + b.imag()), accum.part3()) CUTLASS_PRAGMA_UNROLL for (int n = 0; n < MmaIterations::kColumn; ++n) { // Pack operands together. This may result in actual MOVs MmaOperandA operand_Ai; MmaOperandB operand_Bsum; operand_Ai[0] = (kTransformA == ComplexTransform::kConjugate) ? -A[m].imag() : +A[m].imag(); operand_Bsum[0] = B[n].real() + ((kTransformB == ComplexTransform::kConjugate) ? -B[n].imag() : +B[n].imag()); // accumulator part3 MmaOperandC *accum = reinterpret_cast<MmaOperandC *>(&D) + (m + n * MmaIterations::kRow) + 2 * MmaIterations::kCount; mma(*accum, operand_Ai, operand_Bsum, *accum); } } } /// Transform the mma operands to the required types CUTLASS_DEVICE void transform(TransformedFragmentA &dst_A, TransformedFragmentB &dst_B, FragmentA const &A, FragmentB const &B) const { dst_A = A; dst_B = B; } }; ///////////////////////////////////////////////////////////////////////////////////////////////// /// Partial specialization for complex*complex+complex => complex using real-valued TensorOps template < /// Size of the Gemm problem - concept: gemm::GemmShape<> typename Shape_, /// Data type of A elements typename RealElementA, /// Layout of A matrix (concept: MatrixLayout) typename LayoutA_, /// Data type of B elements typename RealElementB, /// Layout of B matrix (concept: MatrixLayout) typename LayoutB_, /// Element type of C matrix typename RealElementC, /// Layout of C matrix (concept: MatrixLayout) typename LayoutC_, /// Policy describing warp-level MmaTensorOp (concept: MmaTensorOp policy) typename Policy_, /// Complex transform on A operand ComplexTransform TransformA, /// Complex transform on B operand ComplexTransform TransformB > class MmaGaussianComplexTensorOp< Shape_, complex<RealElementA>, LayoutA_, complex<RealElementB>, LayoutB_, complex<RealElementC>, LayoutC_, Policy_, TransformA, TransformB, true> { public: /// Shape of warp-level matrix operation (concept: GemmShape) using Shape = Shape_; /// Data type of multiplicand A using ElementA = complex<RealElementA>; /// Layout of multiplicand A using LayoutA = LayoutA_; /// Data type of multiplicand B using ElementB = complex<RealElementB>; /// Layout of multiplicand B using LayoutB = LayoutB_; /// Data type of accumulator matrix C using ElementC = complex<RealElementC>; /// Layout of accumulator matrix C using LayoutC = LayoutC_; /// Shape of the warp in units of thread (concept: MmaLanePolicySimt) using Policy = Policy_; /// Underlying matrix multiply operator (concept: arch::Mma) using ArchMmaOperator = typename Policy::Operator; /// Shape of underlying instruction using InstructionShape = typename ArchMmaOperator::Shape; /// Underlying arch tag using ArchTag = typename ArchMmaOperator::ArchTag; /// Indicates class of matrix operator using OperatorClass = arch::OpClassTensorOp; /// Indicates math operator using MathOperator = arch::OpMultiplyAddGaussianComplex; /// Complex transform on A operand static ComplexTransform const kTransformA = TransformA; /// Complex transform on B operand static ComplexTransform const kTransformB = TransformB; /// Number of threads participating in warp-level matrix product static int const kThreadCount = 32; public: /// Iterates over the A operand in memory using IteratorA = MmaTensorOpMultiplicandTileIterator< MatrixShape<Shape::kM, Shape::kK>, Operand::kA, ElementA, LayoutA, MatrixShape<ArchMmaOperator::Shape::kM, ArchMmaOperator::Shape::kK>, Policy::OpDelta::kRow, 32, 1 >; /// Storage for A tile using FragmentA = typename IteratorA::Fragment; /// Storage for transformed A tile using TransformedFragmentA = FragmentA; /// Iterates over the B operand in memory using IteratorB = MmaTensorOpMultiplicandTileIterator< MatrixShape<Shape::kK, Shape::kN>, Operand::kB, ElementB, LayoutB, MatrixShape<ArchMmaOperator::Shape::kK, ArchMmaOperator::Shape::kN>, Policy::OpDelta::kColumn, 32, 1 >; /// Storage for B tile using FragmentB = typename IteratorB::Fragment; /// Storage for transformed B tile using TransformedFragmentB = FragmentB; static_assert( !(Shape::kM % ArchMmaOperator::Shape::kM) && !(Shape::kN % ArchMmaOperator::Shape::kN), "Shape of warp-level Mma must be divisible by operator shape."); /// Number of mma operations performed using MmaIterations = MatrixShape< Shape::kM / ArchMmaOperator::Shape::kM, Shape::kN / ArchMmaOperator::Shape::kN >; /// Iterates over the C operand in memory using IteratorC = MmaTensorOpGaussianComplexAccumulatorTileIterator< MatrixShape<Shape::kM, Shape::kN>, ElementC, LayoutC, typename ArchMmaOperator::Shape, typename Policy::OpDelta>; /// Storage for C tile, the accumulator. Note, regardless of multiplicand type, this /// storage arrangement is to be considered 'gaussian complex' in the sense that the accumulation is /// done in three parts namely part1, part2, and part3. The parts 1, 2, and 3 are stored consecutively /// in InteratorC::Frament. This matches the structure of Tensor Cores which are always real-valued matrix multiplies. using FragmentC = typename IteratorC::Fragment; static_assert( FragmentC::kElements == 3 * MmaIterations::kCount * ArchMmaOperator::FragmentC::kElements, "Unexpected gaussian complex fragment length."); private: // // Data members // /// Underlying real-valued matrix multiply operator (concept: arch::Mma) ArchMmaOperator mma; public: // // Methods // /// Ctor CUTLASS_DEVICE MmaGaussianComplexTensorOp() {} /// Performs a warp-level matrix multiply-accumulate operation CUTLASS_DEVICE void operator()( FragmentC &D, FragmentA const &A, FragmentB const &B, FragmentC const &C ) const { // Alias types for underlying real-valued matrix multiply operator using MmaOperandA = typename ArchMmaOperator::FragmentA; using MmaOperandB = typename ArchMmaOperator::FragmentB; using MmaOperandC = typename ArchMmaOperator::FragmentC; D = C; CUTLASS_PRAGMA_UNROLL for (int m = 0; m < MmaIterations::kRow; ++m) { // mma(accum.part1(), (a.real() + a.imag()), b.real(), accum.part1()); CUTLASS_PRAGMA_UNROLL for (int n = 0; n < MmaIterations::kColumn; ++n) { // Pack operands together. This may result in actual MOVs MmaOperandA operand_Asum; MmaOperandB operand_Br; CUTLASS_PRAGMA_UNROLL for (int mk = 0; mk < MmaOperandA::kElements; ++mk) operand_Asum[mk] = A[m*MmaOperandA::kElements + mk].real() + ((kTransformA == ComplexTransform::kConjugate) ? -A[m*MmaOperandA::kElements + mk].imag() : +A[m*MmaOperandA::kElements + mk].imag()); CUTLASS_PRAGMA_UNROLL for (int nk = 0; nk < MmaOperandB::kElements; ++nk) operand_Br[nk] = B[n*MmaOperandB::kElements + nk].real(); // accumulator part1 MmaOperandC *accum = reinterpret_cast<MmaOperandC *>(&D) + (m + n * MmaIterations::kRow); mma(*accum, operand_Asum, operand_Br, *accum); } // mma(accum.part2(), -a.real(), (b.real() - b.imag()), accum.part2()); CUTLASS_PRAGMA_UNROLL for (int n = MmaIterations::kColumn - 1; n >= 0; --n) { // Pack operands together. This may result in actual MOVs MmaOperandA operand_Ar; MmaOperandB operand_Bdiff; CUTLASS_PRAGMA_UNROLL for (int mk = 0; mk < MmaOperandA::kElements; ++mk) operand_Ar[mk] = -A[m*MmaOperandA::kElements + mk].real(); CUTLASS_PRAGMA_UNROLL for (int nk = 0; nk < MmaOperandB::kElements; ++nk) operand_Bdiff[nk] = B[n*MmaOperandB::kElements + nk].real() - ((kTransformB == ComplexTransform::kConjugate) ? -B[n*MmaOperandB::kElements + nk].imag() : +B[n*MmaOperandB::kElements + nk].imag()); // accumulator part2 MmaOperandC *accum = reinterpret_cast<MmaOperandC *>(&D) + (m + n * MmaIterations::kRow) + MmaIterations::kCount; mma(*accum, operand_Ar, operand_Bdiff, *accum); } // mma(accum.part3(), a.imag(), (b.real() + b.imag()), accum.part3()) CUTLASS_PRAGMA_UNROLL for (int n = 0; n < MmaIterations::kColumn; ++n) { // Pack operands together. This may result in actual MOVs MmaOperandA operand_Ai; MmaOperandB operand_Bsum; CUTLASS_PRAGMA_UNROLL for (int mk = 0; mk < MmaOperandA::kElements; ++mk) operand_Ai[mk] = (kTransformA == ComplexTransform::kConjugate) ? -A[m*MmaOperandA::kElements + mk].imag() : +A[m*MmaOperandA::kElements + mk].imag(); CUTLASS_PRAGMA_UNROLL for (int nk = 0; nk < MmaOperandB::kElements; ++nk) operand_Bsum[nk] = B[n*MmaOperandB::kElements + nk].real() + ((kTransformB == ComplexTransform::kConjugate) ? -B[n*MmaOperandB::kElements + nk].imag() : +B[n*MmaOperandB::kElements + nk].imag()); // accumulator part3 MmaOperandC *accum = reinterpret_cast<MmaOperandC *>(&D) + (m + n * MmaIterations::kRow) + 2 * MmaIterations::kCount; mma(*accum, operand_Ai, operand_Bsum, *accum); } } } /// Transform the mma operands to the required types CUTLASS_DEVICE void transform(TransformedFragmentA &dst_A, TransformedFragmentB &dst_B, FragmentA const &A, FragmentB const &B) const { dst_A = A; dst_B = B; } }; ///////////////////////////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////////////////////////// } // namespace warp } // namespace gemm } // namespace cutlass /////////////////////////////////////////////////////////////////////////////////////////////////
include/cutlass/gemm/warp/mma_gaussian_complex_tensor_op.h/0
{ "file_path": "include/cutlass/gemm/warp/mma_gaussian_complex_tensor_op.h", "repo_id": "include", "token_count": 7585 }
34
/*************************************************************************************************** * Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. * SPDX-License-Identifier: BSD-3-Clause * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * **************************************************************************************************/ /*! \file \brief Defines iterators used by warp-level matrix multiply operations targeting Tensor Cores. */ #pragma once #include "cutlass/cutlass.h" #include "cutlass/array.h" #include "cutlass/numeric_types.h" #include "cutlass/tensor_ref.h" #include "cutlass/matrix_shape.h" #include "cutlass/arch/memory_sm75.h" #include "cutlass/gemm/gemm.h" #include "cutlass/layout/matrix.h" #include "cutlass/layout/tensor.h" #include "cutlass/layout/pitch_linear.h" #include "cutlass/layout/tensor_op_multiplicand_sm80.h" #include "cutlass/platform/platform.h" #include "cutlass/fast_math.h" #include "cutlass/gemm/warp/mma_tensor_op_tile_iterator.h" //////////////////////////////////////////////////////////////////////////////// namespace cutlass { namespace gemm { namespace warp { //////////////////////////////////////////////////////////////////////////////// /// This tile iterator is specialized for loading 128b vectors of 64b elements. /// /// Satisfies: /// ReadableRandomAccessContiguousTileIteratorConcept /// template < /// Size of the matrix to load (concept: PitchLinearShape) typename Shape_, /// Identifies A or B multiplicand Operand Operand_, /// Data type of elements typename Element_, /// Shape of one matrix product operation (concept: PitchLinearShape) typename InstructionShape_, /// Interval between adjacent *MMA instructions (in units of MMA /// instructions) int OpDelta_, /// Number of partitions along K dimension int PartitionsK_> class MmaTensorOpMultiplicandTileIterator< Shape_, Operand_, Element_, cutlass::layout::TensorOpMultiplicandCongruous64b, InstructionShape_, OpDelta_, 32, PartitionsK_> { public: /// Shape of tile to load (concept: PitchLinearShape) using Shape = Shape_; /// Operand tag static Operand const kOperand = Operand_; static_assert(kOperand == Operand::kA || kOperand== Operand::kB, "MmaTensorOpMultiplicandIterator may only be instantiated for A or B operands to warp-level Mma."); static_assert(!(Shape::kContiguous % 16) && !(Shape::kStrided % 4), "Divisibility."); static_assert(sizeof_bits<Element_>::value == 64, "This is specialized for 64b accesses."); /// Element type using Element = Element_; /// Layout of source tile using Layout = cutlass::layout::TensorOpMultiplicandCongruous64b; /// Shape of one matrix product operation (concept: GemmShape) using InstructionShape = InstructionShape_; /// Delta between *MMA operations (in units of *MMA operations, concept: MatrixShape) static int const kOpDelta = OpDelta_; /// Number of participating threads static int const kThreads = 32; /// Number of partitions along K dimension static int const kPartitionsK = PartitionsK_; /// TensorRef type for loading element from a tensor using TensorRef = TensorRef<Element, Layout>; /// Index type using Index = typename TensorRef::Index; /// Long Index type using LongIndex = typename TensorRef::LongIndex; /// Long Index type using StrideIndex = typename TensorRef::Layout::Stride::Index; /// Coordinate for an element in the tensor using TensorCoord = typename TensorRef::TensorCoord; /// Load two elements per access static int const kElementsPerAccess = 2; /// Policy defining internal details of tile iterator struct Policy { /// Shape of one access using Delta = layout::PitchLinearShape<8, 4>; /// Number of iterations to load using Iterations = layout::PitchLinearShape< Shape::kContiguous / kElementsPerAccess / Delta::kContiguous, InstructionShape::kStrided / Delta::kStrided >; }; private: /// Not working on this feature at the moment. static_assert(kOpDelta == 1, "Alternative arrangements not supported at present."); /// Pointer type used for accesses using AccessType = AlignedArray<Element, kElementsPerAccess, 16>; /// Internal counter used to jump to next K partition int k_group_idx_; public: // // Derived quantities // /// Fragment object holding a thread's part of a tile using Fragment = Array<Element, Shape::kContiguous * InstructionShape::kStrided / kThreads>; private: /// Layout object storing stride values StrideIndex stride_; /// Shared memory base pointers - not advanced AccessType const *pointer_; /// Byte offset incremented as iterator advances Index byte_offset_; public: /// Default ctor constructs null iterator CUTLASS_HOST_DEVICE MmaTensorOpMultiplicandTileIterator(): stride_(0), byte_offset_(0) { } /// Constructor from TensorRef CUTLASS_DEVICE MmaTensorOpMultiplicandTileIterator( TensorRef const &ref, int lane_id ): stride_(ref.stride(0) / kElementsPerAccess), byte_offset_(0), k_group_idx_(0) { int access_strided = lane_id / Policy::Delta::kContiguous; int access_contiguous = (lane_id % Policy::Delta::kContiguous) ^ access_strided; pointer_= reinterpret_cast<AccessType const *>(ref.data()) + access_contiguous + access_strided * stride_; } /// Adds a pointer offset to internal pointer(s) to advance through memory CUTLASS_DEVICE MmaTensorOpMultiplicandTileIterator &add_pointer_offset(LongIndex offset) { byte_offset_ += offset * sizeof(Element); return *this; } /// Advances an iterator along logical dimensions of matrix in units of whole tiles CUTLASS_HOST_DEVICE MmaTensorOpMultiplicandTileIterator &add_tile_offset(TensorCoord const &tile_offset) { int offset = (tile_offset.strided() * InstructionShape::kStrided) * stride_ * kElementsPerAccess + tile_offset.contiguous() * Shape::kContiguous; add_pointer_offset(offset); return *this; } /// Advances the iterator along the advance dimension CUTLASS_DEVICE MmaTensorOpMultiplicandTileIterator & operator++() { add_tile_offset({0, 1}); return *this; } /// Advances the iterator along the opposite of the advance dimension CUTLASS_HOST_DEVICE MmaTensorOpMultiplicandTileIterator & operator--() { add_tile_offset({0, -1}); return *this; } ///< advances in units of whole tiles along the logical coordinate space of the tensor CUTLASS_DEVICE MmaTensorOpMultiplicandTileIterator & operator+=(TensorCoord const &tile_offset) { add_tile_offset(tile_offset); return *this; } ///< advances in units of whole tiles along the logical coordinate space of the tensor CUTLASS_DEVICE MmaTensorOpMultiplicandTileIterator & operator-=(TensorCoord const &tile_offset) { add_tile_offset(-tile_offset); return *this; } /// Loads a fragment from memory at the location pointed to by the iterator. CUTLASS_HOST_DEVICE void load(Fragment &frag) const { load_with_byte_offset(frag, 0); } /// Loads a fragment from memory with additional logical offset CUTLASS_DEVICE void load_with_byte_offset( /// fragment to load from the tensor Fragment &frag, /// loads a tile with a linear offset in units of bytes Index byte_offset) const { AccessType *fetch_ptr = reinterpret_cast<AccessType *>(&frag); CUTLASS_PRAGMA_UNROLL for (int s = 0; s < Policy::Iterations::kStrided; ++s) { CUTLASS_PRAGMA_UNROLL for (int c = 0; c < Policy::Iterations::kContiguous; ++c) { int access_idx = c + s * Policy::Iterations::kContiguous; AccessType const *source_ptr = pointer_ + Policy::Delta::kContiguous * c + Policy::Delta::kStrided * s * stride_; char const *source_byte_ptr = reinterpret_cast<char const *>(source_ptr) + byte_offset + byte_offset_; AccessType const *source = reinterpret_cast<AccessType const *>(source_byte_ptr); fetch_ptr[access_idx] = *source; } } } /// Loads a fragment from memory with additional logical offset CUTLASS_DEVICE void load_with_pointer_offset( /// fragment to load from the tensor Fragment &frag, /// loads a tile with a linear offset Index pointer_offset) const { load_with_byte_offset(frag, pointer_offset * sizeof(Element)); } /// Loads a fragment from memory with logical offset in units of whole tiles. CUTLASS_DEVICE void load( /// fragment to load from the tensor Fragment &frag, /// loads a tile with a logical offset in units of whole tiles TensorCoord const &tile_offset) const { load_with_byte_offset(frag, tile_offset, 0); } /// Loads a fragment from memory with logical offset in units of whole tiles. CUTLASS_DEVICE void load( /// fragment to load from the tensor Fragment &frag, /// loads a tile with a logical offset in units of whole tiles TensorCoord const &tile_offset, /// loads a tile with a logical offset AND a pointer offset Index pointer_offset) const { load_with_byte_offset(frag, tile_offset, pointer_offset * sizeof(Element)); } /// Loads a fragment from memory with logical offset in units of whole tiles. CUTLASS_DEVICE void load_with_byte_offset( /// fragment to load from the tensor Fragment &frag, /// loads a tile with a logical offset in units of whole tiles TensorCoord const &tile_offset, /// loads a tile with a logical offset AND a pointer offset Index byte_offset) const { Index pointer_offset = tile_offset.contiguous() * Shape::kContiguous / Layout::kElementsPerAccess + tile_offset.strided() * InstructionShape::kStrided * stride_; byte_offset += sizeof(AccessType) * pointer_offset; load_with_byte_offset(frag, byte_offset); } /// Notify the iterator which k-group it is currently pointing to. /// /// This does not advance the iterator. Rather, it overrides its internal /// tracking with constant-valued k-group index to enable the compiler to /// fold constants and achieve more efficient code. /// /// This is used by some nontrivial permuted layouts. CUTLASS_DEVICE void set_kgroup_index(int k_group) { } }; //////////////////////////////////////////////////////////////////////////////// /// /// Satisfies: /// ReadableRandomAccessContiguousTileIteratorConcept /// template < /// Size of the matrix to load (concept: MatrixShape) typename Shape_, /// Identifies A or B multiplicand Operand Operand_, /// Data type of elements typename Element_, /// Shape of one matrix product operation (concept: MatrixShape) typename InstructionShape_, /// Interval between adjacent *MMA instructions (in units of MMA /// instructions) int OpDelta_, /// Number of partitions along K dimension int PartitionsK_> class MmaTensorOpMultiplicandTileIterator< Shape_, Operand_, Element_, cutlass::layout::RowMajorTensorOpMultiplicandCongruous64b, InstructionShape_, OpDelta_, 32, PartitionsK_> { public: /// Shape of tile to load (concept: PitchLinearShape) using Shape = Shape_; /// Operand tag static Operand const kOperand = Operand_; static_assert(kOperand == Operand::kA || kOperand== Operand::kB, "MmaTensorOpMultiplicandIterator may only be instantiated for A or B operands to warp-level Mma."); /// Element type using Element = Element_; /// Layout of source tile using Layout = cutlass::layout::RowMajorTensorOpMultiplicandCongruous64b; /// Shape of one matrix product operation (concept: MatrixShape) using InstructionShape = InstructionShape_; /// Delta between *MMA operations (in units of *MMA operations, concept: MatrixShape) static int const kOpDelta = OpDelta_; /// Number of participating threads static int const kThreads = 32; /// TensorRef type for loading element from a tensor using TensorRef = TensorRef<Element, Layout>; /// Index type using Index = typename TensorRef::Index; /// Long Index type using LongIndex = typename TensorRef::LongIndex; /// Coordinate for an element in the tensor using TensorCoord = typename TensorRef::TensorCoord; /// Underlying tile iterator implementation using Base = MmaTensorOpMultiplicandTileIterator< layout::PitchLinearShape<Shape::kColumn, Shape::kRow>, kOperand, Element, layout::TensorOpMultiplicandCongruous64b, layout::PitchLinearShape<InstructionShape::kColumn, InstructionShape::kRow>, kOpDelta, kThreads, PartitionsK_>; public: // // Derived quantities // /// Fragment object holding a thread's part of a tile using Fragment = typename Base::Fragment; private: /// Underlying tile iterator Base iterator_; public: /// Default ctor constructs null iterator CUTLASS_HOST_DEVICE MmaTensorOpMultiplicandTileIterator() { } /// Constructor from TensorRef CUTLASS_HOST_DEVICE MmaTensorOpMultiplicandTileIterator( TensorRef const &ref, int lane_id ): iterator_({ref.data(), ref.stride()}, lane_id) { } /// Adds a pointer offset to internal pointer(s) to advance through memory CUTLASS_HOST_DEVICE MmaTensorOpMultiplicandTileIterator &add_pointer_offset(LongIndex offset) { iterator_.add_pointer_offset(offset); return *this; } /// Advances an iterator along logical dimensions of matrix in units of whole tiles CUTLASS_HOST_DEVICE MmaTensorOpMultiplicandTileIterator &add_tile_offset(TensorCoord const &tile_offset) { iterator_.add_tile_offset({tile_offset.column(), tile_offset.row()}); return *this; } /// Advances the iterator along the advance dimension CUTLASS_HOST_DEVICE MmaTensorOpMultiplicandTileIterator & operator++() { ++iterator_; return *this; } /// Advances the iterator along the advance dimension CUTLASS_HOST_DEVICE MmaTensorOpMultiplicandTileIterator & operator--() { --iterator_; return *this; } ///< advances in units of whole tiles along the logical coordinate space of the tensor CUTLASS_DEVICE MmaTensorOpMultiplicandTileIterator & operator+=(TensorCoord const &tile_offset) { add_tile_offset(PitchLinearCoord(tile_offset.column(), tile_offset.row())); return *this; } ///< advances in units of whole tiles along the logical coordinate space of the tensor CUTLASS_DEVICE MmaTensorOpMultiplicandTileIterator & operator-=(TensorCoord const &tile_offset) { add_tile_offset(-PitchLinearCoord(tile_offset.column(), tile_offset.row())); return *this; } /// Loads a fragment from memory at the location pointed to by the iterator. CUTLASS_HOST_DEVICE void load(Fragment &frag) const { iterator_.load(frag); } /// Loads a fragment from memory with additional logical offset CUTLASS_DEVICE void load_with_pointer_offset( /// fragment to load from the tensor Fragment &frag, /// loads a tile with a linear offset Index pointer_offset) const { iterator_.load_with_pointer_offset(frag, pointer_offset); } /// Loads a fragment from memory with additional logical offset CUTLASS_DEVICE void load_with_byte_offset( /// fragment to load from the tensor Fragment &frag, /// loads a tile with a linear offset Index byte_offset) const { iterator_.load_with_byte_offset(frag, byte_offset); } /// Loads a fragment from memory with logical offset in units of whole tiles. CUTLASS_DEVICE void load( /// fragment to load from the tensor Fragment &frag, /// loads a tile with a logical offset in units of whole tiles TensorCoord const &tile_offset) const { } /// Loads a fragment from memory with logical offset in units of whole tiles. CUTLASS_DEVICE void load( /// fragment to load from the tensor Fragment &frag, /// loads a tile with a logical offset in units of whole tiles TensorCoord const &tile_offset, /// loads a tile with a logical offset AND a pointer offset Index pointer_offset) const { } /// Loads a fragment from memory with logical offset in units of whole tiles. CUTLASS_DEVICE void load_with_byte_offset( /// fragment to load from the tensor Fragment &frag, /// loads a tile with a logical offset in units of whole tiles TensorCoord const &tile_offset, /// loads a tile with a logical offset AND a pointer offset Index byte_offset) const { iterator_.load_with_byte_offset( frag, {tile_offset.strided(), tile_offset.contiguous()}, byte_offset); } /// Notify the iterator which k-group it is currently pointing to. /// /// This does not advance the iterator. Rather, it overrides its internal /// tracking with constant-valued k-group index to enable the compiler to /// fold constants and achieve more efficient code. /// /// This is used by some nontrivial permuted layouts. CUTLASS_DEVICE void set_kgroup_index(int k_group) { iterator_.set_kgroup_index(k_group); } }; //////////////////////////////////////////////////////////////////////////////// /// This tile iterator is specialized for 32-thread TensorOps. It uses LDSM to load from shared /// memory and therefore must be initialized with a TensorRef to shared memory. /// /// Satisfies: /// ReadableRandomAccessContiguousTileIteratorConcept /// template < /// Size of the matrix to load (concept: MatrixShape) typename Shape_, /// Identifies A or B multiplicand Operand Operand_, /// Data type of elements typename Element_, /// Shape of one matrix product operation (concept: MatrixShape) typename InstructionShape_, /// Interval between adjacent *MMA instructions (in units of MMA /// instructions) int OpDelta_, /// Number of partitions along K dimension int PartitionsK_> class MmaTensorOpMultiplicandTileIterator< Shape_, Operand_, Element_, cutlass::layout::ColumnMajorTensorOpMultiplicandCongruous64b, InstructionShape_, OpDelta_, 32, PartitionsK_> { public: /// Shape of tile to load (concept: PitchLinearShape) using Shape = Shape_; /// Operand tag static Operand const kOperand = Operand_; static_assert(kOperand == Operand::kA || kOperand== Operand::kB, "MmaTensorOpMultiplicandIterator may only be instantiated for A or B operands to warp-level Mma."); /// Element type using Element = Element_; /// Layout of source tile using Layout = cutlass::layout::ColumnMajorTensorOpMultiplicandCongruous64b; /// Shape of one matrix product operation (concept: MatrixShape) using InstructionShape = InstructionShape_; /// Delta between *MMA operations (in units of *MMA operations, concept: MatrixShape) static int const kOpDelta = OpDelta_; /// Number of participating threads static int const kThreads = 32; /// TensorRef type for loading element from a tensor using TensorRef = TensorRef<Element, Layout>; /// Index type using Index = typename TensorRef::Index; /// Long Index type using LongIndex = typename TensorRef::LongIndex; /// Coordinate for an element in the tensor using TensorCoord = typename TensorRef::TensorCoord; /// Underlying tile iterator implementation using Base = MmaTensorOpMultiplicandTileIterator< layout::PitchLinearShape<Shape::kRow, Shape::kColumn>, kOperand, Element, layout::TensorOpMultiplicandCongruous64b, layout::PitchLinearShape<InstructionShape::kRow, InstructionShape::kColumn>, kOpDelta, kThreads, PartitionsK_>; public: // // Derived quantities // /// Fragment object holding a thread's part of a tile using Fragment = typename Base::Fragment; private: /// Underlying tile iterator Base iterator_; public: /// Default ctor constructs null iterator CUTLASS_HOST_DEVICE MmaTensorOpMultiplicandTileIterator() { } /// Constructor from TensorRef CUTLASS_HOST_DEVICE MmaTensorOpMultiplicandTileIterator( TensorRef const &ref, int lane_id ): iterator_({ref.data(), ref.stride()}, lane_id) { } /// Adds a pointer offset to internal pointer(s) to advance through memory CUTLASS_HOST_DEVICE MmaTensorOpMultiplicandTileIterator &add_pointer_offset(LongIndex offset) { iterator_.add_pointer_offset(offset); return *this; } /// Advances an iterator along logical dimensions of matrix in units of whole tiles CUTLASS_HOST_DEVICE MmaTensorOpMultiplicandTileIterator &add_tile_offset(TensorCoord const &tile_offset) { iterator_.add_tile_offset({tile_offset.row(), tile_offset.column()}); return *this; } /// Advances the iterator along the advance dimension CUTLASS_HOST_DEVICE MmaTensorOpMultiplicandTileIterator & operator++() { ++iterator_; return *this; } /// Advances the iterator along the advance dimension CUTLASS_HOST_DEVICE MmaTensorOpMultiplicandTileIterator & operator--() { --iterator_; return *this; } ///< advances in units of whole tiles along the logical coordinate space of the tensor CUTLASS_DEVICE MmaTensorOpMultiplicandTileIterator & operator+=(TensorCoord const &tile_offset) { add_tile_offset(PitchLinearCoord(tile_offset.row(), tile_offset.column())); return *this; } ///< advances in units of whole tiles along the logical coordinate space of the tensor CUTLASS_DEVICE MmaTensorOpMultiplicandTileIterator & operator-=(TensorCoord const &tile_offset) { add_tile_offset(-PitchLinearCoord(tile_offset.row(), tile_offset.column())); return *this; } /// Loads a fragment from memory at the location pointed to by the iterator. CUTLASS_HOST_DEVICE void load(Fragment &frag) const { iterator_.load(frag); } /// Loads a fragment from memory with additional logical offset CUTLASS_DEVICE void load_with_pointer_offset( /// fragment to load from the tensor Fragment &frag, /// loads a tile with a linear offset Index pointer_offset) const { iterator_.load_with_pointer_offset(frag, pointer_offset); } /// Loads a fragment from memory with additional logical offset CUTLASS_DEVICE void load_with_byte_offset( /// fragment to load from the tensor Fragment &frag, /// loads a tile with a linear offset Index byte_offset) const { iterator_.load_with_byte_offset(frag, byte_offset); } /// Loads a fragment from memory with logical offset in units of whole tiles. CUTLASS_DEVICE void load( /// fragment to load from the tensor Fragment &frag, /// loads a tile with a logical offset in units of whole tiles TensorCoord const &tile_offset) const { } /// Loads a fragment from memory with logical offset in units of whole tiles. CUTLASS_DEVICE void load( /// fragment to load from the tensor Fragment &frag, /// loads a tile with a logical offset in units of whole tiles TensorCoord const &tile_offset, /// loads a tile with a logical offset AND a pointer offset Index pointer_offset) const { } /// Loads a fragment from memory with logical offset in units of whole tiles. CUTLASS_DEVICE void load_with_byte_offset( /// fragment to load from the tensor Fragment &frag, /// loads a tile with a logical offset in units of whole tiles TensorCoord const &tile_offset, /// loads a tile with a logical offset AND a pointer offset Index byte_offset) const { iterator_.load_with_byte_offset( frag, {tile_offset.contiguous(), tile_offset.strided()}, byte_offset); } /// Notify the iterator which k-group it is currently pointing to. /// /// This does not advance the iterator. Rather, it overrides its internal /// tracking with constant-valued k-group index to enable the compiler to /// fold constants and achieve more efficient code. /// /// This is used by some nontrivial permuted layouts. CUTLASS_DEVICE void set_kgroup_index(int k_group) { iterator_.set_kgroup_index(k_group); } }; //////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////// /// This tile iterator is specialized for loading 128b vectors of 64b elements. /// /// Satisfies: /// ReadableRandomAccessContiguousTileIteratorConcept /// template < /// Size of the matrix to load (concept: PitchLinearShape) typename Shape_, /// Identifies A or B multiplicand Operand Operand_, /// Data type of elements typename Element_, /// Shape of one matrix product operation (concept: PitchLinearShape) typename InstructionShape_, /// Interval between adjacent *MMA instructions (in units of MMA /// instructions) int OpDelta_, /// Number of partitions along K dimension int PartitionsK_> class MmaTensorOpMultiplicandTileIterator< Shape_, Operand_, Element_, cutlass::layout::TensorOpMultiplicand64bCrosswise, InstructionShape_, OpDelta_, 32, PartitionsK_> { public: /// Shape of tile to load (concept: PitchLinearShape) using Shape = Shape_; /// Operand tag static Operand const kOperand = Operand_; static_assert(kOperand == Operand::kA || kOperand== Operand::kB, "MmaTensorOpMultiplicandIterator may only be instantiated for A or B operands to warp-level Mma."); static_assert(!(Shape::kContiguous % 4) && !(Shape::kStrided % 16), "Divisibility."); static_assert(sizeof_bits<Element_>::value == 64, "This is specialized for 64b accesses."); /// Element type using Element = Element_; /// Layout of source tile using Layout = cutlass::layout::TensorOpMultiplicand64bCrosswise; /// Shape of one matrix product operation (concept: GemmShape) using InstructionShape = InstructionShape_; /// Delta between *MMA operations (in units of *MMA operations, concept: MatrixShape) static int const kOpDelta = OpDelta_; /// Number of participating threads static int const kThreads = 32; /// Number of partitions along K dimension static int const kPartitionsK = PartitionsK_; /// TensorRef type for loading element from a tensor using TensorRef = TensorRef<Element, Layout>; /// Index type using Index = typename TensorRef::Index; /// Long Index type using LongIndex = typename TensorRef::LongIndex; /// Long Index type using StrideIndex = typename TensorRef::Layout::Stride::Index; /// Coordinate for an element in the tensor using TensorCoord = typename TensorRef::TensorCoord; /// Load two elements per access static int const kElementsPerAccess = 2; /// Policy defining internal details of tile iterator struct Policy { /// Shape of one access using Delta = layout::PitchLinearShape<4, 16>; /// Number of iterations to load using Iterations = layout::PitchLinearShape< InstructionShape::kContiguous / Delta::kContiguous, Shape::kStrided / Delta::kStrided >; }; private: /// Not working on this feature at the moment. static_assert(kOpDelta == 1, "Alternative arrangements not supported at present."); /// Pointer type used for accesses using AccessType = AlignedArray<Element, kElementsPerAccess, 16>; public: // // Derived quantities // /// Fragment object holding a thread's part of a tile using Fragment = Array<Element, Shape::kStrided * InstructionShape::kContiguous / kThreads>; private: /// Layout object storing stride values StrideIndex stride_; /// Shared memory base pointers - not advanced AccessType const *pointer_; /// Byte offset incremented as iterator advances Index byte_offset_; /// Internal counter for tracking K-group Index k_group_idx_; public: /// Default ctor constructs null iterator CUTLASS_HOST_DEVICE MmaTensorOpMultiplicandTileIterator(): stride_(0), byte_offset_(0) { } /// Constructor from TensorRef CUTLASS_DEVICE MmaTensorOpMultiplicandTileIterator( TensorRef const &ref, int lane_id ): stride_(ref.stride(0) / kElementsPerAccess), byte_offset_(0), k_group_idx_(0) { int access_strided = lane_id / 8; int access_contiguous = (lane_id % 8); byte_offset_ = (access_contiguous + access_strided * stride_) * sizeof(AccessType); pointer_= reinterpret_cast<AccessType const *>(ref.data()); } /// Adds a pointer offset to internal pointer(s) to advance through memory CUTLASS_DEVICE MmaTensorOpMultiplicandTileIterator &add_pointer_offset(LongIndex offset) { pointer_ += offset / kElementsPerAccess; return *this; } /// Advances an iterator along logical dimensions of matrix in units of whole tiles CUTLASS_DEVICE MmaTensorOpMultiplicandTileIterator &add_tile_offset(TensorCoord const &tile_offset) { int offset = (tile_offset.contiguous() * InstructionShape::kContiguous) * stride_ * kElementsPerAccess + tile_offset.strided() * Shape::kStrided; add_pointer_offset(offset); int old_k_group_idx = k_group_idx_; k_group_idx_ += tile_offset.contiguous(); if ((k_group_idx_ & 2) ^ (old_k_group_idx & 2)) { byte_offset_ ^= 0x40; } return *this; } /// Advances an iterator along logical dimensions of matrix in units of whole tiles CUTLASS_DEVICE MmaTensorOpMultiplicandTileIterator &add_tile_offset_negative(TensorCoord const &tile_offset) { // TODO: fix this if it becomes an issue during warp it reset add_tile_offset(tile_offset); return *this; } /// Advances the iterator along the advance dimension CUTLASS_DEVICE MmaTensorOpMultiplicandTileIterator & operator++() { pointer_ += stride_ * InstructionShape::kContiguous; if (k_group_idx_ & 0x1) { // xor ptr byte_offset_ ^= 0x40; } ++k_group_idx_; return *this; } ///< advances in units of whole tiles along the logical coordinate space of the tensor CUTLASS_DEVICE MmaTensorOpMultiplicandTileIterator & operator+=(TensorCoord const &tile_offset) { add_tile_offset(tile_offset); return *this; } /// Loads a fragment from memory at the location pointed to by the iterator. CUTLASS_HOST_DEVICE void load(Fragment &frag) const { load_with_byte_offset(frag, 0); } /// Loads a fragment from memory with additional logical offset CUTLASS_DEVICE void load_with_byte_offset( /// fragment to load from the tensor Fragment &frag, /// loads a tile with a linear offset in units of bytes Index byte_offset) const { AccessType *fetch_ptr = reinterpret_cast<AccessType *>(&frag); CUTLASS_PRAGMA_UNROLL for (int c = 0; c < Policy::Iterations::kContiguous; ++c) { CUTLASS_PRAGMA_UNROLL for (int s = 0; s < Policy::Iterations::kStrided; ++s) { int access_idx = c + s * Policy::Iterations::kContiguous; AccessType const *source_ptr = pointer_ + Policy::Delta::kContiguous * c * stride_ + Policy::Delta::kStrided * s / kElementsPerAccess; char const *source_byte_ptr = reinterpret_cast<char const *>(source_ptr) + byte_offset + byte_offset_; AccessType const *source = reinterpret_cast<AccessType const *>(source_byte_ptr); fetch_ptr[access_idx] = *source; } } Element *exchange_ptr = reinterpret_cast<Element *>(&frag); if (k_group_idx_ & 1) { // exchange on 64b granularity CUTLASS_PRAGMA_UNROLL for (int i = 0; i < Fragment::kElements; i += 2) { Element tmp = exchange_ptr[i]; exchange_ptr[i] = exchange_ptr[i + 1]; exchange_ptr[i + 1] = tmp; } } } /// Loads a fragment from memory with additional logical offset CUTLASS_DEVICE void load_with_pointer_offset( /// fragment to load from the tensor Fragment &frag, /// loads a tile with a linear offset Index pointer_offset) const { load_with_byte_offset(frag, pointer_offset * sizeof(Element)); } /// Loads a fragment from memory with logical offset in units of whole tiles. CUTLASS_DEVICE void load( /// fragment to load from the tensor Fragment &frag, /// loads a tile with a logical offset in units of whole tiles TensorCoord const &tile_offset) const { load_with_byte_offset(frag, tile_offset, 0); } /// Loads a fragment from memory with logical offset in units of whole tiles. CUTLASS_DEVICE void load( /// fragment to load from the tensor Fragment &frag, /// loads a tile with a logical offset in units of whole tiles TensorCoord const &tile_offset, /// loads a tile with a logical offset AND a pointer offset Index pointer_offset) const { load_with_byte_offset(frag, tile_offset, pointer_offset * sizeof(Element)); } /// Loads a fragment from memory with logical offset in units of whole tiles. CUTLASS_DEVICE void load_with_byte_offset( /// fragment to load from the tensor Fragment &frag, /// loads a tile with a logical offset in units of whole tiles TensorCoord const &tile_offset, /// loads a tile with a logical offset AND a pointer offset Index byte_offset) const { Index pointer_offset = tile_offset.contiguous() * InstructionShape::kContiguous / Layout::kElementsPerAccess + tile_offset.strided() * Shape::kStrided * stride_; byte_offset += sizeof(AccessType) * pointer_offset; load_with_byte_offset(frag, byte_offset); } /// Notify the iterator which k-group it is currently pointing to. /// /// This does not advance the iterator. Rather, it overrides its internal /// tracking with constant-valued k-group index to enable the compiler to /// fold constants and achieve more efficient code. /// /// This is used by some nontrivial permuted layouts. CUTLASS_DEVICE void set_kgroup_index(int k_group) { k_group_idx_ = k_group; } }; //////////////////////////////////////////////////////////////////////////////// /// /// Satisfies: /// ReadableRandomAccessContiguousTileIteratorConcept /// template < /// Size of the matrix to load (concept: MatrixShape) typename Shape_, /// Identifies A or B multiplicand Operand Operand_, /// Data type of elements typename Element_, /// Shape of one matrix product operation (concept: MatrixShape) typename InstructionShape_, /// Interval between adjacent *MMA instructions (in units of MMA /// instructions) int OpDelta_, /// Number of partitions along K dimension int PartitionsK_> class MmaTensorOpMultiplicandTileIterator< Shape_, Operand_, Element_, cutlass::layout::RowMajorTensorOpMultiplicand64bCrosswise, InstructionShape_, OpDelta_, 32, PartitionsK_> { public: /// Shape of tile to load (concept: PitchLinearShape) using Shape = Shape_; /// Operand tag static Operand const kOperand = Operand_; static_assert(kOperand == Operand::kA || kOperand== Operand::kB, "MmaTensorOpMultiplicandIterator may only be instantiated for A or B operands to warp-level Mma."); /// Element type using Element = Element_; /// Layout of source tile using Layout = cutlass::layout::RowMajorTensorOpMultiplicand64bCrosswise; /// Shape of one matrix product operation (concept: MatrixShape) using InstructionShape = InstructionShape_; /// Delta between *MMA operations (in units of *MMA operations, concept: MatrixShape) static int const kOpDelta = OpDelta_; /// Number of participating threads static int const kThreads = 32; /// TensorRef type for loading element from a tensor using TensorRef = TensorRef<Element, Layout>; /// Index type using Index = typename TensorRef::Index; /// Long Index type using LongIndex = typename TensorRef::LongIndex; /// Coordinate for an element in the tensor using TensorCoord = typename TensorRef::TensorCoord; /// Underlying tile iterator implementation using Base = MmaTensorOpMultiplicandTileIterator< layout::PitchLinearShape<Shape::kColumn, Shape::kRow>, kOperand, Element, layout::TensorOpMultiplicand64bCrosswise, layout::PitchLinearShape<InstructionShape::kColumn, InstructionShape::kRow>, kOpDelta, kThreads, PartitionsK_>; public: // // Derived quantities // /// Fragment object holding a thread's part of a tile using Fragment = typename Base::Fragment; private: /// Underlying tile iterator Base iterator_; public: /// Default ctor constructs null iterator CUTLASS_HOST_DEVICE MmaTensorOpMultiplicandTileIterator() { } /// Constructor from TensorRef CUTLASS_HOST_DEVICE MmaTensorOpMultiplicandTileIterator( TensorRef const &ref, int lane_id ): iterator_({ref.data(), ref.stride()}, lane_id) { } /// Adds a pointer offset to internal pointer(s) to advance through memory CUTLASS_HOST_DEVICE MmaTensorOpMultiplicandTileIterator &add_pointer_offset(LongIndex offset) { iterator_.add_pointer_offset(offset); return *this; } /// Advances an iterator along logical dimensions of matrix in units of whole tiles CUTLASS_HOST_DEVICE MmaTensorOpMultiplicandTileIterator &add_tile_offset(TensorCoord const &tile_offset) { iterator_.add_tile_offset({tile_offset.column(), tile_offset.row()}); return *this; } /// Advances an iterator along logical dimensions of matrix in units of whole tiles CUTLASS_HOST_DEVICE MmaTensorOpMultiplicandTileIterator &add_tile_offset_negative(TensorCoord const &tile_offset) { iterator_.add_tile_offset_negative({tile_offset.column(), tile_offset.row()}); return *this; } /// Advances the iterator along the advance dimension CUTLASS_HOST_DEVICE MmaTensorOpMultiplicandTileIterator & operator++() { ++iterator_; return *this; } /// Advances the iterator along the advance dimension CUTLASS_HOST_DEVICE MmaTensorOpMultiplicandTileIterator & operator--() { --iterator_; return *this; } ///< advances in units of whole tiles along the logical coordinate space of the tensor CUTLASS_DEVICE MmaTensorOpMultiplicandTileIterator & operator+=(TensorCoord const &tile_offset) { add_tile_offset(PitchLinearCoord(tile_offset.column(), tile_offset.row())); return *this; } ///< advances in units of whole tiles along the logical coordinate space of the tensor CUTLASS_DEVICE MmaTensorOpMultiplicandTileIterator & operator-=(TensorCoord const &tile_offset) { add_tile_offset(-PitchLinearCoord(tile_offset.column(), tile_offset.row())); return *this; } /// Loads a fragment from memory at the location pointed to by the iterator. CUTLASS_HOST_DEVICE void load(Fragment &frag) const { iterator_.load(frag); } /// Loads a fragment from memory with additional logical offset CUTLASS_DEVICE void load_with_pointer_offset( /// fragment to load from the tensor Fragment &frag, /// loads a tile with a linear offset Index pointer_offset) const { iterator_.load_with_pointer_offset(frag, pointer_offset); } /// Loads a fragment from memory with additional logical offset CUTLASS_DEVICE void load_with_byte_offset( /// fragment to load from the tensor Fragment &frag, /// loads a tile with a linear offset Index byte_offset) const { iterator_.load_with_byte_offset(frag, byte_offset); } /// Loads a fragment from memory with logical offset in units of whole tiles. CUTLASS_DEVICE void load( /// fragment to load from the tensor Fragment &frag, /// loads a tile with a logical offset in units of whole tiles TensorCoord const &tile_offset) const { } /// Loads a fragment from memory with logical offset in units of whole tiles. CUTLASS_DEVICE void load( /// fragment to load from the tensor Fragment &frag, /// loads a tile with a logical offset in units of whole tiles TensorCoord const &tile_offset, /// loads a tile with a logical offset AND a pointer offset Index pointer_offset) const { } /// Loads a fragment from memory with logical offset in units of whole tiles. CUTLASS_DEVICE void load_with_byte_offset( /// fragment to load from the tensor Fragment &frag, /// loads a tile with a logical offset in units of whole tiles TensorCoord const &tile_offset, /// loads a tile with a logical offset AND a pointer offset Index byte_offset) const { iterator_.load_with_byte_offset( frag, {tile_offset.strided(), tile_offset.contiguous()}, byte_offset); } /// Notify the iterator which k-group it is currently pointing to. /// /// This does not advance the iterator. Rather, it overrides its internal /// tracking with constant-valued k-group index to enable the compiler to /// fold constants and achieve more efficient code. /// /// This is used by some nontrivial permuted layouts. CUTLASS_DEVICE void set_kgroup_index(int k_group) { iterator_.set_kgroup_index(k_group); } }; //////////////////////////////////////////////////////////////////////////////// /// /// Satisfies: /// ReadableRandomAccessContiguousTileIteratorConcept /// template < /// Size of the matrix to load (concept: MatrixShape) typename Shape_, /// Identifies A or B multiplicand Operand Operand_, /// Data type of elements typename Element_, /// Shape of one matrix product operation (concept: MatrixShape) typename InstructionShape_, /// Interval between adjacent *MMA instructions (in units of MMA /// instructions) int OpDelta_, /// Number of partitions along K dimension int PartitionsK_> class MmaTensorOpMultiplicandTileIterator< Shape_, Operand_, Element_, cutlass::layout::ColumnMajorTensorOpMultiplicand64bCrosswise, InstructionShape_, OpDelta_, 32, PartitionsK_> { public: /// Shape of tile to load (concept: PitchLinearShape) using Shape = Shape_; /// Operand tag static Operand const kOperand = Operand_; static_assert(kOperand == Operand::kA || kOperand== Operand::kB, "MmaTensorOpMultiplicandIterator may only be instantiated for A or B operands to warp-level Mma."); /// Element type using Element = Element_; /// Layout of source tile using Layout = cutlass::layout::ColumnMajorTensorOpMultiplicand64bCrosswise; /// Shape of one matrix product operation (concept: MatrixShape) using InstructionShape = InstructionShape_; /// Delta between *MMA operations (in units of *MMA operations, concept: MatrixShape) static int const kOpDelta = OpDelta_; /// Number of participating threads static int const kThreads = 32; /// TensorRef type for loading element from a tensor using TensorRef = TensorRef<Element, Layout>; /// Index type using Index = typename TensorRef::Index; /// Long Index type using LongIndex = typename TensorRef::LongIndex; /// Coordinate for an element in the tensor using TensorCoord = typename TensorRef::TensorCoord; /// Underlying tile iterator implementation using Base = MmaTensorOpMultiplicandTileIterator< layout::PitchLinearShape<Shape::kRow, Shape::kColumn>, kOperand, Element, layout::TensorOpMultiplicand64bCrosswise, layout::PitchLinearShape<InstructionShape::kRow, InstructionShape::kColumn>, kOpDelta, kThreads, PartitionsK_>; public: // // Derived quantities // /// Fragment object holding a thread's part of a tile using Fragment = typename Base::Fragment; private: /// Underlying tile iterator Base iterator_; public: /// Default ctor constructs null iterator CUTLASS_HOST_DEVICE MmaTensorOpMultiplicandTileIterator() { } /// Constructor from TensorRef CUTLASS_HOST_DEVICE MmaTensorOpMultiplicandTileIterator( TensorRef const &ref, int lane_id ): iterator_({ref.data(), ref.stride()}, lane_id) { } /// Adds a pointer offset to internal pointer(s) to advance through memory CUTLASS_HOST_DEVICE MmaTensorOpMultiplicandTileIterator &add_pointer_offset(LongIndex offset) { iterator_.add_pointer_offset(offset); return *this; } /// Advances an iterator along logical dimensions of matrix in units of whole tiles CUTLASS_HOST_DEVICE MmaTensorOpMultiplicandTileIterator &add_tile_offset(TensorCoord const &tile_offset) { iterator_.add_tile_offset({tile_offset.row(), tile_offset.column()}); return *this; } /// Advances an iterator along logical dimensions of matrix in units of whole tiles CUTLASS_HOST_DEVICE MmaTensorOpMultiplicandTileIterator &add_tile_offset_negative(TensorCoord const &tile_offset) { iterator_.add_tile_offset_negative({tile_offset.row(), tile_offset.column()}); return *this; } /// Advances the iterator along the advance dimension CUTLASS_HOST_DEVICE MmaTensorOpMultiplicandTileIterator & operator++() { ++iterator_; return *this; } /// Advances the iterator along the advance dimension CUTLASS_HOST_DEVICE MmaTensorOpMultiplicandTileIterator & operator--() { --iterator_; return *this; } ///< advances in units of whole tiles along the logical coordinate space of the tensor CUTLASS_DEVICE MmaTensorOpMultiplicandTileIterator & operator+=(TensorCoord const &tile_offset) { add_tile_offset(PitchLinearCoord(tile_offset.row(), tile_offset.column())); return *this; } ///< advances in units of whole tiles along the logical coordinate space of the tensor CUTLASS_DEVICE MmaTensorOpMultiplicandTileIterator & operator-=(TensorCoord const &tile_offset) { add_tile_offset(-PitchLinearCoord(tile_offset.row(), tile_offset.column())); return *this; } /// Loads a fragment from memory at the location pointed to by the iterator. CUTLASS_HOST_DEVICE void load(Fragment &frag) const { iterator_.load(frag); } /// Loads a fragment from memory with additional logical offset CUTLASS_DEVICE void load_with_pointer_offset( /// fragment to load from the tensor Fragment &frag, /// loads a tile with a linear offset Index pointer_offset) const { iterator_.load_with_pointer_offset(frag, pointer_offset); } /// Loads a fragment from memory with additional logical offset CUTLASS_DEVICE void load_with_byte_offset( /// fragment to load from the tensor Fragment &frag, /// loads a tile with a linear offset Index byte_offset) const { iterator_.load_with_byte_offset(frag, byte_offset); } /// Loads a fragment from memory with logical offset in units of whole tiles. CUTLASS_DEVICE void load( /// fragment to load from the tensor Fragment &frag, /// loads a tile with a logical offset in units of whole tiles TensorCoord const &tile_offset) const { } /// Loads a fragment from memory with logical offset in units of whole tiles. CUTLASS_DEVICE void load( /// fragment to load from the tensor Fragment &frag, /// loads a tile with a logical offset in units of whole tiles TensorCoord const &tile_offset, /// loads a tile with a logical offset AND a pointer offset Index pointer_offset) const { } /// Loads a fragment from memory with logical offset in units of whole tiles. CUTLASS_DEVICE void load_with_byte_offset( /// fragment to load from the tensor Fragment &frag, /// loads a tile with a logical offset in units of whole tiles TensorCoord const &tile_offset, /// loads a tile with a logical offset AND a pointer offset Index byte_offset) const { iterator_.load_with_byte_offset( frag, {tile_offset.contiguous(), tile_offset.strided()}, byte_offset); } /// Notify the iterator which k-group it is currently pointing to. /// /// This does not advance the iterator. Rather, it overrides its internal /// tracking with constant-valued k-group index to enable the compiler to /// fold constants and achieve more efficient code. /// /// This is used by some nontrivial permuted layouts. CUTLASS_DEVICE void set_kgroup_index(int k_group) { iterator_.set_kgroup_index(k_group); } }; //////////////////////////////////////////////////////////////////////////////// /// Tile iterator specialized for canonical matrix layouts template < /// Size of the matrix to load (concept: MatrixShape) typename Shape_, /// Operand identity Operand Operand_, /// Data type of A elements typename Element_, /// Layout of operand typename Layout_, /// Shape of one matrix production operation (concept: MatrixShape) typename InstructionShape_, /// Delta between *MMA operations (in units of *MMA operations, concept: /// MatrixShape) int OpDelta_, /// Number of threads participating in one matrix operation int Threads = 32, /// Number of partitions along K dimension int PartitionsK_ = 1> class MmaTensorOpMultiplicandTileIteratorCanonical { public: /// Shape of tile to load (concept: MatrixShape) using Shape = Shape_; /// Operand tag static Operand const kOperand = Operand_; /// Basic check static_assert(kOperand == Operand::kA || kOperand== Operand::kB, "MmaTensorOpMultiplicandIterator may only be instantiated for A or B operands to warp-level Mma."); /// Element type using Element = Element_; /// Layout of source tile using Layout = Layout_; /// Shape of one matrix product operation (concept: MatrixShape) using InstructionShape = InstructionShape_; /// Delta between *MMA operations (in units of *MMA operations, concept: MatrixShape) static int const kOpDelta = OpDelta_; /// Number of participating threads static int const kThreads = 32; /// TensorRef type for loading element from a tensor using TensorRef = TensorRef<Element, Layout>; /// Index type using Index = typename TensorRef::Index; /// Long Index type using LongIndex = typename TensorRef::LongIndex; /// Coordinate for an element in the tensor using TensorCoord = typename TensorRef::TensorCoord; /// Number of elements accessed per Shared Memory load static int const kElementsPerAccess = (sizeof_bits<Element>::value >= 32 ? 1 : 32 / sizeof_bits<Element>::value); private: static int const kWarpShapeOuter = (kOperand == Operand::kA ? Shape::kRow : Shape::kColumn); static int const kWarpShapeInner = (kOperand == Operand::kA ? Shape::kColumn : Shape::kRow); /// Rounded up instruction counts using InstructionCount = MatrixShape< Shape::kRow / InstructionShape::kRow, Shape::kColumn / InstructionShape::kColumn >; /// Rounded up tile dimensions using WarpShapeDivisible = MatrixShape< InstructionCount::kRow * InstructionShape::kRow, InstructionCount::kColumn * InstructionShape::kColumn >; public: // // Derived quantities // /// Fragment object holding a thread's part of a tile using Fragment = Array< Element, WarpShapeDivisible::kRow * WarpShapeDivisible::kColumn / kThreads >; /// Memory access type using AccessType = AlignedArray<Element, kElementsPerAccess>; private: /// Underlying tensor reference TensorRef ref_; /// Extent of tensor MatrixCoord extent_; /// Origin MatrixCoord origin_; /// Used to conditionally enable extents checking bool divisible_; public: /// Default ctor constructs null iterator CUTLASS_HOST_DEVICE MmaTensorOpMultiplicandTileIteratorCanonical(): divisible_(true) { } /// Constructor from TensorRef CUTLASS_HOST_DEVICE MmaTensorOpMultiplicandTileIteratorCanonical( TensorRef const &ref, int lane_id ): ref_(ref), extent_(Shape::kRow, Shape::kColumn), divisible_(true) { if (kOperand == Operand::kA) { origin_ = MatrixCoord(lane_id / 4, (lane_id % 4) * kElementsPerAccess); } else { origin_ = MatrixCoord((lane_id % 4) * kElementsPerAccess, lane_id / 4); } ref_.add_coord_offset(origin_); } /// Constructor from TensorRef CUTLASS_HOST_DEVICE MmaTensorOpMultiplicandTileIteratorCanonical( TensorRef const &ref, TensorCoord extent, int lane_id ): ref_(ref), extent_(extent), divisible_(false) { if (kOperand == Operand::kA) { origin_ = MatrixCoord(lane_id / 4, (lane_id % 4) * kElementsPerAccess); } else { origin_ = MatrixCoord((lane_id % 4) * kElementsPerAccess, lane_id / 4); } ref_.add_coord_offset(origin_); } /// Adds a pointer offset to internal pointer(s) to advance through memory CUTLASS_HOST_DEVICE MmaTensorOpMultiplicandTileIteratorCanonical &add_pointer_offset(LongIndex offset) { ref_.add_pointer_offset(offset); return *this; } /// Advances an iterator along logical dimensions of matrix in units of whole tiles CUTLASS_HOST_DEVICE MmaTensorOpMultiplicandTileIteratorCanonical &add_tile_offset(TensorCoord const &tile_offset) { TensorCoord coord_offset(tile_offset.row() * Shape::kRow, tile_offset.column() * Shape::kColumn); origin_ += coord_offset; ref_.add_coord_offset(coord_offset); return *this; } /// Advances the iterator along the advance dimension CUTLASS_DEVICE MmaTensorOpMultiplicandTileIteratorCanonical & operator++() { if (kOperand == Operand::kA) { add_tile_offset({0, 1}); } else { add_tile_offset({1, 0}); } return *this; } /// Advances the iterator along the advance dimension CUTLASS_HOST_DEVICE MmaTensorOpMultiplicandTileIteratorCanonical & operator--() { if (kOperand == Operand::kA) { add_tile_offset({0, -1}); } else { add_tile_offset({-1, 0}); } return *this; } ///< advances in units of whole tiles along the logical coordinate space of the tensor CUTLASS_DEVICE MmaTensorOpMultiplicandTileIteratorCanonical & operator+=(TensorCoord const &tile_offset) { add_tile_offset(tile_offset); return *this; } ///< advances in units of whole tiles along the logical coordinate space of the tensor CUTLASS_DEVICE MmaTensorOpMultiplicandTileIteratorCanonical & operator-=(TensorCoord const &tile_offset) { add_tile_offset(-tile_offset); return *this; } /// Loads a fragment from memory at the location pointed to by the iterator. CUTLASS_HOST_DEVICE void load(Fragment &frag) const { load_with_pointer_offset(frag, 0); } /// Loads a fragment from memory with additional logical offset CUTLASS_DEVICE void load_with_pointer_offset( /// fragment to load from the tensor Fragment &frag, /// loads a tile with a linear offset Index pointer_offset) const { int const kWarpShapeDivisibleInner = (kOperand == Operand::kA ? WarpShapeDivisible::kColumn : WarpShapeDivisible::kRow); // Take advantage of Tensor Op's 8 x 4T access pattern int const kAccessesInner = (kWarpShapeDivisibleInner / kElementsPerAccess) / 4; AccessType *access_ptr = reinterpret_cast<AccessType *>(&frag); if (kOperand == Operand::kA) { int const kTilesPerInstruction = InstructionShape::kRow / 8; CUTLASS_PRAGMA_UNROLL for (int inst_m_idx = 0; inst_m_idx < InstructionCount::kRow; ++inst_m_idx) { CUTLASS_PRAGMA_UNROLL for (int inner_idx = 0; inner_idx < kAccessesInner; ++inner_idx) { CUTLASS_PRAGMA_UNROLL for (int access_m_idx = 0; access_m_idx < kTilesPerInstruction; ++access_m_idx) { int access_idx = access_m_idx + kTilesPerInstruction * (inner_idx + kAccessesInner * inst_m_idx); MatrixCoord offset( access_m_idx * 8 + inst_m_idx * InstructionShape::kRow, inner_idx * 4 * kElementsPerAccess); MatrixCoord access_coord = origin_ + offset; if (divisible_ || (access_coord.row() < extent_.row() && access_coord.column() < extent_.column())) { access_ptr[access_idx] = *reinterpret_cast<AccessType const *>( ref_.data() + ref_.offset(offset)); } else { AccessType zero; zero.clear(); access_ptr[access_idx] = zero; } } } } } else { CUTLASS_PRAGMA_UNROLL for (int inst_n_idx = 0; inst_n_idx < InstructionCount::kColumn; ++inst_n_idx) { CUTLASS_PRAGMA_UNROLL for (int inner_idx = 0; inner_idx < kAccessesInner; ++inner_idx) { int access_idx = inner_idx + kAccessesInner * inst_n_idx; MatrixCoord offset( inner_idx * 4 * kElementsPerAccess, inst_n_idx * 8); MatrixCoord access_coord = origin_ + offset; if (divisible_ || (access_coord.row() < extent_.row() && access_coord.column() < extent_.column())) { access_ptr[access_idx] = *reinterpret_cast<AccessType const *>( ref_.data() + ref_.offset(offset)); } else { AccessType zero; zero.clear(); access_ptr[access_idx] = zero; } } } } } /// Loads a fragment from memory with additional logical offset CUTLASS_DEVICE void load_with_byte_offset( /// fragment to load from the tensor Fragment &frag, /// loads a tile with a linear offset Index byte_offset) const { load_with_pointer_offset(frag, byte_offset * 8 / sizeof_bits<Element>::value); } /// Loads a fragment from memory with logical offset in units of whole tiles. CUTLASS_DEVICE void load( /// fragment to load from the tensor Fragment &frag, /// loads a tile with a logical offset in units of whole tiles TensorCoord const &tile_offset) const { TensorCoord coord_offset(tile_offset.row() * Shape::kRow, tile_offset.column() * Shape::kColumn); load_with_pointer_offset(frag, ref_.offset(coord_offset)); } /// Loads a fragment from memory with logical offset in units of whole tiles. CUTLASS_DEVICE void load( /// fragment to load from the tensor Fragment &frag, /// loads a tile with a logical offset in units of whole tiles TensorCoord const &tile_offset, /// loads a tile with a logical offset AND a pointer offset Index pointer_offset) const { TensorCoord coord_offset(tile_offset.row() * Shape::kRow, tile_offset.column() * Shape::kColumn); load_with_pointer_offset(frag, ref_.offset(coord_offset) + pointer_offset); } /// Loads a fragment from memory with logical offset in units of whole tiles. CUTLASS_DEVICE void load_with_byte_offset( /// fragment to load from the tensor Fragment &frag, /// loads a tile with a logical offset in units of whole tiles TensorCoord const &tile_offset, /// loads a tile with a logical offset AND a pointer offset Index byte_offset) const { TensorCoord coord_offset(tile_offset.row() * Shape::kRow, tile_offset.column() * Shape::kColumn); load_with_pointer_offset(frag, ref_.offset(coord_offset) + byte_offset * 8 / sizeof_bits<Element>::value); } /// Notify the iterator which k-group it is currently pointing to. /// /// This does not advance the iterator. Rather, it overrides its internal /// tracking with constant-valued k-group index to enable the compiler to /// fold constants and achieve more efficient code. /// /// This is used by some nontrivial permuted layouts. CUTLASS_DEVICE void set_kgroup_index(int k_group) { // no operation } }; /// Wrapper for ColumnMajor template < /// Size of the matrix to load (concept: MatrixShape) typename Shape_, /// Identifies A or B multiplicand Operand Operand_, /// Data type of elements typename Element_, /// Shape of one matrix product operation (concept: MatrixShape) typename InstructionShape_, /// Interval between adjacent *MMA instructions (in units of MMA /// instructions) int OpDelta_, /// Number of partitions along K dimension int PartitionsK_> class MmaTensorOpMultiplicandTileIterator< Shape_, Operand_, Element_, cutlass::layout::ColumnMajor, InstructionShape_, OpDelta_, 32, PartitionsK_> { public: /// Shape of tile to load (concept: PitchLinearShape) using Shape = Shape_; /// Operand tag static Operand const kOperand = Operand_; static_assert(kOperand == Operand::kA || kOperand== Operand::kB, "MmaTensorOpMultiplicandIterator may only be instantiated for A or B operands to warp-level Mma."); /// Element type using Element = Element_; /// Layout of source tile using Layout = cutlass::layout::ColumnMajor; /// Shape of one matrix product operation (concept: MatrixShape) using InstructionShape = InstructionShape_; /// Delta between *MMA operations (in units of *MMA operations, concept: MatrixShape) static int const kOpDelta = OpDelta_; /// Number of participating threads static int const kThreads = 32; /// TensorRef type for loading element from a tensor using TensorRef = TensorRef<Element, Layout>; /// Index type using Index = typename TensorRef::Index; /// Long Index type using LongIndex = typename TensorRef::LongIndex; /// Coordinate for an element in the tensor using TensorCoord = typename TensorRef::TensorCoord; /// Underlying tile iterator implementation using Base = MmaTensorOpMultiplicandTileIteratorCanonical< Shape, kOperand, Element, layout::ColumnMajor, InstructionShape, kOpDelta, kThreads, PartitionsK_>; public: // // Derived quantities // /// Fragment object holding a thread's part of a tile using Fragment = typename Base::Fragment; private: /// Underlying tile iterator Base iterator_; public: /// Default ctor constructs null iterator CUTLASS_HOST_DEVICE MmaTensorOpMultiplicandTileIterator() { } /// Constructor from TensorRef CUTLASS_HOST_DEVICE MmaTensorOpMultiplicandTileIterator( TensorRef const &ref, int lane_id ): iterator_({ref.data(), ref.stride()}, lane_id) { } /// Constructor from TensorRef CUTLASS_HOST_DEVICE MmaTensorOpMultiplicandTileIterator( TensorRef const &ref, TensorCoord const & extent, int lane_id ): iterator_({ref.data(), ref.stride()}, extent, lane_id) { } /// Adds a pointer offset to internal pointer(s) to advance through memory CUTLASS_HOST_DEVICE MmaTensorOpMultiplicandTileIterator &add_pointer_offset(LongIndex offset) { iterator_.add_pointer_offset(offset); return *this; } /// Advances an iterator along logical dimensions of matrix in units of whole tiles CUTLASS_HOST_DEVICE MmaTensorOpMultiplicandTileIterator &add_tile_offset(TensorCoord const &tile_offset) { iterator_.add_tile_offset({tile_offset.row(), tile_offset.column()}); return *this; } /// Advances the iterator along the advance dimension CUTLASS_HOST_DEVICE MmaTensorOpMultiplicandTileIterator & operator++() { ++iterator_; return *this; } /// Advances the iterator along the advance dimension CUTLASS_HOST_DEVICE MmaTensorOpMultiplicandTileIterator & operator--() { --iterator_; return *this; } ///< advances in units of whole tiles along the logical coordinate space of the tensor CUTLASS_DEVICE MmaTensorOpMultiplicandTileIterator & operator+=(TensorCoord const &tile_offset) { add_tile_offset(PitchLinearCoord(tile_offset.row(), tile_offset.column())); return *this; } ///< advances in units of whole tiles along the logical coordinate space of the tensor CUTLASS_DEVICE MmaTensorOpMultiplicandTileIterator & operator-=(TensorCoord const &tile_offset) { add_tile_offset(-PitchLinearCoord(tile_offset.row(), tile_offset.column())); return *this; } /// Loads a fragment from memory at the location pointed to by the iterator. CUTLASS_HOST_DEVICE void load(Fragment &frag) const { iterator_.load(frag); } /// Loads a fragment from memory with additional logical offset CUTLASS_DEVICE void load_with_pointer_offset( /// fragment to load from the tensor Fragment &frag, /// loads a tile with a linear offset Index pointer_offset) const { iterator_.load_with_pointer_offset(frag, pointer_offset); } /// Loads a fragment from memory with additional logical offset CUTLASS_DEVICE void load_with_byte_offset( /// fragment to load from the tensor Fragment &frag, /// loads a tile with a linear offset Index byte_offset) const { iterator_.load_with_byte_offset(frag, byte_offset); } /// Loads a fragment from memory with logical offset in units of whole tiles. CUTLASS_DEVICE void load( /// fragment to load from the tensor Fragment &frag, /// loads a tile with a logical offset in units of whole tiles TensorCoord const &tile_offset) const { } /// Loads a fragment from memory with logical offset in units of whole tiles. CUTLASS_DEVICE void load( /// fragment to load from the tensor Fragment &frag, /// loads a tile with a logical offset in units of whole tiles TensorCoord const &tile_offset, /// loads a tile with a logical offset AND a pointer offset Index pointer_offset) const { } /// Loads a fragment from memory with logical offset in units of whole tiles. CUTLASS_DEVICE void load_with_byte_offset( /// fragment to load from the tensor Fragment &frag, /// loads a tile with a logical offset in units of whole tiles TensorCoord const &tile_offset, /// loads a tile with a logical offset AND a pointer offset Index byte_offset) const { iterator_.load_with_byte_offset( frag, {tile_offset.contiguous(), tile_offset.strided()}, byte_offset); } /// Notify the iterator which k-group it is currently pointing to. /// /// This does not advance the iterator. Rather, it overrides its internal /// tracking with constant-valued k-group index to enable the compiler to /// fold constants and achieve more efficient code. /// /// This is used by some nontrivial permuted layouts. CUTLASS_DEVICE void set_kgroup_index(int k_group) { iterator_.set_kgroup_index(k_group); } }; /// Wrapper for RowMajor template < /// Size of the matrix to load (concept: MatrixShape) typename Shape_, /// Identifies A or B multiplicand Operand Operand_, /// Data type of elements typename Element_, /// Shape of one matrix product operation (concept: MatrixShape) typename InstructionShape_, /// Interval between adjacent *MMA instructions (in units of MMA /// instructions) int OpDelta_, /// Number of partitions along K dimension int PartitionsK_> class MmaTensorOpMultiplicandTileIterator< Shape_, Operand_, Element_, cutlass::layout::RowMajor, InstructionShape_, OpDelta_, 32, PartitionsK_> { public: /// Shape of tile to load (concept: PitchLinearShape) using Shape = Shape_; /// Operand tag static Operand const kOperand = Operand_; static_assert(kOperand == Operand::kA || kOperand== Operand::kB, "MmaTensorOpMultiplicandIterator may only be instantiated for A or B operands to warp-level Mma."); /// Element type using Element = Element_; /// Layout of source tile using Layout = cutlass::layout::RowMajor; /// Shape of one matrix product operation (concept: MatrixShape) using InstructionShape = InstructionShape_; /// Delta between *MMA operations (in units of *MMA operations, concept: MatrixShape) static int const kOpDelta = OpDelta_; /// Number of participating threads static int const kThreads = 32; /// TensorRef type for loading element from a tensor using TensorRef = TensorRef<Element, Layout>; /// Index type using Index = typename TensorRef::Index; /// Long Index type using LongIndex = typename TensorRef::LongIndex; /// Coordinate for an element in the tensor using TensorCoord = typename TensorRef::TensorCoord; /// Underlying tile iterator implementation using Base = MmaTensorOpMultiplicandTileIteratorCanonical< Shape, kOperand, Element, layout::RowMajor, InstructionShape, kOpDelta, kThreads, PartitionsK_>; public: // // Derived quantities // /// Fragment object holding a thread's part of a tile using Fragment = typename Base::Fragment; private: /// Underlying tile iterator Base iterator_; public: /// Default ctor constructs null iterator CUTLASS_HOST_DEVICE MmaTensorOpMultiplicandTileIterator() { } /// Constructor from TensorRef CUTLASS_HOST_DEVICE MmaTensorOpMultiplicandTileIterator( TensorRef const &ref, int lane_id ): iterator_({ref.data(), ref.stride()}, lane_id) { } /// Constructor from TensorRef CUTLASS_HOST_DEVICE MmaTensorOpMultiplicandTileIterator( TensorRef const &ref, TensorCoord const &extent, int lane_id ): iterator_({ref.data(), ref.stride()}, extent, lane_id) { } /// Adds a pointer offset to internal pointer(s) to advance through memory CUTLASS_HOST_DEVICE MmaTensorOpMultiplicandTileIterator &add_pointer_offset(LongIndex offset) { iterator_.add_pointer_offset(offset); return *this; } /// Advances an iterator along logical dimensions of matrix in units of whole tiles CUTLASS_HOST_DEVICE MmaTensorOpMultiplicandTileIterator &add_tile_offset(TensorCoord const &tile_offset) { iterator_.add_tile_offset({tile_offset.row(), tile_offset.column()}); return *this; } /// Advances the iterator along the advance dimension CUTLASS_HOST_DEVICE MmaTensorOpMultiplicandTileIterator & operator++() { ++iterator_; return *this; } /// Advances the iterator along the advance dimension CUTLASS_HOST_DEVICE MmaTensorOpMultiplicandTileIterator & operator--() { --iterator_; return *this; } ///< advances in units of whole tiles along the logical coordinate space of the tensor CUTLASS_DEVICE MmaTensorOpMultiplicandTileIterator & operator+=(TensorCoord const &tile_offset) { add_tile_offset(PitchLinearCoord(tile_offset.row(), tile_offset.column())); return *this; } ///< advances in units of whole tiles along the logical coordinate space of the tensor CUTLASS_DEVICE MmaTensorOpMultiplicandTileIterator & operator-=(TensorCoord const &tile_offset) { add_tile_offset(-PitchLinearCoord(tile_offset.row(), tile_offset.column())); return *this; } /// Loads a fragment from memory at the location pointed to by the iterator. CUTLASS_HOST_DEVICE void load(Fragment &frag) const { iterator_.load(frag); } /// Loads a fragment from memory with additional logical offset CUTLASS_DEVICE void load_with_pointer_offset( /// fragment to load from the tensor Fragment &frag, /// loads a tile with a linear offset Index pointer_offset) const { iterator_.load_with_pointer_offset(frag, pointer_offset); } /// Loads a fragment from memory with additional logical offset CUTLASS_DEVICE void load_with_byte_offset( /// fragment to load from the tensor Fragment &frag, /// loads a tile with a linear offset Index byte_offset) const { iterator_.load_with_byte_offset(frag, byte_offset); } /// Loads a fragment from memory with logical offset in units of whole tiles. CUTLASS_DEVICE void load( /// fragment to load from the tensor Fragment &frag, /// loads a tile with a logical offset in units of whole tiles TensorCoord const &tile_offset) const { } /// Loads a fragment from memory with logical offset in units of whole tiles. CUTLASS_DEVICE void load( /// fragment to load from the tensor Fragment &frag, /// loads a tile with a logical offset in units of whole tiles TensorCoord const &tile_offset, /// loads a tile with a logical offset AND a pointer offset Index pointer_offset) const { } /// Loads a fragment from memory with logical offset in units of whole tiles. CUTLASS_DEVICE void load_with_byte_offset( /// fragment to load from the tensor Fragment &frag, /// loads a tile with a logical offset in units of whole tiles TensorCoord const &tile_offset, /// loads a tile with a logical offset AND a pointer offset Index byte_offset) const { iterator_.load_with_byte_offset( frag, {tile_offset.contiguous(), tile_offset.strided()}, byte_offset); } /// Notify the iterator which k-group it is currently pointing to. /// /// This does not advance the iterator. Rather, it overrides its internal /// tracking with constant-valued k-group index to enable the compiler to /// fold constants and achieve more efficient code. /// /// This is used by some nontrivial permuted layouts. CUTLASS_DEVICE void set_kgroup_index(int k_group) { iterator_.set_kgroup_index(k_group); } }; //////////////////////////////////////////////////////////////////////////////// } // namespace warp } // namespace gemm } // namespace cutlass ////////////////////////////////////////////////////////////////////////////////
include/cutlass/gemm/warp/mma_tensor_op_tile_iterator_sm80.h/0
{ "file_path": "include/cutlass/gemm/warp/mma_tensor_op_tile_iterator_sm80.h", "repo_id": "include", "token_count": 25010 }
35
/*************************************************************************************************** * Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. * SPDX-License-Identifier: BSD-3-Clause * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * **************************************************************************************************/ /*! \file \brief Defines layout functions used by TensorRef and derived classes. Layout functions map logical coordinates to linear memory. They often require additional data to describe strides between elements. Layout functions must implement all members in the public interface of IdentityTensorLayout<> defined in cutlass/tensor_ref.h. */ #pragma once #include "cutlass/cutlass.h" #include "cutlass/fast_math.h" #include "cutlass/matrix_coord.h" #include "cutlass/pitch_linear_coord.h" namespace cutlass { namespace layout { ///////////////////////////////////////////////////////////////////////////////////////////////// // // Defines data layouts of various matrix formats usable by TensorRef and other classes. // ///////////////////////////////////////////////////////////////////////////////////////////////// /// Mapping function for row-major matrices. class RowMajor { public: /// Logical rank of tensor static int const kRank = 2; /// Rank of stride vector static int const kStrideRank = 1; /// Index type used for coordinates using Index = int32_t; /// Long index type used for offsets using LongIndex = int64_t; /// Logical coordinate using TensorCoord = MatrixCoord; /// Stride vector using Stride = Coord<kStrideRank, LongIndex>; private: // // Data members // /// Stride data member Stride stride_; public: // // Methods // /// Constructor CUTLASS_HOST_DEVICE RowMajor(LongIndex ldm = 0): stride_(ldm) { } /// Ctor CUTLASS_HOST_DEVICE RowMajor(Stride stride): stride_(stride) { } /// Helper returns a layout to a tightly packed tensor CUTLASS_HOST_DEVICE static RowMajor packed(MatrixCoord const &extent) { return RowMajor(extent.column()); } /// Returns the offset of a coordinate in linear memory. /// Assumes coordinate has convention (row, column) CUTLASS_HOST_DEVICE LongIndex operator()(MatrixCoord const &coord) const { return LongIndex(coord.row()) * LongIndex(stride_[0]) + coord.column(); } /// Inverse of layout function, mapping linear offset to logical coordinate CUTLASS_HOST_DEVICE MatrixCoord inverse(LongIndex offset) const { return MatrixCoord(Index(offset / stride_[0]), Index(offset % stride_[0])); } /// Returns the stride of the layout CUTLASS_HOST_DEVICE Stride stride() const { return stride_; } /// Returns the stride of the layout CUTLASS_HOST_DEVICE Stride & stride() { return stride_; } /// Returns the stride of the layout CUTLASS_HOST_DEVICE typename Stride::Index stride(int idx) const { return stride_[idx]; } /// Returns the stride of the layout CUTLASS_HOST_DEVICE typename Stride::Index & stride(int idx) { return stride_[idx]; } /// Compute the number of contiguous elements needed to store a tensor with the given size CUTLASS_HOST_DEVICE LongIndex capacity(MatrixCoord const &extent) const { return LongIndex(extent.row()) * LongIndex(stride_[0]); } }; /// Mapping function for column-major matrices. class ColumnMajor { public: /// Logical rank of tensor static int const kRank = 2; /// Rank of stride vector static int const kStrideRank = 1; /// Index type used for coordinates using Index = int32_t; /// Long index type used for offsets using LongIndex = int64_t; /// Logical coordinate using TensorCoord = MatrixCoord; /// Stride vector using Stride = Coord<kStrideRank, LongIndex>; private: // // Data members // /// Stride data member Stride stride_; public: // // Methods // /// Ctor CUTLASS_HOST_DEVICE ColumnMajor(LongIndex ldm = 0): stride_(ldm) { } /// Ctor CUTLASS_HOST_DEVICE ColumnMajor(Stride stride): stride_(stride) { } /// Helper returns a layout to a tightly packed tensor CUTLASS_HOST_DEVICE static ColumnMajor packed(MatrixCoord const &extent) { return ColumnMajor(extent.row()); } /// Returns the offset of a coordinate in linear memory. /// Assumes coordinate has convention (row, column) CUTLASS_HOST_DEVICE LongIndex operator()(MatrixCoord const &coord) const { return LongIndex(coord.column()) * LongIndex(stride_[0]) + coord.row(); } /// Inverse of layout function, mapping linear offset to logical coordinate CUTLASS_HOST_DEVICE MatrixCoord inverse(LongIndex offset) const { return MatrixCoord(Index(offset % stride_[0]), Index(offset / stride_[0])); } /// Returns the stride of the layout CUTLASS_HOST_DEVICE Stride stride() const { return stride_; } /// Returns the stride of the layout CUTLASS_HOST_DEVICE Stride & stride() { return stride_; } /// Returns the stride of the layout CUTLASS_HOST_DEVICE typename Stride::Index stride(int idx) const { return stride_[idx]; } /// Returns the stride of the layout CUTLASS_HOST_DEVICE typename Stride::Index & stride(int idx) { return stride_[idx]; } /// Compute the number of contiguous elements needed to store a tensor with the given size CUTLASS_HOST_DEVICE LongIndex capacity(MatrixCoord const &extent) const { return LongIndex(extent.column()) * LongIndex(stride_[0]); } }; /// Mapping function for interleaved matrices. Matrix is structured /// as row-major arrangement of fixed-size columns. template <int Interleave> struct RowMajorInterleaved { /// Logical rank of tensor static int const kRank = 2; /// Rank of stride vector static int const kStrideRank = 1; /// Index type used for coordinates using Index = int32_t; /// Long index type used for offsets using LongIndex = int64_t; /// Logical coordinate using TensorCoord = MatrixCoord; /// Stride vector using Stride = Coord<kStrideRank, LongIndex>; /// Size of interleaved columns static int const kInterleave = Interleave; private: // // Data members // /// Stride data member Stride stride_; public: // // Methods // /// Ctor CUTLASS_HOST_DEVICE RowMajorInterleaved(LongIndex ldm = 0): stride_(ldm) { } /// Ctor CUTLASS_HOST_DEVICE RowMajorInterleaved(Stride stride): stride_(stride) { } /// Helper returns a layout to a tightly packed tensor CUTLASS_HOST_DEVICE static RowMajorInterleaved packed(MatrixCoord const &extent) { return RowMajorInterleaved(extent.column() * kInterleave); } /// Returns the offset of a coordinate in linear memory. /// Assumes coordinate has convention (row, column) CUTLASS_HOST_DEVICE LongIndex operator()(MatrixCoord const &coord) const { Index row_major = coord.row() / kInterleave; Index row_minor = coord.row() % kInterleave; return LongIndex(row_major) * LongIndex(stride_[0]) + LongIndex(coord.column()) * kInterleave + row_minor; } /// Inverse of layout function, mapping linear offset to logical coordinate CUTLASS_HOST_DEVICE MatrixCoord inverse(LongIndex offset) const { Index row_major = Index(offset / stride_[0]); Index residual = Index(offset % stride_[0]); Index column = residual / kInterleave; Index row_minor = residual % kInterleave; return MatrixCoord(row_major * kInterleave + row_minor, column); } /// Returns the stride of the layout CUTLASS_HOST_DEVICE Stride stride() const { return stride_; } /// Returns the stride of the layout CUTLASS_HOST_DEVICE Stride & stride() { return stride_; } /// Returns the stride of the layout CUTLASS_HOST_DEVICE typename Stride::Index stride(int idx) const { return stride_[idx]; } /// Returns the stride of the layout CUTLASS_HOST_DEVICE typename Stride::Index & stride(int idx) { return stride_[idx]; } /// Compute the number of contiguous elements needed to store a tensor with the given size CUTLASS_HOST_DEVICE LongIndex capacity(MatrixCoord const &extent) const { return (extent.row() + kInterleave - 1) / kInterleave * stride_[0]; } }; /// Mapping function for interleaved matrices. Matrix is structured /// as column-major arrangement of fixed-size rows. template <int Interleave> struct ColumnMajorInterleaved { /// Logical rank of tensor static int const kRank = 2; /// Rank of stride vector static int const kStrideRank = 1; /// Index type used for coordinates using Index = int32_t; /// Long index type used for offsets using LongIndex = int64_t; /// Logical coordinate using TensorCoord = MatrixCoord; /// Stride vector using Stride = Coord<kStrideRank, LongIndex>; /// Size of interleaved columns static int const kInterleave = Interleave; private: // // Data members // /// Stride data member Stride stride_; public: // // Methods // /// Ctor CUTLASS_HOST_DEVICE ColumnMajorInterleaved(LongIndex ldm = 0): stride_(ldm) { } /// Ctor CUTLASS_HOST_DEVICE ColumnMajorInterleaved(Stride stride): stride_(stride) { } /// Helper returns a layout to a tightly packed tensor CUTLASS_HOST_DEVICE static ColumnMajorInterleaved packed(MatrixCoord const &extent) { return ColumnMajorInterleaved(extent.row() * kInterleave); } /// Returns the offset of a coordinate in linear memory. /// Assumes coordinate has convention (row, column) CUTLASS_HOST_DEVICE LongIndex operator()(MatrixCoord const &coord) const { Index column_major = coord.column() / kInterleave; Index column_minor = coord.column() % kInterleave; return LongIndex(column_major) * LongIndex(stride_[0]) + LongIndex(coord.row()) * kInterleave + column_minor; } /// Inverse of layout function, mapping linear offset to logical coordinate CUTLASS_HOST_DEVICE MatrixCoord inverse(LongIndex offset) const { Index column_major = Index(offset / stride_[0]); Index residual = Index(offset % stride_[0]); Index row = residual / kInterleave; Index column_minor = residual % kInterleave; return MatrixCoord(row, column_major * kInterleave + column_minor); } /// Returns the stride of the layout CUTLASS_HOST_DEVICE Stride stride() const { return stride_; } /// Returns the stride of the layout CUTLASS_HOST_DEVICE Stride & stride() { return stride_; } /// Returns the stride of the layout CUTLASS_HOST_DEVICE typename Stride::Index stride(int idx) const { return stride_[idx]; } /// Returns the stride of the layout CUTLASS_HOST_DEVICE typename Stride::Index & stride(int idx) { return stride_[idx]; } /// Compute the number of contiguous elements needed to store a tensor with the given size CUTLASS_HOST_DEVICE LongIndex capacity(MatrixCoord const &extent) const { return (extent.column() + kInterleave - 1) / kInterleave * stride_[0]; } }; /// Enumerated type for canonical pitch-linear matrix layouts enum class Matrix { kColumnMajor, ///< leading dimension refers to stride between columns; stride along rows is 1 kRowMajor ///< leading dimension refers to stride between rows; stride along columns is 1 }; /// Mapping function for scenario in which layout is row-major or column-major but this information /// is only available at runtime. struct ContiguousMatrix { /// Logical rank of tensor static int const kRank = 2; /// Rank of stride vector static int const kStrideRank = 1; /// Index type used for coordinates using Index = int32_t; /// Long index type used for offsets using LongIndex = int64_t; /// Logical coordinate using TensorCoord = MatrixCoord; /// Stride vector using Stride = Coord<kStrideRank, LongIndex>; private: // // Data members // /// Stride data member Stride stride_; /// Enumerated type indicating canonical matrix layout Matrix layout_; public: // // Methods // /// Ctor CUTLASS_HOST_DEVICE ContiguousMatrix( Index ldm = 0, Matrix layout = Matrix::kColumnMajor ): stride_(ldm), layout_(layout) { } /// Helper returns a layout to a tightly packed tensor CUTLASS_HOST_DEVICE static ContiguousMatrix packed( MatrixCoord const &extent, Matrix layout = Matrix::kColumnMajor) { Index ldm = 0; if (layout == Matrix::kColumnMajor) { ldm = extent.row(); } else if (layout == Matrix::kRowMajor) { ldm = extent.column(); } return ContiguousMatrix(ldm, layout); } /// Returns the offset of a coordinate in linear memory. /// Assumes coordinate has convention (row, column) CUTLASS_HOST_DEVICE LongIndex operator()(MatrixCoord const &coord) const { if (layout_ == Matrix::kColumnMajor) { return coord.row() + coord.column() * stride_[0]; } else if (layout_ == Matrix::kRowMajor) { return coord.row() * stride_[0] + coord.column(); } else { // degenerate case return 0; } } /// Inverse of layout function, mapping linear offset to logical coordinate CUTLASS_HOST_DEVICE MatrixCoord inverse(LongIndex offset) const { CUTLASS_UNUSED(offset); return MatrixCoord(0, 0); } /// Returns the stride of the layout CUTLASS_HOST_DEVICE Stride stride() const { return stride_; } /// Returns the stride of the layout CUTLASS_HOST_DEVICE Stride & stride() { return stride_; } /// Returns the stride of the layout CUTLASS_HOST_DEVICE typename Stride::Index stride(int idx) const { return stride_[idx]; } /// Returns the stride of the layout CUTLASS_HOST_DEVICE typename Stride::Index & stride(int idx) { return stride_[idx]; } /// Compute the number of contiguous elements needed to store a tensor with the given size CUTLASS_HOST_DEVICE LongIndex capacity(MatrixCoord const &extent) const { if (layout_ == Matrix::kColumnMajor) { return stride_[0] * extent.column(); } else if (layout_ == Matrix::kRowMajor) { return stride_[0] * extent.row(); } else { // degenerate case return 0; } } }; ///////////////////////////////////////////////////////////////////////////////////////////////// /// Mapping function for scenario in which both rows and columns are separated by a stride. template <int Rank> struct AffineRankN { /// Logical rank of tensor static int const kRank = Rank; /// Rank of stride vector static int const kStrideRank = kRank; /// Index type used for coordinates using Index = int32_t; /// Long index type used for offsets using LongIndex = int64_t; /// Logical coordinate using TensorCoord = Coord<kRank, Index>; /// Stride vector using Stride = Coord<kStrideRank, LongIndex>; private: // // Data members // /// Stride data member Stride stride_; public: // // Methods // /// Ctor CUTLASS_HOST_DEVICE AffineRankN( Stride const &stride = Stride() ): stride_(stride) { } /// Ctor CUTLASS_HOST_DEVICE AffineRankN( Coord<kRank/2, LongIndex> const &stride_m, Coord<kRank/2, LongIndex> const &stride_n ) { // Concatenate the strides CUTLASS_PRAGMA_UNROLL for (int m = 0; m < kRank/2; ++m) { stride_[m] = stride_m[m]; } CUTLASS_PRAGMA_UNROLL for (int n = 0; n < kRank/2; ++n) { stride_[n + kRank/2] = stride_n[n]; } } /// Ctor for N = 2 CUTLASS_HOST_DEVICE AffineRankN( LongIndex const &stride_m, LongIndex const &stride_n ) { stride_[0] = stride_m; stride_[1] = stride_n; } /// Ctor for N = 2 CUTLASS_HOST_DEVICE AffineRankN( LongIndex const &stride ) { stride_[0] = stride; stride_[1] = 1; } /// Helper returns a layout to a tightly packed tensor CUTLASS_HOST_DEVICE static AffineRankN packed(TensorCoord const &extent) { AffineRankN layout; layout.stride_[kRank - 1] = 1; CUTLASS_PRAGMA_UNROLL for (int i = kRank - 1; i > 0; --i) { layout.stride_[i - 1] = layout.stride_[i] * extent[i]; } return layout; } /// Returns the offset of a coordinate in linear memory. /// Assumes coordinate has convention (row, column) CUTLASS_HOST_DEVICE LongIndex operator()(TensorCoord const &coord) const { return dot(coord, stride_); } /// Inverse of layout function, mapping linear offset to logical coordinate CUTLASS_HOST_DEVICE TensorCoord inverse(LongIndex offset) const { return TensorCoord(); } /// Returns the stride of the layout CUTLASS_HOST_DEVICE Stride stride() const { return stride_; } /// Returns the stride of the layout CUTLASS_HOST_DEVICE Stride & stride() { return stride_; } /// Returns the stride of the layout CUTLASS_HOST_DEVICE typename Stride::Index stride(int idx) const { return stride_[idx]; } /// Returns the stride of the layout CUTLASS_HOST_DEVICE typename Stride::Index & stride(int idx) { return stride_[idx]; } /// Compute the number of contiguous elements needed to store a tensor with the given size CUTLASS_HOST_DEVICE LongIndex capacity(TensorCoord const &extent) const { int idx = stride_.max_dim_index(); return extent[idx] * stride_[idx]; } }; /// Mapping function for scenario in which both rows and columns are separated by a stride. /// Row stride is smaller than column stride in AffineRank2ColumnMajor. struct AffineRank2ColumnMajor { /// Logical rank of tensor static int const kRank = 2; /// Rank of stride vector static int const kStrideRank = 2; /// Index type used for coordinates using Index = int32_t; /// Long index type used for offsets using LongIndex = int64_t; /// Logical coordinate using TensorCoord = MatrixCoord; /// Stride vector using Stride = Coord<kStrideRank, LongIndex>; private: // // Data members // /// Stride data member Stride stride_; public: // // Methods // /// Ctor CUTLASS_HOST_DEVICE AffineRank2ColumnMajor( Stride const &stride = Stride() ): stride_(stride) { } /// Ctor CUTLASS_HOST_DEVICE AffineRank2ColumnMajor( LongIndex row_stride, ///< stride between elements in consecutive rows LongIndex column_stride ///< stride between elements in consecutive columns ) { stride_[0] = row_stride; stride_[1] = column_stride;} /// Ctor CUTLASS_HOST_DEVICE AffineRank2ColumnMajor( LongIndex stride ) { stride_[0] = 1; stride_[1] = stride;} /// Helper returns a layout to a tightly packed tensor CUTLASS_HOST_DEVICE static AffineRank2ColumnMajor packed(MatrixCoord const &extent) { return AffineRank2ColumnMajor(1, extent.row()); } /// Returns the offset of a coordinate in linear memory. /// Assumes coordinate has convention (row, column) CUTLASS_HOST_DEVICE LongIndex operator()(MatrixCoord const &coord) const { return dot(coord, stride_); } /// Inverse of layout function, mapping linear offset to logical coordinate CUTLASS_HOST_DEVICE MatrixCoord inverse(LongIndex offset) const { CUTLASS_UNUSED(offset); return MatrixCoord(0, 0); } /// Returns the stride of the layout CUTLASS_HOST_DEVICE Stride stride() const { return stride_; } /// Returns the stride of the layout CUTLASS_HOST_DEVICE Stride & stride() { return stride_; } /// Returns the stride of the layout CUTLASS_HOST_DEVICE typename Stride::Index stride(int idx) const { return stride_[idx]; } /// Returns the stride of the layout CUTLASS_HOST_DEVICE typename Stride::Index & stride(int idx) { return stride_[idx]; } /// Compute the number of contiguous elements needed to store a tensor with the given size CUTLASS_HOST_DEVICE LongIndex capacity(MatrixCoord const &extent) const { return extent.column() * stride_[1]; } }; /// Mapping function for scenario in which both rows and columns are separated by a stride. /// Column stride is smaller than row stride in AffineRank2RowMajor. struct AffineRank2RowMajor { /// Logical rank of tensor static int const kRank = 2; /// Rank of stride vector static int const kStrideRank = 2; /// Index type used for coordinates using Index = int32_t; /// Long index type used for offsets using LongIndex = int64_t; /// Logical coordinate using TensorCoord = MatrixCoord; /// Stride vector using Stride = Coord<kStrideRank, LongIndex>; private: // // Data members // /// Stride data member Stride stride_; public: // // Methods // /// Ctor CUTLASS_HOST_DEVICE AffineRank2RowMajor( Stride const &stride = Stride() ): stride_(stride) { } /// Ctor CUTLASS_HOST_DEVICE AffineRank2RowMajor( LongIndex row_stride, ///< stride between elements in consecutive rows LongIndex column_stride ///< stride between elements in consecutive columns ) { stride_[0] = row_stride; stride_[1] = column_stride;} /// Ctor CUTLASS_HOST_DEVICE AffineRank2RowMajor( LongIndex stride ) { stride_[0] = stride; stride_[1] = 1;} /// Helper returns a layout to a tightly packed tensor CUTLASS_HOST_DEVICE static AffineRank2RowMajor packed(MatrixCoord const &extent) { return AffineRank2RowMajor(1, extent.row()); } /// Returns the offset of a coordinate in linear memory. /// Assumes coordinate has convention (row, column) CUTLASS_HOST_DEVICE LongIndex operator()(MatrixCoord const &coord) const { return dot(coord, stride_); } /// Inverse of layout function, mapping linear offset to logical coordinate CUTLASS_HOST_DEVICE MatrixCoord inverse(LongIndex offset) const { CUTLASS_UNUSED(offset); return MatrixCoord(0, 0); } /// Returns the stride of the layout CUTLASS_HOST_DEVICE Stride stride() const { return stride_; } /// Returns the stride of the layout CUTLASS_HOST_DEVICE Stride & stride() { return stride_; } /// Returns the stride of the layout CUTLASS_HOST_DEVICE typename Stride::Index stride(int idx) const { return stride_[idx]; } /// Returns the stride of the layout CUTLASS_HOST_DEVICE typename Stride::Index & stride(int idx) { return stride_[idx]; } /// Compute the number of contiguous elements needed to store a tensor with the given size CUTLASS_HOST_DEVICE LongIndex capacity(MatrixCoord const &extent) const { return extent.row() * stride_[0]; } }; ///////////////////////////////////////////////////////////////////////////////////////////////// // Utility functions to convert stride_factor to the strides used by the Affine2 layout. // // stride_factor is the logical distance between two coorinates. // // All Coodinates used here are matrix coordinates. stride[0] and extent[0] are for the // rows. stride[1] and extent[1] are for the columns. template <typename Affine2Layout> struct Affine2Layout_Factory { CUTLASS_HOST_DEVICE static Affine2Layout layout_factory(cutlass::Coord<2> const &extent, typename Affine2Layout::Stride stride_factor) { return Affine2Layout::packed(extent); } }; template <> struct Affine2Layout_Factory<cutlass::layout::AffineRank2ColumnMajor> { CUTLASS_HOST_DEVICE static cutlass::layout::AffineRank2ColumnMajor layout_factory( cutlass::Coord<2> const &extent, typename cutlass::layout::AffineRank2ColumnMajor::Stride stride_factor) { return cutlass::layout::AffineRank2ColumnMajor({ stride_factor[0], stride_factor[0] * stride_factor[1] * extent[0] }); } }; template <> struct Affine2Layout_Factory<cutlass::layout::AffineRank2RowMajor> { CUTLASS_HOST_DEVICE static cutlass::layout::AffineRank2RowMajor layout_factory( cutlass::Coord<2> const &extent, typename cutlass::layout::AffineRank2RowMajor::Stride stride_factor) { return cutlass::layout::AffineRank2RowMajor({ stride_factor[0] * stride_factor[1] * extent[1], stride_factor[1] }); } }; // The base layout cutlass::layout::AffineRankN<2> is similar to AffineRank2ColumnMajor template <> struct Affine2Layout_Factory<cutlass::layout::AffineRankN<2>> { CUTLASS_HOST_DEVICE static cutlass::layout::AffineRankN<2> layout_factory( cutlass::Coord<2> const &extent, typename cutlass::layout::AffineRankN<2>::Stride stride_factor) { return cutlass::layout::AffineRankN<2>({ stride_factor[0], stride_factor[0] * stride_factor[1] * extent[0] }); } }; ///////////////////////////////////////////////////////////////////////////////////////////////// /// Mapping function for block-linear matrices. Matrix is structured /// as column-major arrangement of 2D tiles (that are column-major). template <int BlockRows, int BlockColumns> struct ColumnMajorBlockLinear { /// Logical rank of tensor static int const kRank = 2; /// Rank of stride vector static int const kStrideRank = 1; /// Index type used for coordinates using Index = int32_t; /// Long index type used for offsets using LongIndex = int64_t; /// Logical coordinate using TensorCoord = MatrixCoord; /// Stride vector using Stride = Coord<kStrideRank, LongIndex>; /// Size of a block in rows static int const kBlockRows = BlockRows; /// Size of a block in columns static int const kBlockColumns = BlockColumns; private: // // Data members // /// Stride data member Stride stride_; public: // // Methods // /// Ctor CUTLASS_HOST_DEVICE ColumnMajorBlockLinear(Index ldm = 0): stride_(ldm) { } /// Helper returns a layout to a tightly packed tensor CUTLASS_HOST_DEVICE static ColumnMajorBlockLinear packed(MatrixCoord const &extent) { return ColumnMajorBlockLinear(extent.row() * kBlockRows * kBlockColumns); } /// Returns the offset of a coordinate in linear memory. /// Assumes coordinate has convention (row, column) CUTLASS_HOST_DEVICE LongIndex operator()(MatrixCoord const &coord) const { return (coord.row() % kBlockRows) + (coord.column() % kBlockColumns) * kBlockRows + (coord.row() / kBlockRows) * kBlockRows * kBlockColumns + (coord.column() / kBlockColumns) * stride_[0]; } /// Inverse of layout function, mapping linear offset to logical coordinate CUTLASS_HOST_DEVICE MatrixCoord inverse(LongIndex offset) const { return MatrixCoord(0, 0); } /// Returns the stride of the layout CUTLASS_HOST_DEVICE Stride stride() const { return stride_; } /// Returns the stride of the layout CUTLASS_HOST_DEVICE Stride & stride() { return stride_; } /// Returns the stride of the layout CUTLASS_HOST_DEVICE typename Stride::Index stride(int idx) const { return stride_[idx]; } /// Returns the stride of the layout CUTLASS_HOST_DEVICE typename Stride::Index & stride(int idx) { return stride_[idx]; } /// Compute the number of contiguous elements needed to store a tensor with the given size CUTLASS_HOST_DEVICE LongIndex capacity(MatrixCoord const &extent) const { return (extent.column() + kBlockColumns - 1) / kBlockColumns * stride_[0]; } }; /// Mapping function for block-linear matrices. Matrix is structured /// as row-major arrangement of 2D tiles (that are row-major) template <int BlockRows, int BlockColumns> struct RowMajorBlockLinear { /// Logical rank of tensor static int const kRank = 2; /// Rank of stride vector static int const kStrideRank = 1; /// Index type used for coordinates using Index = int32_t; /// Long index type used for offsets using LongIndex = int64_t; /// Logical coordinate using TensorCoord = MatrixCoord; /// Stride vector using Stride = Coord<kStrideRank, LongIndex>; /// Size of a block in rows static int const kBlockRows = BlockRows; /// Size of a block in columns static int const kBlockColumns = BlockColumns; private: // // Data members // /// Stride data member Stride stride_; public: // // Methods // /// Ctor CUTLASS_HOST_DEVICE RowMajorBlockLinear(Index ldm = 0): stride_(ldm) { } /// Helper returns a layout to a tightly packed tensor CUTLASS_HOST_DEVICE static RowMajorBlockLinear packed(MatrixCoord const &extent) { return RowMajorBlockLinear(extent.column() * kBlockRows * kBlockColumns); } /// Returns the offset of a coordinate in linear memory. /// Assumes coordinate has convention (row, column) CUTLASS_HOST_DEVICE LongIndex operator()(MatrixCoord const &coord) const { return (coord.column() % kBlockColumns) + (coord.row() % kBlockRows) * kBlockColumns + (coord.column() / kBlockColumns) * kBlockRows * kBlockColumns + (coord.row() / kBlockRows) * stride_[0]; } /// Inverse of layout function, mapping linear offset to logical coordinate CUTLASS_HOST_DEVICE MatrixCoord inverse(LongIndex offset) const { return MatrixCoord(0, 0); } /// Returns the stride of the layout CUTLASS_HOST_DEVICE Stride stride() const { return stride_; } /// Returns the stride of the layout CUTLASS_HOST_DEVICE Stride & stride() { return stride_; } /// Returns the stride of the layout CUTLASS_HOST_DEVICE typename Stride::Index stride(int idx) const { return stride_[idx]; } /// Returns the stride of the layout CUTLASS_HOST_DEVICE typename Stride::Index & stride(int idx) { return stride_[idx]; } /// Compute the number of contiguous elements needed to store a tensor with the given size CUTLASS_HOST_DEVICE LongIndex capacity(MatrixCoord const &extent) const { return (extent.row() + kBlockRows - 1) / kBlockRows * stride_[0]; } }; ///////////////////////////////////////////////////////////////////////////////////////////////// struct GeneralMatrix { /// Logical rank of tensor static int const kRank = 2; /// Rank of stride vector static int const kStrideRank = 2; /// Index type used for coordinates using Index = int32_t; /// Long index type used for offsets using LongIndex = int64_t; /// Logical coordinate using TensorCoord = MatrixCoord; /// Stride vector using Stride = Coord<kStrideRank, Index>; private: // // Data members // Matrix layout_id_; /// Stride data member Stride stride_; public: // // Methods // /// Ctor CUTLASS_HOST_DEVICE GeneralMatrix(): layout_id_(Matrix::kColumnMajor), stride_(make_Coord(0, 1)) { } /// Ctor CUTLASS_HOST_DEVICE GeneralMatrix( Matrix layout_id, Index ldm, Index interleave): layout_id_(layout_id), stride_(make_Coord(ldm, interleave)) { } /// Helper returns a layout to a tightly packed tensor CUTLASS_HOST_DEVICE static GeneralMatrix packed( MatrixCoord const &extent, Matrix layout_id = Matrix::kColumnMajor, Index interleave = 1) { Index c; if (layout_id == Matrix::kRowMajor) { c = extent.column(); } else { c = extent.row(); } Index ldm = c * interleave; return GeneralMatrix(layout_id, ldm, interleave); } /// Returns the offset of a coordinate in linear memory. /// Assumes coordinate has convention (row, column) CUTLASS_HOST_DEVICE LongIndex operator()(MatrixCoord const &coord) const { Index c, s; if (layout_id_ == Matrix::kRowMajor) { c = coord.column(); s = coord.row(); } else { s = coord.column(); c = coord.row(); } Index v = s / stride_[1]; Index residual = (s % stride_[1]); return LongIndex(c) * LongIndex(stride_[1]) + LongIndex(v) * LongIndex(stride_[0]) + residual; } /// Returns the stride of the layout CUTLASS_HOST_DEVICE Stride stride() const { return stride_; } CUTLASS_HOST_DEVICE Matrix layout_id() const { return layout_id_; } /// Returns the stride of the layout CUTLASS_HOST_DEVICE Stride & stride() { return stride_; } CUTLASS_HOST_DEVICE Matrix & layout_id() { return layout_id_; } /// Returns the stride of the layout CUTLASS_HOST_DEVICE typename Stride::Index stride(int idx) const { return stride_[idx]; } /// Returns the stride of the layout CUTLASS_HOST_DEVICE typename Stride::Index & stride(int idx) { return stride_[idx]; } /// Compute the number of contiguous elements needed to store a tensor with the given size CUTLASS_HOST_DEVICE LongIndex capacity(MatrixCoord const &extent) const { Index s; if (layout_id_ == Matrix::kRowMajor) { s = extent.row(); } else { s = extent.column(); } Index v = Index((s + stride_[1] - 1) / stride_[1]); return LongIndex(v) * LongIndex(stride_[0]); } }; ///////////////////////////////////////////////////////////////////////////////////////////////// /// Defines transposes of matrix layouts template <typename Layout> struct LayoutTranspose; /// Transpose of row-major is column-major template <> struct LayoutTranspose<layout::RowMajor> { using type = layout::ColumnMajor; }; /// Transpose of column-major is row-major template <> struct LayoutTranspose<layout::ColumnMajor> { using type = layout::RowMajor; }; ///////////////////////////////////////////////////////////////////////////////////////////////// } // namespace layout } // namespace cutlass
include/cutlass/layout/matrix.h/0
{ "file_path": "include/cutlass/layout/matrix.h", "repo_id": "include", "token_count": 11541 }
36
/*************************************************************************************************** * Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. * SPDX-License-Identifier: BSD-3-Clause * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * **************************************************************************************************/ /*! \file \brief Defines layout functions used by TensorRef and derived classes for pitch-linear memory. */ #pragma once #include "cutlass/cutlass.h" #include "cutlass/coord.h" namespace cutlass { ///////////////////////////////////////////////////////////////////////////////////////////////// /// Template defining a shape used by pitch-linear operators template < int Contiguous, int Strided > struct PitchLinearShape { static int const kContiguous = Contiguous; static int const kStrided = Strided; static int const kCount = Contiguous * Strided; }; ///////////////////////////////////////////////////////////////////////////////////////////////// /// Coordinate in pitch-linear space struct PitchLinearCoord : public Coord<2, int> { public: /// Integer-valued index using Index = int; /// Base type is a Coord of rank=2 using Base = Coord<2, Index>; /// Long integer type using LongIndex = typename Base::LongIndex; private: /// Rows dimension static int const kContiguous = 0; /// Columns dimension static int const kStrided = 1; public: // // Methods // /// Default ctor CUTLASS_HOST_DEVICE PitchLinearCoord() { } /// Constructs from Coord<2> CUTLASS_HOST_DEVICE PitchLinearCoord(Coord<2, Index> const &coord): Base(coord) { } /// Helper to construct from a row and column CUTLASS_HOST_DEVICE PitchLinearCoord(Index contiguous_, Index strided_): Base(make_Coord(contiguous_, strided_)) { } /// Helper to construct from a row and column based on LongIndex CUTLASS_HOST_DEVICE PitchLinearCoord(LongIndex contiguous_, LongIndex strided_) : Base(make_Coord(Index(contiguous_), Index(strided_))) { } /// Returns the contiguous dimension CUTLASS_HOST_DEVICE Index const & contiguous() const { return this->at(kContiguous); } /// Returns the contiguous dimension CUTLASS_HOST_DEVICE Index & contiguous() { return this->at(kContiguous); } /// Returns the column of the coordinate CUTLASS_HOST_DEVICE Index const & strided() const { return this->at(kStrided); } /// Returns the column of the coordinate CUTLASS_HOST_DEVICE Index & strided() { return this->at(kStrided); } // // Coord operators // /// Element-wise addition CUTLASS_HOST_DEVICE PitchLinearCoord operator+(Base const& b) const { return PitchLinearCoord(Base::operator+(b)); } /// Element-wise subtraction CUTLASS_HOST_DEVICE PitchLinearCoord operator-(Base const& b) const { return PitchLinearCoord(Base::operator-(b)); } CUTLASS_HOST_DEVICE PitchLinearCoord operator-() const { return PitchLinearCoord(-at(0), -at(1)); } /// Element-wise multiplication CUTLASS_HOST_DEVICE PitchLinearCoord operator*(Base const& b) const { return PitchLinearCoord(Base::operator*(b)); } /// Element-wise division CUTLASS_HOST_DEVICE PitchLinearCoord operator/(Base const& b) const { return PitchLinearCoord(Base::operator/(b)); } /// In-place addition CUTLASS_HOST_DEVICE PitchLinearCoord& operator+=(Base const& b) { Base::operator+=(b); return *this; } /// In-place subtraction CUTLASS_HOST_DEVICE PitchLinearCoord& operator-=(Base const& b) { Base::operator-=(b); return *this; } /// In-place multiplication CUTLASS_HOST_DEVICE PitchLinearCoord& operator*=(Base const& b) { Base::operator*=(b); return *this; } /// In-place division CUTLASS_HOST_DEVICE PitchLinearCoord& operator/=(Base const& b) { Base::operator/=(b); return *this; } }; ///////////////////////////////////////////////////////////////////////////////////////////////// } // namespace cutlass
include/cutlass/pitch_linear_coord.h/0
{ "file_path": "include/cutlass/pitch_linear_coord.h", "repo_id": "include", "token_count": 1639 }
37
/*************************************************************************************************** * Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. * SPDX-License-Identifier: BSD-3-Clause * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * **************************************************************************************************/ /* \file \brief Performs comparison between two elements with support for floating-point comparisons. */ #pragma once #include "numeric_types.h" namespace cutlass { ///////////////////////////////////////////////////////////////////////////////////////////////// template <typename T> CUTLASS_HOST_DEVICE bool relatively_equal(T a, T b, T epsilon, T nonzero_floor); ///////////////////////////////////////////////////////////////////////////////////////////////// namespace detail { // This floating-point comparison function implements the method described in // // https://floating-point-gui.de/errors/comparison/ // template <typename T> CUTLASS_HOST_DEVICE bool relatively_equal_float(T a, T b, T epsilon, T nonzero_floor) { #if defined(__CUDACC_RTC__) using cuda::std::abs; #else using std::abs; #endif T abs_A = abs(a); T abs_B = abs(b); T diff = abs(a - b); T zero = T(0); if (a == b) { return true; } else if (a == zero || b == zero || diff < nonzero_floor) { return diff < epsilon * nonzero_floor; } return diff < epsilon * (abs_A + abs_B); } } // namespace detail ///////////////////////////////////////////////////////////////////////////////////////////////// template <> CUTLASS_HOST_DEVICE bool relatively_equal<bool>(bool a, bool b, bool, bool) { return (a == b); } template <> CUTLASS_HOST_DEVICE bool relatively_equal<uint1b_t>(uint1b_t a, uint1b_t b, uint1b_t, uint1b_t) { return (a == b); } template <> CUTLASS_HOST_DEVICE bool relatively_equal<int2b_t>(int2b_t a, int2b_t b, int2b_t, int2b_t) { return (a == b); } template <> CUTLASS_HOST_DEVICE bool relatively_equal<uint2b_t>(uint2b_t a, uint2b_t b, uint2b_t, uint2b_t) { return (a == b); } template <> CUTLASS_HOST_DEVICE bool relatively_equal<int4b_t>(int4b_t a, int4b_t b, int4b_t, int4b_t) { return (a == b); } template <> CUTLASS_HOST_DEVICE bool relatively_equal<uint4b_t>(uint4b_t a, uint4b_t b, uint4b_t, uint4b_t) { return (a == b); } template <> CUTLASS_HOST_DEVICE bool relatively_equal<int8_t>(int8_t a, int8_t b, int8_t, int8_t) { return (a == b); } template <> CUTLASS_HOST_DEVICE bool relatively_equal<uint8_t>(uint8_t a, uint8_t b, uint8_t, uint8_t) { return (a == b); } template <> CUTLASS_HOST_DEVICE bool relatively_equal<int16_t>(int16_t a, int16_t b, int16_t, int16_t) { return (a == b); } template <> CUTLASS_HOST_DEVICE bool relatively_equal<uint16_t>(uint16_t a, uint16_t b, uint16_t, uint16_t) { return (a == b); } template <> CUTLASS_HOST_DEVICE bool relatively_equal<int32_t>(int32_t a, int32_t b, int32_t, int32_t) { return (a == b); } template <> CUTLASS_HOST_DEVICE bool relatively_equal<uint32_t>(uint32_t a, uint32_t b, uint32_t, uint32_t) { return (a == b); } template <> CUTLASS_HOST_DEVICE bool relatively_equal<int64_t>(int64_t a, int64_t b, int64_t, int64_t) { return (a == b); } template <> CUTLASS_HOST_DEVICE bool relatively_equal<uint64_t>(uint64_t a, uint64_t b, uint64_t, uint64_t) { return (a == b); } ///////////////////////////////////////////////////////////////////////////////////////////////// template <> CUTLASS_HOST_DEVICE bool relatively_equal<float_e4m3_t>(float_e4m3_t a, float_e4m3_t b, float_e4m3_t epsilon, float_e4m3_t nonzero_floor) { return detail::relatively_equal_float<float>(a, b, epsilon, nonzero_floor); } template <> CUTLASS_HOST_DEVICE bool relatively_equal<float_e5m2_t>(float_e5m2_t a, float_e5m2_t b, float_e5m2_t epsilon, float_e5m2_t nonzero_floor) { return detail::relatively_equal_float<float>(a, b, epsilon, nonzero_floor); } template <> CUTLASS_HOST_DEVICE bool relatively_equal<half_t>(half_t a, half_t b, half_t epsilon, half_t nonzero_floor) { return detail::relatively_equal_float(a, b, epsilon, nonzero_floor); } template <> CUTLASS_HOST_DEVICE bool relatively_equal<bfloat16_t>( bfloat16_t a, bfloat16_t b, bfloat16_t epsilon, bfloat16_t nonzero_floor) { return detail::relatively_equal_float(a, b, epsilon, nonzero_floor); } template <> CUTLASS_HOST_DEVICE bool relatively_equal<tfloat32_t>( tfloat32_t a, tfloat32_t b, tfloat32_t epsilon, tfloat32_t nonzero_floor) { return detail::relatively_equal_float(a, b, epsilon, nonzero_floor); } template <> CUTLASS_HOST_DEVICE bool relatively_equal<float>(float a, float b, float epsilon, float nonzero_floor) { return detail::relatively_equal_float(a, b, epsilon, nonzero_floor); } template <> CUTLASS_HOST_DEVICE bool relatively_equal<double>(double a, double b, double epsilon, double nonzero_floor) { return detail::relatively_equal_float(a, b, epsilon, nonzero_floor); } ///////////////////////////////////////////////////////////////////////////////////////////////// } // namespace cutlass
include/cutlass/relatively_equal.h/0
{ "file_path": "include/cutlass/relatively_equal.h", "repo_id": "include", "token_count": 2329 }
38
/*************************************************************************************************** * Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. * SPDX-License-Identifier: BSD-3-Clause * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * **************************************************************************************************/ /*! \file \brief Ell iterator for Blocked-Ell matrix (ellValue matrix) used with EllMmaMultistage */ #pragma once #include "cutlass/array.h" #include "cutlass/coord.h" #include "cutlass/cutlass.h" #include "cutlass/layout/matrix.h" #include "cutlass/layout/pitch_linear.h" #include "cutlass/matrix_shape.h" #include "cutlass/predicate_vector.h" #include "cutlass/tensor_ref.h" #include "cutlass/tensor_view.h" //////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////// namespace cutlass { namespace transform { namespace threadblock { //////////////////////////////////////////////////////////////////////////////// /// EllPredicatedTileAccessIterator /// template <typename Shape, typename Element, typename Layout, int AdvanceRank, typename ThreadMap, typename AccessType> class EllPredicatedTileAccessIterator; //////////////////////////////////////////////////////////////////////////////// /// Specialization of EllPredicatedTileAccessIterator for pitch-linear data. /// template <typename Shape_, typename Element_, int AdvanceRank, typename ThreadMap_, typename AccessType_> class EllPredicatedTileAccessIterator<Shape_, Element_, layout::PitchLinear, AdvanceRank, ThreadMap_, AccessType_> { public: static_assert( AdvanceRank == 0 || AdvanceRank == 1, "Specialization for pitch-linear iterator may along advance along the " "contiguous(rank=0) or strided(rank=1) dimension."); using Shape = Shape_; using Element = Element_; using Layout = layout::PitchLinear; static int const kAdvanceRank = AdvanceRank; using ThreadMap = ThreadMap_; using AccessType = AccessType_; using Index = typename Layout::Index; using LongIndex = typename Layout::LongIndex; using TensorRef = TensorRef<Element, Layout>; using TensorView = TensorView<Element, Layout>; using TensorCoord = typename Layout::TensorCoord; using Pointer = Element *; using NonConstPointer = typename platform::remove_const<Element>::type *; static int const kAccessesPerVector = ThreadMap::kElementsPerAccess / AccessType::kElements; static_assert(!(ThreadMap::kElementsPerAccess % AccessType::kElements), "Vectors implied by the thread map must be divisible by the access type."); static int const kPredicatesPerByte = 4; static int const kPredicatesPerWord = 4 * kPredicatesPerByte; static int const kPredicateCount = ThreadMap::Iterations::kCount * kAccessesPerVector; /// Number of 32b words containing predicates static int const kPredicateByteCount = (kPredicateCount + kPredicatesPerByte - 1) / kPredicatesPerByte; static int const kPredicateWordCount = (kPredicateByteCount + 3) / 4; static unsigned const kPredicateMask = (1u << kPredicatesPerByte) - 1u; static_assert(kPredicateWordCount <= 4, "Too many predicates."); /// Predicate vector stores mask to guard accesses using Mask = Array<uint32_t, kPredicateWordCount>; /// Parameters object is precomputed state and is host-constructible class Params { public: friend EllPredicatedTileAccessIterator; private: /// stride of pitch-linear layout (units of Element) LongIndex stride_; /// amount (in byte) to increment pointer to move to next access along /// strided dimension LongIndex inc_strided_; /// amount (in byte) to increment pointer from last access to first access /// of next tile LongIndex inc_next_; /// amount (in byte) to increment pointer from first access of current tile /// to first access of next tile LongIndex inc_advance_; public: // Default ctor CUTLASS_HOST_DEVICE Params(): stride_(0), inc_strided_(0), inc_next_(0), inc_advance_(0) { } /// Construct the Params object given a pitch-linear tensor's layout CUTLASS_HOST_DEVICE Params(Layout const &layout) : stride_(layout.stride(0)) { inc_strided_ = (LongIndex(stride_) * ThreadMap::Delta::kStrided) * sizeof_bits<Element>::value / 8; if (kAdvanceRank) { // advance along strided dimension inc_advance_ = Shape::kStrided * LongIndex(stride_) * sizeof_bits<Element>::value / 8; } else { // advance along contiguous dimension inc_advance_ = Shape::kContiguous * sizeof_bits<Element>::value / 8; } inc_next_ = inc_advance_ - LongIndex(ThreadMap::Iterations::kStrided - 1) * ThreadMap::Delta::kStrided * LongIndex(stride_) * sizeof_bits<Element>::value / 8; }; }; private: /// Internal pointer type permits fast address arithmetic using BytePointer = char *; private: // // Data members // /// Parameters object with precomputed internal state Params const &params_; /// Internal pointer to first access of tile BytePointer pointer_; /// Guard predicates uint32_t predicates_[kPredicateWordCount]; /// Size of tensor TensorCoord extent_; /// Initial offset for each thread TensorCoord thread_offset_; /// Offset to the first steady-state tile TensorCoord residue_offset_; /// Initial offset to define ELL block TensorCoord ell_offset_; /// Used for out-of-order visitation bool is_residue_tile_; /// Iteration along vectors implied by the thread map int iteration_vector_; /// Iteration in the contiguous dimension int iteration_contiguous_; /// Iteration in the strided dimension int iteration_strided_; public: /// Computes predicates based on internally tracked per-thread offset. CUTLASS_DEVICE void compute_predicates_( /// Extent of the matrix window TensorCoord extent, /// optionally, simplify predicate calculation during 'steady state' phase bool is_steady_state = false) { CUTLASS_PRAGMA_UNROLL for (int i = 0; i < kPredicateWordCount; ++i) { predicates_[i] = 0u; } CUTLASS_PRAGMA_UNROLL for (int access_idx = 0; access_idx < ThreadMap::Iterations::kCount * kAccessesPerVector; ++access_idx) { int s = access_idx / (ThreadMap::Iterations::kContiguous * kAccessesPerVector); int access_residual = access_idx % (ThreadMap::Iterations::kContiguous * kAccessesPerVector); int c = access_residual / kAccessesPerVector; int v = access_residual % kAccessesPerVector; TensorCoord iteration_coord(c * ThreadMap::Delta::kContiguous + v * AccessType::kElements, s * ThreadMap::Delta::kStrided); TensorCoord coord = thread_offset_ + iteration_coord; bool guard; if (is_steady_state) { if (kAdvanceRank == 0) { guard = (coord.strided() < extent.strided()); } else { guard = (coord.contiguous() < extent.contiguous()); } } else { guard = (coord.strided() < extent.strided() && coord.contiguous() < extent.contiguous()); } int pred_idx = v + kAccessesPerVector * (c + ThreadMap::Iterations::kContiguous * s); int word_idx = pred_idx / kPredicatesPerWord; int residual = pred_idx % kPredicatesPerWord; int byte_idx = residual / kPredicatesPerByte; int bit_idx = residual % kPredicatesPerByte; predicates_[word_idx] |= (unsigned(guard) << (byte_idx * 8 + bit_idx)); } } public: /// Constructs a TileIterator from its precomputed state, threadblock offset, /// and thread ID CUTLASS_HOST_DEVICE EllPredicatedTileAccessIterator( /// Precomputed parameters object Params const &params, /// Pointer to start of tensor Pointer pointer, /// Extent of tensor TensorCoord extent, /// ID of each participating thread int thread_id, /// Initial offset of threadblock TensorCoord const &threadblock_offset) : params_(params), pointer_(reinterpret_cast<BytePointer>( const_cast<NonConstPointer>(pointer))), extent_(extent), is_residue_tile_(true) { TensorCoord residue_extent; if (kAdvanceRank) { typename TensorCoord::Index residue_size = (extent_[kAdvanceRank] - threadblock_offset.strided()) % Shape::kStrided; if (!residue_size) { residue_size = Shape::kStrided; } residue_offset_ = make_Coord(0, residue_size); residue_extent = make_Coord( extent_.contiguous(), min(threadblock_offset.strided() + residue_size, extent_.strided()) ); } else { typename TensorCoord::Index residue_size = (extent_[kAdvanceRank] - threadblock_offset.contiguous()) % Shape::kContiguous; if (!residue_size) { residue_size = Shape::kContiguous; } residue_offset_ = make_Coord(residue_size, 0); residue_extent = make_Coord( min(extent_.contiguous(), threadblock_offset.contiguous() + residue_size), extent_.strided() ); } // Per-thread offset in logical coordinates of tensor ell_offset_ = ThreadMap::initial_offset(thread_id); thread_offset_ = threadblock_offset + ThreadMap::initial_offset(thread_id); // update internal pointers Layout layout(params_.stride_); add_pointer_offset(layout(thread_offset_)); compute_predicates_(residue_extent, false); set_iteration_index(0); } /// Construct a EllPredicatedTileAccessIterator with zero threadblock offset CUTLASS_HOST_DEVICE EllPredicatedTileAccessIterator( /// Precomputed parameters object Params const &params, /// Pointer to start of tensor Pointer pointer, /// Extent of tensor TensorCoord extent, ///< ID of each participating thread int thread_id) : EllPredicatedTileAccessIterator(params, pointer, extent, thread_id, make_Coord(0, 0)) {} /// Overrides the internal iteration index CUTLASS_HOST_DEVICE void set_iteration_index(int index) { iteration_vector_ = index % kAccessesPerVector; int residual_access = index / kAccessesPerVector; iteration_contiguous_ = residual_access % ThreadMap::Iterations::kContiguous; iteration_strided_ = residual_access / ThreadMap::Iterations::kContiguous; } /// Adds a pointer offset in units of Element CUTLASS_HOST_DEVICE void add_pointer_offset(LongIndex pointer_offset) { pointer_ += sizeof_bits<Element>::value * pointer_offset / 8; } /// Advances an iterator along logical dimensions of matrix in units of whole tiles CUTLASS_DEVICE void add_tile_offset( TensorCoord const &tile_offset) { if (is_residue_tile_) { thread_offset_ += residue_offset_; Layout layout(params_.stride_); add_pointer_offset(layout(residue_offset_)); compute_predicates_(extent_, true); if (kAdvanceRank) { pointer_ += params_.inc_advance_ * LongIndex(tile_offset.strided() - 1); pointer_ += Shape::kContiguous * tile_offset.contiguous(); } else { pointer_ += params_.inc_advance_ * LongIndex(tile_offset.contiguous() - 1); pointer_ += Shape::kStrided * tile_offset.strided(); } } else { if (kAdvanceRank) { pointer_ += params_.inc_advance_ * LongIndex(tile_offset.strided()); pointer_ += Shape::kContiguous * tile_offset.contiguous(); } else { pointer_ += params_.inc_advance_ * LongIndex(tile_offset.contiguous()); pointer_ += Shape::kStrided * tile_offset.strided(); } } is_residue_tile_ = false; } /// Returns a pointer CUTLASS_HOST_DEVICE AccessType *get() const { return reinterpret_cast<AccessType *>( pointer_ + iteration_contiguous_ * (ThreadMap::Delta::kContiguous * sizeof_bits<Element>::value) / 8) + iteration_vector_; } /// Returns a k_location CUTLASS_HOST_DEVICE int get_k() const { if(kAdvanceRank){ //strided return ell_offset_.strided() + iteration_strided_ * ThreadMap::Delta::kStrided; }else{ return ell_offset_.contiguous() + iteration_contiguous_ * ThreadMap::Delta::kContiguous + iteration_vector_ * AccessType::kElements; } } CUTLASS_HOST_DEVICE int get_stride() const { if(kAdvanceRank) return params_.stride_; else return 1; } /// Increment and return an instance to self. CUTLASS_HOST_DEVICE EllPredicatedTileAccessIterator &operator++() { ++iteration_vector_; if (iteration_vector_ < kAccessesPerVector) { return *this; } iteration_vector_ = 0; ++iteration_contiguous_; if (iteration_contiguous_ < ThreadMap::Iterations::kContiguous) { return *this; } // Enter here only if (iteration_contiguous_ == // ThreadMap::Iteration::kContiguous) iteration_contiguous_ = 0; ++iteration_strided_; if (iteration_strided_ < ThreadMap::Iterations::kStrided) { pointer_ += params_.inc_strided_; return *this; } // Enter here only if (iteration_stride_ == ThreadMap::Iteration::kStrided) // which means we enter the next tile. iteration_strided_ = 0; // advance to next tile pointer_ += params_.inc_next_; // now return to start tile - if the iterator is subsequently advanced, this // subtraction as well as the subsequent integer addition are both elided by // the compiler. pointer_ -= params_.inc_advance_; return *this; } /// Increment and return an instance to self. CUTLASS_HOST_DEVICE EllPredicatedTileAccessIterator operator++(int) { EllPredicatedTileAccessIterator self(*this); operator++(); return self; } /// Clears the predicate set efficiently CUTLASS_HOST_DEVICE void clear_mask(bool enable = true) { CUTLASS_PRAGMA_UNROLL for (int i = 0; i < kPredicateWordCount; ++i) { predicates_[i] = enable ? 0u : predicates_[i]; } } /// Clears the predicate set efficiently CUTLASS_HOST_DEVICE void enable_mask() { CUTLASS_PRAGMA_UNROLL for (int i = 0; i < kPredicateWordCount; ++i) { predicates_[i] = 0xffffffff; } } /// Sets the predicate mask, overriding value stored in predicate iterator CUTLASS_HOST_DEVICE void set_mask(Mask const &mask) { CUTLASS_PRAGMA_UNROLL for (int i = 0; i < kPredicateWordCount; ++i) { predicates_[i] = mask[i]; } } /// Gets the mask CUTLASS_HOST_DEVICE void get_mask(Mask &mask) { CUTLASS_PRAGMA_UNROLL for (int i = 0; i < kPredicateWordCount; ++i) { mask[i] = predicates_[i]; } } /// add mask for small tiles in ELL CUTLASS_DEVICE void ell_add_mask(int blocksize) { Mask mask; CUTLASS_PRAGMA_UNROLL for (int i = 0; i < kPredicateWordCount; ++i) { mask[i] = 0u; } CUTLASS_PRAGMA_UNROLL for (int access_idx = 0; access_idx < ThreadMap::Iterations::kCount * kAccessesPerVector; ++access_idx) { int s = access_idx / (ThreadMap::Iterations::kContiguous * kAccessesPerVector); int access_residual = access_idx % (ThreadMap::Iterations::kContiguous * kAccessesPerVector); int c = access_residual / kAccessesPerVector; int v = access_residual % kAccessesPerVector; TensorCoord iteration_coord(c * ThreadMap::Delta::kContiguous + v * AccessType::kElements, s * ThreadMap::Delta::kStrided); TensorCoord coord = ell_offset_ + iteration_coord; bool guard; if (kAdvanceRank == 0) { guard = (coord.strided() < blocksize); } else { guard = (coord.contiguous() < blocksize); } int pred_idx = v + kAccessesPerVector * (c + ThreadMap::Iterations::kContiguous * s); int word_idx = pred_idx / kPredicatesPerWord; int residual = pred_idx % kPredicatesPerWord; int byte_idx = residual / kPredicatesPerByte; int bit_idx = residual % kPredicatesPerByte; mask[word_idx] |= (unsigned(guard) << (byte_idx * 8 + bit_idx)); } CUTLASS_PRAGMA_UNROLL for (int i = 0; i < kPredicateWordCount; ++i) { mask[i] &= predicates_[i]; } set_mask(mask); } /// Returns whether access is valid or not CUTLASS_HOST_DEVICE bool valid() { int pred_idx = iteration_vector_ + kAccessesPerVector * (iteration_contiguous_ + iteration_strided_ * ThreadMap::Iterations::kContiguous); int word_idx = pred_idx / kPredicatesPerWord; int residual = pred_idx % kPredicatesPerWord; int byte_idx = residual / kPredicatesPerByte; int bit_idx = residual % kPredicatesPerByte; bool pred = (predicates_[word_idx] & (1u << (byte_idx * 8 + bit_idx))) != 0; return pred; } }; //////////////////////////////////////////////////////////////////////////////// /// Specialization of EllPredicatedTileAccessIterator for pitch-linear data. /// /// Satisfies: ForwardTileIteratorConcept | /// ReadableContiguousTileIteratorConcept | /// WriteableContiguousTileIteratorConcept | /// MaskedTileIteratorConcept /// template <typename Shape_, typename Element_, int AdvanceRank, typename ThreadMap_, typename AccessType_> class EllPredicatedTileAccessIterator<Shape_, Element_, layout::ColumnMajor, AdvanceRank, ThreadMap_, AccessType_> { public: static_assert( AdvanceRank == 0 || AdvanceRank == 1, "Specialization for pitch-linear iterator may along advance along the " "contiguous(rank=0) or strided(rank=1) dimension."); using Shape = Shape_; using Element = Element_; using Layout = layout::ColumnMajor; static int const kAdvanceRank = AdvanceRank; using ThreadMap = ThreadMap_; using AccessType = AccessType_; using Index = typename Layout::Index; using LongIndex = typename Layout::LongIndex; using TensorRef = TensorRef<Element, Layout>; using TensorView = TensorView<Element, Layout>; using TensorCoord = typename Layout::TensorCoord; using Pointer = Element *; using NonConstPointer = typename platform::remove_const<Element>::type *; using UnderlyingIterator = EllPredicatedTileAccessIterator< layout::PitchLinearShape<Shape::kRow, Shape::kColumn>, Element, layout::PitchLinear, (kAdvanceRank == 0 ? 0 : 1), ThreadMap, AccessType>; /// Predicate vector stores mask to guard accesses using Mask = typename UnderlyingIterator::Mask; static int const kAccessesPerVector = UnderlyingIterator::kAccessesPerVector; /// Parameters object is precomputed state and is host-constructible class Params { private: friend EllPredicatedTileAccessIterator; /// Parameters object typename UnderlyingIterator::Params params_; public: /// Default ctor CUTLASS_HOST_DEVICE Params() { } /// Construct the Params object given a pitch-linear tensor's layout CUTLASS_HOST_DEVICE Params(Layout const &layout) : params_(layout::PitchLinear(layout.stride(0))){}; }; private: // // Data members // /// Underlying pitch-linear tile iterator UnderlyingIterator iterator_; public: /// Constructs a TileIterator from its precomputed state, threadblock offset, /// and thread ID CUTLASS_HOST_DEVICE EllPredicatedTileAccessIterator( ///< Precomputed parameters object Params const &params, ///< Pointer to start of tensor Pointer pointer, ///< Extent of tensor TensorCoord extent, ///< ID of each participating thread int thread_id, ///< Initial offset of threadblock TensorCoord const &threadblock_offset) : iterator_(params.params_, pointer, layout::PitchLinearCoord(extent.row(), extent.column()), thread_id, layout::PitchLinearCoord(threadblock_offset.row(), threadblock_offset.column())) {} /// Construct a EllPredicatedTileAccessIterator with zero threadblock offset CUTLASS_HOST_DEVICE EllPredicatedTileAccessIterator( Params const &params, ///< Precomputed parameters object Pointer pointer, ///< Pointer to start of tensor TensorCoord extent, ///< Extent of tensor int thread_id ///< ID of each participating thread ) : EllPredicatedTileAccessIterator(params, pointer, extent, thread_id, make_Coord(0, 0)) {} /// Overrides the internal iteration index CUTLASS_HOST_DEVICE void set_iteration_index(int index) { iterator_.set_iteration_index(index); } /// Adds a pointer offset in units of Element CUTLASS_HOST_DEVICE void add_pointer_offset(LongIndex pointer_offset) { iterator_.add_pointer_offset(pointer_offset); } /// Advances an iterator along logical dimensions of matrix in units of whole /// tiles CUTLASS_HOST_DEVICE void add_tile_offset(TensorCoord const &tile_offset) { iterator_.add_tile_offset({tile_offset.row(), tile_offset.column()}); } /// Returns a pointer CUTLASS_HOST_DEVICE AccessType *get() const { return reinterpret_cast<AccessType *>(iterator_.get()); } CUTLASS_HOST_DEVICE int get_k() const { return iterator_.get_k(); } CUTLASS_HOST_DEVICE int get_stride() const { return iterator_.get_stride(); } /// Advances to the next tile in memory. /// /// The first time this method is called, predicates are updated, and the /// iterator's internal pointer is reverted to the first "steady state" tile. /// Subsequent calls are lightweight and must only update the internal /// pointer. CUTLASS_HOST_DEVICE EllPredicatedTileAccessIterator &operator++() { ++iterator_; return *this; } /// Advances to the next tile in memory. /// /// The first time this method is called, predicates are updated, and the /// iterator's internal pointer is reverted to the first "steady state" tile. /// Subsequent calls are lightweight and must only update the internal /// pointer. CUTLASS_HOST_DEVICE EllPredicatedTileAccessIterator operator++(int) { EllPredicatedTileAccessIterator self(*this); operator++(); return self; } /// Clears the predicate set efficiently CUTLASS_HOST_DEVICE void clear_mask(bool enable = true) { iterator_.clear_mask(enable); } /// Clears the predicate set efficiently CUTLASS_HOST_DEVICE void enable_mask() { iterator_.enable_mask(); } /// Sets the predicate mask, overriding value stored in predicate iterator CUTLASS_HOST_DEVICE void set_mask(Mask const &mask) { iterator_.set_mask(mask); } /// Gets the mask CUTLASS_HOST_DEVICE void get_mask(Mask &mask) { iterator_.get_mask(mask); } /// add mask for small tiles in ELL CUTLASS_DEVICE void ell_add_mask(int blocksize) { iterator_.ell_add_mask(blocksize); } /// Returns whether access is valid or not CUTLASS_HOST_DEVICE bool valid() { return iterator_.valid(); } }; //////////////////////////////////////////////////////////////////////////////// /// Specialization of EllPredicatedTileAccessIterator for pitch-linear data. /// /// Satisfies: ForwardTileIteratorConcept | /// ReadableContiguousTileIteratorConcept | /// WriteableContiguousTileIteratorConcept | /// MaskedTileIteratorConcept /// template <typename Shape_, typename Element_, int AdvanceRank, typename ThreadMap_, typename AccessType_> class EllPredicatedTileAccessIterator<Shape_, Element_, layout::RowMajor, AdvanceRank, ThreadMap_, AccessType_> { public: static_assert( AdvanceRank == 0 || AdvanceRank == 1, "Specialization for pitch-linear iterator may along advance along the " "contiguous(rank=0) or strided(rank=1) dimension."); using Shape = Shape_; using Element = Element_; using Layout = layout::RowMajor; static int const kAdvanceRank = AdvanceRank; using ThreadMap = ThreadMap_; using AccessType = AccessType_; using Index = typename Layout::Index; using LongIndex = typename Layout::LongIndex; using TensorRef = TensorRef<Element, Layout>; using TensorView = TensorView<Element, Layout>; using TensorCoord = typename Layout::TensorCoord; using Pointer = Element *; using NonConstPointer = typename platform::remove_const<Element>::type *; using UnderlyingIterator = EllPredicatedTileAccessIterator< layout::PitchLinearShape<Shape::kColumn, Shape::kRow>, Element, layout::PitchLinear, (kAdvanceRank == 0 ? 1 : 0), ThreadMap, AccessType>; static int const kAccessesPerVector = UnderlyingIterator::kAccessesPerVector; /// Predicate vector stores mask to guard accesses using Mask = typename UnderlyingIterator::Mask; /// Parameters object is precomputed state and is host-constructible class Params { private: friend EllPredicatedTileAccessIterator; /// Parameters object typename UnderlyingIterator::Params params_; public: /// Default ctor CUTLASS_HOST_DEVICE Params() { } /// Construct the Params object given a pitch-linear tensor's layout CUTLASS_HOST_DEVICE Params(Layout const &layout) : params_(layout::PitchLinear(layout.stride(0))){}; }; private: // // Data members // /// Underlying pitch-linear tile iterator UnderlyingIterator iterator_; public: /// Constructs a TileIterator from its precomputed state, threadblock offset, /// and thread ID CUTLASS_HOST_DEVICE EllPredicatedTileAccessIterator( ///< Precomputed parameters object Params const &params, ///< Pointer to start of tensor Pointer pointer, ///< Extent of tensor TensorCoord extent, ///< ID of each participating thread int thread_id, ///< Initial offset of threadblock TensorCoord const &threadblock_offset) : iterator_(params.params_, pointer, layout::PitchLinearCoord(extent.column(), extent.row()), thread_id, layout::PitchLinearCoord(threadblock_offset.column(), threadblock_offset.row())) {} /// Construct a EllPredicatedTileAccessIterator with zero threadblock offset CUTLASS_HOST_DEVICE EllPredicatedTileAccessIterator( Params const &params, ///< Precomputed parameters object Pointer pointer, ///< Pointer to start of tensor TensorCoord extent, ///< Extent of tensor int thread_id ///< ID of each participating thread ) : EllPredicatedTileAccessIterator(params, pointer, extent, thread_id, make_Coord(0, 0)) {} /// Overrides the internal iteration index CUTLASS_HOST_DEVICE void set_iteration_index(int index) { iterator_.set_iteration_index(index); } /// Adds a pointer offset in units of Element CUTLASS_HOST_DEVICE void add_pointer_offset(LongIndex pointer_offset) { iterator_.add_pointer_offset(pointer_offset); } /// Advances an iterator along logical dimensions of matrix in units of whole /// tiles CUTLASS_HOST_DEVICE void add_tile_offset(TensorCoord const &tile_offset) { iterator_.add_tile_offset({tile_offset.column(), tile_offset.row()}); } /// Returns a pointer CUTLASS_HOST_DEVICE AccessType *get() const { return reinterpret_cast<AccessType *>(iterator_.get()); } CUTLASS_HOST_DEVICE int get_k() const { return iterator_.get_k(); } CUTLASS_HOST_DEVICE int get_stride() const { return iterator_.get_stride(); } /// Advances to the next tile in memory. /// /// The first time this method is called, predicates are updated, and the /// iterator's internal pointer is reverted to the first "steady state" tile. /// Subsequent calls are lightweight and must only update the internal /// pointer. CUTLASS_HOST_DEVICE EllPredicatedTileAccessIterator &operator++() { ++iterator_; return *this; } /// Advances to the next tile in memory. /// /// The first time this method is called, predicates are updated, and the /// iterator's internal pointer is reverted to the first "steady state" tile. /// Subsequent calls are lightweight and must only update the internal /// pointer. CUTLASS_HOST_DEVICE EllPredicatedTileAccessIterator operator++(int) { EllPredicatedTileAccessIterator self(*this); operator++(); return self; } /// Clears the predicate set efficiently CUTLASS_HOST_DEVICE void clear_mask(bool enable = true) { iterator_.clear_mask(enable); } /// Clears the predicate set efficiently CUTLASS_HOST_DEVICE void enable_mask() { iterator_.enable_mask(); } /// Sets the predicate mask, overriding value stored in predicate iterator CUTLASS_HOST_DEVICE void set_mask(Mask const &mask) { iterator_.set_mask(mask); } /// Gets the mask CUTLASS_HOST_DEVICE void get_mask(Mask &mask) { iterator_.get_mask(mask); } /// add mask for small tiles in ELL CUTLASS_DEVICE void ell_add_mask(int blocksize) { iterator_.ell_add_mask(blocksize); } /// Returns whether access is valid or not CUTLASS_HOST_DEVICE bool valid() { return iterator_.valid(); } }; //////////////////////////////////////////////////////////////////////////////// /// Specialization of EllPredicatedTileAccessIterator for column-major interleaved data. /// It is mapped to the congruous layout. /// /// Satisfies: ForwardTileIteratorConcept | /// ReadableContiguousTileIteratorConcept | /// WriteableContiguousTileIteratorConcept | /// MaskedTileIteratorConcept /// template <typename Shape_, typename Element_, int AdvanceRank, typename ThreadMap_, typename AccessType_, int InterleavedK> class EllPredicatedTileAccessIterator<Shape_, Element_, layout::ColumnMajorInterleaved<InterleavedK>, AdvanceRank, ThreadMap_, AccessType_> { public: static_assert( AdvanceRank == 0 || AdvanceRank == 1, "Specialization for pitch-linear iterator may along advance along the " "contiguous(rank=0) or strided(rank=1) dimension."); using Shape = Shape_; using Element = Element_; static int const kInterleavedK = InterleavedK; using Layout = layout::ColumnMajorInterleaved<kInterleavedK>; static int const kAdvanceRank = AdvanceRank; using ThreadMap = ThreadMap_; using AccessType = AccessType_; using Index = typename Layout::Index; using LongIndex = typename Layout::LongIndex; using TensorRef = TensorRef<Element, Layout>; using TensorView = TensorView<Element, Layout>; using TensorCoord = typename Layout::TensorCoord; using Pointer = Element *; using NonConstPointer = typename platform::remove_const<Element>::type *; using UnderlyingIterator = EllPredicatedTileAccessIterator< layout::PitchLinearShape<Shape::kRow * kInterleavedK, Shape::kColumn / kInterleavedK>, Element, layout::PitchLinear, (kAdvanceRank == 0 ? 0 : 1), ThreadMap, AccessType>; static int const kAccessesPerVector = UnderlyingIterator::kAccessesPerVector; /// Predicate vector stores mask to guard accesses using Mask = typename UnderlyingIterator::Mask; /// Parameters object is precomputed state and is host-constructible class Params { private: friend EllPredicatedTileAccessIterator; /// Parameters object typename UnderlyingIterator::Params params_; public: CUTLASS_HOST_DEVICE Params() {} /// Construct the Params object given a pitch-linear tensor's layout CUTLASS_HOST_DEVICE Params(Layout const &layout) : params_(layout::PitchLinear(layout.stride(0))) {} }; private: // // Data members // /// Underlying pitch-linear tile iterator UnderlyingIterator iterator_; public: /// Constructs a TileIterator from its precomputed state, threadblock offset, /// and thread ID CUTLASS_HOST_DEVICE EllPredicatedTileAccessIterator( /// Precomputed parameters object Params const &params, /// Pointer to start of tensor Pointer pointer, /// Extent of tensor TensorCoord extent, /// ID of each participating thread int thread_id, /// Initial offset of threadblock TensorCoord const &threadblock_offset) : iterator_(params.params_, pointer, layout::PitchLinearCoord(extent.row() * kInterleavedK, extent.column() / kInterleavedK), thread_id, layout::PitchLinearCoord( threadblock_offset.row() * kInterleavedK, threadblock_offset.column() / kInterleavedK)) {} /// Construct a EllPredicatedTileAccessIterator with zero threadblock offset CUTLASS_HOST_DEVICE EllPredicatedTileAccessIterator( Params const &params, ///< Precomputed parameters object Pointer pointer, ///< Pointer to start of tensor TensorCoord extent, ///< Extent of tensor int thread_id ///< ID of each participating thread ) : EllPredicatedTileAccessIterator(params, pointer, extent, thread_id, make_Coord(0, 0)) {} /// Overrides the internal iteration index CUTLASS_HOST_DEVICE void set_iteration_index(int index) { iterator_.set_iteration_index(index); } /// Adds a pointer offset in units of Element CUTLASS_HOST_DEVICE void add_pointer_offset(LongIndex pointer_offset) { iterator_.add_pointer_offset(pointer_offset); } /// Advances an iterator along logical dimensions of matrix in units of whole /// tiles CUTLASS_HOST_DEVICE void add_tile_offset(TensorCoord const &tile_offset) { iterator_.add_tile_offset({tile_offset.row(), tile_offset.column()}); } /// Returns a pointer CUTLASS_HOST_DEVICE AccessType *get() const { return reinterpret_cast<AccessType *>(iterator_.get()); } CUTLASS_HOST_DEVICE int get_k() const { return iterator_.get_k(); } CUTLASS_HOST_DEVICE int get_stride() const { return iterator_.get_stride(); } /// Advances to the next tile in memory. /// /// The first time this method is called, predicates are updated, and the /// iterator's internal pointer is reverted to the first "steady state" tile. /// Subsequent calls are lightweight and must only update the internal /// pointer. CUTLASS_HOST_DEVICE EllPredicatedTileAccessIterator &operator++() { ++iterator_; return *this; } /// Advances to the next tile in memory. /// /// The first time this method is called, predicates are updated, and the /// iterator's internal pointer is reverted to the first "steady state" tile. /// Subsequent calls are lightweight and must only update the internal /// pointer. CUTLASS_HOST_DEVICE EllPredicatedTileAccessIterator operator++(int) { EllPredicatedTileAccessIterator self(*this); operator++(); return self; } /// Clears the predicate set efficiently CUTLASS_HOST_DEVICE void clear_mask(bool enable = true) { iterator_.clear_mask(enable); } /// Clears the predicate set efficiently CUTLASS_HOST_DEVICE void enable_mask() { iterator_.enable_mask(); } /// Sets the predicate mask, overriding value stored in predicate iterator CUTLASS_HOST_DEVICE void set_mask(Mask const &mask) { iterator_.set_mask(mask); } /// Gets the mask CUTLASS_HOST_DEVICE void get_mask(Mask &mask) { iterator_.get_mask(mask); } /// add mask for small tiles in ELL CUTLASS_DEVICE void ell_add_mask(int blocksize) { iterator_.ell_add_mask(blocksize); } /// Returns whether access is valid or not CUTLASS_HOST_DEVICE bool valid() { return iterator_.valid(); } }; //////////////////////////////////////////////////////////////////////////////// /// Specialization of EllPredicatedTileAccessIterator for row-major interleaved data. /// It is mapped to the congruous layout. /// /// Satisfies: ForwardTileIteratorConcept | /// ReadableContiguousTileIteratorConcept | /// WriteableContiguousTileIteratorConcept | /// MaskedTileIteratorConcept /// template <typename Shape_, typename Element_, int AdvanceRank, typename ThreadMap_, typename AccessType_, int InterleavedK> class EllPredicatedTileAccessIterator<Shape_, Element_, layout::RowMajorInterleaved<InterleavedK>, AdvanceRank, ThreadMap_, AccessType_> { public: static_assert( AdvanceRank == 0 || AdvanceRank == 1, "Specialization for pitch-linear iterator may along advance along the " "contiguous(rank=0) or strided(rank=1) dimension."); using Shape = Shape_; using Element = Element_; static int const kInterleavedK = InterleavedK; using Layout = layout::RowMajorInterleaved<kInterleavedK>; static int const kAdvanceRank = AdvanceRank; using ThreadMap = ThreadMap_; using AccessType = AccessType_; using Index = typename Layout::Index; using LongIndex = typename Layout::LongIndex; using TensorRef = TensorRef<Element, Layout>; using TensorView = TensorView<Element, Layout>; using TensorCoord = typename Layout::TensorCoord; using Pointer = Element *; using NonConstPointer = typename platform::remove_const<Element>::type *; using UnderlyingIterator = EllPredicatedTileAccessIterator< layout::PitchLinearShape<Shape::kColumn * kInterleavedK, Shape::kRow / kInterleavedK>, Element, layout::PitchLinear, (kAdvanceRank == 0 ? 1 : 0), ThreadMap, AccessType>; static int const kAccessesPerVector = UnderlyingIterator::kAccessesPerVector; /// Predicate vector stores mask to guard accesses using Mask = typename UnderlyingIterator::Mask; /// Parameters object is precomputed state and is host-constructible class Params { private: friend EllPredicatedTileAccessIterator; /// Parameters object typename UnderlyingIterator::Params params_; public: CUTLASS_HOST_DEVICE Params() {} /// Construct the Params object given a pitch-linear tensor's layout CUTLASS_HOST_DEVICE Params(Layout const &layout) : params_(layout::PitchLinear(layout.stride(0))) {} }; private: // // Data members // /// Underlying pitch-linear tile iterator UnderlyingIterator iterator_; public: /// Constructs a TileIterator from its precomputed state, threadblock offset, /// and thread ID CUTLASS_HOST_DEVICE EllPredicatedTileAccessIterator( /// Precomputed parameters object Params const &params, /// Pointer to start of tensor Pointer pointer, /// Extent of tensor TensorCoord extent, /// ID of each participating thread int thread_id, /// Initial offset of threadblock TensorCoord const &threadblock_offset) : iterator_(params.params_, pointer, layout::PitchLinearCoord(extent.column() * kInterleavedK, extent.row() / kInterleavedK), thread_id, layout::PitchLinearCoord( threadblock_offset.column() * kInterleavedK, threadblock_offset.row() / kInterleavedK)) {} /// Construct a EllPredicatedTileAccessIterator with zero threadblock offset CUTLASS_HOST_DEVICE EllPredicatedTileAccessIterator( Params const &params, ///< Precomputed parameters object Pointer pointer, ///< Pointer to start of tensor TensorCoord extent, ///< Extent of tensor int thread_id ///< ID of each participating thread ) : EllPredicatedTileAccessIterator(params, pointer, extent, thread_id, make_Coord(0, 0)) {} /// Overrides the internal iteration index CUTLASS_HOST_DEVICE void set_iteration_index(int index) { iterator_.set_iteration_index(index); } /// Adds a pointer offset in units of Element CUTLASS_HOST_DEVICE void add_pointer_offset(LongIndex pointer_offset) { iterator_.add_pointer_offset(pointer_offset); } /// Advances an iterator along logical dimensions of matrix in units of whole /// tiles CUTLASS_HOST_DEVICE void add_tile_offset(TensorCoord const &tile_offset) { iterator_.add_tile_offset({tile_offset.column(), tile_offset.row()}); } /// Returns a pointer CUTLASS_HOST_DEVICE AccessType *get() const { return reinterpret_cast<AccessType *>(iterator_.get()); } CUTLASS_HOST_DEVICE int get_k() const { return iterator_.get_k(); } CUTLASS_HOST_DEVICE int get_stride() const { return iterator_.get_stride(); } /// Advances to the next tile in memory. /// /// The first time this method is called, predicates are updated, and the /// iterator's internal pointer is reverted to the first "steady state" tile. /// Subsequent calls are lightweight and must only update the internal /// pointer. CUTLASS_HOST_DEVICE EllPredicatedTileAccessIterator &operator++() { ++iterator_; return *this; } /// Advances to the next tile in memory. /// /// The first time this method is called, predicates are updated, and the /// iterator's internal pointer is reverted to the first "steady state" tile. /// Subsequent calls are lightweight and must only update the internal /// pointer. CUTLASS_HOST_DEVICE EllPredicatedTileAccessIterator operator++(int) { EllPredicatedTileAccessIterator self(*this); operator++(); return self; } /// Clears the predicate set efficiently CUTLASS_HOST_DEVICE void clear_mask(bool enable = true) { iterator_.clear_mask(enable); } /// Clears the predicate set efficiently CUTLASS_HOST_DEVICE void enable_mask() { iterator_.enable_mask(); } /// Sets the predicate mask, overriding value stored in predicate iterator CUTLASS_HOST_DEVICE void set_mask(Mask const &mask) { iterator_.set_mask(mask); } /// Gets the mask CUTLASS_HOST_DEVICE void get_mask(Mask &mask) { iterator_.get_mask(mask); } /// add mask for small tiles in ELL CUTLASS_DEVICE void ell_add_mask(int blocksize) { iterator_.ell_add_mask(blocksize); } /// Returns whether access is valid or not CUTLASS_HOST_DEVICE bool valid() { return iterator_.valid(); } }; //////////////////////////////////////////////////////////////////////////////// } // namespace threadblock } // namespace transform } // namespace cutlass ////////////////////////////////////////////////////////////////////////////////
include/cutlass/transform/threadblock/ell_predicated_tile_access_iterator.h/0
{ "file_path": "include/cutlass/transform/threadblock/ell_predicated_tile_access_iterator.h", "repo_id": "include", "token_count": 15640 }
39
/*************************************************************************************************** * Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. * SPDX-License-Identifier: BSD-3-Clause * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * **************************************************************************************************/ /*! \file \brief Templates implementing computing the addresses of storing of tiles from pitch-linear rank=2 tensors. */ #pragma once #include "cutlass/array.h" #include "cutlass/cutlass.h" #include "cutlass/layout/pitch_linear.h" #include "cutlass/layout/tensor_op_multiplicand_sm75.h" #include "cutlass/matrix_coord.h" #include "cutlass/matrix_shape.h" #include "cutlass/tensor_ref.h" #include "cutlass/transform/threadblock/regular_tile_access_iterator.h" //////////////////////////////////////////////////////////////////////////////// namespace cutlass { namespace transform { namespace threadblock { //////////////////////////////////////////////////////////////////////////////// /// Tile iterator specialized for congruous arrangements for TensorOps /// /// /// Satisfies: ForwardTileIteratorConcept | /// ReadableContiguousTileIteratorConcept | /// WriteableContiguousTileIteratorConcept /// template <typename Shape_, typename Element_, int AdvanceRank, typename ThreadMap_, int Alignment, int Crosswise> class RegularTileAccessIterator< Shape_, Element_, layout::TensorOpMultiplicandCongruous<sizeof_bits<Element_>::value, Crosswise>, AdvanceRank, ThreadMap_, Alignment> { public: static_assert( AdvanceRank == 0 || AdvanceRank == 1, "Specialization for pitch-linear iterator may along advance along the " "contiguous(rank=0) or strided(rank=1) dimension."); using Shape = Shape_; using Element = Element_; using Layout = layout::TensorOpMultiplicandCongruous<sizeof_bits<Element_>::value, Crosswise>; static int const kAdvanceRank = AdvanceRank; static int const kAlignment = Alignment; static int const kCrosswise = Crosswise; using Index = typename Layout::Index; using LongIndex = typename Layout::LongIndex; using StrideIndex = typename Layout::Stride::Index; using TensorRef = TensorRef<Element, Layout>; using TensorCoord = typename Layout::TensorCoord; using ThreadMap = ThreadMap_; /// Internal details made public to facilitate introspection struct Detail { /// This iterator is specialized for an access size that is 128 bits in /// length. static int const kAccessSizeInBits = 128; static_assert(sizeof_bits<Element_>::value * ThreadMap::kElementsPerAccess == kAccessSizeInBits, "This iterator requires a policy whose access size is 128bs"); ///< Number of pointers static int const kPointerCount = (ThreadMap::Iterations::kStrided > 1 ? 2 : 1); }; /// Element type per access using AccessType = Array<Element, Layout::kElementsPerAccess>; private: // // Data members // /// Stride value StrideIndex stride_; /// Internal pointer to first access of tile AccessType *pointer_[Detail::kPointerCount]; /// Internal byte offset Index byte_offset_; /// Iteration in the contiguous dimension int iteration_contiguous_; /// Iteration in the strided dimension int iteration_strided_; public: /// Construct a TileIterator with zero threadblock offset CUTLASS_HOST_DEVICE RegularTileAccessIterator(TensorRef ref, ///< Pointer to start of tensor int thread_id ///< ID of each participating thread ) : stride_(ref.stride(0) * Layout::kFactor / Layout::kElementsPerAccess), byte_offset_(0) { layout::PitchLinearCoord thread_offset_base = ThreadMap::initial_offset(thread_id); CUTLASS_PRAGMA_UNROLL for (int i = 0; i < Detail::kPointerCount; ++i) { // This is the offset of a thread within a threadblock tile for a specific // pointer (units of elements) layout::PitchLinearCoord thread_offset_in_threadblock_tile = thread_offset_base + layout::PitchLinearCoord{ 0, ThreadMap::Detail::WarpThreadArrangement::kStrided * i}; // initialize pointer pointer_[i] = reinterpret_cast<AccessType *>( ref.data() + ref.offset(thread_offset_in_threadblock_tile)); } set_iteration_index(0); } /// Overrides the internal iteration index CUTLASS_HOST_DEVICE void set_iteration_index(int index) { iteration_contiguous_ = index % ThreadMap::Iterations::kContiguous; iteration_strided_ = index / ThreadMap::Iterations::kContiguous; } /// Adds a pointer offset in units of Element CUTLASS_HOST_DEVICE void add_pointer_offset(LongIndex pointer_offset) { byte_offset_ += pointer_offset * sizeof(Element); } /// Returns a pointer CUTLASS_HOST_DEVICE AccessType *get() const { AccessType *access_ptr = pointer_[iteration_strided_ & 1]; int stride_idx = (iteration_strided_ & ~1); int access_offset = stride_idx * ThreadMap::Delta::kStrided * stride_ / Layout::kFactor + iteration_contiguous_ * ThreadMap::Delta::kContiguous / ThreadMap::kElementsPerAccess; char *access_byte_ptr = reinterpret_cast<char *>(access_ptr + access_offset); return reinterpret_cast<AccessType *>(access_byte_ptr + byte_offset_); } /// Advances to the next tile in memory. CUTLASS_HOST_DEVICE RegularTileAccessIterator &operator++() { ++iteration_contiguous_; if (iteration_contiguous_ < ThreadMap::Iterations::kContiguous) return *this; // Enter here only if (iteration_contiguous_ == // ThreadMap::Iteration::kContiguous) iteration_contiguous_ = 0; ++iteration_strided_; if (iteration_strided_ < ThreadMap::Iterations::kStrided) { return *this; } // Enter here only if (iteration_strided_ == ThreadMap::Iteration::kStrided) // which means we enter the next tile. iteration_strided_ = 0; return *this; } /// Advances to the next tile in memory. CUTLASS_HOST_DEVICE RegularTileAccessIterator operator++(int) { RegularTileAccessIterator prev(*this); this->operator++(); return prev; } /// Adds a tile offset CUTLASS_DEVICE void add_tile_offset(TensorCoord const &coord) { add_pointer_offset(coord.contiguous() * Shape::kContiguous * Layout::kFactor + coord.strided() * Shape::kStrided * stride_ * Layout::kElementsPerAccess / Layout::kFactor); } }; //////////////////////////////////////////////////////////////////////////////// /// Tile Iterator specialized for column-major congruous TensorOp formats. /// /// /// Satisfies: ForwardTileIteratorConcept | /// ReadableContiguousTileIteratorConcept | /// WriteableContiguousTileIteratorConcept /// template <typename Shape_, typename Element_, int AdvanceRank, typename ThreadMap_, int Alignment, int Crosswise> class RegularTileAccessIterator< Shape_, Element_, layout::ColumnMajorTensorOpMultiplicandCongruous< sizeof_bits<Element_>::value, Crosswise>, AdvanceRank, ThreadMap_, Alignment> { public: static_assert( AdvanceRank == 0 || AdvanceRank == 1, "Specialization for column-major iterator may along advance along the " "columns(rank=0) or rows(rank=1) dimension."); using Shape = Shape_; using Element = Element_; using Layout = layout::ColumnMajorTensorOpMultiplicandCongruous< sizeof_bits<Element_>::value, Crosswise>; static int const kAdvanceRank = AdvanceRank; static int const kAlignment = Alignment; using Index = typename Layout::Index; using LongIndex = typename Layout::LongIndex; using TensorRef = TensorRef<Element, Layout>; using TensorCoord = typename Layout::TensorCoord; using ThreadMap = ThreadMap_; /// Underlying iterator type using UnderlyingIterator = RegularTileAccessIterator< layout::PitchLinearShape<Shape::kRow, Shape::kColumn>, Element, layout::TensorOpMultiplicandCongruous<sizeof_bits<Element_>::value, Crosswise>, (kAdvanceRank == 0 ? 0 : 1), ThreadMap_>; using AccessType = typename UnderlyingIterator::AccessType; private: /// Underlying iterator UnderlyingIterator iterator_; public: /// Construct a TileIterator with zero threadblock offset CUTLASS_HOST_DEVICE RegularTileAccessIterator(TensorRef ref, ///< Pointer to start of tensor int thread_id ///< ID of each participating thread ) : iterator_({ref.data(), ref.stride()}, thread_id) {} /// Overrides the internal iteration index CUTLASS_HOST_DEVICE void set_iteration_index(int index) { iterator_.set_iteration_index(index); } /// Adds a pointer offset in units of Element CUTLASS_HOST_DEVICE void add_pointer_offset(LongIndex pointer_offset) { iterator_.add_pointer_offset(pointer_offset); } /// Returns a pointer CUTLASS_HOST_DEVICE AccessType *get() const { return reinterpret_cast<AccessType *>(iterator_.get()); } /// Adds a tile offset CUTLASS_DEVICE void add_tile_offset(TensorCoord const &coord) { iterator_.add_tile_offset({coord.row(), coord.column()}); } /// Advances to the next tile in memory. CUTLASS_HOST_DEVICE RegularTileAccessIterator &operator++() { ++iterator_; return *this; } /// Advances to the next tile in memory. CUTLASS_HOST_DEVICE RegularTileAccessIterator operator++(int) { RegularTileAccessIterator prev(*this); ++iterator_; return prev; } }; //////////////////////////////////////////////////////////////////////////////// /// Tile Iterator specialized for row-major congruous TensorOp formats. /// /// /// Satisfies: ForwardTileIteratorConcept | /// ReadableContiguousTileIteratorConcept | /// WriteableContiguousTileIteratorConcept /// template <typename Shape_, typename Element_, int AdvanceRank, typename ThreadMap_, int Alignment, int Crosswise> class RegularTileAccessIterator< Shape_, Element_, layout::RowMajorTensorOpMultiplicandCongruous<sizeof_bits<Element_>::value, Crosswise>, AdvanceRank, ThreadMap_, Alignment> { public: static_assert( AdvanceRank == 0 || AdvanceRank == 1, "Specialization for row-major iterator may along advance along the " "columns(rank=0) or rows(rank=1) dimension."); using Shape = Shape_; using Element = Element_; using Layout = layout::RowMajorTensorOpMultiplicandCongruous< sizeof_bits<Element_>::value, Crosswise>; static int const kAdvanceRank = AdvanceRank; static int const kAlignment = Alignment; using Index = typename Layout::Index; using LongIndex = typename Layout::LongIndex; using TensorRef = TensorRef<Element, Layout>; using TensorCoord = typename Layout::TensorCoord; using ThreadMap = ThreadMap_; /// Underlying iterator type using UnderlyingIterator = RegularTileAccessIterator< layout::PitchLinearShape<Shape::kColumn, Shape::kRow>, Element, layout::TensorOpMultiplicandCongruous<sizeof_bits<Element_>::value, Crosswise>, (kAdvanceRank == 0 ? 1 : 0), ThreadMap_>; using AccessType = typename UnderlyingIterator::AccessType; private: /// Underlying iterator UnderlyingIterator iterator_; public: /// Construct a TileIterator with zero threadblock offset CUTLASS_HOST_DEVICE RegularTileAccessIterator(TensorRef ref, ///< Pointer to start of tensor int thread_id ///< ID of each participating thread ) : iterator_({ref.data(), ref.stride()}, thread_id) {} /// Overrides the internal iteration index CUTLASS_HOST_DEVICE void set_iteration_index(int index) { iterator_.set_iteration_index(index); } /// Adds a pointer offset in units of Element CUTLASS_HOST_DEVICE void add_pointer_offset(LongIndex pointer_offset) { iterator_.add_pointer_offset(pointer_offset); } /// Returns a pointer CUTLASS_HOST_DEVICE AccessType *get() const { return reinterpret_cast<AccessType *>(iterator_.get()); } /// Adds a tile offset CUTLASS_DEVICE void add_tile_offset(TensorCoord const &coord) { iterator_.add_tile_offset({coord.column(), coord.row()}); } /// Advances to the next tile in memory. CUTLASS_HOST_DEVICE RegularTileAccessIterator &operator++() { ++iterator_; return *this; } /// Advances to the next tile in memory. CUTLASS_HOST_DEVICE RegularTileAccessIterator operator++(int) { RegularTileAccessIterator prev(*this); ++iterator_; return prev; } }; //////////////////////////////////////////////////////////////////////////////// /// Tile iterator specialized for crosswise arrangements for TensorOps /// /// /// Satisfies: ForwardTileIteratorConcept | /// ReadableContiguousTileIteratorConcept | /// WriteableContiguousTileIteratorConcept /// template <typename Shape_, typename Element_, int AdvanceRank, typename ThreadMap_, int Alignment, int Crosswise> class RegularTileAccessIterator<Shape_, Element_, layout::TensorOpMultiplicandCrosswise< sizeof_bits<Element_>::value, Crosswise>, AdvanceRank, ThreadMap_, Alignment> { public: static_assert( AdvanceRank == 0 || AdvanceRank == 1, "Specialization for pitch-linear iterator may along advance along the " "contiguous(rank=0) or strided(rank=1) dimension."); using Shape = Shape_; using Element = Element_; using Layout = layout::TensorOpMultiplicandCrosswise<sizeof_bits<Element_>::value, Crosswise>; static int const kAdvanceRank = AdvanceRank; static int const kAlignment = Alignment; static int const kCrosswise = Crosswise; using Index = typename Layout::Index; using LongIndex = typename Layout::LongIndex; using StrideIndex = typename Layout::Stride::Index; using TensorRef = TensorRef<Element, Layout>; using TensorCoord = typename Layout::TensorCoord; using ThreadMap = ThreadMap_; static_assert(!(ThreadMap::Delta::kContiguous % kCrosswise), "kCrosswise is the smallest unit in the contiguous dimension " "for shared memory swizzling."); /// Internal details made public to facilitate introspection struct Detail { /// This iterator is specialized for an access size that is 128 bits in /// length. static int const kAccessSizeInBits = 128; static_assert(sizeof_bits<Element_>::value * ThreadMap::kElementsPerAccess == kAccessSizeInBits, "This iterator requires a policy whose access size is 128bs"); /// Number of pointers /// /// Note:TN kblock32 layouts only needs 1 pointer, but strangely /// reducing pointer count hurts perfomrnace static int const kPointerCount = (ThreadMap::Iterations::kStrided > 1 ? 2 : 1); }; /// Element type per access using AccessType = Array<Element, Layout::kElementsPerAccess>; private: // // Data members // /// Total number of sections. The memory is divided into stages. One stage /// can store one tile. Stage is divided into sections. Interleaved layout /// can have multiple sections in a stage. The rest layout only has one section /// in a stage. int sections_; /// Sections that a stage has int sections_per_stage_; /// Stride value StrideIndex stride_; /// Internal pointer to first access of tile AccessType *pointer_[Detail::kPointerCount]; /// Internal byte offset Index byte_offset_; /// Iteration in the contiguous dimension int iteration_contiguous_; /// Iteration in the strided dimension int iteration_strided_; public: /// Construct a TileIterator with zero threadblock offset CUTLASS_HOST_DEVICE RegularTileAccessIterator(TensorRef ref, ///< Pointer to start of tensor int thread_id ///< ID of each participating thread ) : sections_(ref.stride(0) / kCrosswise), sections_per_stage_(Shape::kContiguous / kCrosswise), // stride_ = kCrosswise x sections_ x kFactor stride_(ref.stride(0) * Layout::kFactor / Layout::kElementsPerAccess), byte_offset_(0) { layout::PitchLinearCoord thread_offset_base = ThreadMap::initial_offset(thread_id); CUTLASS_PRAGMA_UNROLL for (int i = 0; i < Detail::kPointerCount; ++i) { // This is the offset of a thread within a threadblock tile for a specific // pointer (units of elements) layout::PitchLinearCoord thread_offset_in_threadblock_tile = thread_offset_base + layout::PitchLinearCoord{ 0, ThreadMap::Detail::WarpThreadArrangement::kStrided * i}; // initialize pointer pointer_[i] = reinterpret_cast<AccessType *>(ref.data()) + ref.offset(thread_offset_in_threadblock_tile) / Layout::kElementsPerAccess; } set_iteration_index(0); } /// Overrides the internal iteration index CUTLASS_HOST_DEVICE void set_iteration_index(int index) { iteration_contiguous_ = index % ThreadMap::Iterations::kContiguous; iteration_strided_ = index / ThreadMap::Iterations::kContiguous; } /// Adds a pointer offset in units of Element CUTLASS_HOST_DEVICE void add_pointer_offset(LongIndex pointer_offset) { byte_offset_ += pointer_offset * sizeof_bits<Element>::value / 8; } /// Returns a pointer CUTLASS_HOST_DEVICE AccessType *get() const { AccessType *access_ptr = pointer_[iteration_strided_ & 1]; int stride_idx = (iteration_strided_ & ~1); int access_offset = stride_idx * ThreadMap::Delta::kStrided * stride_ / Layout::kFactor + // kCrosswise elements in the contiguous dimension would span to a // shared memory cache line. iteration_contiguous_ * (ThreadMap::Delta::kContiguous / kCrosswise) * Layout::TileShape::kContiguous; char *access_byte_ptr = reinterpret_cast<char *>(access_ptr + access_offset); return reinterpret_cast<AccessType *>(access_byte_ptr + byte_offset_); } /// Advances to the next tile in memory. CUTLASS_HOST_DEVICE RegularTileAccessIterator &operator++() { ++iteration_contiguous_; if (iteration_contiguous_ < ThreadMap::Iterations::kContiguous) return *this; // Enter here only if (iteration_contiguous_ == // ThreadMap::Iteration::kContiguous) iteration_contiguous_ = 0; ++iteration_strided_; if (iteration_strided_ < ThreadMap::Iterations::kStrided) { return *this; } // Enter here only if (iteration_strided_ == ThreadMap::Iteration::kStrided) // which means we enter the next section. iteration_strided_ = 0; return *this; } /// Advances to the next tile in memory. CUTLASS_HOST_DEVICE RegularTileAccessIterator operator++(int) { RegularTileAccessIterator prev(*this); this->operator++(); return prev; } /// Adds a tile offset CUTLASS_DEVICE void add_tile_offset(TensorCoord const &coord) { add_pointer_offset(coord.contiguous() * sections_per_stage_ * stride_ * ThreadMap::kElementsPerAccess / sections_ + coord.strided() * Shape::kStrided * stride_ * Layout::kElementsPerAccess / Layout::kFactor); } }; //////////////////////////////////////////////////////////////////////////////// /// Tile Iterator specialized for column-major crosswise TensorOp formats. /// /// /// Satisfies: ForwardTileIteratorConcept | /// ReadableContiguousTileIteratorConcept | /// WriteableContiguousTileIteratorConcept /// template <typename Shape_, typename Element_, int AdvanceRank, typename ThreadMap_, int Alignment, int Crosswise> class RegularTileAccessIterator< Shape_, Element_, layout::ColumnMajorTensorOpMultiplicandCrosswise< sizeof_bits<Element_>::value, Crosswise>, AdvanceRank, ThreadMap_, Alignment> { public: static_assert( AdvanceRank == 0 || AdvanceRank == 1, "Specialization for column-major iterator may along advance along the " "columns(rank=0) or rows(rank=1) dimension."); using Shape = Shape_; using Element = Element_; using Layout = layout::ColumnMajorTensorOpMultiplicandCrosswise< sizeof_bits<Element_>::value, Crosswise>; static int const kAdvanceRank = AdvanceRank; static int const kAlignment = Alignment; using Index = typename Layout::Index; using LongIndex = typename Layout::LongIndex; using TensorRef = TensorRef<Element, Layout>; using TensorCoord = typename Layout::TensorCoord; using ThreadMap = ThreadMap_; /// Underlying iterator type using UnderlyingIterator = RegularTileAccessIterator< layout::PitchLinearShape<Shape::kRow, Shape::kColumn>, Element, layout::TensorOpMultiplicandCrosswise<sizeof_bits<Element_>::value, Crosswise>, (kAdvanceRank == 0 ? 0 : 1), ThreadMap_>; using AccessType = typename UnderlyingIterator::AccessType; private: /// Underlying iterator UnderlyingIterator iterator_; public: /// Construct a TileIterator with zero threadblock offset CUTLASS_HOST_DEVICE RegularTileAccessIterator(TensorRef ref, ///< Pointer to start of tensor int thread_id ///< ID of each participating thread ) : iterator_({ref.data(), ref.stride()}, thread_id) {} /// Overrides the internal iteration index CUTLASS_HOST_DEVICE void set_iteration_index(int index) { iterator_.set_iteration_index(index); } /// Adds a pointer offset in units of Element CUTLASS_HOST_DEVICE void add_pointer_offset(LongIndex pointer_offset) { iterator_.add_pointer_offset(pointer_offset); } /// Returns a pointer CUTLASS_HOST_DEVICE AccessType *get() const { return reinterpret_cast<AccessType *>(iterator_.get()); } /// Adds a tile offset CUTLASS_DEVICE void add_tile_offset(TensorCoord const &coord) { iterator_.add_tile_offset({coord.row(), coord.column()}); } /// Advances to the next tile in memory. CUTLASS_HOST_DEVICE RegularTileAccessIterator &operator++() { ++iterator_; return *this; } /// Advances to the next tile in memory. CUTLASS_HOST_DEVICE RegularTileAccessIterator operator++(int) { RegularTileAccessIterator prev(*this); ++iterator_; return prev; } }; //////////////////////////////////////////////////////////////////////////////// /// Tile Iterator specialized for row-major crosswise TensorOp formats. /// /// /// Satisfies: ForwardTileIteratorConcept | /// ReadableContiguousTileIteratorConcept | /// WriteableContiguousTileIteratorConcept /// template <typename Shape_, typename Element_, int AdvanceRank, typename ThreadMap_, int Alignment, int Crosswise> class RegularTileAccessIterator<Shape_, Element_, layout::RowMajorTensorOpMultiplicandCrosswise< sizeof_bits<Element_>::value, Crosswise>, AdvanceRank, ThreadMap_, Alignment> { public: static_assert( AdvanceRank == 0 || AdvanceRank == 1, "Specialization for row-major iterator may along advance along the " "columns(rank=0) or rows(rank=1) dimension."); using Shape = Shape_; using Element = Element_; using Layout = layout::RowMajorTensorOpMultiplicandCrosswise< sizeof_bits<Element_>::value, Crosswise>; static int const kAdvanceRank = AdvanceRank; static int const kAlignment = Alignment; using Index = typename Layout::Index; using LongIndex = typename Layout::LongIndex; using TensorRef = TensorRef<Element, Layout>; using TensorCoord = typename Layout::TensorCoord; using ThreadMap = ThreadMap_; /// Underlying iterator type using UnderlyingIterator = RegularTileAccessIterator< layout::PitchLinearShape<Shape::kColumn, Shape::kRow>, Element, layout::TensorOpMultiplicandCrosswise<sizeof_bits<Element_>::value, Crosswise>, (kAdvanceRank == 0 ? 1 : 0), ThreadMap_>; using AccessType = typename UnderlyingIterator::AccessType; private: /// Underlying iterator UnderlyingIterator iterator_; public: /// Construct a TileIterator with zero threadblock offset CUTLASS_HOST_DEVICE RegularTileAccessIterator(TensorRef ref, ///< Pointer to start of tensor int thread_id ///< ID of each participating thread ) : iterator_({ref.data(), ref.stride()}, thread_id) {} /// Overrides the internal iteration index CUTLASS_HOST_DEVICE void set_iteration_index(int index) { iterator_.set_iteration_index(index); } /// Adds a pointer offset in units of Element CUTLASS_HOST_DEVICE void add_pointer_offset(LongIndex pointer_offset) { iterator_.add_pointer_offset(pointer_offset); } /// Returns a pointer CUTLASS_HOST_DEVICE AccessType *get() const { return reinterpret_cast<AccessType *>(iterator_.get()); } /// Adds a tile offset CUTLASS_DEVICE void add_tile_offset(TensorCoord const &coord) { iterator_.add_tile_offset({coord.column(), coord.row()}); } /// Advances to the next tile in memory. CUTLASS_HOST_DEVICE RegularTileAccessIterator &operator++() { ++iterator_; return *this; } /// Advances to the next tile in memory. CUTLASS_HOST_DEVICE RegularTileAccessIterator operator++(int) { RegularTileAccessIterator prev(*this); ++iterator_; return prev; } }; //////////////////////////////////////////////////////////////////////////////// } // namespace threadblock } // namespace transform } // namespace cutlass ////////////////////////////////////////////////////////////////////////////////
include/cutlass/transform/threadblock/regular_tile_access_iterator_tensor_op.h/0
{ "file_path": "include/cutlass/transform/threadblock/regular_tile_access_iterator_tensor_op.h", "repo_id": "include", "token_count": 9771 }
40
# Getting Started With CuTe CuTe is a collection of C++ CUDA template abstractions for defining and operating on hierarchically multidimensional layouts of threads and data. CuTe provides `Layout` and `Tensor` objects that compactly packages the type, shape, memory space, and layout of data, while performing the complicated indexing for the user. This lets programmers focus on the logical descriptions of their algorithms while CuTe does the mechanical bookkeeping for them. With these tools, we can quickly design, implement, and modify all dense linear algebra operations. The core abstraction of CuTe are the hierarchically multidimensional layouts which can be composed with data arrays to represent tensors. The representation of layouts is powerful enough to represent nearly everything we need to implement efficient dense linear algebra. Layouts can also be combined and manipulated via functional composition, on which we build a large set of common operations such as tiling and partitioning. ## System Requirements CuTe shares CUTLASS 3.x's software requirements, including NVCC with a C++17 host compiler. ## Knowledge prerequisites CuTe is a CUDA C++ header-only library. It requires C++17 (the revision of the C++ Standard that was released in 2017). Throughout this tutorial, we assume intermediate C++ experience. For example, we assume that readers know how to read and write templated functions and classes, and how to use the `auto` keyword to deduce a function's return type. We will be gentle with C++ and explain some things that you might already know. We also assume intermediate CUDA experience. For example, readers must know the difference between device and host code, and how to launch kernels. ## Building Tests and Examples CuTe's tests and examples build and run as part of CUTLASS's normal build process. CuTe's unit tests live in the [`test/unit/cute`](../../../test/unit/cute) subdirectory. CuTe's examples live in the [`examples/cute`](../../../examples/cute) subdirectory. ## Library Organization CuTe is a header-only C++ library, so there is no source code that needs building. Library headers are contained within the top level [`include/cute`](../../../include/cute) directory, with components of the library grouped by directories that represent their semantics. | Directory | Contents | |------------------------|------------------------| | [`include/cute`](../../../include/cute) | Each header in the top level corresponds to one of the fundamental building blocks of CuTe, such as [`Layout`](../../../include/cute/layout.hpp) and [`Tensor`](../../../include/cute/tensor.hpp). | | [`include/cute/container`](../../../include/cute/container) | Implementations of STL-like objects, such as tuple, array, and aligned array. | | [`include/cute/numeric`](../../../include/cute/numeric) | Fundamental numeric data types that include nonstandard floating-point types, nonstandard integer types, complex numbers, and integer sequence. | | [`include/cute/algorithm`](../../../include/cute/algorithm) | Implementations of utility algorithms such as copy, fill, and clear that automatically leverage architecture-specific features if available. | | [`include/cute/arch`](../../../include/cute/arch) | Wrappers for architecture-specific matrix-matrix multiply and copy instructions. | | [`include/cute/atom`](../../../include/cute/atom) | Meta-information for instructions in `arch` and utilities like partitioning and tiling. ## Tutorial This directory contains a CuTe tutorial in Markdown format. The file [`0x_gemm_tutorial.md`](./0x_gemm_tutorial.md) explains how to implement dense matrix-matrix multiply using CuTe components. It gives a broad overview of CuTe and thus would be a good place to start. Other files in this directory discuss specific parts of CuTe. * [`01_layout.md`](./01_layout.md) describes `Layout`, CuTe's core abstraction. * [`02_layout_algebra.md`](./02_layout_algebra.md) describes more advanced `Layout` operations and the CuTe layout algebra. * [`03_tensor.md`](./03_tensor.md) describes `Tensor`, a multidimensional array abstraction which composes `Layout` with an array of data. * [`04_algorithms.md`](./04_algorithms.md) summarizes CuTe's generic algorithms that operate on `Tensor`s. * [`0t_mma_atom.md`](./0t_mma_atom.md) demonstrates CuTe's meta-information and interface to our GPUs' architecture-specific Matrix Multiply-Accumulate (MMA) instructions. * [`0x_gemm_tutorial.md`](./0x_gemm_tutorial.md) walks through building a GEMM from scratch using CuTe. * [`0y_predication.md`](./0y_predication.md) explains what to do if a tiling doesn't fit evenly into a matrix. * [`0z_tma_tensors.md`](./0z_tma_tensors.md) explains an advanced `Tensor` type that CuTe uses to support TMA loads and stores. ## Quick Tips ### How do I print CuTe objects on host or device? The `cute::print` function has overloads for almost all CuTe types, including Pointers, Integers, Strides, Shapes, Layouts, and Tensors. When in doubt, try calling `print` on it. CuTe's print functions work on either host or device. Note that on device, printing is expensive. Even just leaving print code in place on device, even if it is never called (e.g., printing in an `if` branch that is not taken at run time), may generate slower code. Thus, be sure to remove code that prints on device after debugging. You might also only want to print on thread 0 of each threadblock, or threadblock 0 of the grid. The `thread0()` function returns true only for global thread 0 of the kernel, that is, for thread 0 of threadblock 0. A common idiom for printing CuTe objects to print only on global thread 0. ```c++ if (thread0()) { print(some_cute_object); } ``` Some algorithms depend on some thread or threadblock, so you may need to print on threads or threadblocks other than zero. The header file [`cute/util/debug.hpp`](../../../include/cute/util/debug.hpp), among other utilities, includes the function `bool thread(int tid, int bid)` that returns `true` if running on thread `tid` and threadblock `bid`. #### Other output formats Some CuTe types have special printing functions that use a different output format. The `cute::print_layout` function will display any rank-2 layout in a plain test table. This is excellent for visualizing the map from coordinates to indices. The `cute::print_tensor` function will display any rank-1, rank-2, rank-3, or rank-4 tensor in a plain text multidimensional table. The values of the tensor are printed so you can verify the tile of data is what you expect after a copy, for example. The `cute::print_latex` function will print LaTeX commands that you can use to build a nicely formatted and colored tables via `pdflatex`. This work for `Layout`, `TiledCopy`, and `TiledMMA`, which can be very useful to get a sense of layout patterns and partitioning patterns within CuTe.
media/docs/cute/00_quickstart.md/0
{ "file_path": "media/docs/cute/00_quickstart.md", "repo_id": "media", "token_count": 1891 }
41
![ALT](../images/gemm-hierarchy-with-epilogue-no-labels.png "CUTLASS GEMM API") [README](../../README.md#documentation) > **CUTLASS 3.0 GEMM API** # CUTLASS 3.0 GEMM API CUTLASS presents a uniform programming model for matrix multiply-accumulate (MMA) operations at different levels of the GPU system hierarchy. CUTLASS 3.0 has GEMM APIs corresponding to the following levels in order of highest to the lowest level. 1. Device 2. Kernel 3. Collective 4. Tiled MMA and Copy 5. Atom This document will cover the first three levels in detail: Device, Kernel, and Collective. It also briefly discusses the Tiled MMA/Copy and Atom level, and then refers readers to CuTe's tutorial for more information. # CUTLASS GEMM Model CUTLASS implements algorithms that express the classical "triply nested loop" GEMM algorithm with a tiled structure mirroring the above hierarchy. The following pseudocode describes the model for a GEMM kernel targeting a warp-synchronous matrix multiply instruction like `mma.sync.` The entire operation is referred to as "Gemm," as it is assumed that an epilogue operation performs the general matrix update similar to BLAS. This is pseudocode and is only meant to illustrate which parts of the layers correspond to the inner or outer loops of the GEMM. ```c++ // cutlass::gemm::kernel::GemmUniversal: ClusterTileM and ClusterTileN loops // are either rasterized by the hardware or scheduled by the kernel in persistent kernels. // Parallelism over thread block clusters for (int cluster_m = 0; cluster_m < GemmM; cluster_m += ClusterTileM) { for (int cluster_n = 0; cluster_n < GemmN; cluster_n += ClusterTileN) { // cutlass::gemm::collective::CollectiveMma: mainloop that iterates over all k-tiles // No loop unrolling is performed at this stage for (int k_tile = 0; k_tile < size<2>(gmem_tensor_A); k_tile++) { // loops inside cute::gemm(tiled_mma, a, b, c); Dispatch 5: (V,M,K) x (V,N,K) => (V,M,N) // TiledMma uses the hardware instruction provided through its Mma_Atom // TiledMma's atom layout, value layout, and permutations define the iteration order for (int tiled_mma_k = 0; tiled_mma_k < size<2>(A); tiled_mma_k++) { for (int tiled_mma_m = 0; tiled_mma_m < size<1>(A); tiled_mma_m++) { for (int tiled_mma_n = 0; tiled_mma_n < size<1>(B); tiled_mma_n++) { // TiledMma's vector mode dispatches to the underlying instruction. mma.call(d, a, b, c); } // tiled_mma_n } // tiled_mma_m } // tiled_mma_k } // k_tile mainloop } // cluster_m } // cluster_n ``` The first three nested `for` loops correspond to parallelism over thread block clusters. The code does not actually express them as explicit `for` loops. Instead, the parallelization scheme over tiles is implied by CUDA grid launch semantics. However, for persistent kernels, these three loops are expressed in the source code as a single `while` loop that queries the [work tile scheduler](/include/cutlass/gemm/kernel/sm90_tile_scheduler.hpp) for problem tiles on which to compute. Inside the three nested `for` loops, one finds code that pulls matrix tiles from global memory into more "local" memory (like shared memory or registers) and computes MMAs. These tiled copy and tiled mma iterations are generally fully static and get fully unrolled. # CUTLASS GEMM Components CUTLASS expresses the above loop nest with the following components which are specialized for data type, layout, and math instruction. | API level | API Class and/or function names | | --- | --- | | Device | `cutlass::gemm::device::GemmUniversalAdapter` | | Kernel | `cutlass::gemm::kernel::GemmUniversal` | | Collective | `cutlass::gemm::collective::CollectiveMma` <br /> `cutlass::epilogue::collective::DefaultEpilogue` <br /> `cutlass::epilogue::collective::Epilogue` <br /> | | Tiled (MMA and Copy) | `cute::TiledMma` and `cute::TiledCopy` <br /> `cute::gemm()` and `cute::copy()` | | Atom | `cute::Mma_Atom` and `cute::Copy_Atom` | In CUTLASS 3.0, we assemble kernels by first composing a collective mainloop and collective epilogue together at the kernel layer, and then wrapping them with a host-side adapter to form a GEMM handle to that kernel. The following sections describe these components in the order a user should instantiate them in order to assemble a kernel. This order is 1. assemble the required collective mainloop and epilogues, 2. compose them together to build a kernel type, and 3. wrap up the kernel with a device layer adapter. This order is also reflected in the [CUTLASS 3.0 Hopper kernel examples](/examples/48_hopper_warp_specialized_gemm) as seen in the excerpt below. ```c++ // Step 1: Generate the required collective layer mainloop specialization using CollectiveMainloop = typename cutlass::gemm::collective::CollectiveBuilder< ArchTag, OperatorClass, ElementA, LayoutA, AlignmentA, ElementB, LayoutB, AlignmentB, ElementAccumulator, TilesShape, ClusterShape, cutlass::gemm::collective::StageCountAuto, cutlass::gemm::collective::KernelScheduleAuto >::CollectiveOp; // Step 2: Specify the collective layer epilogue type using CollectiveEpilogue = cutlass::epilogue::collective::DefaultEpilogue< cutlass::gemm::TagToStrideC_t<LayoutC>, cutlass::gemm::TagToStrideC_t<LayoutC>, cutlass::epilogue::thread::LinearCombination<ElementC, 1, ElementAccumulator, ElementAccumulator>>; // Step 3: Compose the mainloop and epilogue together at the kernel layer using GemmKernel = cutlass::gemm::kernel::GemmUniversal< cute::Shape<int,int,int,int>, // ProblemShape [M,N,K,L] CollectiveMainloop, CollectiveEpilogue >; // Step 4: Wrap up the kernel::GemmUniversal kernel class // with the device adapter to obtain a host-side handle to the kernel using GemmHandle = cutlass::gemm::device::GemmUniversalAdapter<GemmKernel>; ``` Towards the end, we also briefly cover CuTe's tiled mma and copy as well as the atom layer APIs, before redirecting users to CuTe-specific documentation for further details. ## Collective API A Collective is "the largest collection of threads onto which mma atoms and copy atoms are tiled." That is, it is the largest number of threads in a grid that can cooperate by leveraging hardware features for accelerated communication and synchronization. These hardware features include * asynchronous array copy (e.g., from global memory to shared memory); * MMA instructions for small tiles that live in shared memory; * synchronization operations for clusters, thread blocks, and/or warps; and/or * hardware acceleration (such as barriers) for ensuring that data dependencies between asynchronous operations are met. A Collective uses the `TiledMma` and `TiledCopy` API (see below) to access operations that copy and perform MMA on tiles. Different units of parallelism (e.g., threads, warps, or thread blocks) in a Collective might have different roles. For example, in "warp-specialized" algorithms, some warps may be responsible for copying data, while others may be responsible for computation. Nevertheless, the different units of parallelism still need to share data and coordinate access to the shared data. For example, the producer warps in a warp-specialized algorithm that copy input matrix tiles into shared memory need to let the consumer MMA warp(s) know that their MMA inputs are ready. We contrast this with the `kernel::` layer API, which schedules the collectives over *independent* tiles in the grid. The Collective API includes both the "mainloop" of matrix multiply-accumulate, and the epilogue. This API is the composition point for optimizations such as mainloop fusions and epilogue fusions. It is responsible for implementing the `k_tile` loop in the above triply nested loop pseudocode. ### Collective Mainloops The `cutlass::gemm::collective::CollectiveMma` class is the primary interface to the collective matrix multiply-accumulate (MMA) mainloops. "Mainloop" refers to the "main loop" over tiles -- the "cluster tile k" loop in the pseudocode near the top of this document. Any looping over multiple tiles that the algorithm might need to do would happen here. The `CollectiveMma` class is declared in the header [cutlass/gemm/collective/collective_mma.hpp](/include/cutlass/gemm/collective/collective_mma.hpp). ```c++ namespace cutlass::gemm::collective { template < class DispatchPolicy, class TileShape, class ElementA, class StrideA, class ElementB, class StrideB, class TiledMma, class GmemTiledCopyA, class SmemLayoutAtomA, class SmemCopyAtomA, class TransformA, class GmemTiledCopyB, class SmemLayoutAtomB, class SmemCopyAtomB, class TransformB > struct CollectiveMma { static_assert(sizeof(ElementA) == 0, "Could not find a mainloop specialization."); }; } // namespace cutlass::gemm::collective ``` - `DispatchPolicy` is the most important type for a collective, and is [covered in more detail below](#collective-dispatch-policies). - `StrideA` and `StrideB` are instances of type `cute::Stride` that represent the global memory layout of A and B tensors. These strides are required to be rank-3, representing the modes `[outer, inner, batch]`. Each of the 3 ranks can be a multi-modal hierarchical stride; this would apply if implementing a tensor contraction. - `TiledMma` is an instance of `cute::TiledMma`. - `GmemTiledCopyA` and `GmemTiledCopyB` are instances of `cute::TiledCopy` types. Both tiled operation types are [covered in more detail below](#tiled-mma-and-copy). - `SmemLayoutAtomA` and `SmemLayoutAtomB` are instances of type `cute::Layout` and represent the smallest layout that will get tiled over the entire collective's shared memory. This layout does _not_ include the pipeline mode, and therefore, both are expected to be rank 2 layouts of shape [`outer`, `inner`]. - `SmemCopyAtomA` and `SmemCopyAtomB` are `Copy_Atom`s to be used for moving data from shared memory into register memory. Notice that CUTLASS 3.0 mainloops do not accept a dedicated accumulator element type. We obtain the accumulator type from the `typename TiledMma::ValTypeC`. Note also that top level API's `ElementA` and `ElementB` can differ from those of the MMA facing `typename TiledMma::ValTypeA` and `typename TiledMma::ValTypeB`, allowing TMA or user supplied transform operations to perform type conversions. ### Collective Dispatch Policies `CollectiveMma` implementations are not generic. Instead, they must be specialized for each algorithm and GPU architecture. Users can dispatch to a `CollectiveMma` specialization by picking template arguments matching that specialization. CUTLASS 3.0 adopts a tag-based dispatch policy type to specialize mainloop implementations and add tuning knobs to them. Below is an example of one of the dispatch policies that is used to dispatch to a Hopper TMA warp-specialized mainloop implementation: ```c++ // n-buffer in smem (Hopper TMA), // pipelined with Hopper GMMA and TMA, // warp-specialized dynamic schedule template< int Stages_, class ClusterShape_ = Shape<_1,_1,_1>, class KernelSchedule = KernelTmaWarpSpecializedCooperative > struct MainloopSm90TmaGmmaWarpSpecialized { constexpr static int Stages = Stages_; using ClusterShape = ClusterShape_; using ArchTag = arch::Sm90; using Schedule = KernelSchedule; }; ``` The `Stages_` template parameter lets the user freely vary the number of pipeline stages, while the `ClusterShape_` type allows for parameterization over the shape of the threadblock cluster over which TMA multicast will take place. The collective dispatch policy is also the primary point of composing various kernel schedules freely with any mainloop. Each mainloop policy either prescribes a `Schedule` with which it needs to be run, or exposes a template API that lets the user pick a subset of the following schedules: ```c++ struct KernelCpAsyncWarpSpecialized { }; struct KernelCpAsyncWarpSpecializedPingpong { }; struct KernelCpAsyncWarpSpecializedCooperative { }; struct KernelTma { }; struct KernelTmaWarpSpecialized { }; struct KernelTmaWarpSpecializedPingpong { }; struct KernelTmaWarpSpecializedCooperative { }; ``` - A single kernel schedule can support multiple mainloop implementations. For example, `KernelMultistage` can be composed with many different mainloop implementations across GPU architectures such as `MainloopSm70TwoStage`, `MainloopSm80CpAsyncUnpredicated`, and many more. - A single mainloop can be composed with multiple possible kernel schedules. For example, the `MainloopSm90TmaGmmaWarpSpecialized` can be composed with any of the `KernelTmaWarpSpecialized`, `KernelTmaWarpSpecializedPingpong` or `KernelTmaWarpSpecializedCooperative` kernel schedules. As [discussed in the CUTLASS 3.0 design documentation](cutlass_3x_design.md), adopting tag dispatch policies for our core vocabulary types allows us to maintain a single type name for all operations that conceptually belong to the same class. This design has the following benefits. - It *avoids code duplication* in cases where mainloops can be composed with multiple kernels or vice versa. - It *makes writing generic code easier*, as the primary type name `CollectiveMma` does not change across any implementation. - It *provides a clear, singular extension point* for users to plug in new, custom mainloops implementations specialized on their own dispatch policies. ### Collective Builder for `CollectiveMma`s The primary `CollectiveMma` is intended to be an expert user interface that allows full control over all the properties of the collective's GPU micro-kernel. However, often a user just wants an off-the-shelf GEMM mainloop implementation parameterized on simple configuration parameters. CUTLASS 3.0 provides [`cutlass::gemm::collective::CollectiveBuilder`](/include/cutlass/gemm/collective/collective_builder.hpp) for such scenarios. ```c++ namespace cutlass::gemm::collective { template < class ArchTag, class OpClass, class ElementA, class GmemLayoutA, int AlignmentA, class ElementB, class GmemLayoutB, int AlignmentB, class ElementAccumulator, class TileShape_MNK, class ClusterShape_MNK, class StageCountType, class KernelScheduleType, class Enable = void > struct CollectiveBuilder { static_assert(sizeof(ElementA) == 0, "Could not build a collective for given parameters."); }; } // namespace cutlass::gemm::collective ``` `CollectiveBuilder` accepts CUTLASS 2.x equivalent input template arguments, and attempts to build the best performing `CollectiveMma` from the given parameters. - `ArchTag` is one of the SM architectures tags from `cutlass::arch::Sm*`. - `OpClass` is one of the operator class tags from `cutlass::arch::OpClass*`. - `ElementA` and `ElementB` are the logical value types of the A resp. B tensors. - `ElementAccumulator` is the accumulator type to be used in the instruction. - `GmemLayoutA` and `GmemLayoutB` are CUTLASS 2.x layout tags, `layout::RowMajor` or `layout::ColumnMajor`. - `AlignmentA` and `AlignmentB` are global memory alignments of A and B tensors in terms of element count. - `TileShape_MNK` is an instance of `cute::Shape` that is rank-3, representing the MxNxK collective tile shape. - `ClusterShape_MNK` is an instance of `cute::Shape` that is rank-3, representing the MxNxK threadblock cluster tile shape. - `StageCountType` is either `collective::StageCountAuto` or an instance of `collective::StageCount<N>`. - `KernelScheduleType` is either `collective::KernelScheduleAuto` or one of the specific kernel schedule tags discussed in the [dispatch policy section](#collective-dispatch-policies) above. `StageCountAuto` allows the collective builder to compute the size of a single stage's size in shared memory and maximize the shared memory usage assuming 1 threadblock / multiprocessor occupancy. `KernelScheduleAuto` allows the collective builder to pick the best kernel schedule available for the given set of parameters, or let's the user override this with a specific kernel schedule type. Note that collective builders are still in beta, and their functionality does not map onto the full design space that the primary expert `CollectiveMma` API allows for. We expect their supported mainloop types to expand in future releases, but with 3.0, only SM90 tensorop kernels are supported through the builder API. The builder API may also change in the future as we adopt user feedback. If the builder is able to provide a collective mainloop type for the given set of parameters, it will be aliased within as `CollectiveOp`. For more information on how to parameterize kernels conveniently with the collective builder, please see example [49_hopper_gemm_with_collective_builder](/examples/49_hopper_gemm_with_collective_builder). ### Epilogue The collective epilogue implements element-wise operations involving the output matrix. Users can provide a custom epilogue, or use one of the standard epilogues. These live in the directory [include/cutlass/epilogue/collective/](/include/cutlass/epilogue/collective/), and include classes like `cutlass::epilogue::collective::DefaultEpilogue` and `cutlass::epilogue::collective::Epilogue`. CUTLASS's provided collective epilogues do not live under `include/cutlass/gemm` or in the `cutlass::gemm` namespace, because they can be used for computations other than GEMM. ## Kernel API The kernel is "a collection of all clusters in the grid." The kernel layer schedules have four main responsibilities. - Ordering the execution of collectives within the kernel, performing any synchronization between that may be necessary - Marshalling the threads of a warp specialized schedules into their respective roles - Performing any necessary grid swizzling logic - Tiling the input tensors with the threadblock cluster value tile before invoking the collectives on them The Kernel API is the entry point for a grid of thread blocks that may or may not be organized in a cluster. It is the composition point for fusing back-to-back GEMMs, epilogues, and/or other operations. The entry point API for CUTLASS 3.0 kernel is the class `cutlass::gemm::kernel::GemmUniversal`, found in the header file [include/cutlass/gemm/kernel/gemm_universal.hpp](/include/cutlass/gemm/kernel/gemm_universal.hpp). `GemmUniversal` is a stateless universal device kernel that implements GEMM as the composition of two parts: * a collective mainloop, and * a collective epilogue ```cpp namespace cutlass::gemm::kernel { /* * Stateless universal device GEMM kernel type that treats GEMM as * a composition of a collective mainloop and a collective epilogue. * * Supports both the 2.x and 3.x APIs based on whether the first type is * a cute::tuple<> or not. * 2.x API implementation: cutlass/gemm/kernel/gemm_universal.h * 3.x API implementation: cutlass/gemm/kernel/gemm_*.hpp * * In the following declaration, the name preceding the 'Or' refers to * 3.x API type argument order, and the name succeeding the 'Or' refers to * 2.x API type argument order. Template arguments without two names * belong to the 3.x API only. **/ template < class ProblemShapeOrThreadblockMma_, // (m, n, k) or (m, n, k, l) class CollectiveMainloopOrEpilogue_, class CollectiveEpilogueOrThreadblockSwizzle_, class TileScheduler_ = void, class Enable = void > class GemmUniversal; } // namespace cutlass::gemm::kernel ``` *Stateless* means that the caller -- for example, the Device API described above -- manages the kernel's state. The kernel just takes input and output parameters (`Params`). *Universal* means that `GemmUniversal` works for both CUTLASS 3.0 and 2.x interfaces and across a broad range of kernel schedules. If `GemmUniversal`'s first template argument is a `cute::Shape`, then `GemmUniversal` assumes that the remaining template arguments implement the 3.0 APIs. Otherwise, `GemmUniversal` assumes that the remaining template arguments implement the 2.x APIs. Starting with CUTLASS 3.0, the problem shape has been promoted to a top-level template API for the GEMM kernel. This supports fully static GEMM instantiations where the user expects to know some or all of the problem shapes at compile time in order to extract even more performance. The *collective mainloop* implements MMA on local tiles. The *collective epilogue* addresses any operations after the MMA, such as applying the `beta * C` part of `C := beta * C + alpha * A * B`. We will explain *collective* in more detail below. Specializations of `kernel::GemmUniversal` for 3.0 APIs live in any of various `gemm_*.hpp` files in the directory [include/cutlass/gemm/kernel/](/include/cutlass/gemm/kernel/). Specializations for 2.x APIs can be found in the header file [include/cutlass/gemm/kernel/gemm_universal.h](/include/cutlass/gemm/kernel/gemm_universal.h). CUTLASS 3.x implements various embodiments of `kernel::GemmUniversal`. Each kernel layer schedule is specialized for a GEMM scheduling algorithm and GPU architecture. Specializations of `kernel::GemmUniversal` for 3.0 APIs live in any of various `include/cutlass/gemm/kernel/{arch_tag}*.hpp` files in the directory [include/cutlass/gemm/kernel/](/include/cutlass/gemm/kernel/). Which specialization to dispatch to is decided through the dispatch policy's `Schedule` type. For example, the header file [include/cutlass/gemm/kernel/sm90_gemm_tma_warpspecialized_pingpong.hpp](/include/cutlass/gemm/kernel/sm90_gemm_tma_warpspecialized_pingpong.hpp) has a specialization of `kernel::GemmUniversal` for Hopper that uses a warp-specialized mainloop with a persistent scheduling algorithm, while the header file [include/cutlass/gemm/kernel/sm90_gemm_tma_warpspecialized.hpp](/include/cutlass/gemm/kernel/sm90_gemm_tma_warpspecialized.hpp) has a specialization of `GemmUniversal` for Hopper that uses a warp-specialized but non-persistent algorithm. To support composition between supported kernel schedules and mainloop dispatch policies without having to duplicate collective mainloop implementations, GEMM kernel layer schedules can be composed with any mainloop that specifies their corresponding kernel schedule as their `Schedule` type in the policy. This is discussed in detail in the [collective dispatch policy section](#collective-dispatch-policies) above. ```c++ // An example of the SM90 KernelMultistage kernel's // specialization logic that allows it to be composed // with many mainloops such as `MainloopSm80CpAsync` // and `MainloopSm70TwoStage`. template < class ProblemShape_, class CollectiveMainloop_, class CollectiveEpilogue_, class TileScheduler_ > class GemmUniversal< ProblemShape_, CollectiveMainloop_, CollectiveEpilogue_, TileScheduler_, std::enable_if_t<std::is_base_of_v<KernelMultistage, typename CollectiveMainloop_::DispatchPolicy::Schedule>>> ``` ## Device API The Device API is a universal, kernel-agnostic host interface for kernel launch and managing the lifetime of reusable host-side parameters. This API is how users' host-side .cu code invokes CUTLASS's single-GPU GEMM kernels. It serves the same purpose as cuBLAS and behaves similarly. The entry point for the Device GEMM API is the class `cutlass::gemm::device::GemmUniversalAdapter`. This class lives in the header file [include/cutlass/gemm/device/gemm_universal_adapter.h](/include/cutlass/gemm/device/gemm_universal_adapter.h). `GemmUniversalAdapter` is a stateful, reusable handle, which is parameterized on the `cutlass::gemm::kernel` type. ```c++ /*! GemmUniversalAdapter is a stateful, reusable GEMM handle built around a kernel of type cutlass::gemm::kernel::* It manages the lifetime of the underlying `kernel::Params` struct, and exposes APIs to create it from the host facing arguments. For power users, new static methods are exposed in 3.x APIs that bypass the stateful methods or args->params lowering. It supports kernel types that implement both the 2.x and 3.0 APIs, however, this is done by specializing the implementation of GemmUniversalAdapter on the two kernel API types, and thus, GemmUniversalAdapter's behavior might differ between the two specializations. */ template <class GemmKernel_, class Enable = void> class GemmUniversalAdapter; ``` *Stateful* means that the handle instance contains state that the kernel needs to run. This means that the user must initialize the handle first, then use the initialized handle instance to run the kernel. Statefulness also means that the handle can manage the lifetime of the kernel's `Params` -- the parameters of the kernel itself. An important duty of `GemmUniversalAdapter` is to map from the user's `Arguments` -- what the user sees as the kernel's parameters -- to the `Params` that the kernel actually sees. For power users, the class exposes new static methods in 3.0 APIs that can bypass stateful methods or go directly to `Params` without intermediate `Arguments`. *Reusable* means that the handle instance can be used to call the kernel multiple times with different arguments (e.g., different matrices). Reusing the handle may be more efficient than just creating a new handle for each kernel invocation. *Parameterized on the kernel type* means that the `GemmUniversalAdapter` class' behavior depends on the GEMM kernel type (see the next section). Specifically, `GemmUniversalAdapter` has a template parameter `GemmKernel`, which is the GEMM kernel type. Valid template arguments for `GemmKernel` are * `cutlass::gemm::kernel::GemmUniversal`, implementing CUTLASS 3.x API kernels; * `cutlass::gemm::kernel::GemmUniversal`, implementing CUTLASS 2.x API kernels; or * Any valid CUTLASS 2.x `kernel` layer GEMM that was previously composable with the `device::GemmUniversalAdapter`. `GemmUniversalAdapter` presents a single host-side interface to both 3.0 and 2.x kernels. CUTLASS accomplishes this by specializing `GemmUniversalAdapter`'s implementation on either the 2.x API implementing kernel layer GEMMs, or on the 3.x API implementing kernel layer GEMMs. The metafunction [`cutlass::gemm::detail::IsCutlass3GemmKernel`](cutlass_3x_backwards_compatibility.md#kernel-api-design-differences) is what `GemmUniversalAdapter` uses to distinguish between 2.x and 3.x kernels. `GemmUniversalAdapter` sets up and launches the kernel, using the CUDA extended launch API for threadblock cluster support if required. Note, `GemmUniversalAdapter` does *not* specify the grid shape. The kernel controls the grid shape and other kernel-specific launch parameters. This makes it possible for all 3.0 kernels to use the same kernel launch code, thus factoring out kernel launch from the actual kernel. ## Tiled MMA and Copy The Tiled MMA or Copy are tilings of MMA atoms resp. Copy atoms across threads and data, with possible permutations applied to the resulting tiling. This layer is most analogous to the warp level tiling of MMA instructions in CUTLASS 2.x. However, it views the tiling from the perspective of all threads participating in the operation and generalizes the concept to copy operations as well. The purpose of this layer is to build composable GPU micro-kernels out of a plethora of hardware accelerated math and data movement operations, each with their unit layouts in threads and data. The tiled MMA and Copy types present all these various hardware accelerated CuTe Atoms with a single, consistent API. The resulting tiled operation acts as a single MMA or copy operation that users can invoke in the "inner" loop of the three-nested-loops pseudocode at the top of this document using `cute::gemm()` or `cute::copy()`. We call this API "tiled" because it constructs larger operations out of the Atoms provided by CuTe, as if fitting together individual tiles to build a reusable component of a mosaic. For example, CuTe might provide an MMA Atom that users can call on a single warp, for fixed M, N, and K dimensions. CUTLASS can then use CuTe operations like `make_tiled_mma` to turn this Atom into an operation that works on an entire thread block, for larger M, N, and K dimensions. ## Atom API An "Atom" is the smallest collection of threads and data that must participate in the execution of a hardware-accelerated math or copy operation. An Atom is "atomic" (indivisible) not in the sense of concurrent memory operations like `atomicAdd` (which are "indivisible in time (causality)"), but in the sense of indivisibility in "space" -- the number of values and the groups of parallel workers that must participate in the operation together. An Atom uses CuTe Layouts to express the required dimensions and strides of its input and output arrays. Generally these are fixed at compile time. The Atom API wraps calls to actual hardware instructions that accelerate MMA or copy operations. Users can ask for GPU architecture-specific implementations, or just pick generic implementations and rely on whatever GPU architectures were enabled. For more information about Atoms, please refer to CuTe's tutorial, e.g., the sections on * [algorithms](./cute/04_algorithms.md) like `gemm` and `copy`, * [MMA Atoms](./cute/0t_mma_atom.md#cute-mma-atoms), and * [a GEMM example](./cute/0x_gemm_tutorial.md). # Copyright Copyright (c) 2023 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. SPDX-License-Identifier: BSD-3-Clause ``` Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ```
media/docs/gemm_api_3x.md/0
{ "file_path": "media/docs/gemm_api_3x.md", "repo_id": "media", "token_count": 8924 }
42
################################################################################################# # # Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################################# from math import prod from typing import Union from cuda import cuda, cudart import numpy as np import cutlass from cutlass.backend.frontend import CupyFrontend, NumpyFrontend, TorchFrontend from cutlass.backend.memory_manager import DevicePtrWrapper from cutlass.utils.datatypes import is_cupy_tensor, is_numpy_tensor, is_torch_tensor class ArgumentBase: """ Base class for operation arguments """ def __init__( self, A: "Union[cuda.CUdeviceptr, np.ndarray, torch.Tensor, cp.ndarray]", B: "Union[cuda.CUdeviceptr, np.ndarray, torch.Tensor, cp.ndarray]", C: "Union[cuda.CUdeviceptr, np.ndarray, torch.Tensor, cp.ndarray]", D: "Union[cuda.CUdeviceptr, np.ndarray, torch.Tensor, cp.ndarray]", **kwargs, ) -> None: # tensor_C can be interpreted as the bias with bias=True in keyword args self.bias = kwargs.get("bias", False) self.stream = kwargs.get("stream", cuda.CUstream(0)) # RMM buffers used to track tensor lifetime self.buffers = {} # Host tensor to copy the computed result back self.host_tensors = {} self.ptr_A = self.tensor_to_ptr(A, "A") self.ptr_B = self.tensor_to_ptr(B, "B") self.ptr_C = self.tensor_to_ptr(C, "C") self.ptr_D = self.tensor_to_ptr(D, "D", is_output=True) if C is not None: if not isinstance(C, cuda.CUdeviceptr): self.tensor_c_numel = prod(C.shape) def tensor_to_ptr(self, tensor, name, is_output=False): """ Convert and remember the input tensor to cuda.CUdeviceptr used by cuda python For numpy.ndarray, it also remembers the host buffer for synchronization """ if tensor is None: return cuda.CUdeviceptr(0) if is_numpy_tensor(tensor): if is_output: assert name self.buffers[name] = NumpyFrontend.argument(tensor, is_output) if is_output: self.host_tensors[name] = tensor return self.buffers[name].ptr elif is_torch_tensor(tensor): return TorchFrontend.argument(tensor) elif isinstance(tensor, cuda.CUdeviceptr): return tensor elif is_cupy_tensor(tensor): return CupyFrontend.argument(tensor) else: raise TypeError("Unsupported Frontend. Only support numpy and torch") def sync(self, stream_sync=True): if stream_sync: (err,) = cudart.cudaDeviceSynchronize() if err != cuda.CUresult.CUDA_SUCCESS: raise RuntimeError("CUDA Error %s" % str(err)) for key in self.host_tensors.keys(): host_tensor = self.host_tensors[key] (err,) = cuda.cuMemcpyDtoH( host_tensor, self.buffers[key].ptr, host_tensor.size * host_tensor.itemsize, ) if err != cuda.CUresult.CUDA_SUCCESS: raise RuntimeError("CUDA Error %s" % str(err)) self.free() def free(self): """ Frees allocated device-side memory """ # Free any device memory allocated manually if not cutlass.use_rmm: for name, buf in self.buffers.items(): if isinstance(buf, DevicePtrWrapper): err, = cudart.cudaFree(buf.ptr) if err != cudart.cudaError_t.cudaSuccess: raise RuntimeError(f"cudaFree failed with error {err}") if hasattr(self, "workspace_buffer") and isinstance(self.workspace_buffer, DevicePtrWrapper): err, = cudart.cudaFree(self.workspace_buffer.ptr) if err != cudart.cudaError_t.cudaSuccess: raise RuntimeError(f"cudaFree failed with error {err}") del self.workspace_buffer
python/cutlass/backend/arguments.py/0
{ "file_path": "python/cutlass/backend/arguments.py", "repo_id": "python", "token_count": 2310 }
43
################################################################################################# # # Copyright (c) 2023 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################################# """ Pass manager for DAG IR. """ from typing import Any import networkx as nx from cutlass.backend.evt.ir import DAGIR from cutlass.backend.evt.passes.util import cc_map class EVTPassBase: """ Base class for EVT Passes """ dependencies = [] def __init__(self, dag_ir: DAGIR) -> None: self.dag_ir = dag_ir self.cc = self.dag_ir.cc def requires(self) -> None: """ This function will be called before the pass is run. """ pass def call(self) -> None: """ The pass that is run through the self.dag_ir """ raise NotImplementedError( f"__call__ is not overwritten in Pass {self.__class__.__name__}") def ensures(self) -> None: """ This function will be called after the pass is run. """ pass def __call__(self) -> Any: self.requires() self.call() self.ensures() def cc_specific_method(self, func): """ This enables defining function that behaves differently under different cc The simplest example of using this function is the following .. highlight:: python .. code-block:: python class ExamplePass(EVTPassBase): def call(sekf): # This automatically select the smXX_func based on current cc self.cc_specific_method(self.func)() # Interface func, can be empty def func(self): pass # Sm90 specific func def sm90_func(self): // sm90 specific method return # Sm80 specific func def sm80_func(self): // sm80 specific method return """ func_name = f"sm{cc_map[self.cc]}_{func.__name__}" if hasattr(self, func_name): return getattr(self, func_name) else: raise NotImplementedError(f"func {func.__name__} is not overwritten for Sm{self.cc}") class EVTPassManager(nx.DiGraph): """ Topological-based Pass Manager. Each registered pass has a list of dependencies. The pass manager organizes the passes as a DAG and launch the compiler passes under topological order. """ def __init__(self, dag_ir: DAGIR, pass_list): super().__init__() self.dag_ir = dag_ir for pass_cls in pass_list: self.add_pass(pass_cls) self.sorted_passes = self.schedule() def get_callable(self, pass_name): """ Return the callable of the pass """ return self.nodes[pass_name]["callable"] def add_pass(self, pass_cls): """ Add a pass to the pass manager :param pass_cls: the class of pass :type pass_cls: derived class of EVTPassBase """ name = pass_cls.__name__ pass_callable = pass_cls(self.dag_ir) self.add_node(name, callable=pass_callable) def schedule(self): """ Schedule the added passes under topological order """ # Add edges for pass_name in self.nodes: callable = self.get_callable(pass_name) for dependency_cls in callable.dependencies: self.add_edge( dependency_cls.__name__, type(callable).__name__) # Topological sort return list(nx.topological_sort(self)) def __call__(self) -> Any: """ Launch the registered passes """ for pass_name in self.sorted_passes: callable = self.get_callable(pass_name) callable()
python/cutlass/backend/evt/passes/pass_manager.py/0
{ "file_path": "python/cutlass/backend/evt/passes/pass_manager.py", "repo_id": "python", "token_count": 2156 }
44
################################################################################################# # # Copyright (c) 2023 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################################# """ Common utilities for emitting CUTLASS kernels """ import cutlass # Strings used for printing information about the generation of emitted scripts _AUTOGEN_STR = f"This file was automatically generated by the CUTLASS {cutlass.__version__} Python interface (https://github.com/nvidia/cutlass/python)" _CSTYLE_AUTOGEN_COMMENT = f"""// {_AUTOGEN_STR} """ _PYSTYLE_AUTOGEN_COMMENT = f"""# {_AUTOGEN_STR} """ _CUTLASS_KERNEL_ARGS_2x = """ typename DeviceKernel::Arguments arguments { cutlass::gemm::GemmUniversalMode::kGemm, {M, N, K}, // problem size 1, {alpha, beta}, A, B, C, D, 0, 0, 0, 0, // batch strides DeviceKernel::LayoutA::packed({M, K}).stride(0), // lda DeviceKernel::LayoutB::packed({K, N}).stride(0), // ldb DeviceKernel::LayoutC::packed({M, N}).stride(0), // ldc DeviceKernel::LayoutC::packed({M, N}).stride(0) // ldd }; """ _CUTLASS_KERNEL_ARGS_2x_STREAM_K = """ typename DeviceKernel::Arguments arguments { cutlass::gemm::GemmUniversalMode::kGemm, {M, N, K}, // problem size 1, {alpha, beta}, A, B, C, D, 0, 0, 0, 0, // batch strides DeviceKernel::LayoutA::packed({M, K}).stride(0), // lda DeviceKernel::LayoutB::packed({K, N}).stride(0), // ldb DeviceKernel::LayoutC::packed({M, N}).stride(0), // ldc DeviceKernel::LayoutC::packed({M, N}).stride(0), // ldd -1 // avail_sms }; """ _CUTLASS_KERNEL_RUN_GEMM_2x = """ using ElementCompute = typename DeviceKernel::EpilogueOutputOp::ElementCompute; cutlass::Status ${name}_kernel_run(int M, int N, int K, const DeviceKernel::ElementA* A, const DeviceKernel::ElementB* B, const DeviceKernel::ElementC* C, DeviceKernel::ElementC* D, ElementCompute alpha, ElementCompute beta) { ${args} size_t workspace_size = DeviceKernel::get_workspace_size(arguments); cutlass::device_memory::allocation<uint8_t> workspace(workspace_size); DeviceKernel gemm_op; cutlass::Status status = gemm_op.initialize(arguments, workspace.get(), nullptr); // CUDA stream if (status != cutlass::Status::kSuccess) { return status; } status = gemm_op(); return status; } """ _CUTLASS_KERNEL_RUN_GEMM_3x = """ using StrideA = typename DeviceKernel::GemmKernel::StrideA; using StrideB = typename DeviceKernel::GemmKernel::StrideB; using StrideC = typename DeviceKernel::GemmKernel::StrideC; using StrideD = typename DeviceKernel::GemmKernel::StrideD; using ElementCompute = typename DeviceKernel::EpilogueOutputOp::ElementCompute; cutlass::Status ${name}_kernel_run( int M, int N, int K, int L, const DeviceKernel::ElementA* A, const DeviceKernel::ElementB* B, const DeviceKernel::ElementC* C, DeviceKernel::ElementC* D, ElementCompute alpha, ElementCompute beta, const cutlass::KernelHardwareInfo& hw_info) { typename DeviceKernel::Arguments arguments{ cutlass::gemm::GemmUniversalMode::kGemm, {M, N, K, L}, // problem size { A, // ptrA cutlass::make_cute_packed_stride(StrideA{}, cute::make_shape(M, K, L)), // stride A B, // ptrB cutlass::make_cute_packed_stride(StrideB{}, cute::make_shape(N, K, L)), // stride B }, { {alpha, beta}, C, // ptrC cutlass::make_cute_packed_stride(StrideC{}, cute::make_shape(M, N, L)), // stride C D, // ptrD cutlass::make_cute_packed_stride(StrideD{}, cute::make_shape(M, N, L)), // stride D }, hw_info }; size_t workspace_size = DeviceKernel::get_workspace_size(arguments); cutlass::device_memory::allocation<uint8_t> workspace(workspace_size); DeviceKernel gemm_op; cutlass::Status status = gemm_op.run(arguments, workspace.get(), nullptr); // CUDA stream return status; } """ _CUTLASS_KERNEL_RUN_GROUPED_GEMM_2x = """ using ElementCompute = typename DeviceKernel::EpilogueOutputOp::ElementCompute; int threadblock_count = DeviceKernel::sufficient(); cutlass::Status ${name}_kernel_run(int problem_count, cutlass::gemm::GemmCoord* problem_sizes, DeviceKernel::ElementA** A, DeviceKernel::ElementB** B, DeviceKernel::ElementC** C, DeviceKernel::ElementC** D, int64_t* lda, int64_t* ldb, int64_t* ldc, int64_t* ldd, ElementCompute alpha, ElementCompute beta) { typename DeviceKernel::Arguments arguments { problem_sizes, problem_count, threadblock_count, {alpha, beta}, A, B, C, D, lda, ldb, ldc, ldd }; size_t workspace_size = DeviceKernel::get_workspace_size(arguments); cutlass::device_memory::allocation<uint8_t> workspace(workspace_size); DeviceKernel gemm_op; cutlass::Status status = gemm_op.initialize(arguments, workspace.get(), nullptr); // CUDA stream if (status != cutlass::Status::kSuccess) { return status; } status = gemm_op(); return status; } """ _CUTLASS_KERNEL_RUN_CONV2D_2x = """ using UnderlyingKernel = typename DeviceKernel::UnderlyingKernel; namespace { using TensorRefA = typename UnderlyingKernel::TensorRefA; using TensorRefB = typename UnderlyingKernel::TensorRefB; using TensorRefC = typename UnderlyingKernel::TensorRefC; using ElementCompute = typename UnderlyingKernel::EpilogueOutputOp::ElementCompute; } template<typename TensorRef, typename Element> TensorRef get_tensor_ref(cutlass::Tensor4DCoord tensor_coord, Element* ptr){ cutlass::layout::TensorNHWC layout = cutlass::layout::TensorNHWC::packed(tensor_coord); TensorRef tensor_ref(ptr, layout); return tensor_ref; } cutlass::Status ${name}_kernel_run(cutlass::conv::Conv2dProblemSize* problem_size, UnderlyingKernel::ElementA* A, UnderlyingKernel::ElementB* B, UnderlyingKernel::ElementC* C, UnderlyingKernel::ElementC* D, ElementCompute alpha, ElementCompute beta, std::string split_k_mode, cudaStream_t stream, int device_id=0) { // create the tensor references cutlass::Tensor4DCoord tensor_coord_A = cutlass::conv::implicit_gemm_tensor_a_extent( cutlass::conv::Operator::k${conv_kind_name}, *problem_size ); cutlass::Tensor4DCoord tensor_coord_B = cutlass::conv::implicit_gemm_tensor_b_extent( cutlass::conv::Operator::k${conv_kind_name}, *problem_size ); cutlass::Tensor4DCoord tensor_coord_C = cutlass::conv::implicit_gemm_tensor_c_extent( cutlass::conv::Operator::k${conv_kind_name}, *problem_size ); TensorRefA tensor_ref_A = get_tensor_ref<TensorRefA, UnderlyingKernel::ElementA>(tensor_coord_A, A); TensorRefB tensor_ref_B = get_tensor_ref<TensorRefB, UnderlyingKernel::ElementB>(tensor_coord_B, B); TensorRefC tensor_ref_C = get_tensor_ref<TensorRefC, UnderlyingKernel::ElementC>(tensor_coord_C, C); TensorRefC tensor_ref_D = get_tensor_ref<TensorRefC, UnderlyingKernel::ElementC>(tensor_coord_C, D); cutlass::conv::SplitKMode mode; if (split_k_mode == "serial") { mode = cutlass::conv::SplitKMode::kSerial; } else if (split_k_mode == "parallel") { mode = cutlass::conv::SplitKMode::kParallel; } else { throw std::runtime_error("Invalid split_k_mode: " + split_k_mode); } typename DeviceKernel::Arguments arguments{ *problem_size, tensor_ref_A, tensor_ref_B, tensor_ref_C, tensor_ref_D, {alpha, beta}, mode }; DeviceKernel implicit_gemm_op; size_t workspace_size = implicit_gemm_op.get_workspace_size(arguments); void* workspace_ptr = device_memory_allocation(workspace_size, device_id); cutlass::Status status = implicit_gemm_op.can_implement(arguments); if (status != cutlass::Status::kSuccess) { return status; } status = implicit_gemm_op.initialize(arguments, workspace_ptr, stream); if (status != cutlass::Status::kSuccess) { return status; } // // Launch initialized CUTLASS kernel // status = implicit_gemm_op(stream); return status; } """
python/cutlass/emit/common.py/0
{ "file_path": "python/cutlass/emit/common.py", "repo_id": "python", "token_count": 4533 }
45
################################################################################################# # # Copyright (c) 2023 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################################# """ Profiler based on the cuda events """ import re import subprocess from cuda import cuda, cudart import numpy as np from cutlass import CUTLASS_PATH from cutlass.backend.library import DataTypeSize from cutlass.op.op import OperationBase from cutlass.shape import GemmCoord from cutlass.utils.datatypes import is_numpy_tensor class GpuTimer: def __init__(self) -> None: self.events = [ cuda.cuEventCreate(cuda.CUevent_flags.CU_EVENT_DEFAULT)[1], cuda.cuEventCreate(cuda.CUevent_flags.CU_EVENT_DEFAULT)[1], ] def start(self, stream=cuda.CUstream(0)): (err,) = cuda.cuEventRecord(self.events[0], stream) if err != cuda.CUresult.CUDA_SUCCESS: raise RuntimeError(f"CUDA Error {str(err)}") def stop(self, stream=cuda.CUstream(0)): (err,) = cuda.cuEventRecord(self.events[1], stream) if err != cuda.CUresult.CUDA_SUCCESS: raise RuntimeError(f"CUDA Error {str(err)}") pass def stop_and_wait(self, stream=cuda.CUstream(0)): self.stop(stream) if stream: (err,) = cuda.cuStreamSynchronize(stream) if err != cuda.CUresult.CUDA_SUCCESS: raise RuntimeError(f"CUDA Error {str(err)}") else: (err,) = cudart.cudaDeviceSynchronize() if err != cuda.CUresult.CUDA_SUCCESS: raise RuntimeError(f"CUDA Error {str(err)}") def duration(self, iterations=1): err, duration = cuda.cuEventElapsedTime(self.events[0], self.events[1]) if err != cuda.CUresult.CUDA_SUCCESS: raise RuntimeError(f"CUDA Error {str(err)}") return duration / float(iterations) class CUDAEventProfiler: def __init__(self, op: OperationBase, warmup_iterations: int=500, iterations: int=500, *args, **kwargs) -> None: self.arguments = op.run(*args, **kwargs) self.operation = op.operation self.warmup_iterations = warmup_iterations self.iterations = iterations self.timer = GpuTimer() # # Cutlass Python Interface Profiler # def __call__(self): for _ in range(self.warmup_iterations): self.operation.run(self.arguments) self.timer.start() for _ in range(self.iterations): self.operation.run(self.arguments) self.timer.stop_and_wait() runtime = self.timer.duration(self.iterations) return runtime # # CUTLASS Profiler # def run_cutlass_profiler(self): alpha = 1.0 beta = 1.0 profiler_path = CUTLASS_PATH + "/build/tools/profiler/cutlass_profiler" kernel_name = self.operation.procedural_name() verification_providers = "device" provider = "cutlass" problem_size = self.arguments.problem_size if "cutlass3x" in kernel_name: # cutlass3x generator only have column-major output layout_name = self.operation.layout_name_3x() if layout_name[-1] == "t": new_layout_name = "".join(["n" for l in layout_name if l == "t" or "t"]) problem_size = GemmCoord(problem_size.n, problem_size.m, problem_size.k) kernel_name = kernel_name.replace(layout_name, new_layout_name) batch_count = self.arguments.batch_count cmd = f"{profiler_path} --kernels={kernel_name} --verification-providers={verification_providers} " \ f"--providers={provider} --m={problem_size.m()} --n={problem_size.n()} --k={problem_size.k()} " \ f"--batch_count={batch_count} --alpha={alpha} --beta={beta} "\ f"--warmup-iterations={self.warmup_iterations} --profiling-iterations={self.iterations}" result = subprocess.getoutput(cmd) m = re.search(r"Runtime:\s+(?P<runtime>\d+.\d+)", result) runtime = float(m.group("runtime")) m = re.search(r"Bytes:\s+(?P<bytes>\d+)", result) bytes = int(m.group("bytes")) m = re.search(r"FLOPs:\s+(?P<flops>\d+)", result) flops = int(m.group("flops")) # check if the problem size matches assert bytes == self.bytes(problem_size, batch_count, beta) assert flops == self.flops(problem_size, batch_count, beta) return runtime def bytes(self, problem_size, batch_count=1, beta=0.0): m = problem_size.m() n = problem_size.n() k = problem_size.k() bytes = ( (DataTypeSize[self.operation.A.element] * m // 8) * k + (DataTypeSize[self.operation.B.element] * n // 8) * k + (DataTypeSize[self.operation.C.element] * m // 8) * n ) if beta != 0: bytes += (DataTypeSize[self.operation.C.element] * m // 8) * n bytes *= batch_count return bytes def flops(self, problem_size, batch_count=1, beta=0.0): m = problem_size.m() n = problem_size.n() k = problem_size.k() flops_ = (m * n * k) * 2 * batch_count if beta != 0: flops_ += m * n * batch_count * 2 return flops_
python/cutlass/utils/profiler.py/0
{ "file_path": "python/cutlass/utils/profiler.py", "repo_id": "python", "token_count": 2791 }
46
/* * language_data.js * ~~~~~~~~~~~~~~~~ * * This script contains the language-specific data used by searchtools.js, * namely the list of stopwords, stemmer, scorer and splitter. * * :copyright: Copyright 2007-2023 by the Sphinx team, see AUTHORS. * :license: BSD, see LICENSE for details. * */ var stopwords = ["a", "and", "are", "as", "at", "be", "but", "by", "for", "if", "in", "into", "is", "it", "near", "no", "not", "of", "on", "or", "such", "that", "the", "their", "then", "there", "these", "they", "this", "to", "was", "will", "with"]; /* Non-minified version is copied as a separate JS file, is available */ /** * Porter Stemmer */ var Stemmer = function() { var step2list = { ational: 'ate', tional: 'tion', enci: 'ence', anci: 'ance', izer: 'ize', bli: 'ble', alli: 'al', entli: 'ent', eli: 'e', ousli: 'ous', ization: 'ize', ation: 'ate', ator: 'ate', alism: 'al', iveness: 'ive', fulness: 'ful', ousness: 'ous', aliti: 'al', iviti: 'ive', biliti: 'ble', logi: 'log' }; var step3list = { icate: 'ic', ative: '', alize: 'al', iciti: 'ic', ical: 'ic', ful: '', ness: '' }; var c = "[^aeiou]"; // consonant var v = "[aeiouy]"; // vowel var C = c + "[^aeiouy]*"; // consonant sequence var V = v + "[aeiou]*"; // vowel sequence var mgr0 = "^(" + C + ")?" + V + C; // [C]VC... is m>0 var meq1 = "^(" + C + ")?" + V + C + "(" + V + ")?$"; // [C]VC[V] is m=1 var mgr1 = "^(" + C + ")?" + V + C + V + C; // [C]VCVC... is m>1 var s_v = "^(" + C + ")?" + v; // vowel in stem this.stemWord = function (w) { var stem; var suffix; var firstch; var origword = w; if (w.length < 3) return w; var re; var re2; var re3; var re4; firstch = w.substr(0,1); if (firstch == "y") w = firstch.toUpperCase() + w.substr(1); // Step 1a re = /^(.+?)(ss|i)es$/; re2 = /^(.+?)([^s])s$/; if (re.test(w)) w = w.replace(re,"$1$2"); else if (re2.test(w)) w = w.replace(re2,"$1$2"); // Step 1b re = /^(.+?)eed$/; re2 = /^(.+?)(ed|ing)$/; if (re.test(w)) { var fp = re.exec(w); re = new RegExp(mgr0); if (re.test(fp[1])) { re = /.$/; w = w.replace(re,""); } } else if (re2.test(w)) { var fp = re2.exec(w); stem = fp[1]; re2 = new RegExp(s_v); if (re2.test(stem)) { w = stem; re2 = /(at|bl|iz)$/; re3 = new RegExp("([^aeiouylsz])\\1$"); re4 = new RegExp("^" + C + v + "[^aeiouwxy]$"); if (re2.test(w)) w = w + "e"; else if (re3.test(w)) { re = /.$/; w = w.replace(re,""); } else if (re4.test(w)) w = w + "e"; } } // Step 1c re = /^(.+?)y$/; if (re.test(w)) { var fp = re.exec(w); stem = fp[1]; re = new RegExp(s_v); if (re.test(stem)) w = stem + "i"; } // Step 2 re = /^(.+?)(ational|tional|enci|anci|izer|bli|alli|entli|eli|ousli|ization|ation|ator|alism|iveness|fulness|ousness|aliti|iviti|biliti|logi)$/; if (re.test(w)) { var fp = re.exec(w); stem = fp[1]; suffix = fp[2]; re = new RegExp(mgr0); if (re.test(stem)) w = stem + step2list[suffix]; } // Step 3 re = /^(.+?)(icate|ative|alize|iciti|ical|ful|ness)$/; if (re.test(w)) { var fp = re.exec(w); stem = fp[1]; suffix = fp[2]; re = new RegExp(mgr0); if (re.test(stem)) w = stem + step3list[suffix]; } // Step 4 re = /^(.+?)(al|ance|ence|er|ic|able|ible|ant|ement|ment|ent|ou|ism|ate|iti|ous|ive|ize)$/; re2 = /^(.+?)(s|t)(ion)$/; if (re.test(w)) { var fp = re.exec(w); stem = fp[1]; re = new RegExp(mgr1); if (re.test(stem)) w = stem; } else if (re2.test(w)) { var fp = re2.exec(w); stem = fp[1] + fp[2]; re2 = new RegExp(mgr1); if (re2.test(stem)) w = stem; } // Step 5 re = /^(.+?)e$/; if (re.test(w)) { var fp = re.exec(w); stem = fp[1]; re = new RegExp(mgr1); re2 = new RegExp(meq1); re3 = new RegExp("^" + C + v + "[^aeiouwxy]$"); if (re.test(stem) || (re2.test(stem) && !(re3.test(stem)))) w = stem; } re = /ll$/; re2 = new RegExp(mgr1); if (re.test(w) && re2.test(w)) { re = /.$/; w = w.replace(re,""); } // and turn initial Y back to y if (firstch == "y") w = firstch.toLowerCase() + w.substr(1); return w; } }
python/docs/_static/language_data.js/0
{ "file_path": "python/docs/_static/language_data.js", "repo_id": "python", "token_count": 2592 }
47
/* Highlighting utilities for Sphinx HTML documentation. */ "use strict"; const SPHINX_HIGHLIGHT_ENABLED = true /** * highlight a given string on a node by wrapping it in * span elements with the given class name. */ const _highlight = (node, addItems, text, className) => { if (node.nodeType === Node.TEXT_NODE) { const val = node.nodeValue; const parent = node.parentNode; const pos = val.toLowerCase().indexOf(text); if ( pos >= 0 && !parent.classList.contains(className) && !parent.classList.contains("nohighlight") ) { let span; const closestNode = parent.closest("body, svg, foreignObject"); const isInSVG = closestNode && closestNode.matches("svg"); if (isInSVG) { span = document.createElementNS("http://www.w3.org/2000/svg", "tspan"); } else { span = document.createElement("span"); span.classList.add(className); } span.appendChild(document.createTextNode(val.substr(pos, text.length))); parent.insertBefore( span, parent.insertBefore( document.createTextNode(val.substr(pos + text.length)), node.nextSibling ) ); node.nodeValue = val.substr(0, pos); if (isInSVG) { const rect = document.createElementNS( "http://www.w3.org/2000/svg", "rect" ); const bbox = parent.getBBox(); rect.x.baseVal.value = bbox.x; rect.y.baseVal.value = bbox.y; rect.width.baseVal.value = bbox.width; rect.height.baseVal.value = bbox.height; rect.setAttribute("class", className); addItems.push({ parent: parent, target: rect }); } } } else if (node.matches && !node.matches("button, select, textarea")) { node.childNodes.forEach((el) => _highlight(el, addItems, text, className)); } }; const _highlightText = (thisNode, text, className) => { let addItems = []; _highlight(thisNode, addItems, text, className); addItems.forEach((obj) => obj.parent.insertAdjacentElement("beforebegin", obj.target) ); }; /** * Small JavaScript module for the documentation. */ const SphinxHighlight = { /** * highlight the search words provided in localstorage in the text */ highlightSearchWords: () => { if (!SPHINX_HIGHLIGHT_ENABLED) return; // bail if no highlight // get and clear terms from localstorage const url = new URL(window.location); const highlight = localStorage.getItem("sphinx_highlight_terms") || url.searchParams.get("highlight") || ""; localStorage.removeItem("sphinx_highlight_terms") url.searchParams.delete("highlight"); window.history.replaceState({}, "", url); // get individual terms from highlight string const terms = highlight.toLowerCase().split(/\s+/).filter(x => x); if (terms.length === 0) return; // nothing to do // There should never be more than one element matching "div.body" const divBody = document.querySelectorAll("div.body"); const body = divBody.length ? divBody[0] : document.querySelector("body"); window.setTimeout(() => { terms.forEach((term) => _highlightText(body, term, "highlighted")); }, 10); const searchBox = document.getElementById("searchbox"); if (searchBox === null) return; searchBox.appendChild( document .createRange() .createContextualFragment( '<p class="highlight-link">' + '<a href="javascript:SphinxHighlight.hideSearchWords()">' + _("Hide Search Matches") + "</a></p>" ) ); }, /** * helper function to hide the search marks again */ hideSearchWords: () => { document .querySelectorAll("#searchbox .highlight-link") .forEach((el) => el.remove()); document .querySelectorAll("span.highlighted") .forEach((el) => el.classList.remove("highlighted")); localStorage.removeItem("sphinx_highlight_terms") }, initEscapeListener: () => { // only install a listener if it is really needed if (!DOCUMENTATION_OPTIONS.ENABLE_SEARCH_SHORTCUTS) return; document.addEventListener("keydown", (event) => { // bail for input elements if (BLACKLISTED_KEY_CONTROL_ELEMENTS.has(document.activeElement.tagName)) return; // bail with special keys if (event.shiftKey || event.altKey || event.ctrlKey || event.metaKey) return; if (DOCUMENTATION_OPTIONS.ENABLE_SEARCH_SHORTCUTS && (event.key === "Escape")) { SphinxHighlight.hideSearchWords(); event.preventDefault(); } }); }, }; _ready(SphinxHighlight.highlightSearchWords); _ready(SphinxHighlight.initEscapeListener);
python/docs/_static/sphinx_highlight.js/0
{ "file_path": "python/docs/_static/sphinx_highlight.js", "repo_id": "python", "token_count": 1859 }
48
<jupyter_start><jupyter_text>Example of using elementwise activation functions in the CUTLASS Python interfaceThis notebook walks through a basic example of using the CUTLASS Python interface to declare, compile, and run GEMMs with different epilogues.[](https://colab.research.google.com/github/NVIDIA/cutlass/tree/master/examples/00_basic_gemm.ipynb) We first import various packages needed for the example and construct the input and output tensors that will be used in our example.<jupyter_code>import numpy as np import cutlass # This controls whether ther C++ GEMM declaration will be printed at each step. Set to `false` to # omit this information. print_module = True m = 256 n = m k = m type_A = np.float16 type_B = np.float16 type_C = np.float16 type_D = np.float16 np.random.seed(1234) scope_min = -4 scope_max = 4 tensor_A = np.ceil(np.random.uniform(low=scope_min, high=scope_max, size=(m, k)).astype(type_A)) tensor_B = np.ceil(np.random.uniform(low=scope_min, high=scope_max, size=(k, n)).astype(type_B)) tensor_C = np.ceil(np.random.uniform(low=scope_min, high=scope_max, size=(m, n)).astype(type_C)) alpha = np.float16(1.) beta = np.float16(0.) tensor_D = np.zeros(tensor_C.shape).astype(type_D)<jupyter_output>/usr/local/lib/python3.8/dist-packages/tqdm/auto.py:22: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html from .autonotebook import tqdm as notebook_tqdm<jupyter_text>Run a GEMM with an identity activation functionTo begin, we simply run a default GEMM with an identity activation function. This performs the well-known operation `D = alpha * (A @ B) + beta * C`. This is the default activation function used, and does not need to be specified.<jupyter_code>plan = cutlass.op.Gemm(element=np.float16, layout=cutlass.LayoutType.RowMajor) plan.run(tensor_A, tensor_B, tensor_C, tensor_D, print_module=print_module)<jupyter_output>// Gemm operator cutlass_sm80_tensorop_h16x8x16gemm_1x1x1_256x128_64x3_tt_align8 using cutlass_sm80_tensorop_h16x8x16gemm_1x1x1_256x128_64x3_tt_align8_base = typename cutlass::gemm::kernel::DefaultGemmUniversal< cutlass::half_t, cutlass::layout::RowMajor, cutlass::ComplexTransform::kNone, 8, cutlass::half_t, cutlass::layout::RowMajor, cutlass::ComplexTransform::kNone, 8, cutlass::half_t, cutlass::layout::RowMajor, cutlass::half_t, cutlass::arch::OpClassTensorOp, cutlass::arch::Sm80, cutlass::gemm::GemmShape<256, 128, 64>, cutlass::gemm::GemmShape<64, 64, 64>, cutlass::gemm::GemmShape<16, 8, 16>, cutlass::epilogue::thread::LinearCombination<cutlass::half_t, 8, cutlass::half_t, cutlass::half_t>, cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<1>, 3, cutlass::arch::OpMultiplyAdd >::GemmKernel; // Define named type struct cutlass_sm80_tensorop_h16x8x16gemm_1x1x1_256x128_64x3_tt_align8_type : public cutlass_sm80_tensorop_[...]<jupyter_text>Run a GEMM with a ReLU element-wise activation functionCUTLASS makes it easy to support other element-wise activation functions. This results in performing an element-wise after the generic linear combination performed in a GEMM. If we call such an activation function `act`, the resulting formulation is:```D = alpha * (A @ B) + beta * CD = act(D)```Here, we will add a ReLU activation function. Given an input `x`, ReLU returns `max(x, 0)`.This is easy to do in CUTLASS. One only needs to set the plan's `activation` field.<jupyter_code>tensor_D_relu = np.zeros(tensor_C.shape).astype(type_D) plan.activation = cutlass.epilogue.relu plan.run(tensor_A, tensor_B, tensor_C, tensor_D_relu, print_module=print_module)<jupyter_output>// Gemm operator cutlass_sm80_tensorop_h16x8x16gemm_1x1x1_256x128_64x3_tt_align8 using cutlass_sm80_tensorop_h16x8x16gemm_1x1x1_256x128_64x3_tt_align8_base = typename cutlass::gemm::kernel::DefaultGemmUniversal< cutlass::half_t, cutlass::layout::RowMajor, cutlass::ComplexTransform::kNone, 8, cutlass::half_t, cutlass::layout::RowMajor, cutlass::ComplexTransform::kNone, 8, cutlass::half_t, cutlass::layout::RowMajor, cutlass::half_t, cutlass::arch::OpClassTensorOp, cutlass::arch::Sm80, cutlass::gemm::GemmShape<256, 128, 64>, cutlass::gemm::GemmShape<64, 64, 64>, cutlass::gemm::GemmShape<16, 8, 16>, cutlass::epilogue::thread::LinearCombinationGeneric<cutlass::epilogue::thread::ReLu, cutlass::half_t, 8, cutlass::half_t, cutlass::half_t>, cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<1>, 3, cutlass::arch::OpMultiplyAdd >::GemmKernel; // Define named type struct cutlass_sm80_tensorop_h16x8x16gemm_1x1x1_256x128_64x3_tt_align8[...]<jupyter_text>We can now verify that the result of the GEMM that used a ReLU activation function:<jupyter_code>relu_ref = (tensor_D >= 0).astype(type_D) * tensor_D np.testing.assert_array_equal(relu_ref, tensor_D_relu)<jupyter_output><empty_output><jupyter_text>Other element-wise activation functionsCUTLASS supports a variety of widely-used element-wise activation functions. We can obtain a list of these functions via the `get_activations()` method.<jupyter_code>activations = plan.activations() for activation in activations: print(activation)<jupyter_output><class 'cutlass.backend.epilogue.gelu'> <class 'cutlass.backend.epilogue.hardswish'> <class 'cutlass.backend.epilogue.identity'> <class 'cutlass.backend.epilogue.leaky_relu'> <class 'cutlass.backend.epilogue.relu'> <class 'cutlass.backend.epilogue.sigmoid'> <class 'cutlass.backend.epilogue.silu'> <class 'cutlass.backend.epilogue.tanh'><jupyter_text>We can then run each of them:<jupyter_code>for activation in activations: print('=============================================================================================') print(f'Compiling and running activation {activation}') print('=============================================================================================') plan.activation = activation plan.run(tensor_A, tensor_B, tensor_C, tensor_D, print_module=print_module)<jupyter_output>============================================================================================= Compiling and running activation <class 'cutlass.backend.epilogue.gelu'> ============================================================================================= // Gemm operator cutlass_sm80_tensorop_h16x8x16gemm_1x1x1_256x128_64x3_tt_align8 using cutlass_sm80_tensorop_h16x8x16gemm_1x1x1_256x128_64x3_tt_align8_base = typename cutlass::gemm::kernel::DefaultGemmUniversal< cutlass::half_t, cutlass::layout::RowMajor, cutlass::ComplexTransform::kNone, 8, cutlass::half_t, cutlass::layout::RowMajor, cutlass::ComplexTransform::kNone, 8, cutlass::half_t, cutlass::layout::RowMajor, cutlass::half_t, cutlass::arch::OpClassTensorOp, cutlass::arch::Sm80, cutlass::gemm::GemmShape<256, 128, 64>, cutlass::gemm::GemmShape<64, 64, 64>, cutlass::gemm::GemmShape<16, 8, 16>, cutlass::epilogue::thread::LinearCombinationGeneric<cutlass::epilogue::thread::GELU, cutlass:[...]
python/docs/externals/01_epilogue.ipynb/0
{ "file_path": "python/docs/externals/01_epilogue.ipynb", "repo_id": "python", "token_count": 2598 }
49
################################################################################################# # # Copyright (c) 2023 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################################# """ Definition of CuTe Layouts and functions to manipulate them """ from itertools import chain from typing import Union from .int_tuple import * class LayoutBase: pass def is_layout(x): return isinstance(x, LayoutBase) class Layout(LayoutBase): def __init__(self, _shape, _stride=None): self.shape = _shape if _stride is None: self.stride = prefix_product(self.shape) else: self.stride = _stride # operator == def __eq__(self, other): return self.shape == other.shape and self.stride == other.stride # operator len(L) (len [rank] like tuples) def __len__(self): if is_tuple(self.shape): return len(self.shape) else: return 1 # operator () (map coord to idx) def __call__(self, *args): """ Map a logical coordinate to a linear index (Coord has no Underscore slice operators) OR Slice the layout and return the sublayout (Coord has an Underscore slice op) Follow the same behavior of `Layout::operator(Coord const&)` in cute C++ """ if has_none(args): if len(args) == 1: return Layout(slice_(args[0], self.shape), slice_(args[0], self.stride)) else: return Layout(slice_(args, self.shape), slice_(args, self.stride)) else: if len(args) == 1: return crd2idx(args[0], self.shape, self.stride) else: return crd2idx(args, self.shape, self.stride) # operator [] (get-i like tuples) def __getitem__(self, i): if is_tuple(self.shape): return Layout(self.shape[i], self.stride[i]) else: assert i == 0 return Layout(self.shape, self.stride) # size(layout) Size of the domain def size(self): return product(self.shape) # cosize(layout) Size of the codomain def cosize(self): return self(self.size() - 1) + 1 # print and str def __str__(self): return f"{self.shape}:{self.stride}" # error msgs and representation def __repr__(self): return f"Layout({self.shape},{self.stride})" # Make Layout from a list of layouts (each layout it's own mode in the result) def make_layout(*layouts): if len(layouts) == 1 and not is_layout(layouts[0]): layouts = layouts[0] shape, stride = zip(*((a.shape,a.stride) for a in layouts)) return Layout(shape, stride) # Size of the domain def size(layout): if is_layout(layout): return layout.size() return product(layout) # Size of the codomain def cosize(layout): return layout.cosize() # Layout coalesce -- flatten and combine as many modes as possible while preserving the int-to-int function def coalesce(layout, profile=None): if is_tuple(profile): assert len(layout) >= len(profile) return make_layout(chain((coalesce(layout[i], profile[i]) for i in range( 0,len(profile))), (layout[i] for i in range(len(profile),len(layout))))) result_shape = [1] result_stride = [0] for (shape,stride) in zip(flatten(layout.shape),flatten(layout.stride)): # skip their shape-1s if shape == 1: continue # replace our shape-1 with anything elif result_shape[-1] == 1: result_shape[-1] = shape result_stride[-1] = stride # merge modes if the shape*stride match elif result_shape[-1] * result_stride[-1] == stride: result_shape[-1] = result_shape[-1] * shape # append a new mode else: result_shape.append(shape) result_stride.append(stride) if len(result_shape) == 1: return Layout(result_shape[0], result_stride[0]) else: return Layout(tuple(result_shape), tuple(result_stride)) # Layout filter -- replace all stride-0 modes with size-1 and then coalesce to remove them def filter(layout, profile=None): if is_tuple(profile): assert len(layout) >= len(profile) return make_layout(chain((filter(layout[i], profile[i]) for i in range( 0,len(profile))), (layout[i] for i in range(len(profile),len(layout))))) result_shape = [] result_stride = [] for (shape,stride) in zip(flatten(layout.shape),flatten(layout.stride)): # skip their shape-1s and stride-0s if not (shape == 1 or stride == 0): result_shape.append(shape) result_stride.append(stride) if len(result_shape) == 0: return Layout(1,0) else: return coalesce(Layout(tuple(result_shape), tuple(result_stride))) # Layout composition # Use tuples-of-layouts to perform this operation by-mode and None as no-op def composition(layoutA, layoutB): if layoutB is None: return layoutA elif is_int(layoutB): return composition(layoutA, Layout(layoutB)) elif is_tuple(layoutB): assert len(layoutA) >= len(layoutB) return make_layout(chain((composition(layoutA[i], layoutB[i]) for i in range( 0,len(layoutB))), (layoutA[i] for i in range(len(layoutB),len(layoutA))))) elif is_tuple(layoutB.shape): return make_layout(composition(layoutA, layoutB_i) for layoutB_i in layoutB) if layoutB.stride == 0: return Layout(layoutB.shape, 0) else: result_shape = [] result_stride = [] rest_shape = layoutB.shape rest_stride = layoutB.stride for (s, d) in zip(flatten(layoutA.shape)[:-1], flatten(layoutA.stride)[:-1]): s1 = shape_div(s, rest_stride) result_shape.append(min(s1,rest_shape)) result_stride.append(rest_stride * d) rest_shape = shape_div(rest_shape, abs(s1)) rest_stride = shape_div(rest_stride, s) result_shape.append(rest_shape) result_stride.append(rest_stride * flatten(layoutA.stride)[-1]) return coalesce(Layout(tuple(result_shape), tuple(result_stride))) # Layout complement def complement(layout, max_idx=1): if is_int(layout): return complement(Layout(layout)) result_shape = [] result_stride = [] current_idx = 1 sorted_DS = sorted(zip(flatten(layout.stride), flatten(layout.shape))) for (stride, shape) in sorted_DS: if stride == 0 or shape == 1: continue in_bound = current_idx <= shape * stride # To support symbolic value which can't be evaluated now assert (type(in_bound) is not bool) or in_bound result_shape.append(stride // current_idx) result_stride.append(current_idx) current_idx = shape * stride result_shape.append((max_idx + current_idx - 1) // current_idx) # ceil_div result_stride.append(current_idx) return coalesce(Layout(tuple(result_shape), tuple(result_stride))) # Layout right inverse def right_inverse(layout): if layout is None: return None elif is_int(layout): return Layout(layout) result_shape = [] result_stride = [] current_idx = 1 flat_shape = flatten(layout.shape) flat_stride = flatten(layout.stride) sorted_DSA = sorted(zip(flat_stride, flat_shape, prefix_product(flat_shape))) for (stride,shape,rstride) in sorted_DSA: if shape == 1: continue if current_idx != stride: break result_shape.append(shape) result_stride.append(rstride) current_idx = shape * stride return coalesce(Layout(tuple(result_shape), tuple(result_stride))) # Layout left inverse def left_inverse(layout): if layout is None: return None elif is_int(layout): return Layout(layout) return right_inverse(make_layout(layout, complement(layout))) # Split a layout by the composition of B and the "rest" # Use tuples-of-layouts to perform this operation by-mode and None as no-op def logical_divide(layoutA, layoutB): if layoutB is None: return layoutA elif is_int(layoutB): return logical_divide(layoutA, Layout(layoutB)) elif is_tuple(layoutB): assert len(layoutA) >= len(layoutB) return make_layout(chain((logical_divide(layoutA[i], layoutB[i]) for i in range( 0,len(layoutB))), (layoutA[i] for i in range(len(layoutB),len(layoutA))))) return composition(layoutA, make_layout(layoutB, complement(layoutB, size(layoutA)))) # Reproduce a layoutA over a layoutB # Use tuples-of-layouts to perform this operation by-mode and None as no-op def logical_product(layoutA, layoutB): if layoutB is None: return layoutA elif is_int(layoutB): return logical_divide(layoutA, Layout(layoutB)) elif is_tuple(layoutB): assert len(layoutA) >= len(layoutB) return make_layout(chain((logical_product(layoutA[i], layoutB[i]) for i in range( 0,len(layoutB))), (layoutA[i] for i in range(len(layoutB),len(layoutA))))) return make_layout(layoutA, composition(complement(layoutA, size(layoutA)*cosize(layoutB)), layoutB)); # Gather the modes from a hierarchical logical_divide or logical_product def hier_unzip(splitter, layoutA, layoutB): if layoutB is None: return make_layout(Layout(1,0), layoutA) elif is_tuple(layoutB): assert len(layoutA) >= len(layoutB) # A layout with shape ((A,a),(B,b),(C,c)) split = make_layout(hier_unzip(splitter, layoutA[i], layoutB[i]) for i in range(0,len(layoutB))) # Gather to shape ((A,B,C,...),(a,b,c,...,y,z)) return make_layout(make_layout( split[i][0] for i in range( 0,len(layoutB))), make_layout(chain((split[i][1] for i in range( 0,len(layoutB))), (layoutA[i] for i in range(len(layoutB),len(layoutA)))))) # splitter must return a rank-2 layout return splitter(layoutA, layoutB) # Apply logical divide hierarchically and gather the split modes into two modes def zipped_divide(layoutA, layoutB): return hier_unzip(logical_divide, layoutA, layoutB) # Perform logical divide hierarchically and gather tiles (B-layouts) into a new mode def tiled_divide(layoutA, layoutB): result = zipped_divide(layoutA, layoutB) return make_layout([result[0]] + [result[1][i] for i in range(len(result[1]))]) # Apply logical product hierarchically and gather the split modes into two modes def zipped_product(layoutA, layoutB): return hier_unzip(logical_product, layoutA, layoutB) # Perform logical product hierarchically and gather tiles (B-layouts) into a new mode def tiled_product(layoutA, layoutB): result = zipped_product(layoutA, layoutB) return make_layout([result[0]] + [result[1][i] for i in range(len(result[1]))]) def slice_and_offset(crd: tuple, layout: Layout): return (Layout(slice_(crd, layout.shape), slice_(crd, layout.stride)), crd2idx(crd, layout.shape, layout.stride))
python/pycute/layout.py/0
{ "file_path": "python/pycute/layout.py", "repo_id": "python", "token_count": 4643 }
50
################################################################################ # # Copyright (c) 2023 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################ """ Unittest for mixed types of nodes in SM90 """ import logging import unittest import cutlass from cutlass.backend import * from cutlass.epilogue import * from cutlass.swizzle import ThreadblockSwizzleStreamK from utils.evt_testbed import EVTTestBed, EVTTestCaseBase cutlass.set_log_level(logging.WARNING) @unittest.skipIf(device_cc() not in [80, 86, 89, 90], "This unittest is only supported on CC [80, 86, 89, 90]") class TestEVTMixed(EVTTestCaseBase): def test_mixed_dag(self): def evt_mixed_dag(accum, alpha, C, beta, aux, cbias, rbias): F = alpha * accum + (beta * C + aux) F_row_max = max(F, dim=[0, 1]) E = relu(F + 1) + cbias + rbias E_col_max = max(E, dim=[0, 2]) D = E + F return D, F, F_row_max, E_col_max if device_cc() == 80: alignments = [2, 4, 8] else: # Sm90 EVT currently only supports 128-bit alignment alignments = [8,] for align in alignments: for m, n, k, l in self.get_problem_sizes(align): example_inputs = { "accum": self.fake_tensor(self.element, (l, m, n)), "alpha": 1.0, "C": self.fake_tensor(self.element, (l, m, n)), "beta": 1.0, "aux": self.fake_tensor(self.element, (l, m, n)), "cbias": self.fake_tensor(self.element, (m, 1)), "rbias": self.fake_tensor(self.element, (n,)), "D": self.fake_tensor(self.element, (l, m, n)), "F": self.fake_tensor(self.element, (l, m, n)), "F_row_max": self.fake_tensor(DataType.f32, (n,)), "E_col_max": self.fake_tensor(DataType.f32, (m, 1)) } launcher = EVTTestBed(self.element, evt_mixed_dag, example_inputs) input_keys = ["alpha", "C", "beta", "aux", "cbias", "rbias"] result_keys = ["D", "F", "F_row_max", "E_col_max"] launcher.verify((m, n, k), input_keys, result_keys, l) @unittest.skipIf(device_cc() not in [80, 89], "This unittest is for cc 80 and 89 only") def test_mixed_dag_float(self): def evt_mixed_dag(accum, alpha, C, beta, aux, cbias, rbias): F = alpha * accum + (beta * C + aux) F_row_max = max(F, dim=[0, 1]) E = relu(F + 1) + cbias + rbias E_col_max = max(E, dim=[0, 2]) D = E + F return D, F, F_row_max, E_col_max for align in [3, 2, 4]: for m, n, k, l in self.get_problem_sizes(align): example_inputs = { "accum": self.fake_tensor(np.float32, (l, m, n)), "alpha": 1.0, "C": self.fake_tensor(np.float32, (l, m, n)), "beta": 1.0, "aux": self.fake_tensor(np.float32, (l, m, n)), "cbias": self.fake_tensor(np.float32, (m, 1)), "rbias": self.fake_tensor(np.float32, (n,)), "D": self.fake_tensor(np.float32, (l, m, n)), "F": self.fake_tensor(np.float32, (l, m, n)), "F_row_max": self.fake_tensor(np.float32, (n,)), "E_col_max": self.fake_tensor(np.float32, (m, 1)) } launcher = EVTTestBed(DataType.f32, evt_mixed_dag, example_inputs) input_keys = ["alpha", "C", "beta", "aux", "cbias", "rbias"] result_keys = ["D", "F", "F_row_max", "E_col_max"] launcher.verify((m, n, k), input_keys, result_keys, l) @unittest.skipIf(device_cc() not in [80, 89], "This unittest is for cc 80 and 89 only") def test_mixed_dag_stage2(self): def evt_mixed_dag(accum, alpha, C, beta, aux, cbias, rbias): F = alpha * accum + (beta * C + aux) F_row_max = max(F, dim=[0, 1]) E = relu(F + 1) + cbias + rbias E_col_max = max(E, dim=[0, 2]) D = E + F return D, F, F_row_max, E_col_max for m, n, k, l in self.get_problem_sizes(8): example_inputs = { "accum": self.fake_tensor(self.element, (l, m, n)), "alpha": 1.0, "C": self.fake_tensor(self.element, (l, m, n)), "beta": 1.0, "aux": self.fake_tensor(self.element, (l, m, n)), "cbias": self.fake_tensor(self.element, (m, 1)), "rbias": self.fake_tensor(self.element, (n,)), "D": self.fake_tensor(self.element, (l, m, n)), "F": self.fake_tensor(self.element, (l, m, n)), "F_row_max": self.fake_tensor(DataType.f32, (n,)), "E_col_max": self.fake_tensor(DataType.f32, (m, 1)) } launcher = EVTTestBed(self.element, evt_mixed_dag, example_inputs, epilogue_stages=2) input_keys = ["alpha", "C", "beta", "aux", "cbias", "rbias"] result_keys = ["D", "F", "F_row_max", "E_col_max"] launcher.verify((m, n, k), input_keys, result_keys, l) @unittest.skipIf(device_cc() not in [80, 89], "This unittest is for cc 80 and 89 only") def test_mixed_dag_partition_k(self): def evt_mixed_dag(accum, alpha, C, beta, aux, cbias, rbias): F = alpha * accum + (beta * C + aux) F_row_max = max(F, dim=[0, 1]) E = relu(F + 1) + cbias + rbias E_col_max = max(E, dim=[0, 2]) D = E + F return D, F, F_row_max, E_col_max for m, n, k, l in self.get_problem_sizes(8): example_inputs = { "accum": self.fake_tensor(self.element, (l, m, n)), "alpha": 1.0, "C": self.fake_tensor(self.element, (l, m, n)), "beta": 1.0, "aux": self.fake_tensor(self.element, (l, m, n)), "cbias": self.fake_tensor(self.element, (m, 1)), "rbias": self.fake_tensor(self.element, (n,)), "D": self.fake_tensor(self.element, (l, m, n)), "F": self.fake_tensor(self.element, (l, m, n)), "F_row_max": self.fake_tensor(DataType.f32, (n,)), "E_col_max": self.fake_tensor(DataType.f32, (m, 1)) } tile_description = { "threadblock_shape": [128, 128, 64], "warp_count": [2, 2, 2] } launcher = EVTTestBed(self.element, evt_mixed_dag, example_inputs, tile_description=tile_description, epilogue_stages=2) input_keys = ["alpha", "C", "beta", "aux", "cbias", "rbias"] result_keys = ["D", "F", "F_row_max", "E_col_max"] launcher.verify((m, n, k), input_keys, result_keys, l) @unittest.skipIf(device_cc() not in [80, 89], "This unittest is for cc 80 and 89 only") def test_mixed_dag_stream_k(self): def evt_mixed_dag(accum, alpha, C, beta, aux, cbias, rbias): F = alpha * accum + (beta * C + aux) F_row_max = max(F, dim=[0, 1]) E = relu(F + 1) + cbias + rbias E_col_max = max(E, dim=[0, 2]) D = E + F return D, F, F_row_max, E_col_max # High per-sm occupancy tile_description tile_description = { "threadblock_shape": [128, 128, 32], "warp_count": [2, 2, 1], "stages": 3 } tds = [None, tile_description] for td in tds: for m, n, k, l in self.get_problem_sizes(8, k=960, batch_count=[1, 3]): if l == 1: example_inputs = { "accum": self.fake_tensor(self.element, (m, n)), "alpha": 1.0, "C": self.fake_tensor(self.element, (m, n)), "beta": 1.0, "aux": self.fake_tensor(self.element, (m, n)), "cbias": self.fake_tensor(self.element, (m, 1)), "rbias": self.fake_tensor(self.element, (n,)), "D": self.fake_tensor(self.element, (m, n)), "F": self.fake_tensor(self.element, (m, n)), "F_row_max": self.fake_tensor(DataType.f32, (n,)), "E_col_max": self.fake_tensor(DataType.f32, (m, 1)) } else: example_inputs = { "accum": self.fake_tensor(self.element, (l, m, n)), "alpha": 1.0, "C": self.fake_tensor(self.element, (l, m, n)), "beta": 1.0, "aux": self.fake_tensor(self.element, (l, m, n)), "cbias": self.fake_tensor(self.element, (m, 1)), "rbias": self.fake_tensor(self.element, (n,)), "D": self.fake_tensor(self.element, (l, m, n)), "F": self.fake_tensor(self.element, (l, m, n)), "F_row_max": self.fake_tensor(DataType.f32, (n,)), "E_col_max": self.fake_tensor(DataType.f32, (m, 1)) } if td is not None: launcher = EVTTestBed( self.element, evt_mixed_dag, example_inputs, tile_description=td, swizzling_functor=ThreadblockSwizzleStreamK, backend="torch") else: launcher = EVTTestBed( self.element, evt_mixed_dag, example_inputs, swizzling_functor=ThreadblockSwizzleStreamK, backend="torch") input_keys = ["alpha", "C", "beta", "aux", "cbias", "rbias"] result_keys = ["D", "F", "F_row_max", "E_col_max"] launcher.verify((m, n, k), input_keys, result_keys, l) def test_mixed_dag_no_batch(self): def evt_mixed_dag_no_batch(accum, alpha, C, beta, aux, cbias, rbias): F = alpha * accum + (beta * C + aux) F_row_max = max(F, dim=[0, 1]) E = relu(F + 1) + cbias + rbias E_col_max = max(E, dim=[0, 2]) D = E + F return D, F, F_row_max, E_col_max for m, n, k, _ in self.get_problem_sizes(8): example_inputs = { "accum": self.fake_tensor(self.element, (m, n)), "alpha": 1.0, "C": self.fake_tensor(self.element, (m, n)), "beta": 1.0, "aux": self.fake_tensor(self.element, (m, n)), "cbias": self.fake_tensor(self.element, (m, 1)), "rbias": self.fake_tensor(self.element, (n,)), "D": self.fake_tensor(self.element, (m, n)), "F": self.fake_tensor(self.element, (m, n)), "F_row_max": self.fake_tensor(DataType.f32, (n,)), "E_col_max": self.fake_tensor(DataType.f32, (m, 1)) } launcher = EVTTestBed(self.element, evt_mixed_dag_no_batch, example_inputs) input_keys = ["alpha", "C", "beta", "aux", "cbias", "rbias"] result_keys = ["D", "F", "F_row_max", "E_col_max"] launcher.verify((m, n, k), input_keys, result_keys, 1) if __name__ == '__main__': unittest.main()
test/python/cutlass/evt/evt_mixed_sm80_90.py/0
{ "file_path": "test/python/cutlass/evt/evt_mixed_sm80_90.py", "repo_id": "test", "token_count": 7012 }
51
################################################################################################# # # Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################################# from cutlass_library import SubstituteTemplate import cutlass from cutlass_library import ( DataTypeNames, EpilogueScheduleSuffixes, KernelScheduleSuffixes, LayoutType, OpcodeClassNames, ShortDataTypeNames, ShortLayoutTypeNames ) from cutlass.backend import library from gemm_testbed import test_all_gemm class Layout: """ Utility class to map transpose and non-transpose terminology to row- and column-major terminology """ T = LayoutType.RowMajor N = LayoutType.ColumnMajor class LayoutCombination: """ Utility class defining all combinations of row- and column-major layouts for operands to a GEMMs """ NNN = (Layout.N, Layout.N, Layout.N) NNT = (Layout.N, Layout.N, Layout.T) NTN = (Layout.N, Layout.T, Layout.N) NTT = (Layout.N, Layout.T, Layout.T) TNN = (Layout.T, Layout.N, Layout.N) TNT = (Layout.T, Layout.N, Layout.T) TTN = (Layout.T, Layout.T, Layout.N) TTT = (Layout.T, Layout.T, Layout.T) def get_name( layouts, alignments, element_output, element_accumulator, element_epilogue, cluster_shape, threadblock_shape, stages, element_a, element_b, element_c, arch, opclass, kernel_schedule=None, epilogue_schedule=None, suffix="", ): """ Generates a procedural name for a test case. :param layouts: indexable container of layouts of A, B, and C operands :param alignments: indexable container of alignments of A, B, and C operands :param element_output: data type of the output element :param element_accumulator: data type used in accumulation :param element_epilogue: data type used in computing the epilogue :param cluster_shape: indexable container of dimensions of threadblock cluster to be launched :param threadblock_shape: indexable container of dimensions of threadblock tiles :param stages: number of pipeline stages to use in the kernel :type stages: int :param element_a: data type of operand A :param element_b: data type of operand B :param element_c: data type of operand C :param arch: compute capability of kernel being generated :type arch: int :param opclass: class of operation being performed (e.g., SIMT, Tensor Core) :type opclass: cutlass.OpcodeClass :param kernel_schedule: kernel_schedule type :type kernel_schedule: cutlass.KernelScheduleType :param epilogue_schedule: epilogue_schedule type :type epilogue_schedule: cutlass.EpilogueScheduleType :param suffix: additional string to add to the suffix of the name :type suffix: str :return: str """ name_format = "test_SM${arch}_Device_Gemm_${eA}${lA}_${eB}${lB}_${eC}${lC}_${opclass}_${acc}_${tbM}x${tbN}x${tbK}_${cM}x${cN}x${cK}_${stages}_align${aA}-${aB}-${aC}${k}${e}${suffix}" return SubstituteTemplate( name_format, { "arch": str(arch), "eA": DataTypeNames[element_a], "eB": DataTypeNames[element_b], "eC": DataTypeNames[element_c], "lA": ShortLayoutTypeNames[layouts[0]], "lB": ShortLayoutTypeNames[layouts[1]], "lC": ShortLayoutTypeNames[layouts[2]], "opclass": OpcodeClassNames[opclass], "acc": DataTypeNames[element_accumulator], "cM": str(cluster_shape[0]), "cN": str(cluster_shape[1]), "cK": str(cluster_shape[2]), "tbM": str(threadblock_shape[0]), "tbN": str(threadblock_shape[1]), "tbK": str(threadblock_shape[2]), "stages": str(stages) if stages is not None else "auto", "aA": str(alignments[0]), "aB": str(alignments[1]), "aC": str(alignments[2]), "k": "" if kernel_schedule is None else KernelScheduleSuffixes[kernel_schedule], "e": "" if epilogue_schedule is None else EpilogueScheduleSuffixes[epilogue_schedule], "suffix": "" if suffix is None else suffix, }, ) def add_test_gemm( cls=None, cc=None, element=None, layouts=None, alignments=None, element_output=None, element_accumulator=None, cluster_shape=None, threadblock_shape=None, warp_count=None, stages=None, opclass=None, swizzle=None, kernel_schedule=None, epilogue_schedule=None, compilation_modes=['nvcc', 'nvrtc'], element_A=None, element_B=None, element_C=None): """ Create test-running functions with the given specification and set it as a method of ``cls``. :param cls: class to which the generated method will be added :type cls: type :param cc: compute capability to compile for :type cc: int :param element: data type of A and B operands :type element: cutlass.DataType.f16 :param layouts: layouts of A, B, and C operands :type layouts: list or tuple :param alignments: alingments of A, B, and C operands :type alignments: list or tuple :param element_output: data type of the output element :type element_output: cutlass.DataType :param element_accumulator: data type used in accumulation :type element_accumulator: cutlass.DataType :param cluster_shape: dimensions of clusters :type cluster_shape: list or tuple :param threadblock_shape: dimensions of threadblock tiles :type threadblock_shape: list or tuple :param warp_count: warps to be launched per threadblock dimension :type warp_count: list or tuple :param stages: number of pipeline stages to use in the kernel :type stages: int :param opclass: class of operation being performed (e.g., SIMT, Tensor Core) :type opclass: cutlass.OpcodeClass :param swizzle: threadblock swizzling functor :param kernel_schedule: kernel schedule to use :type kernel_schedule: cutlass.KernelScheduleType :param epilogue_schedule: epilogue schedule to use :type epilogue_schedule: cutlass.EpilogueScheduleType :param compilation_modes: list of compilers to used in testing the kernel (options: 'nvrtc', 'nvcc') :type compilation_modes: list, :param element_A: data type of operand A. If set, overrides ``element`` :type element_A: cutlass.DataType :param element_B: data type of operand B. If set, overrides ``element`` :type element_B: cutlass.DataType :param element_C: data type of operand C. If set, overrides ``element`` :type element_C: cutlass.DataType """ if element_A is None: element_A = element if element_B is None: element_B = element if element_C is None: element_C = element if element_output is None: element_output = element if element_accumulator is None: element_accumulator = element for compilation_mode in compilation_modes: def run(self): """ Dynamically-generated function that constructs a GEMM operation and verifies it against multiple test cases. """ layout_A, layout_B, layout_C = layouts alignment_A, alignment_B, alignment_C = alignments plan = cutlass.op.Gemm(element_A=element_A, element_B=element_B, element_C=element_C, element_D=element_output, layout_A=layout_A, layout_B=layout_B, layout_C=layout_C, element_accumulator=element_accumulator, kernel_cc=cc) plan.opclass = opclass if swizzle is not None: plan.swizzling_functor = swizzle td = plan.tile_descriptions()[0] if warp_count is not None: td.warp_count = warp_count td.threadblock_shape = threadblock_shape td.stages = stages td.cluster_shape = cluster_shape op = plan.construct(tile_description=td, alignment_A=alignment_A, alignment_B=alignment_B, alignment_C=alignment_C) self.assertTrue(test_all_gemm(op, 'universal', compilation_mode=compilation_mode)) element_epilogue = element_accumulator name = get_name( layouts=layouts, alignments=alignments, element_output=element_output, element_accumulator=element_accumulator, element_epilogue=element_epilogue, cluster_shape=cluster_shape, threadblock_shape=threadblock_shape, stages=stages, element_a=element_A, element_b=element_B, element_c=element_C, arch=cc, opclass=opclass, kernel_schedule=kernel_schedule, epilogue_schedule=epilogue_schedule, suffix=f'_{compilation_mode}') setattr(cls, name, run)
test/python/cutlass/gemm/utils.py/0
{ "file_path": "test/python/cutlass/gemm/utils.py", "repo_id": "test", "token_count": 4014 }
52
/*************************************************************************************************** * Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. * SPDX-License-Identifier: BSD-3-Clause * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * **************************************************************************************************/ /*! \file \brief Unit test for the launch_on_cluster function */ #include "../common/cutlass_unit_test.h" #include "cutlass/cluster_launch.hpp" #include "cute/arch/cluster_sm90.hpp" #include <cassert> #include <memory> #include <type_traits> #if defined(CUTLASS_SM90_CLUSTER_LAUNCH_ENABLED) namespace { // (anonymous) // Using a struct instead of a lambda makes it possible // to name the deleter type without std::function // (which type-erases). struct scalar_deleter { void operator() (float* p) { if (p != nullptr) { cudaFree(p); } } }; using scalar_device_pointer = std::unique_ptr<float, scalar_deleter>; // Each test needs to initialize this anew, // from a scalar instance that is in scope during the test. __device__ float* scalar_ptr_gpu; // A single scalar value on device. // The constructor allocates space on device for one value, // copies the value to device, and sets the global pointer // `scalar_ptr_gpu` (see above) to point to it. // sync_to_host() copies that value back to host. // // This class exists only for the tests in this file. // In order to know whether a kernel that launch_on_cluster // claimed to launch actually got launched, each kernel // performs a side effect: it modifies the scalar value // through the scalar_ptr_gpu value. // It performs a side effect through a global, // rather than through an argument, // so that we can test kernel launch // with kernels that take zero parameters. class scalar { private: static constexpr std::size_t num_bytes = sizeof(float); public: scalar(float value) : value_host_(value) { float* ptr_gpu_raw = nullptr; auto err = cudaMalloc(&ptr_gpu_raw, num_bytes); assert(err == cudaSuccess); scalar_device_pointer ptr_gpu{ptr_gpu_raw, scalar_deleter{}}; err = cudaMemcpy(ptr_gpu.get(), &value_host_, num_bytes, cudaMemcpyHostToDevice); assert(err == cudaSuccess); ptr_gpu_ = std::move(ptr_gpu); upload_device_pointer(); } float sync_to_host() { auto err = cudaMemcpy(&value_host_, ptr_gpu_.get(), num_bytes, cudaMemcpyDeviceToHost); assert(err == cudaSuccess); return value_host_; } private: void upload_device_pointer() { float* ptr_raw = ptr_gpu_.get(); auto err = cudaMemcpyToSymbol(scalar_ptr_gpu, &ptr_raw, sizeof(float*)); assert(err == cudaSuccess); } float value_host_ = 0.0; scalar_device_pointer ptr_gpu_; }; template<int cluster_x, int cluster_y, int cluster_z> CUTE_DEVICE void check_cluster_shape() { [[maybe_unused]] const dim3 cluster_shape = cute::cluster_shape(); assert(cluster_shape.x == cluster_x); assert(cluster_shape.y == cluster_y); assert(cluster_shape.z == cluster_z); } template<int cluster_x, int cluster_y, int cluster_z> __global__ void kernel_0() { check_cluster_shape<cluster_x, cluster_y, cluster_z>(); // Write to global memory, so that we know // whether the kernel actually ran. const dim3 block_id = cute::block_id_in_cluster(); if (threadIdx.x == 0 && block_id.x == 0 && block_id.y == 0 && block_id.z == 0) { *scalar_ptr_gpu = 0.1f; } } template<int cluster_x, int cluster_y, int cluster_z, int expected_p0> __global__ void kernel_1(int p0) { check_cluster_shape<cluster_x, cluster_y, cluster_z>(); assert(p0 == expected_p0); // Write to global memory, so that we know // whether the kernel actually ran. const dim3 block_id = cute::block_id_in_cluster(); if (threadIdx.x == 0 && block_id.x == 0 && block_id.y == 0 && block_id.z == 0) { *scalar_ptr_gpu = 1.2f; } } template<int cluster_x, int cluster_y, int cluster_z, int expected_p0, int expected_p2> __global__ void kernel_2(int p0, void* p1, int p2) { check_cluster_shape<cluster_x, cluster_y, cluster_z>(); assert(p0 == expected_p0); assert(p1 == nullptr); assert(p2 == expected_p2); // Write to global memory, so that we know // whether the kernel actually ran. const dim3 block_id = cute::block_id_in_cluster(); if (threadIdx.x == 0 && block_id.x == 0 && block_id.y == 0 && block_id.z == 0) { *scalar_ptr_gpu = 2.3f; } } struct OverloadedOperatorAmpersand { struct tag_t {}; // Test that kernel launch uses the actual address, // instead of any overloaded operator& that might exist. CUTE_HOST_DEVICE tag_t operator& () const { return {}; } int x = 0; int y = 0; int z = 0; int w = 0; }; static_assert(sizeof(OverloadedOperatorAmpersand) == 4 * sizeof(int)); template<int cluster_x, int cluster_y, int cluster_z, int expected_p0, int expected_p1_x, int expected_p1_y, int expected_p1_z, int expected_p1_w, std::uint64_t expected_p2> __global__ void kernel_3(int p0, OverloadedOperatorAmpersand p1, std::uint64_t p2) { check_cluster_shape<cluster_x, cluster_y, cluster_z>(); assert(p0 == expected_p0); assert(p1.x == expected_p1_x); assert(p1.y == expected_p1_y); assert(p1.z == expected_p1_z); assert(p1.w == expected_p1_w); assert(p2 == expected_p2); // Write to global memory, so that we know // whether the kernel actually ran. const dim3 block_id = cute::block_id_in_cluster(); if (threadIdx.x == 0 && block_id.x == 0 && block_id.y == 0 && block_id.z == 0) { *scalar_ptr_gpu = 3.4f; } } } // namespace (anonymous) TEST(SM90_ClusterLaunch, Kernel_0) { scalar global_value(-1.0f); const dim3 grid_dims{2, 1, 1}; const dim3 block_dims{1, 1, 1}; const dim3 cluster_dims{grid_dims.x * block_dims.x, 1, 1}; const int smem_size_in_bytes = 0; cutlass::ClusterLaunchParams params{ grid_dims, block_dims, cluster_dims, smem_size_in_bytes}; void const* kernel_ptr = reinterpret_cast<void const*>(&kernel_0<2, 1, 1>); cutlass::Status status = cutlass::launch_kernel_on_cluster(params, kernel_ptr); ASSERT_EQ(status, cutlass::Status::kSuccess); cudaError_t result = cudaDeviceSynchronize(); if (result == cudaSuccess) { CUTLASS_TRACE_HOST("Kernel launch succeeded\n"); } else { CUTLASS_TRACE_HOST("Kernel launch FAILED\n"); cudaError_t error = cudaGetLastError(); EXPECT_EQ(result, cudaSuccess) << "Error at kernel sync: " << cudaGetErrorString(error) << "\n"; } ASSERT_EQ(global_value.sync_to_host(), 0.1f); } TEST(SM90_ClusterLaunch, Kernel_1) { scalar global_value(-1.0f); const dim3 grid_dims{2, 1, 1}; const dim3 block_dims{1, 1, 1}; const dim3 cluster_dims{grid_dims.x * block_dims.x, 1, 1}; const int smem_size_in_bytes = 0; cutlass::ClusterLaunchParams params{ grid_dims, block_dims, cluster_dims, smem_size_in_bytes}; constexpr int expected_p0 = 42; void const* kernel_ptr = reinterpret_cast<void const*>(&kernel_1<2, 1, 1, expected_p0>); const int p0 = expected_p0; cutlass::Status status = cutlass::launch_kernel_on_cluster(params, kernel_ptr, p0); ASSERT_EQ(status, cutlass::Status::kSuccess); cudaError_t result = cudaDeviceSynchronize(); if (result == cudaSuccess) { #if (CUTLASS_DEBUG_TRACE_LEVEL > 1) CUTLASS_TRACE_HOST("Kernel launch succeeded\n"); #endif } else { CUTLASS_TRACE_HOST("Kernel launch FAILED\n"); cudaError_t error = cudaGetLastError(); EXPECT_EQ(result, cudaSuccess) << "Error at kernel sync: " << cudaGetErrorString(error) << "\n"; } ASSERT_EQ(global_value.sync_to_host(), 1.2f); } TEST(SM90_ClusterLaunch, Kernel_2) { scalar global_value(-1.0f); const dim3 grid_dims{2, 1, 1}; const dim3 block_dims{1, 1, 1}; const dim3 cluster_dims{grid_dims.x * block_dims.x, 1, 1}; const int smem_size_in_bytes = 0; cutlass::ClusterLaunchParams params{ grid_dims, block_dims, cluster_dims, smem_size_in_bytes}; constexpr int expected_p0 = 42; constexpr int expected_p2 = 43; int p0 = expected_p0; int* p1 = nullptr; int p2 = expected_p2; void const* kernel_ptr = reinterpret_cast<void const*>( &kernel_2<2, 1, 1, expected_p0, expected_p2>); cutlass::Status status = cutlass::launch_kernel_on_cluster(params, kernel_ptr, p0, p1, p2); ASSERT_EQ(status, cutlass::Status::kSuccess); cudaError_t result = cudaDeviceSynchronize(); if (result == cudaSuccess) { #if (CUTLASS_DEBUG_TRACE_LEVEL > 1) CUTLASS_TRACE_HOST("Kernel launch succeeded\n"); #endif } else { CUTLASS_TRACE_HOST("Kernel launch FAILED\n"); cudaError_t error = cudaGetLastError(); EXPECT_EQ(result, cudaSuccess) << "Error at kernel sync: " << cudaGetErrorString(error) << "\n"; } ASSERT_EQ(global_value.sync_to_host(), 2.3f); } TEST(SM90_ClusterLaunch, Kernel_3) { scalar global_value(-1.0f); const dim3 grid_dims{2, 1, 1}; const dim3 block_dims{1, 1, 1}; const dim3 cluster_dims{grid_dims.x * block_dims.x, 1, 1}; const int smem_size_in_bytes = 0; cutlass::ClusterLaunchParams params{ grid_dims, block_dims, cluster_dims, smem_size_in_bytes}; constexpr int expected_p0 = 42; constexpr int expected_p1_x = 1; constexpr int expected_p1_y = 2; constexpr int expected_p1_z = 3; constexpr int expected_p1_w = 4; constexpr std::uint64_t expected_p2 = 1'000'000'000'000uLL; int p0 = expected_p0; OverloadedOperatorAmpersand p1{expected_p1_x, expected_p1_y, expected_p1_z, expected_p1_w}; // Verify that operator& is overloaded for this type. static_assert(! std::is_same_v<decltype(&p1), OverloadedOperatorAmpersand*>); std::uint64_t p2 = expected_p2; void const* kernel_ptr = reinterpret_cast<void const*>( &kernel_3<2, 1, 1, expected_p0, expected_p1_x, expected_p1_y, expected_p1_z, expected_p1_w, expected_p2>); cutlass::Status status = cutlass::launch_kernel_on_cluster(params, kernel_ptr, p0, p1, p2); ASSERT_EQ(status, cutlass::Status::kSuccess); cudaError_t result = cudaDeviceSynchronize(); if (result == cudaSuccess) { #if (CUTLASS_DEBUG_TRACE_LEVEL > 1) CUTLASS_TRACE_HOST("Kernel launch succeeded\n"); #endif } else { CUTLASS_TRACE_HOST("Kernel launch FAILED\n"); cudaError_t error = cudaGetLastError(); EXPECT_EQ(result, cudaSuccess) << "Error at kernel sync: " << cudaGetErrorString(error) << "\n"; } ASSERT_EQ(global_value.sync_to_host(), 3.4f); } #endif // CUTLASS_SM90_CLUSTER_LAUNCH_ENABLED
test/unit/cluster_launch/cluster_launch.cu/0
{ "file_path": "test/unit/cluster_launch/cluster_launch.cu", "repo_id": "test", "token_count": 4594 }
53
/*************************************************************************************************** * Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. * SPDX-License-Identifier: BSD-3-Clause * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * **************************************************************************************************/ #include "cutlass_unit_test.h" #include <cutlass/trace.h> #include <cute/tensor.hpp> template <class Layout, class CoTarget> void test_complement(Layout const& layout, CoTarget const& cotarget) { using namespace cute; auto result = complement(layout, cotarget); CUTLASS_TRACE_HOST("complement(" << layout << ", " << cotarget << ") => " << result); auto completed = make_layout(layout, result); // Lower-bound on the codomain size of the layout ++ complement (1) EXPECT_GE(cosize(completed), size(cotarget)); // Upper-bound on the codomain size of the complement (2) EXPECT_LE(cosize(result), cute::round_up(size(cotarget), cosize(layout))); // Post-condition on the codomain of the complement for (int i = 1; i < size(result); ++i) { EXPECT_LT(result(i-1), result(i)); // Ordered (3) for (int j = 0; j < size(layout); ++j) { EXPECT_NE(result(i), layout(j)); // Disjoint (4) } } // Other observations EXPECT_LE(size(result), cosize(result)); // As a result of the ordered condition (3) EXPECT_GE(size(result), size(cotarget) / size(filter(layout))); EXPECT_LE(cosize(completed), cosize(result) + cosize(layout)); EXPECT_GE(cosize(result), size(cotarget) / size(filter(layout))); if constexpr (is_static<decltype(stride(completed))>::value) { // If we can apply complement again EXPECT_EQ(size(complement(completed)), 1); // There's no more codomain left over } } template <class Layout> void test_complement(Layout const& layout) { return test_complement(layout, cosize(layout)); } TEST(CuTe_core, Complement) { using namespace cute; CUTLASS_TRACE_HOST("-------------------------------"); CUTLASS_TRACE_HOST("COMPLEMENT"); CUTLASS_TRACE_HOST("-------------------------------"); { auto layout = Layout<_1,_0>{}; test_complement(layout); test_complement(layout, Int<2>{}); test_complement(layout, Int<5>{}); test_complement(layout, make_shape(Int<2>{}, 2)); } { auto layout = Layout<_1,_1>{}; test_complement(layout); test_complement(layout, Int<2>{}); test_complement(layout, Int<5>{}); test_complement(layout, make_shape(Int<2>{}, 2)); } { auto layout = Layout<_1,_2>{}; test_complement(layout, Int<1>{}); test_complement(layout, Int<2>{}); test_complement(layout, Int<8>{}); test_complement(layout, Int<5>{}); test_complement(layout, make_shape(Int<2>{}, 2)); } { auto layout = Layout<_4,_0>{}; test_complement(layout, Int<1>{}); test_complement(layout, Int<2>{}); test_complement(layout, Int<8>{}); } { auto layout = Layout<_4,_1>{}; test_complement(layout, Int<1>{}); test_complement(layout, Int<2>{}); test_complement(layout, Int<8>{}); } { auto layout = Layout<_4,_2>{}; test_complement(layout, Int<1>{}); test_complement(layout); test_complement(layout, Int<16>{}); test_complement(layout, Int<19>{}); test_complement(layout, make_shape(Int<2>{}, 2)); } { auto layout = Layout<_4,_4>{}; test_complement(layout, Int<1>{}); test_complement(layout); test_complement(layout, Int<17>{}); test_complement(layout, make_shape(Int<2>{}, 2)); } { auto layout = Layout<Shape<_2,_4>>{}; test_complement(layout); } { auto layout = Layout<Shape<_2,_3>>{}; test_complement(layout); } { auto layout = Layout<Shape<_2,_4>, Stride<_1,_4>>{}; test_complement(layout); } { auto layout = Layout<Shape<_2,_4>, Stride<_1,_6>>{}; test_complement(layout); } { auto layout = Layout<Shape<_2,_4,_8>, Stride<_8,_1,_64>>{}; test_complement(layout); } { auto layout = Layout<Shape<_2,_4,_8>, Stride<_8,_1,_0>>{}; test_complement(layout); test_complement(layout, Int<460>{}); } { auto layout = make_layout(Shape <Shape <_2,_2>,Shape <_2, _2>>{}, Stride<Stride<_1,_4>,Stride<_8,_32>>{}); test_complement(layout); } { auto layout = make_layout(Shape <Shape <_2, _2>,Shape <_2,_2>>{}, Stride<Stride<_1,_32>,Stride<_8,_4>>{}); test_complement(layout); } // Fails due to non-injective layout // { // auto layout = make_layout(Shape <Shape <_2,_2>,Shape <_2,_2>>{}, // Stride<Stride<_1,_8>,Stride<_8,_4>>{}); // test_complement(layout); // } // Fails due to non-injective layout // { // auto layout = Layout<Shape<_2,_2>, Stride<_2,_3>>{}; // test_complement(layout); // test_complement(layout, Int<19>{}); // } { auto layout = Layout<Shape<_4,_6>, Stride<_1,_6>>{}; test_complement(layout); } { auto layout = Layout<Shape<_4,_2>, Stride<_1,_10>>{}; test_complement(layout); } { auto layout = Layout<Shape<_4,_2>, Stride<_1,_16>>{}; test_complement(layout); } CUTLASS_TRACE_HOST("-------------------------------"); CUTLASS_TRACE_HOST("Dynamic shapes/strides"); CUTLASS_TRACE_HOST("-------------------------------"); { auto layout = make_layout(12); test_complement(layout, 1); test_complement(layout); test_complement(layout, 53); test_complement(layout, 128); } { auto layout = make_layout(12, 1); test_complement(layout, 1); test_complement(layout); test_complement(layout, 53); test_complement(layout, 128); } { auto layout = make_layout(12, Int<2>{}); test_complement(layout, 1); test_complement(layout); test_complement(layout, 53); test_complement(layout, 128); } { auto layout = make_layout(12, 2); test_complement(layout, 1); test_complement(layout); test_complement(layout, 53); test_complement(layout, 128); } { auto layout = make_layout(make_shape(3,6),make_stride(_1{}, _3{})); test_complement(layout); } { auto layout = make_layout(make_shape(3,6),make_stride(_1{}, _9{})); test_complement(layout); } { auto layout = make_layout(make_shape(3,6),make_stride(_1{}, _10{})); test_complement(layout); } { auto layout = make_layout(make_shape(make_shape(2,2), make_shape(2,2)), Stride<Stride<_1,_4>,Stride<_8,_32>>{}); test_complement(layout); } { auto layout = make_layout(Int<64>{}); test_complement(layout, make_shape(Int<32>{}, Int<4>{}, Int<4>{})); test_complement(layout, make_shape(Int<32>{}, Int<4>{}, 4)); } }
test/unit/cute/core/complement.cpp/0
{ "file_path": "test/unit/cute/core/complement.cpp", "repo_id": "test", "token_count": 3069 }
54
/*************************************************************************************************** * Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. * SPDX-License-Identifier: BSD-3-Clause * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * **************************************************************************************************/ /*! \file \brief Unit tests for epilogues */ #pragma once #include <fstream> #include <cfenv> #include "../../common/cutlass_unit_test.h" #include "cutlass/aligned_buffer.h" #include "cutlass/half.h" #include "cutlass/complex.h" #include "cutlass/quaternion.h" #include "cutlass/platform/platform.h" #include "cutlass/epilogue/thread/linear_combination.h" #include "cutlass/util/host_tensor.h" #include "cutlass/util/tensor_view_io.h" #include "cutlass/util/reference/host/tensor_fill.h" ///////////////////////////////////////////////////////////////////////////////////////////////// namespace test { namespace kernel { template <typename Epilogue> __global__ void epilogue_threadblock( typename Epilogue::OutputTileIterator::Params params_D, typename Epilogue::OutputTileIterator::Element *ptr_D, typename Epilogue::OutputTileIterator::Params params_C, typename Epilogue::OutputTileIterator::Element *ptr_C, typename Epilogue::OutputOp::Params params_output_op, cutlass::MatrixCoord problem_size, cutlass::TensorRef< typename Epilogue::WarpMmaOperator::ElementC, typename Epilogue::WarpMmaOperator::LayoutC> accumulator_ref, int epilogue_count = 1) { __shared__ typename Epilogue::SharedStorage shared_storage; int thread_idx = threadIdx.x; int warp_idx = threadIdx.x / 32; int lane_idx = threadIdx.x % 32; // // Construct the epilogue // // Tile iterator writing to output tile typename Epilogue::OutputTileIterator iterator_D( params_D, ptr_D, problem_size, thread_idx ); // Tile iterator writing to output tile typename Epilogue::OutputTileIterator iterator_C( params_C, ptr_C, problem_size, thread_idx ); // Epilogue operator Epilogue epilogue( shared_storage, thread_idx, warp_idx, lane_idx); // // Initialize the accumulators // int warp_mn = warp_idx % (Epilogue::WarpCount::kM * Epilogue::WarpCount::kN); int warp_m = warp_mn % Epilogue::WarpCount::kM; int warp_n = warp_mn / Epilogue::WarpCount::kM; accumulator_ref.add_coord_offset({ warp_m * Epilogue::WarpMmaOperator::Shape::kM, warp_n * Epilogue::WarpMmaOperator::Shape::kN}); typename Epilogue::WarpMmaOperator::IteratorC accumulator_iterator(accumulator_ref, lane_idx); typename Epilogue::AccumulatorTile accumulators; accumulators.clear(); accumulator_iterator.load(accumulators); #if 0 // For debugging, enable this block of code to fill each accumulator element with its // source thread ID. CUTLASS_PRAGMA_UNROLL for (size_t i = 0; i < accumulators.size(); ++i) { typename Epilogue::WarpMmaOperator::ElementC x(threadIdx.x); accumulators[i] = x; } __syncthreads(); #endif // // Perform the epilogue operation // typename Epilogue::OutputOp output_op(params_output_op); // Place the epilogue in a loop for (int iter = 0; iter < epilogue_count; ++iter) { epilogue(output_op, iterator_D, accumulators, iterator_C); } } } // namespace kernel } // namespace test ///////////////////////////////////////////////////////////////////////////////////////////////// template < typename Epilogue_ > class EpilogueTestbed { public: using Epilogue = Epilogue_; using ElementAccumulator = typename Epilogue::ElementAccumulator; using ElementCompute = typename Epilogue::OutputOp::ElementCompute; using ElementOutput = typename Epilogue::ElementOutput; using OutputOpParams = typename Epilogue::OutputOp::Params; public: // // Data members // cutlass::MatrixCoord quantized_size; cutlass::HostTensor<ElementAccumulator, cutlass::layout::RowMajor> accumulator_tensor; cutlass::HostTensor<ElementOutput, cutlass::layout::RowMajor> source_tensor; cutlass::HostTensor<ElementOutput, cutlass::layout::RowMajor> output_tensor; public: // // Methods // EpilogueTestbed(): quantized_size(Epilogue::Shape::kM, Epilogue::Shape::kN), accumulator_tensor({Epilogue::Shape::kM, Epilogue::Shape::kN}), source_tensor({Epilogue::Shape::kM, Epilogue::Shape::kN}), output_tensor({Epilogue::Shape::kM, Epilogue::Shape::kN}) { // // Initialize problem space // uint64_t seed = 2019; cutlass::reference::host::TensorFillRandomUniform( accumulator_tensor.host_view(), seed, 2, -2, 0); cutlass::reference::host::TensorFillRandomUniform( source_tensor.host_view(), seed + 2018, 2, -2, 0); } bool run_all() { double alpha_values[] = {1, 0, 2.25}; double beta_values[] = {0, 1, -1.25}; // Test runtime explodes if we tried to test every case exhaustively. This tests the full // output tile and several smaller sizes to stress predication. for (int m_idx = 0; m_idx < 3; ++m_idx) { for (int n_idx = 0; n_idx < 3; ++n_idx) { int m = quantized_size.row() - m_idx * 3; int n = quantized_size.column() - n_idx * Epilogue::kElementsPerAccess; for (double const &alpha : alpha_values) { for (double const &beta : beta_values) { bool passed = run({m, n}, {cutlass::from_real<ElementCompute>(alpha), cutlass::from_real<ElementCompute>(beta)}); if (!passed) { return false; } } } } } return true; } /// Runs the test bool run( cutlass::MatrixCoord problem_size, OutputOpParams output_params) { // // Initialize problem space // ElementOutput default_output = ElementOutput(-127); cutlass::reference::host::TensorFill(output_tensor.host_view(), default_output); accumulator_tensor.sync_device(); output_tensor.sync_device(); source_tensor.sync_device(); // // Initialize epilogue parameters // typename Epilogue::OutputTileIterator::Params params_D(output_tensor.device_ref().layout()); typename Epilogue::OutputTileIterator::Params params_C(source_tensor.device_ref().layout()); // // Launch kernel // dim3 grid(1, 1); dim3 block(Epilogue::WarpCount::kCount * 32, 1); test::kernel::epilogue_threadblock<Epilogue><<< grid, block >>>( params_D, output_tensor.device_data(), params_C, source_tensor.device_data(), output_params, problem_size, accumulator_tensor.device_view()); cudaError_t result = cudaDeviceSynchronize(); if (result != cudaSuccess) { std::cerr << "Kernel error: " << cudaGetErrorString(result) << std::endl; return false; } // // Verify results // output_tensor.sync_host(); int errors = 0; int const kMaxErrors = 5; for (int r = 0; errors < kMaxErrors && r < quantized_size.row(); ++r) { for (int c = 0; errors < kMaxErrors && c < quantized_size.column(); ++c) { cutlass::MatrixCoord coord{r, c}; ElementOutput got = output_tensor.at(coord); ElementOutput expected; if (coord.row() < problem_size.row() && coord.column() < problem_size.column()) { ElementCompute intermediate = output_params.alpha * ElementCompute(accumulator_tensor.at(coord)) + output_params.beta * ElementCompute(source_tensor.at(coord)); if ((cutlass::platform::is_same<ElementOutput, cutlass::int4b_t>::value || cutlass::platform::is_same<ElementOutput, cutlass::uint4b_t>::value || std::numeric_limits<ElementOutput>::is_integer) && !std::numeric_limits<ElementCompute>::is_integer) { std::fesetround(FE_TONEAREST); expected = ElementOutput(std::nearbyint(float(cutlass::real(intermediate)))); } else { expected = ElementOutput(intermediate); } } else { expected = default_output; } if (expected != got) { using OutputIO = cutlass::ScalarIO<ElementOutput>; EXPECT_TRUE(false) << "-------\n" << "Error - output element (" << coord << ") - expected: " << OutputIO(expected) << ", got: " << OutputIO(got) << ", accum: " << (accumulator_tensor.at(coord)) << ", source: " << OutputIO(source_tensor.at(coord)) << ", alpha: " << (output_params.alpha) << ", beta: " << (output_params.beta) << "\n"; ++errors; } } } // // Report results on error // if (errors) { std::stringstream ss; ss << "output_tensor_op_" << Epilogue::Shape::kM << "x" << Epilogue::Shape::kN << "_" << Epilogue::WarpTileIterator::WarpShape::kM << "x" << Epilogue::WarpTileIterator::WarpShape::kN << "_slice_" << Epilogue::WarpCount::kK << ".csv"; std::ofstream output_file(ss.str()); output_file << output_tensor.host_view(); } return !errors; } }; /////////////////////////////////////////////////////////////////////////////////////////////////
test/unit/epilogue/threadblock/testbed.h/0
{ "file_path": "test/unit/epilogue/threadblock/testbed.h", "repo_id": "test", "token_count": 4068 }
55
# Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # this file creates the test/unit/gemm/device simt tests outputDir = "" ################################################################################ # parameters # Edge - for tiles, the edges represent the length of one side # Ratio - the maximum ratio between 2 edges, limits the skinnyness of tiles # MaxEdge - maximum length of each edge # Min/Max - minimum/maximum of the product of edge lengths ################################################################################ warpsPerThreadblockEdge = [1, 2, 4, 8, 16] warpsPerThreadblockRatio = 2 warpsPerThreadblockMax = 16 # NOTE 1x32 and 2x16 warp tile shapes fail validation for ~10% of cases warpShapeEdges = [8, 16, 32, 64, 128, 256] warpShapeRatio = 4 warpShapeMax = 64*64 warpShapeMin = 8*8 threadblockEdgeMax = 256 # char, type bits/elem, max tile, L0 threadblock tiles precisions = [ ["c", "cutlass::complex<float>", 64, 64*128, [ [ 64, 128], [ 64, 32] ] ], ["q", "cutlass::Quaternion<float>", 64, 64*128, [ [ 64, 128], [ 64, 32] ] ], ["d", "double", 64, 64*64, [ [ 64, 64], [ 32, 32] ] ], ["h", "cutlass::half_t", 16, 128*256, [ [256, 128], [ 64, 128], [ 64, 32] ] ], ["i", "int", 32, 128*128, [ [128, 64], [ 16, 32] ] ], ["s", "float", 32, 128*128, [ [128, 256], [128, 128], [ 64, 64] ] ], ["z", "cutlass::complex<double>", 128, 64*64, [ [ 32, 64], [ 16, 32] ] ], ] # L1 will have a single kernel for every unique shape # L2 will have everything else transposes = [ [False, False], [False, True], [True, False], [True, True] ] ################################################################################ # warps per threadblock ################################################################################ warpsPerThreadblocks = [] for warpsPerThreadblock0 in warpsPerThreadblockEdge: for warpsPerThreadblock1 in warpsPerThreadblockEdge: if warpsPerThreadblock0 / warpsPerThreadblock1 <= warpsPerThreadblockRatio and warpsPerThreadblock1 / warpsPerThreadblock0 <= warpsPerThreadblockRatio and warpsPerThreadblock0 * warpsPerThreadblock1 <= warpsPerThreadblockMax: warpsPerThreadblocks.append([warpsPerThreadblock0, warpsPerThreadblock1]) print("WarpsPerThreadblocks",warpsPerThreadblocks) ################################################################################ # warp shapes ################################################################################ warpNumThreads = 32 warpShapes = [] for warp0 in warpShapeEdges: for warp1 in warpShapeEdges: if warp0 / warp1 <= warpShapeRatio and warp1 / warp0 <= warpShapeRatio and warp0*warp1 <= warpShapeMax and warp0*warp1 > warpShapeMin: warpShapes.append([warp0, warp1]) print("WarpShapes", warpShapes) numL0 = 0 numL1 = 0 numL2 = 0 ################################################################################ # create kernels # create a file for each precision/transpose # each file contains many tile sizes ################################################################################ # precisions for precision in precisions: # get precision char precisionChar = precision[0] precisionType = precision[1] precisionBits = precision[2] threadblockMaxElements = precision[3] threadblockTilesL0 = precision[4] # transposes for transpose in transposes: # get transpose char columnMajorA = transpose[0] columnMajorB = transpose[1] transCharA = "n" if columnMajorA else "t" transCharB = "n" if columnMajorB else "t" # open file fileName="simt_%sgemm_%s%s_sm50.cu" % (precisionChar, transCharA, transCharB) print("\n", fileName) filePath = "%s%s" % (outputDir, fileName) out = open(filePath, "w+") # write file header out.write("/***************************************************************************************************\n" " * Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. \n" " * SPDX-License-Identifier: BSD-3-Clause \n" " * \n" " * Redistribution and use in source and binary forms, with or without \n" " * modification, are permitted provided that the following conditions are met: \n" " * \n" " * 1. Redistributions of source code must retain the above copyright notice, this \n" " * list of conditions and the following disclaimer. \n" " * \n" " * 2. Redistributions in binary form must reproduce the above copyright notice, \n" " * this list of conditions and the following disclaimer in the documentation \n" " * and/or other materials provided with the distribution. \n" " * \n" " * 3. Neither the name of the copyright holder nor the names of its \n" " * contributors may be used to endorse or promote products derived from \n" " * this software without specific prior written permission. \n" " * \n" " * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS \"AS IS\" \n" " * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE \n" " * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE \n" " * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE \n" " * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL \n" " * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR \n" " * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER \n" " * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, \n" " * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE \n" " * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. \n" " *\n" " **************************************************************************************************/\n" "/*! \\file\n" " \\brief Tests for device-wide GEMM interface\n" "*/\n" "\n" "#include <iostream>\n" "\n" "#include \"cutlass/cutlass.h\"\n" "#include \"cutlass/gemm/device/gemm.h\"\n" "#include \"cutlass/numeric_types.h\"\n" "\n" "#include \"../../common/cutlass_unit_test.h\"\n" "\n" "#include \"cutlass/util/host_tensor.h\"\n" "#include \"cutlass/util/tensor_view_io.h\"\n" "#include \"cutlass/util/reference/host/tensor_fill.h\"\n" "#include \"cutlass/util/reference/host/tensor_copy.h\"\n" "#include \"cutlass/util/reference/host/tensor_compare.h\"\n" "#include \"cutlass/util/reference/host/gemm.h\"\n" "\n" "#include \"testbed.h\"\n" "\n") foundThreadblockTilesL0 = {} foundThreadblockTilesL1 = {} ######################################################################## # for each combination of tile sizes ######################################################################## for warpsPerThreadblock in warpsPerThreadblocks: for warpShape in warpShapes: warpThreadsM = 0 if warpShape[0] > warpShape[1]: warpThreadsM = 8 else: warpThreadsM = 4 warpThreadsN = warpNumThreads / warpThreadsM # skip shapes with conflicting rectangularity # they are unlikely to be fastest blockG = warpsPerThreadblock[0] > warpsPerThreadblock[1] blockL = warpsPerThreadblock[0] < warpsPerThreadblock[1] warpG = warpShape[0] > warpShape[1] warpL = warpShape[0] < warpShape[1] blockG2 = warpsPerThreadblock[0] > warpsPerThreadblock[1]*2 blockL2 = warpsPerThreadblock[0]*2 < warpsPerThreadblock[1] warpG2 = warpShape[0] > warpShape[1]*2 warpL2 = warpShape[0]*2 < warpShape[1] if blockG2 and warpL: continue if blockL2 and warpG: continue if warpG2 and blockL: continue if warpL2 and blockG: continue # check threadblock ratios and max threadblockTile = [warpShape[0]*warpsPerThreadblock[0], warpShape[1]*warpsPerThreadblock[1]] if threadblockTile[0] * threadblockTile[1] > threadblockMaxElements: continue if threadblockTile[0] > threadblockEdgeMax: continue if threadblockTile[1] > threadblockEdgeMax: continue totalThreads = warpNumThreads*warpsPerThreadblock[0]*warpsPerThreadblock[1] # calculate unroll # ensure that every iteration at least a full load of A,B are done unrollMin = 8 unrollMin0 = totalThreads / threadblockTile[0] unrollMin1 = totalThreads / threadblockTile[1] unroll = max(unrollMin, unrollMin0, unrollMin1) threadTileM = warpShape[0] / warpThreadsM threadTileN = warpShape[1] / warpThreadsN if threadTileM < 2 or threadTileN < 2: continue if threadTileM*threadTileN*precisionBits > 8*8*32: continue # epilogue currently only supports N < WarpNumThreads if threadblockTile[1] < warpNumThreads: continue # limit smem smemBitsA = threadblockTile[0]*unroll*2*precisionBits smemBitsB = threadblockTile[1]*unroll*2*precisionBits smemKBytes = (smemBitsA+smemBitsB)/8/1024 if (smemKBytes > 48): continue # test level 0 testLevel = -1 for tileId in range(0, len(threadblockTilesL0)): tbTile = threadblockTilesL0[tileId] if tbTile[0] == threadblockTile[0] and tbTile[1] == threadblockTile[1]: if tuple(tbTile) not in foundThreadblockTilesL0: testLevel = 0 numL0 += 1 foundThreadblockTilesL0[tuple(tbTile)] = True # test level 1 if testLevel < 0: threadblockTileAlreadyUsed = False if tuple(threadblockTile) not in foundThreadblockTilesL1: testLevel = 1 numL1 += 1 foundThreadblockTilesL1[tuple(threadblockTile)] = True # test level 2 if testLevel < 0: testLevel = 2 numL2 += 1 ################################################################ # write this tile to file ################################################################ print("%ix%ix%i__%ix%i_%ix%i_%ix%i L%i" % ( threadblockTile[0], threadblockTile[1], unroll, threadTileM, threadTileN, warpThreadsM, warpThreadsN, warpsPerThreadblock[0], warpsPerThreadblock[1], testLevel)) out.write("////////////////////////////////////////////////////////////////////////////////\n" "// Elements / Thread: %3i x %3i\n" "// Threads / Warp: %3i x %3i\n" "// Warps / Block: %3i x %3i\n" "// Threadblock: %3i x %3i x %2i\n" % ( threadTileM, threadTileN, warpThreadsM, warpThreadsN, warpsPerThreadblock[0], warpsPerThreadblock[1], threadblockTile[0], threadblockTile[1], unroll ) ) out.write("CUTLASS_TEST_L%i(SM50_device_%sgemm_%s%s, %ix%ix%i_%ix%ix1_%ix%i_%ix%i_%ix%i, {\n" % ( testLevel, precisionChar, transCharA, transCharB, threadblockTile[0], threadblockTile[1], unroll, warpShape[0], warpShape[1], threadTileM, threadTileN, warpThreadsM, warpThreadsN, warpsPerThreadblock[0], warpsPerThreadblock[1] )) out.write(" using precision = %s;\n" % precisionType) out.write(" using ThreadblockShape = cutlass::gemm::GemmShape<%i, %i, %i>;\n" % ( threadblockTile[0], threadblockTile[1], unroll)) out.write(" using WarpShape = cutlass::gemm::GemmShape<%i, %i, %i>;\n\n" % ( warpShape[0], warpShape[1], unroll)) out.write(" static int const kEpilogueElementsPerAccess = 1;\n" " using InstructionShape = cutlass::gemm::GemmShape<1, 1, 1>;\n" " using EpilogueOutputOp = cutlass::epilogue::thread::LinearCombination<\n" " precision, kEpilogueElementsPerAccess, precision, precision>;\n\n") out.write(" using Gemm = cutlass::gemm::device::Gemm<\n" " precision, cutlass::layout::%sMajor,\n" " precision, cutlass::layout::%sMajor,\n" " precision, cutlass::layout::RowMajor,\n" " precision,\n" " cutlass::arch::OpClassSimt,\n" " cutlass::arch::Sm50,\n" " ThreadblockShape, WarpShape, InstructionShape,\n" " EpilogueOutputOp,\n" " cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<>,\n" " 2 // Stages\n" " >;\n" % ( "Column" if columnMajorA else "Row", "Column" if columnMajorB else "Row", )) out.write(" EXPECT_TRUE(test::gemm::device::TestAllGemm<Gemm>());\n" "} )\n\n") out.close() print("NumKernels:", numL0, numL1, numL2)
test/unit/gemm/device/simt_sm50.py/0
{ "file_path": "test/unit/gemm/device/simt_sm50.py", "repo_id": "test", "token_count": 8209 }
56
/*************************************************************************************************** * Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. * SPDX-License-Identifier: BSD-3-Clause * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * **************************************************************************************************/ /*! \file \brief Tests for device-wide GEMM interface */ #pragma once #include <iostream> #include <fstream> #include <sstream> #include "../../common/cutlass_unit_test.h" #include "cutlass/util/host_tensor.h" #include "cutlass/util/tensor_view_io.h" #include "cutlass/util/distribution.h" #include "cutlass/util/reference/host/tensor_fill.h" #include "cutlass/util/reference/host/tensor_copy.h" #include "cutlass/util/reference/host/tensor_compare.h" #include "cutlass/util/reference/host/tensor_norm.h" #include "cutlass/util/reference/host/gemm.h" #include "testbed_utils.h" #include "testbed_universal.h" #include "cutlass/layout/matrix.h" #include "cutlass/matrix_coord.h" #include "cutlass/gemm/device/gemm_universal_adapter.h" namespace test { namespace gemm { namespace device { ///////////////////////////////////////////////////////////////////////////////////////////////// template <typename Gemm, bool Relu = false> struct Testbed { using ElementA = typename Gemm::ElementA; using ElementB = typename Gemm::ElementB; using ElementC = typename Gemm::ElementC; using ElementAccumulator = typename Gemm::ElementAccumulator; using ElementCompute = typename Gemm::GemmKernel::Epilogue::OutputOp::ElementCompute; /// Initialization typename Gemm::LayoutA::Stride stride_factor_A; typename Gemm::LayoutB::Stride stride_factor_B; typename Gemm::LayoutC::Stride stride_factor_C; cutlass::Distribution::Kind init_A; cutlass::Distribution::Kind init_B; cutlass::Distribution::Kind init_C; uint64_t seed; cutlass::HostTensor<typename Gemm::ElementA, typename Gemm::LayoutA> tensor_A; cutlass::HostTensor<typename Gemm::ElementB, typename Gemm::LayoutB> tensor_B; cutlass::HostTensor<typename Gemm::ElementC, typename Gemm::LayoutC> tensor_C; cutlass::HostTensor<typename Gemm::ElementC, typename Gemm::LayoutC> tensor_D; cutlass::HostTensor<typename Gemm::ElementC, typename Gemm::LayoutC> reference_D; // // Methods // Testbed( cutlass::Distribution::Kind init_A_ = cutlass::Distribution::Uniform, cutlass::Distribution::Kind init_B_ = cutlass::Distribution::Uniform, cutlass::Distribution::Kind init_C_ = cutlass::Distribution::Uniform, uint64_t seed_ = 2080 ): stride_factor_A(typename Gemm::LayoutA::Stride()), stride_factor_B(typename Gemm::LayoutB::Stride()), stride_factor_C(typename Gemm::LayoutC::Stride()), init_A(init_A_), init_B(init_B_), init_C(init_C_), seed(seed_) { } Testbed( typename Gemm::LayoutA::Stride stride_factor_A_, typename Gemm::LayoutB::Stride stride_factor_B_, typename Gemm::LayoutC::Stride stride_factor_C_, cutlass::Distribution::Kind init_A_ = cutlass::Distribution::Uniform, cutlass::Distribution::Kind init_B_ = cutlass::Distribution::Uniform, cutlass::Distribution::Kind init_C_ = cutlass::Distribution::Uniform, uint64_t seed_ = 2080 ): stride_factor_A(stride_factor_A_), stride_factor_B(stride_factor_B_), stride_factor_C(stride_factor_C_), init_A(init_A_), init_B(init_B_), init_C(init_C_), seed(seed_) { } /// Helper to initialize a tensor view template <typename Element, typename Layout> bool initialize_tensor( cutlass::TensorView<Element, Layout> view, cutlass::Distribution::Kind dist_kind, uint64_t seed) { if (dist_kind == cutlass::Distribution::Uniform) { double scope_max, scope_min; int bits_input = cutlass::sizeof_bits<Element>::value; int bits_output = cutlass::sizeof_bits<typename Gemm::ElementC>::value; if (bits_input == 1) { scope_max = 2; scope_min = 0; } else if (bits_input <= 8) { scope_max = 1; scope_min = -1; } else if (bits_output == 16) { scope_max = 5; scope_min = -5; } else { scope_max = 8; scope_min = -8; } cutlass::reference::host::TensorFillRandomUniform( view, seed, scope_max, scope_min, 0); } else if (dist_kind == cutlass::Distribution::Identity) { cutlass::reference::host::TensorFillIdentity(view); } else if (dist_kind == cutlass::Distribution::Gaussian) { cutlass::reference::host::TensorFillRandomGaussian(view, seed, 0, 0.5); } else if (dist_kind == cutlass::Distribution::Sequential) { cutlass::reference::host::BlockFillSequential( view.data(), view.capacity()); } else { EXPECT_TRUE(false) << "Not implemented"; return false; } return true; } /// Initializes data structures void initialize(cutlass::gemm::GemmCoord problem_size) { // // Allocate the GEMM workspace // tensor_A.resize(problem_size.mk(), cutlass::layout::Affine2Layout_Factory<typename Gemm::LayoutA>::layout_factory(problem_size.mk(), stride_factor_A)); tensor_B.resize(problem_size.kn(), cutlass::layout::Affine2Layout_Factory<typename Gemm::LayoutB>::layout_factory(problem_size.kn(), stride_factor_B)); tensor_C.resize(problem_size.mn(), cutlass::layout::Affine2Layout_Factory<typename Gemm::LayoutC>::layout_factory(problem_size.mn(), stride_factor_C)); tensor_D.resize(problem_size.mn(), cutlass::layout::Affine2Layout_Factory<typename Gemm::LayoutC>::layout_factory(problem_size.mn(), stride_factor_C)); reference_D.resize(problem_size.mn(), cutlass::layout::Affine2Layout_Factory<typename Gemm::LayoutC>::layout_factory(problem_size.mn(), stride_factor_C), false); EXPECT_TRUE(initialize_tensor(tensor_A.host_view(), init_A, seed + 2019)); EXPECT_TRUE(initialize_tensor(tensor_B.host_view(), init_B, seed + 2018)); EXPECT_TRUE(initialize_tensor(tensor_C.host_view(), init_C, seed + 2017)); // It is possible to randomly initialize to all zeros, so override this with non-zeros // in the upper left corner of each operand. tensor_A.host_view().at({0, 0}) = typename Gemm::ElementA(1); tensor_B.host_view().at({0, 0}) = typename Gemm::ElementB(1); tensor_C.host_view().at(cutlass::make_Coord(0, 0)) = typename Gemm::ElementC(1); cutlass::reference::host::TensorCopy(reference_D.host_view(), tensor_C.host_view()); tensor_A.sync_device(); tensor_B.sync_device(); tensor_C.sync_device(); tensor_D.sync_device(); } /// Compares computed reference with device reference and outputs to a file if incorrect bool compare_reference( cutlass::gemm::GemmCoord problem_size, ElementCompute alpha, ElementCompute beta) { tensor_D.sync_host(); EXPECT_GT(cutlass::reference::host::TensorNorm(tensor_A.host_view()), 0); EXPECT_GT(cutlass::reference::host::TensorNorm(tensor_B.host_view()), 0); EXPECT_GT(cutlass::reference::host::TensorNorm(tensor_C.host_view()), 0); if (tensor_D.size() > 1) EXPECT_GT(cutlass::reference::host::TensorNorm(tensor_D.host_view()), 0); if (reference_D.size() > 1) EXPECT_GT(cutlass::reference::host::TensorNorm(reference_D.host_view()), 0); bool passed = cutlass::reference::host::TensorEquals(reference_D.host_view(), tensor_D.host_view()); EXPECT_TRUE(passed); if (!passed) { std::stringstream fname; fname << "error_Gemm_device_" << problem_size.m() << "x" << problem_size.n() << "x" << problem_size.k() << "_" << Gemm::ThreadblockShape::kM << "x" << Gemm::ThreadblockShape::kN << "x" << Gemm::ThreadblockShape::kK << "_" << Gemm::WarpShape::kM << "x" << Gemm::WarpShape::kN << "x" << Gemm::WarpShape::kK << ".txt"; std::ofstream file(fname.str()); file << "problem: " << problem_size << ", alpha: " << alpha << ", beta: " << beta << "\n\n"; file << "A =\n" << tensor_A.host_view() << "\nB =\n" << tensor_B.host_view() << "\nC =\n" << tensor_C.host_view() << "\n\nReference =\n" << reference_D.host_view() << "\nComputed =\n" << tensor_D.host_view(); } return passed; } /// Verifies the result is a GEMM bool verify( cutlass::gemm::GemmCoord problem_size, ElementCompute alpha, ElementCompute beta) { // // Verify // cutlass::reference::host::Gemm< typename Gemm::ElementA, typename Gemm::LayoutA, typename Gemm::ElementB, typename Gemm::LayoutB, typename Gemm::ElementC, typename Gemm::LayoutC, ElementCompute, ElementAccumulator, typename Gemm::Operator> reference_gemm; reference_gemm( problem_size, alpha, tensor_A.host_ref(), tensor_B.host_ref(), beta, reference_D.host_ref(), ElementAccumulator(0) ); if (Relu) { for (int i = 0; i < problem_size.m(); ++i) { for (int j = 0; j < problem_size.n(); ++j) { reference_D.at(cutlass::MatrixCoord(i, j)) = ((ElementCompute)reference_D.at(cutlass::MatrixCoord(i, j)) < (ElementCompute)0) ? (typename Gemm::ElementC)0 : reference_D.at(cutlass::MatrixCoord(i, j)); } } } return compare_reference(problem_size, alpha, beta); } /// Determine if the CUDA device is sufficient to run the kernel bool sufficient() const { // // Determine SMEM requirements and waive if not satisfied // size_t smem_size = sizeof(typename Gemm::GemmKernel::SharedStorage); cudaDeviceProp properties; int device_idx; cudaError_t result = cudaGetDevice(&device_idx); if (result != cudaSuccess) { throw std::runtime_error("cudaGetDevice() API call failed."); } result = cudaGetDeviceProperties(&properties, device_idx); if (result != cudaSuccess) { throw std::runtime_error("cudaGetDeviceProperties() failed"); } if (properties.sharedMemPerBlockOptin < smem_size) { return false; } return true; } /// Executes one test bool run( cutlass::gemm::GemmCoord problem_size, int split_k_slices = 1, ElementCompute alpha = ElementCompute(1), ElementCompute beta = ElementCompute(0)) { /* std::cout << "\n-----------------------\n"; std::cout << "problem size: " << problem_size << "\n"; std::cout << "split_k_slices: " << split_k_slices << "\n"; std::cout << "alpha: " << alpha << "\n"; std::cout << "beta: " << beta << "\n"; std::cout << "-----------------------\n\n"; */ // Waive test if insufficient CUDA device if (!sufficient()) { if (CUTLASS_TEST_UNIT_ENABLE_WARNINGS) { std::cerr << "Test waived due to insufficient CUDA device." << std::endl; } return true; } this->initialize(problem_size); // // Initialize the GEMM operator // typename Gemm::Arguments arguments{ problem_size, tensor_A.device_ref(), tensor_B.device_ref(), tensor_C.device_ref(), tensor_D.device_ref(), {alpha, beta}, split_k_slices }; Gemm gemm_op; size_t workspace_size = Gemm::get_workspace_size(arguments); cutlass::device_memory::allocation<uint8_t> workspace(workspace_size); cutlass::Status status = gemm_op.initialize(arguments, workspace.get()); if (status != cutlass::Status::kSuccess) { cudaError_t error = cudaGetLastError(); std::cerr << "This test is not supported: " << cudaGetErrorString(error) << "\n"; return true; } // // Run the GEMM // status = gemm_op(); EXPECT_TRUE(status == cutlass::Status::kSuccess) << to_string(status); // // Verify // bool passed = this->verify(problem_size, alpha, beta); if (!passed) { std::cout << "Error with split_k_slices = " << split_k_slices << ", alpha: " << alpha << std::endl; } return passed; } }; ///////////////////////////////////////////////////////////////////////////////////////////////// template <typename Gemm, bool Relu=false> bool TestAllGemmBasic( const typename Gemm::LayoutA::Stride& stride_factor_A = typename Gemm::LayoutA::Stride(), const typename Gemm::LayoutB::Stride& stride_factor_B = typename Gemm::LayoutB::Stride(), const typename Gemm::LayoutC::Stride& stride_factor_C = typename Gemm::LayoutC::Stride()) { bool passed = true; int const kMinimumOperandElementSize = std::min( int(cutlass::sizeof_bits<typename Gemm::ElementA>::value), int(cutlass::sizeof_bits<typename Gemm::ElementB>::value)); int const kAlignment = cutlass::platform::is_same< typename Gemm::OperatorClass, cutlass::arch::OpClassSimt>::value ? 1 : 128 / kMinimumOperandElementSize; // int8_t gemm alignment constraints int const kAlignmentM = cutlass::platform::is_same<typename Gemm::OperatorClass, cutlass::arch::OpClassSimt>::value && cutlass::platform::is_same<typename Gemm::ElementA, int8_t>::value && cutlass::platform::is_same<typename Gemm::LayoutA, cutlass::layout::ColumnMajor>::value ? 4 : kAlignment; int const kAlignmentN = cutlass::platform::is_same<typename Gemm::OperatorClass, cutlass::arch::OpClassSimt>::value && cutlass::platform::is_same<typename Gemm::ElementB, int8_t>::value && cutlass::platform::is_same<typename Gemm::LayoutB, cutlass::layout::RowMajor>::value ? 4 : kAlignment; int const kAlignmentK = cutlass::platform::is_same<typename Gemm::OperatorClass, cutlass::arch::OpClassSimt>::value && cutlass::platform::is_same<typename Gemm::ElementA, int8_t>::value && cutlass::platform::is_same<typename Gemm::ElementB, int8_t>::value && (cutlass::platform::is_same<typename Gemm::LayoutA, cutlass::layout::RowMajor>::value || cutlass::platform::is_same<typename Gemm::LayoutB, cutlass::layout::ColumnMajor>::value) ? 4 : kAlignment; int problem_size_m[] = {kAlignmentM, 512 - 3 * kAlignmentM}; int problem_size_n[] = {kAlignmentN, 512 - 2 * kAlignmentN}; int problem_size_k[] = { kAlignmentK, Gemm::ThreadblockShape::kK * (Gemm::kStages + 1) - kAlignmentK}; int split_k_slices[] = { 1, 2, 3 }; double problem_alpha[] = { 1 }; double problem_beta[] = { 2.0 }; Testbed<Gemm, Relu> testbed(stride_factor_A, stride_factor_B, stride_factor_C); using ElementCompute = typename Gemm::EpilogueOutputOp::ElementCompute; for (int m : problem_size_m) { for (int n : problem_size_n) { for (int k : problem_size_k) { for (int split_k : split_k_slices) { if (!Gemm::kSplitKSerial && split_k > 1) { continue; } if (split_k > 1 && k / Gemm::ThreadblockShape::kK < split_k) { continue; } for (auto alpha : problem_alpha) { for (auto beta : problem_beta) { cutlass::gemm::GemmCoord problem_size(m, n, k); passed = testbed.run( problem_size, split_k, cutlass::from_real<ElementCompute>(alpha), cutlass::from_real<ElementCompute>(beta) ); if (!passed) { return false; } } } } } } } return passed; } ///////////////////////////////////////////////////////////////////////////////////////////////// template <typename Gemm, bool Relu=false> bool TestAllGemm( const typename Gemm::LayoutA::Stride& stride_factor_A, const typename Gemm::LayoutB::Stride& stride_factor_B = typename Gemm::LayoutB::Stride(), const typename Gemm::LayoutC::Stride& stride_factor_C = typename Gemm::LayoutC::Stride()) { // Test basic GEMM with non-default stride factors return TestAllGemmBasic<Gemm, Relu>(stride_factor_A, stride_factor_B, stride_factor_C); } template <typename Gemm, bool Relu=false> bool TestAllGemm() { #ifdef NDEBUG // Non-debug builds also test basic GEMM with default stride factors if (!TestAllGemmBasic<Gemm, Relu>()) { return false; } #endif // NDEBUG // Test universal GEMM #if 0 // Define the universal kernel using UniversalKernel = cutlass::gemm::kernel::GemmUniversal< typename Gemm::GemmKernel::Mma, // Mma typename Gemm::GemmKernel::Epilogue, // Epilogue cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<> // ThreadblockSwizzle >; #else // Define the streamk universal kernel using UniversalKernel = cutlass::gemm::kernel::GemmUniversalStreamk< typename Gemm::GemmKernel::Mma, // Mma typename Gemm::GemmKernel::Epilogue, // Epilogue cutlass::gemm::threadblock::ThreadblockSwizzleStreamK // ThreadblockSwizzle >; #endif // Define the universal adaptor using UniversalGemm = cutlass::gemm::device::GemmUniversalAdapter<UniversalKernel>; // Test universal GEMM return TestAllGemmUniversal<UniversalGemm, Relu>(); } ///////////////////////////////////////////////////////////////////////////////////////////////// template <typename Gemm> bool TestGemmPerf(int iterations = 1) { bool passed = true; int problem_size_m[] = { 2048 }; int problem_size_n[] = { 4352 }; int problem_size_k[] = { 4096 }; int split_k_slices[] = { 1 }; double problem_alpha[] = { 1 }; double problem_beta[] = { 0.0 }; Testbed<Gemm> testbed; using ElementCompute = typename Gemm::EpilogueOutputOp::ElementCompute; for (int m : problem_size_m) { for (int n : problem_size_n) { for (int k : problem_size_k) { for (int split_k : split_k_slices) { if (!Gemm::kSplitKSerial && split_k > 1) { continue; } for (auto alpha : problem_alpha) { for (auto beta : problem_beta) { cutlass::gemm::GemmCoord problem_size(m, n, k); for (int i = 0; i < iterations; i++){ passed = testbed.run( problem_size, split_k, cutlass::from_real<ElementCompute>(alpha), cutlass::from_real<ElementCompute>(beta) ); } if (!passed) { return false; } } } } } } } return passed; } } // namespace device } // namespace gemm } // namespace test /////////////////////////////////////////////////////////////////////////////////////////////////
test/unit/gemm/device/testbed.h/0
{ "file_path": "test/unit/gemm/device/testbed.h", "repo_id": "test", "token_count": 8244 }
57
/*************************************************************************************************** * Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. * SPDX-License-Identifier: BSD-3-Clause * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * **************************************************************************************************/ /*! \file \brief Tests for device-wide TRMM interface */ #pragma once #include <iostream> #include <fstream> #include <sstream> #include "../../common/cutlass_unit_test.h" #include "cutlass/blas3.h" #include "cutlass/util/host_tensor.h" #include "cutlass/util/tensor_view_io.h" #include "cutlass/util/distribution.h" #include "cutlass/util/reference/host/tensor_fill.h" #include "cutlass/util/reference/host/tensor_copy.h" #include "cutlass/util/reference/host/tensor_compare.h" #include "cutlass/util/reference/host/tensor_norm.h" #include "cutlass/util/reference/host/error_metrics.h" #include "cutlass/util/reference/host/trmm.h" #include "cutlass/util/reference/host/trmm_complex.h" #include "cutlass/core_io.h" #include "testbed_utils.h" namespace test { namespace gemm { namespace device { ///////////////////////////////////////////////////////////////////////////////////////////////// template <typename Trmm> struct TestbedTrmmUniversal { using ElementA = typename Trmm::ElementA; using ElementB = typename Trmm::ElementB; using ElementC = typename Trmm::ElementC; using ElementAccumulator = typename Trmm::ElementAccumulator; using ElementCompute = typename Trmm::TrmmKernel::Epilogue::OutputOp::ElementCompute; /// Initialization cutlass::Distribution::Kind init_A; cutlass::Distribution::Kind init_B; cutlass::Distribution::Kind init_D; uint64_t seed; cutlass::HostTensor<typename Trmm::ElementA, typename Trmm::LayoutA> tensor_A; cutlass::HostTensor<typename Trmm::ElementB, typename Trmm::LayoutB> tensor_B; cutlass::HostTensor<typename Trmm::ElementC, typename Trmm::LayoutC> tensor_D; cutlass::HostTensor<typename Trmm::ElementC, typename Trmm::LayoutC> reference_D; // // Methods // TestbedTrmmUniversal( cutlass::Distribution::Kind init_A_ = cutlass::Distribution::Uniform, cutlass::Distribution::Kind init_B_ = cutlass::Distribution::Uniform, cutlass::Distribution::Kind init_D_ = cutlass::Distribution::Uniform, uint64_t seed_ = 2080 ): init_A(init_A_), init_B(init_B_), init_D(init_D_), seed(seed_) { } /// Helper to initialize a tensor view template <typename Element, typename Layout> bool initialize_tensor( cutlass::TensorView<Element, Layout> view, cutlass::Distribution::Kind dist_kind, uint64_t seed, int mantissa_in_bits) { if (dist_kind == cutlass::Distribution::Uniform) { double scope_max, scope_min; int bits_input = cutlass::sizeof_bits<Element>::value; int bits_output = cutlass::sizeof_bits<typename Trmm::ElementC>::value; if (bits_input == 1) { scope_max = 2; scope_min = 0; } else if (bits_input <= 8) { scope_max = 2; scope_min = -2; } else if (bits_output == 16) { scope_max = 5; scope_min = -5; } else { scope_max = 8; scope_min = -8; } cutlass::reference::host::TensorFillRandomUniform( view, seed, scope_max, scope_min, mantissa_in_bits); } else if (dist_kind == cutlass::Distribution::Identity) { cutlass::reference::host::TensorFillIdentity(view); } else if (dist_kind == cutlass::Distribution::Gaussian) { cutlass::reference::host::TensorFillRandomGaussian(view, seed, 0, 0.5, mantissa_in_bits); } else if (dist_kind == cutlass::Distribution::Sequential) { cutlass::reference::host::BlockFillSequential( view.data(), view.capacity()); } else { EXPECT_TRUE(false) << "Not implemented"; return false; } return true; } /// Helper to initialize a tensor view template <typename Element, typename Layout> bool initialize_symmetric_tensor( cutlass::TensorView<Element, Layout> view, cutlass::Distribution::Kind dist_kind, uint64_t seed, int mantissa_in_bits) { if (dist_kind == cutlass::Distribution::Uniform) { double scope_max, scope_min; int bits_input = cutlass::sizeof_bits<Element>::value; int bits_output = cutlass::sizeof_bits<typename Trmm::ElementC>::value; if (bits_input == 1) { scope_max = 2; scope_min = 0; } else if (bits_input <= 8) { scope_max = 2; scope_min = -2; } else if (bits_output == 16) { scope_max = 5; scope_min = -5; } else { scope_max = 8; scope_min = -8; } cutlass::reference::host::TensorFillSymmetricRandomUniform( view, seed, Trmm::kFillMode, scope_max, scope_min, mantissa_in_bits); } else if (dist_kind == cutlass::Distribution::Gaussian) { cutlass::reference::host::TensorFillSymmetricRandomGaussian( view, seed, Trmm::kFillMode, 0, 0.5, mantissa_in_bits); } else { EXPECT_TRUE(false) << "Not implemented"; return false; } return true; } /// Helper to initialize a tensor view (pad diagonal fill with zeros for up to alignment on wrong side of diagonal) template <typename Element, typename Layout> bool initialize_pad_diagonal_tensor( cutlass::TensorView<Element, Layout> view, cutlass::Distribution::Kind dist_kind, uint64_t seed, int alignment) { if (dist_kind == cutlass::Distribution::Uniform) { double scope_max, scope_min; int bits_input = cutlass::sizeof_bits<Element>::value; int bits_output = cutlass::sizeof_bits<typename Trmm::ElementC>::value; if (bits_input == 1) { scope_max = 2; scope_min = 0; } else if (bits_input <= 8) { scope_max = 2; scope_min = -2; } else if (bits_output == 16) { scope_max = 5; scope_min = -5; } else { scope_max = 8; scope_min = -8; } cutlass::reference::host::TensorFillPadDiagonalRandomUniform( view, seed, Trmm::kFillMode, scope_max, scope_min, 0, alignment); } else if (dist_kind == cutlass::Distribution::Gaussian) { EXPECT_TRUE(false) << "Gaussian distribution for pad diagonal not implemented"; } else { EXPECT_TRUE(false) << "Not implemented"; return false; } return true; } /// Initializes data structures void initialize(cutlass::gemm::GemmCoord problem_size) { // // Allocate the TRMM workspace // if (Trmm::kSideMode == cutlass::SideMode::kLeft) { tensor_A.resize(cutlass::make_Coord(problem_size.m(),problem_size.m())); } else if (Trmm::kSideMode == cutlass::SideMode::kRight) { tensor_A.resize(cutlass::make_Coord(problem_size.n(),problem_size.n())); } tensor_B.resize(problem_size.mn()); tensor_D.resize(problem_size.mn()); reference_D.resize(problem_size.mn(), false); //EXPECT_TRUE(initialize_symmetric_tensor(tensor_A.host_view(), init_A, seed + 2017)); //EXPECT_TRUE(initialize_pad_diagonal_tensor(tensor_A.host_view(), init_A, seed + 2017, Trmm::kAlignmentA)); EXPECT_TRUE(initialize_tensor(tensor_A.host_view(), init_A, seed + 2017, cutlass::MantissaInBits<typename Trmm::ElementA>::bits)); EXPECT_TRUE(initialize_tensor(tensor_B.host_view(), init_B, seed + 2019, cutlass::MantissaInBits<typename Trmm::ElementB>::bits)); // It is possible to randomly initialize to all zeros, so override this with non-zeros // in the upper left corner of each operand. tensor_A.host_view().at({0, 0}) = typename Trmm::ElementA(1); tensor_B.host_view().at({0, 0}) = typename Trmm::ElementB(1); cutlass::reference::host::TensorCopy(reference_D.host_view(), tensor_D.host_view()); tensor_A.sync_device(); tensor_B.sync_device(); tensor_D.sync_device(); } /// Compares computed reference with device reference and outputs to a file if incorrect bool compare_reference( cutlass::gemm::GemmCoord problem_size, ElementCompute alpha) { tensor_D.sync_host(); EXPECT_GT(cutlass::reference::host::TensorNorm(tensor_A.host_view()), 0); EXPECT_GT(cutlass::reference::host::TensorNorm(tensor_B.host_view()), 0); if (tensor_D.size() > 1) EXPECT_GT(cutlass::reference::host::TensorNorm(tensor_D.host_view()), 0); if (reference_D.size() > 1) EXPECT_GT(cutlass::reference::host::TensorNorm(reference_D.host_view()), 0); double l2_norm = cutlass::reference::host::TensorRelativeErrorMetric(reference_D.host_view(), tensor_D.host_view()); bool passed = l2_norm < cutlass::MantissaInBits<typename Trmm::ElementA>::error; return passed; } /// Verifies the result is a TRMM bool verify( cutlass::gemm::GemmCoord problem_size, ElementCompute alpha) { // // Verify // using HostReference = typename cutlass::platform::conditional< (cutlass::platform::is_same<typename Trmm::ElementC, cutlass::complex<double> >::value || cutlass::platform::is_same<typename Trmm::ElementC, cutlass::complex<float> >::value ), cutlass::reference::host::TrmmComplex< typename Trmm::ElementA, typename Trmm::LayoutA, Trmm::kTransformA, Trmm::kSideMode, Trmm::kFillMode, Trmm::kDiagType, typename Trmm::ElementB, typename Trmm::LayoutB, Trmm::kTransformB, typename Trmm::ElementC, typename Trmm::LayoutC, ElementCompute, ElementAccumulator>, cutlass::reference::host::Trmm< typename Trmm::ElementA, typename Trmm::LayoutA, Trmm::kSideMode, Trmm::kFillMode, Trmm::kDiagType, typename Trmm::ElementB, typename Trmm::LayoutB, typename Trmm::ElementC, typename Trmm::LayoutC, ElementCompute, ElementAccumulator> >::type; HostReference reference_trmm; reference_trmm( problem_size, alpha, tensor_A.host_ref(), tensor_B.host_ref(), reference_D.host_ref(), ElementAccumulator(0) ); return compare_reference(problem_size, alpha); } /// Returns true if the CUDA device is sufficient to execute the kernel. bool sufficient() const { // // Determine SMEM requirements and waive if not satisfied // size_t smem_size = sizeof(typename Trmm::TrmmKernel::SharedStorage); cudaDeviceProp properties; int device_idx; cudaError_t result = cudaGetDevice(&device_idx); if (result != cudaSuccess) { throw std::runtime_error("cudaGetDevice() API call failed."); } result = cudaGetDeviceProperties(&properties, device_idx); if (result != cudaSuccess) { throw std::runtime_error("cudaGetDeviceProperties() failed"); } if (properties.sharedMemPerBlockOptin < smem_size) { return false; } return true; } /// Executes one test bool run( cutlass::gemm::GemmUniversalMode mode, cutlass::gemm::GemmCoord problem_size, int batch_count = 1, ElementCompute alpha = ElementCompute(1)) { // Waive test if insufficient CUDA device if (!sufficient()) { if (CUTLASS_TEST_UNIT_ENABLE_WARNINGS) { std::cerr << "Test waived due to insufficient CUDA device." << std::endl; } return true; } #if 0 std::cout << "[TestbedTrmmUniversal::run()] problem(m, n, k): " << problem_size << " alpha: " << ElementCompute(alpha) << std::endl; #endif this->initialize(problem_size); // // Initialize the TRMM operator // int batch_stride_A; if (Trmm::kSideMode == cutlass::SideMode::kLeft) batch_stride_A = problem_size.m()*problem_size.m(); if (Trmm::kSideMode == cutlass::SideMode::kRight) batch_stride_A = problem_size.n()*problem_size.n(); typename Trmm::Arguments arguments{ mode, problem_size, batch_count, {alpha}, tensor_A.device_data(), tensor_B.device_data(), tensor_D.device_data(), batch_stride_A, problem_size.m() * problem_size.n(), problem_size.m() * problem_size.n(), tensor_A.layout().stride(0), tensor_B.layout().stride(0), tensor_D.layout().stride(0) }; Trmm trmm_op; size_t workspace_size = Trmm::get_workspace_size(arguments); cutlass::device_memory::allocation<uint8_t> workspace(workspace_size); cutlass::Status status = trmm_op.initialize(arguments, workspace.get()); EXPECT_TRUE(status == cutlass::Status::kSuccess) << to_string(status); // // Run the TRMM // status = trmm_op(); EXPECT_TRUE(status == cutlass::Status::kSuccess) << to_string(status); // // Verify // bool passed = this->verify(problem_size, alpha); if (!passed) { std::stringstream fname; fname << "error_Trmm_device_" << "fill_mode_" << (Trmm::kFillMode == cutlass::FillMode::kLower ? "lower_" : (Trmm::kFillMode == cutlass::FillMode::kUpper ? "upper_" : "invalid_")) << "side_mode_" << (Trmm::kSideMode == cutlass::SideMode::kLeft ? "left_" : (Trmm::kSideMode == cutlass::SideMode::kRight ? "right_" : "invalid_")) << "mnk_" << problem_size.m() << "x" << problem_size.n() << "x" << problem_size.k() << "_" << Trmm::ThreadblockShape::kM << "x" << Trmm::ThreadblockShape::kN << "x" << Trmm::ThreadblockShape::kK << "_" << Trmm::WarpShape::kM << "x" << Trmm::WarpShape::kN << "x" << Trmm::WarpShape::kK << ".txt"; std::cout << fname.str() << std::endl; std::ofstream results(fname.str()); results << problem_size << std::endl; results << "\nA:\n" << tensor_A.host_view() << "\n" << "\nB:\n" << tensor_B.host_view() << "\n" << "\nD reference:\n" << reference_D.host_view() << "\n" << "\nD computed:\n" << tensor_D.host_view() << "\n"; } return passed; } }; ///////////////////////////////////////////////////////////////////////////////////////////////// template <typename Trmm> bool TestTrmmUniversal( cutlass::gemm::GemmCoord const & problem_size, cutlass::gemm::GemmUniversalMode mode, int batch_count, double alpha = 1.0) { bool passed = true; TestbedTrmmUniversal<Trmm> testbed; using ElementCompute = typename Trmm::EpilogueOutputOp::ElementCompute; passed = testbed.run( mode, problem_size, batch_count, cutlass::from_real<ElementCompute>(alpha) ); return passed; } template <typename Trmm> bool TestAllTrmmUniversal() { bool passed = true; int const kMinimumOperandElementSize = int(cutlass::sizeof_bits<typename Trmm::ElementA>::value); int const kAlignment = cutlass::platform::is_same< typename Trmm::OperatorClass, cutlass::arch::OpClassSimt>::value ? 1 : 128 / kMinimumOperandElementSize; // int8_t gemm alignment constraints int const kAlignmentM = cutlass::platform::is_same<typename Trmm::OperatorClass, cutlass::arch::OpClassSimt>::value && cutlass::platform::is_same<typename Trmm::ElementA, int8_t>::value && cutlass::platform::is_same<typename Trmm::LayoutA, cutlass::layout::ColumnMajor>::value ? 4 : kAlignment; int const kAlignmentN = kAlignmentM; int const kAlignmentK = cutlass::platform::is_same<typename Trmm::OperatorClass, cutlass::arch::OpClassSimt>::value && cutlass::platform::is_same<typename Trmm::ElementA, int8_t>::value && cutlass::platform::is_same<typename Trmm::LayoutA, cutlass::layout::RowMajor>::value ? 4 : kAlignment; cutlass::gemm::GemmUniversalMode modes[] = { cutlass::gemm::GemmUniversalMode::kGemm, }; int problem_size_m[] = { kAlignmentK, Trmm::ThreadblockShape::kK * Trmm::kStages - kAlignmentK, Trmm::ThreadblockShape::kK * Trmm::kStages * 3 - kAlignmentK }; int problem_size_n[] = { kAlignmentN, 512 - 2*kAlignmentN }; int batch_counts[] = { // may be interpretted as batch count or split-K slices 1 // Just running one batch for now (removing 2, 3, 5, 7) }; double problem_alpha[] = { 1.0, 2.0 }; using ElementCompute = typename Trmm::EpilogueOutputOp::ElementCompute; for (cutlass::gemm::GemmUniversalMode mode : modes) { for (int m : problem_size_m) { for (int n : problem_size_n) { for (int batch_count : batch_counts) { for (auto alpha : problem_alpha) { int k = 0; if (Trmm::kSideMode == cutlass::SideMode::kLeft) k = m; else if (Trmm::kSideMode == cutlass::SideMode::kRight) k = n; if (mode == cutlass::gemm::GemmUniversalMode::kGemm || mode == cutlass::gemm::GemmUniversalMode::kGemmSplitKParallel) { #if 0 // skip very small K problems if (k / batch_count < 2 * Trmm::ThreadblockShape::kK) { continue; } #endif } cutlass::gemm::GemmCoord problem_size(m, n, k); TestbedTrmmUniversal<Trmm> testbed; passed = testbed.run( mode, problem_size, batch_count, cutlass::from_real<ElementCompute>(alpha) ); if (!passed) { return false; } } } } } } return passed; } ///////////////////////////////////////////////////////////////////////////////////////////////// } // namespace device } // namespace gemm } // namespace test /////////////////////////////////////////////////////////////////////////////////////////////////
test/unit/gemm/device/testbed_trmm_universal.h/0
{ "file_path": "test/unit/gemm/device/testbed_trmm_universal.h", "repo_id": "test", "token_count": 8616 }
58
/*************************************************************************************************** * Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. * SPDX-License-Identifier: BSD-3-Clause * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * **************************************************************************************************/ /*! \file \brief Unit testbed for kernel-level GEMM */ #pragma once #include <fstream> #include "../../common/cutlass_unit_test.h" #include "cutlass/aligned_buffer.h" #include "cutlass/gemm/gemm.h" #include "cutlass/layout/matrix.h" #include "cutlass/layout/vector.h" #include "cutlass/numeric_types.h" #include "cutlass/core_io.h" #include "cutlass/util/host_tensor.h" #include "cutlass/util/tensor_view_io.h" #include "cutlass/util/distribution.h" #include "cutlass/util/reference/host/gemm.h" #include "cutlass/util/reference/host/tensor_compare.h" #include "cutlass/util/reference/host/tensor_fill.h" #include "cutlass/gemm/threadblock/default_mma_core_simt.h" #include "cutlass/gemm/threadblock/default_mma_core_sm75.h" #include "cutlass/gemm/threadblock/default_mma_core_sm70.h" #include "cutlass/transform/threadblock/predicated_tile_iterator.h" #include "cutlass/transform/threadblock/predicated_tile_iterator_2dthreadtile.h" #include "cutlass/cutlass.h" #include "cutlass/platform/platform.h" namespace test { namespace gemm { namespace threadblock { ///////////////////////////////////////////////////////////////////////////////////////////////// template <typename Mma> __global__ void kernel_mma(cutlass::gemm::GemmCoord problem_size, typename Mma::IteratorA::Params params_A, typename Mma::IteratorA::TensorRef ref_A, typename Mma::IteratorB::Params params_B, typename Mma::IteratorB::TensorRef ref_B, typename Mma::ElementC **ptr_C, typename Mma::LayoutC::Stride::Index ldc) { // Shared storage needed by threadblock-scoped matrix multiply-accumulate __shared__ typename Mma::SharedStorage shared_storage; // Compute threadblock location cutlass::gemm::GemmCoord tb_tile_offset = {int(blockIdx.x), int(blockIdx.y), 0}; cutlass::MatrixCoord tb_offset_A{tb_tile_offset.m() * Mma::Shape::kM, tb_tile_offset.k()}; cutlass::MatrixCoord tb_offset_B{tb_tile_offset.k(), tb_tile_offset.n() * Mma::Shape::kN}; // Compute position within threadblock int tb_thread_id = threadIdx.y * blockDim.x + threadIdx.x; // Construct iterators to A and B operands typename Mma::IteratorA iterator_A(params_A, ref_A.data(), {problem_size.m(), problem_size.k()}, tb_thread_id, tb_offset_A); typename Mma::IteratorB iterator_B(params_B, ref_B.data(), {problem_size.k(), problem_size.n()}, tb_thread_id, tb_offset_B); int warp_id = threadIdx.y; int lane_id = threadIdx.x; int partitionsK_idx = warp_id / (Mma::WarpCount::kM * Mma::WarpCount::kN); // Construct thread-scoped matrix multiply Mma mma(shared_storage, tb_thread_id, warp_id, threadIdx.x); typename Mma::FragmentC accum; accum.clear(); int gemm_k_iterations = (problem_size.k() + Mma::Shape::kK - 1) / Mma::Shape::kK; // Compute threadblock-scoped matrix multiply-add mma(gemm_k_iterations, accum, iterator_A, iterator_B, accum); // Output results typename Mma::Operator::IteratorC iterator_C({ptr_C[partitionsK_idx], ldc}, lane_id); int warp_idx_mn = warp_id % (Mma::WarpCount::kM * Mma::WarpCount::kN); iterator_C.add_tile_offset( {(tb_tile_offset.m() * Mma::WarpCount::kM) + (warp_idx_mn % Mma::WarpCount::kM), (tb_tile_offset.n() * Mma::WarpCount::kN) + (warp_idx_mn / Mma::WarpCount::kM)}); iterator_C.store(accum); } ///////////////////////////////////////////////////////////////////////////////////////////////// /// Structure to compute the matrix product template < /// Threadblock-level matrix multiply-accumulate typename MmaCore_> struct Testbed { /// Threadblock-level GEMM implementation using MmaCore = MmaCore_; using ThreadblockShape = typename MmaCore::Shape; using WarpShape = typename MmaCore::WarpShape; using InstructionShape = typename MmaCore::InstructionShape; using ElementA = typename MmaCore::ElementA; using LayoutA = typename MmaCore::LayoutA; using ElementB = typename MmaCore::ElementB; using LayoutB = typename MmaCore::LayoutB; using ElementC = typename MmaCore::ElementC; using LayoutC = typename MmaCore::LayoutC; // Define iterators over tiles from the A operand static const bool use_idp4a = cutlass::platform::is_same<ElementA, int8_t>::value && cutlass::platform::is_same<ElementB, int8_t>::value && cutlass::platform::is_same<typename MmaCore::OperatorClass, cutlass::arch::OpClassSimt>::value; static const bool transposeA = cutlass::platform::is_same< LayoutA, cutlass::layout::ColumnMajor >::value; static const bool transposeB = cutlass::platform::is_same< LayoutB, cutlass::layout::RowMajor >::value; using IteratorA = typename cutlass::platform::conditional< use_idp4a, cutlass::transform::threadblock::PredicatedTileIterator2dThreadTile< cutlass::MatrixShape<ThreadblockShape::kM, ThreadblockShape::kK>, ElementA, LayoutA, 1, typename MmaCore::IteratorThreadMapA, transposeA> , cutlass::transform::threadblock::PredicatedTileIterator< cutlass::MatrixShape<ThreadblockShape::kM, ThreadblockShape::kK>, ElementA, LayoutA, 1, typename MmaCore::IteratorThreadMapA> >::type; // Define iterators over tiles from the B operand using IteratorB = typename cutlass::platform::conditional< use_idp4a, cutlass::transform::threadblock::PredicatedTileIterator2dThreadTile< cutlass::MatrixShape<ThreadblockShape::kK, ThreadblockShape::kN>, ElementB, LayoutB, 0, typename MmaCore::IteratorThreadMapB, transposeB> , cutlass::transform::threadblock::PredicatedTileIterator< cutlass::MatrixShape<ThreadblockShape::kK, ThreadblockShape::kN>, ElementB, LayoutB, 0, typename MmaCore::IteratorThreadMapB> >::type; // Define the threadblock-scoped pipelined matrix multiply using Mma = cutlass::gemm::threadblock::MmaPipelined< typename MmaCore::Shape, IteratorA, typename MmaCore::SmemIteratorA, IteratorB, typename MmaCore::SmemIteratorB, ElementC, LayoutC, typename MmaCore::MmaPolicy>; static int const kPartitionsK = MmaCore::MmaPolicy::kPartitionsK; // // Data members // cutlass::HostTensor<ElementA, LayoutA> matrix_A; cutlass::HostTensor<ElementB, LayoutB> matrix_B; cutlass::HostTensor<ElementC, LayoutC> matrix_C_computed[kPartitionsK]; cutlass::HostTensor<ElementC, LayoutC> matrix_C_reference; cutlass::HostTensor<ElementC*, cutlass::layout::PackedVectorLayout> matrix_C_pointers; cutlass::gemm::GemmCoord problem_size; float alpha, beta; // // Methods // /// Allocates workspace in device memory Testbed(int m, int n, int k, float alpha_, float beta_) : problem_size(m, n, k), alpha(alpha_), beta(beta_) { matrix_A.reset(cutlass::make_Coord(m, k)); matrix_B.reset(cutlass::make_Coord(k, n)); CUTLASS_PRAGMA_UNROLL for(int k = 0; k < kPartitionsK; k++) matrix_C_computed[k].reset(cutlass::make_Coord(m, n)); matrix_C_reference.reset(cutlass::make_Coord(m, n), false); matrix_C_pointers.reset(cutlass::Coord<1>(kPartitionsK)); } /// Runs the test bool run( dim3 grid, dim3 block, cutlass::Distribution::Kind init_A = cutlass::Distribution::Uniform, cutlass::Distribution::Kind init_B = cutlass::Distribution::Uniform) { // // initialize device memory // if (init_A == cutlass::Distribution::Uniform) { int scope_max = 8; int scope_min = -8; if (cutlass::sizeof_bits<ElementA>::value == 4) { scope_max = 2; scope_min = -2; } else if (cutlass::sizeof_bits<ElementA>::value == 1) { scope_max = 2; scope_min = 0; } uint64_t seed = 7; cutlass::reference::host::TensorFillRandomUniform( matrix_A.host_view(), seed, scope_max, scope_min, 0); } else if (init_A == cutlass::Distribution::Sequential) { cutlass::reference::host::BlockFillSequential(matrix_A.host_data(), matrix_A.capacity()); } else if (init_A == cutlass::Distribution::Identity) { cutlass::reference::host::TensorFillIdentity(matrix_A.host_view()); } else { return false; } if (init_B == cutlass::Distribution::Uniform) { int scope_max = 8; int scope_min = -8; if (cutlass::sizeof_bits<ElementB>::value == 4) { scope_max = 2; scope_min = -2; } else if (cutlass::sizeof_bits<ElementB>::value == 1) { scope_max = 2; scope_min = 0; } uint64_t seed = 7; cutlass::reference::host::TensorFillRandomUniform( matrix_B.host_view(), seed + 16, scope_max, scope_min, 0); } else if (init_B == cutlass::Distribution::Sequential) { cutlass::reference::host::BlockFillSequential(matrix_B.host_data(), matrix_B.capacity()); } else if (init_B == cutlass::Distribution::Identity) { cutlass::reference::host::TensorFillIdentity(matrix_B.host_view()); } else { return false; } CUTLASS_PRAGMA_UNROLL for(int k = 0; k < kPartitionsK; k++) cutlass::reference::host::TensorFill(matrix_C_computed[k].host_view()); cutlass::reference::host::TensorFill(matrix_C_reference.host_view()); matrix_A.sync_device(); matrix_B.sync_device(); CUTLASS_PRAGMA_UNROLL for(int k = 0; k < kPartitionsK; k++) matrix_C_computed[k].sync_device(); typename IteratorA::Params params_A(matrix_A.layout()); typename IteratorB::Params params_B(matrix_B.layout()); CUTLASS_PRAGMA_UNROLL for(int k = 0; k < kPartitionsK; k++) matrix_C_pointers.at(cutlass::Coord<1>(k)) = matrix_C_computed[k].device_data(); matrix_C_pointers.sync_device(); test::gemm::threadblock::kernel_mma<Mma><<<grid, block>>>( problem_size, params_A, matrix_A.device_ref(), params_B, matrix_B.device_ref(), matrix_C_pointers.device_data(), matrix_C_computed[0].layout().stride(0)); // // Check error code // cudaError_t result = cudaDeviceSynchronize(); EXPECT_EQ(result, cudaSuccess) << " kernel error: " << cudaGetErrorString(result); CUTLASS_PRAGMA_UNROLL for(int k = 0; k < kPartitionsK; k++) matrix_C_computed[k].sync_host(); // TODO: this is temporary. it will be removed after slicing can de // reduction // // Reduce matrix_C_computed // CUTLASS_PRAGMA_UNROLL for(int k = 1; k < kPartitionsK; k++) { CUTLASS_PRAGMA_UNROLL for(int m = 0; m < matrix_C_computed[0].extent().row(); m++){ CUTLASS_PRAGMA_UNROLL for(int n = 0; n < matrix_C_computed[0].extent().column(); n++){ matrix_C_computed[0].at({m, n}) += matrix_C_computed[k].at({m, n}); } } } cutlass::reference::host::Gemm<ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, ElementC, ElementC, typename MmaCore::Operator> reference_gemm; reference_gemm( problem_size, ElementC(alpha), matrix_A.host_view(), matrix_B.host_view(), ElementC(beta), matrix_C_reference.host_view()); bool passed = cutlass::reference::host::TensorEquals( matrix_C_computed[0].host_view(), matrix_C_reference.host_view()); EXPECT_TRUE(passed); if (!passed) { std::ofstream output("mma_pipelined_testbed_errors.txt"); output << "A:\n" << matrix_A.host_view() << "\n" << "B:\n" << matrix_B.host_view() << "\n" << "Reference:\n" << matrix_C_reference.host_view() << "\n" << "Computed:\n" << matrix_C_computed[0].host_view() << "\n"; } return passed; } }; ///////////////////////////////////////////////////////////////////////////////////////////////// } // namespace threadblock } // namespace gemm } // namespace test
test/unit/gemm/threadblock/mma_pipelined_testbed_slicedk.h/0
{ "file_path": "test/unit/gemm/threadblock/mma_pipelined_testbed_slicedk.h", "repo_id": "test", "token_count": 5699 }
59
/*************************************************************************************************** * Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. * SPDX-License-Identifier: BSD-3-Clause * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * **************************************************************************************************/ /* \file \brief Defines a math function */ #pragma once #include <vector> #include <string> #include <memory> #include <unordered_map> // CUTLASS includes #include "cutlass/trace.h" // CUTLASS Library includes #include "cutlass/library/library.h" #include "cutlass/library/util.h" #include "cutlass/library/manifest.h" // Profiler includes #include "options.h" #include "device_context.h" #include "performance_result.h" #include "performance_report.h" #include "problem_space.h" #include "debug.h" ///////////////////////////////////////////////////////////////////////////////////////////////// namespace cutlass { namespace profiler { ///////////////////////////////////////////////////////////////////////////////////////////////// /// Abstract base class for each math function class OperationProfiler { public: protected: // // Data members // /// Top-level operation kind library::OperationKind kind_; /// Human readable description std::string description_; /// Arguments parsed from command line ArgumentDescriptionVector arguments_; /// List of providers used to verify and compare each result ProviderVector verification_providers_; /// Model performance result initialized by the operation profiler with workload statistics /// and reasonable default state. PerformanceResult model_result_; /// Performance result vector constructed by profiling the operation PerformanceResultVector results_; public: // // Methods // /// Ctor OperationProfiler(); OperationProfiler( Options const &options, library::OperationKind kind, ArgumentDescriptionVector const &arguments = ArgumentDescriptionVector(), ProviderVector const & verification_providers = ProviderVector()); /// Destructor virtual ~OperationProfiler(); /// Obtains the operation kind library::OperationKind kind() const { return kind_; } /// Gets the schema description std::string const &description() const; /// Returns a reference to the arguments ArgumentDescriptionVector const &arguments() const { return arguments_; } public: // // Basic overrides // /// Prints usage statement for the math function virtual void print_usage(std::ostream &out) const; /// Prints examples virtual void print_examples(std::ostream &out) const =0; /// Entry point to profile all operations in the manifest virtual int profile_all( Options const &options, library::Manifest const &manifest, DeviceContext &device_context); public: // // Operation-specific phases of verification and profiling // /// Extracts the problem dimensions virtual Status initialize_configuration( Options const &options, PerformanceReport &report, DeviceContext &device_context, library::Operation const *operation, ProblemSpace const &problem_space, ProblemSpace::Problem const &problem) = 0; /// Initializes workspace virtual Status initialize_workspace( Options const &options, PerformanceReport &report, DeviceContext &device_context, library::Operation const *operation, ProblemSpace const &problem_space, ProblemSpace::Problem const &problem) = 0; /// Verifies CUTLASS against references virtual bool verify_cutlass( Options const &options, PerformanceReport &report, DeviceContext &device_context, library::Operation const *operation, ProblemSpace const &problem_space, ProblemSpace::Problem const &problem) = 0; /// Measures performance results virtual bool profile( Options const &options, PerformanceReport &report, DeviceContext &device_context, library::Operation const *operation, ProblemSpace const &problem_space, ProblemSpace::Problem const &problem) = 0; public: // // Static helpers // /// Sleep for a given duration in ms static void sleep(int sleep_duration); /// Returns true if the current operation description satisfies the problem space static bool satisfies( library::OperationDescription const &op_desc, ProblemSpace const &problem_space, ProblemSpace::Problem const &problem); /// Compares tensors for equality static Disposition compare_tensors( Options const &options, DeviceAllocation &experimental, DeviceAllocation &reference, int64_t count = 0); static void save_workspace( DeviceContext &device_context, Options const &options, library::OperationDescription const &desc, library::Provider provider, library::Provider verification_provider = library::Provider::kInvalid); /// Helper to set a performance result member static void set_argument( PerformanceResult &result, char const *name, ProblemSpace const &problem_space, std::string const &value); /// Helper to set a performance result member static void set_argument( PerformanceResult &result, char const *name, ProblemSpace const &problem_space, int64_t value); protected: /// Sets operation description static void initialize_result_( PerformanceResult &result, library::OperationDescription const &operation_desc, ProblemSpace const &problem_space); /// Method to profile an initialized CUTLASS operation virtual Status profile_cutlass_( double &runtime, Options const &options, library::Operation const *operation, void *arguments, void *host_workspace, void *device_workspace); private: /// finds string matches filter_string in operation_name bool find_string_matches_( std::string const &filter_string, std::string const &operation_name); }; ///////////////////////////////////////////////////////////////////////////////////////////////// /// Vector of owning operation profilers using OperationProfilerVector = std::vector<std::unique_ptr<OperationProfiler>>; ///////////////////////////////////////////////////////////////////////////////////////////////// } // namespace profiler } // namespace cutlass /////////////////////////////////////////////////////////////////////////////////////////////////
tools/profiler/include/cutlass/profiler/operation_profiler.h/0
{ "file_path": "tools/profiler/include/cutlass/profiler/operation_profiler.h", "repo_id": "tools", "token_count": 2076 }
60
/*************************************************************************************************** * Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. * SPDX-License-Identifier: BSD-3-Clause * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * **************************************************************************************************/ /* \file \brief Execution environment */ #include <cstring> #include "cutlass/numeric_types.h" #include "cutlass/layout/matrix.h" #include "cutlass/layout/tensor.h" #include "cutlass/util/reference/device/tensor_compare.h" #include "cutlass/util/reference/device/tensor_fill.h" #include "cutlass/util/reference/host/tensor_fill.h" #include "cutlass/util/host_tensor.h" #include "cutlass/util/tensor_view_io.h" #include "cutlass/library/util.h" #include "cutlass/profiler/device_allocation.h" namespace cutlass { namespace profiler { ///////////////////////////////////////////////////////////////////////////////////////////////// size_t DeviceAllocation::bytes(library::NumericTypeID type, size_t capacity) { return size_t(cutlass::library::sizeof_bits(type)) * capacity / 8; } ///////////////////////////////////////////////////////////////////////////////////////////////// template <typename Layout> static std::vector<int64_t> get_packed_layout_stride(std::vector<int> const &extent) { typename Layout::TensorCoord extent_coord; typename Layout::Stride stride_coord; if (extent.size() != size_t(Layout::kRank)) { throw std::runtime_error("Layout does not have same rank as extent vector."); } for (int i = 0; i < Layout::kRank; ++i) { extent_coord[i] = extent.at(i); } std::vector<int64_t> stride; stride.resize(Layout::kStrideRank, 0); Layout layout = Layout::packed(extent_coord); stride_coord = layout.stride(); for (int i = 0; i < Layout::kStrideRank; ++i) { stride.at(i) = (int64_t)stride_coord[i]; } return stride; } /// Returns the stride of a packed layout std::vector<int64_t> DeviceAllocation::get_packed_layout( library::LayoutTypeID layout_id, std::vector<int> const &extent) { std::vector<int64_t> stride; switch (layout_id) { case library::LayoutTypeID::kColumnMajor: stride = get_packed_layout_stride<cutlass::layout::ColumnMajor>(extent); break; case library::LayoutTypeID::kRowMajor: stride = get_packed_layout_stride<cutlass::layout::RowMajor>(extent); break; case library::LayoutTypeID::kColumnMajorInterleavedK2: stride = get_packed_layout_stride<cutlass::layout::ColumnMajorInterleaved<2>>(extent); break; case library::LayoutTypeID::kRowMajorInterleavedK2: stride = get_packed_layout_stride<cutlass::layout::RowMajorInterleaved<2>>(extent); break; case library::LayoutTypeID::kColumnMajorInterleavedK4: stride = get_packed_layout_stride<cutlass::layout::ColumnMajorInterleaved<4>>(extent); break; case library::LayoutTypeID::kRowMajorInterleavedK4: stride = get_packed_layout_stride<cutlass::layout::RowMajorInterleaved<4>>(extent); break; case library::LayoutTypeID::kColumnMajorInterleavedK16: stride = get_packed_layout_stride<cutlass::layout::ColumnMajorInterleaved<16>>(extent); break; case library::LayoutTypeID::kRowMajorInterleavedK16: stride = get_packed_layout_stride<cutlass::layout::RowMajorInterleaved<16>>(extent); break; case library::LayoutTypeID::kColumnMajorInterleavedK32: stride = get_packed_layout_stride<cutlass::layout::ColumnMajorInterleaved<32>>(extent); break; case library::LayoutTypeID::kRowMajorInterleavedK32: stride = get_packed_layout_stride<cutlass::layout::RowMajorInterleaved<32>>(extent); break; case library::LayoutTypeID::kColumnMajorInterleavedK64: stride = get_packed_layout_stride<cutlass::layout::ColumnMajorInterleaved<64>>(extent); break; case library::LayoutTypeID::kRowMajorInterleavedK64: stride = get_packed_layout_stride<cutlass::layout::RowMajorInterleaved<64>>(extent); break; case library::LayoutTypeID::kTensorNCHW: stride = get_packed_layout_stride<cutlass::layout::TensorNCHW>(extent); break; case library::LayoutTypeID::kTensorNHWC: stride = get_packed_layout_stride<cutlass::layout::TensorNHWC>(extent); break; case library::LayoutTypeID::kTensorNDHWC: stride = get_packed_layout_stride<cutlass::layout::TensorNDHWC>(extent); break; case library::LayoutTypeID::kTensorNC32HW32: stride = get_packed_layout_stride<cutlass::layout::TensorNCxHWx<32>>(extent); break; case library::LayoutTypeID::kTensorNC64HW64: stride = get_packed_layout_stride<cutlass::layout::TensorNCxHWx<64>>(extent); break; case library::LayoutTypeID::kTensorC32RSK32: stride = get_packed_layout_stride<cutlass::layout::TensorCxRSKx<32>>(extent); break; case library::LayoutTypeID::kTensorC64RSK64: stride = get_packed_layout_stride<cutlass::layout::TensorCxRSKx<64>>(extent); break; default: break; } return stride; } ///////////////////////////////////////////////////////////////////////////////////////////////// /// Template to use CUTLASS Layout functions to template <typename Layout> static size_t construct_layout_( void *bytes, library::LayoutTypeID layout_id, std::vector<int> const &extent, std::vector<int64_t> &stride) { if (extent.size() != Layout::kRank) { throw std::runtime_error( "Layout must have same rank as extent vector."); } if (Layout::kStrideRank && stride.empty()) { stride = get_packed_layout_stride<Layout>(extent); return construct_layout_<Layout>( bytes, layout_id, extent, stride); } else if (Layout::kStrideRank && stride.size() != Layout::kStrideRank) { throw std::runtime_error( "Layout requires either empty stride or stride vector matching Layout::kStrideRank"); } typename Layout::Stride stride_coord; for (int i = 0; i < Layout::kStrideRank; ++i) { stride_coord[i] = (int)stride.at(i); } typename Layout::TensorCoord extent_coord; for (int i = 0; i < Layout::kRank; ++i) { extent_coord[i] = extent.at(i); } // Construct the CUTLASS layout object from the stride object Layout layout(stride_coord); // Pack it into bytes if (bytes) { *reinterpret_cast<Layout *>(bytes) = layout; } // Return capacity size_t capacity_ = layout.capacity(extent_coord); return capacity_; } /// returns the capacity needed size_t DeviceAllocation::construct_layout( void *bytes, library::LayoutTypeID layout_id, std::vector<int> const &extent, std::vector<int64_t> &stride) { switch (layout_id) { case library::LayoutTypeID::kColumnMajor: return construct_layout_<cutlass::layout::ColumnMajor>(bytes, layout_id, extent, stride); case library::LayoutTypeID::kRowMajor: return construct_layout_<cutlass::layout::RowMajor>(bytes, layout_id, extent, stride); case library::LayoutTypeID::kColumnMajorInterleavedK2: return construct_layout_<cutlass::layout::ColumnMajorInterleaved<2>>(bytes, layout_id, extent, stride); case library::LayoutTypeID::kRowMajorInterleavedK2: return construct_layout_<cutlass::layout::RowMajorInterleaved<2>>(bytes, layout_id, extent, stride); case library::LayoutTypeID::kColumnMajorInterleavedK4: return construct_layout_<cutlass::layout::ColumnMajorInterleaved<4>>(bytes, layout_id, extent, stride); case library::LayoutTypeID::kRowMajorInterleavedK4: return construct_layout_<cutlass::layout::RowMajorInterleaved<4>>(bytes, layout_id, extent, stride); case library::LayoutTypeID::kColumnMajorInterleavedK16: return construct_layout_<cutlass::layout::ColumnMajorInterleaved<16>>(bytes, layout_id, extent, stride); case library::LayoutTypeID::kRowMajorInterleavedK16: return construct_layout_<cutlass::layout::RowMajorInterleaved<16>>(bytes, layout_id, extent, stride); case library::LayoutTypeID::kColumnMajorInterleavedK32: return construct_layout_<cutlass::layout::ColumnMajorInterleaved<32>>(bytes, layout_id, extent, stride); case library::LayoutTypeID::kRowMajorInterleavedK32: return construct_layout_<cutlass::layout::RowMajorInterleaved<32>>(bytes, layout_id, extent, stride); case library::LayoutTypeID::kColumnMajorInterleavedK64: return construct_layout_<cutlass::layout::ColumnMajorInterleaved<64>>(bytes, layout_id, extent, stride); case library::LayoutTypeID::kRowMajorInterleavedK64: return construct_layout_<cutlass::layout::RowMajorInterleaved<64>>(bytes, layout_id, extent, stride); case library::LayoutTypeID::kTensorNCHW: return construct_layout_<cutlass::layout::TensorNHWC>(bytes, layout_id, extent, stride); case library::LayoutTypeID::kTensorNHWC: return construct_layout_<cutlass::layout::TensorNHWC>(bytes, layout_id, extent, stride); case library::LayoutTypeID::kTensorNDHWC: return construct_layout_<cutlass::layout::TensorNDHWC>(bytes, layout_id, extent, stride); case library::LayoutTypeID::kTensorNC32HW32: return construct_layout_<cutlass::layout::TensorNCxHWx<32>>(bytes, layout_id, extent, stride); case library::LayoutTypeID::kTensorNC64HW64: return construct_layout_<cutlass::layout::TensorNCxHWx<64>>(bytes, layout_id, extent, stride); case library::LayoutTypeID::kTensorC32RSK32: return construct_layout_<cutlass::layout::TensorCxRSKx<32>>(bytes, layout_id, extent, stride); case library::LayoutTypeID::kTensorC64RSK64: return construct_layout_<cutlass::layout::TensorCxRSKx<64>>(bytes, layout_id, extent, stride); default: break; } return 0; } ///////////////////////////////////////////////////////////////////////////////////////////////// DeviceAllocation::DeviceAllocation(): type_(library::NumericTypeID::kInvalid), batch_stride_(0), capacity_(0), pointer_(nullptr), layout_(library::LayoutTypeID::kUnknown), batch_count_(1) { } DeviceAllocation::DeviceAllocation( library::NumericTypeID type, size_t capacity ): type_(type), batch_stride_(capacity), capacity_(capacity), pointer_(nullptr), layout_(library::LayoutTypeID::kUnknown), batch_count_(1) { cudaError_t result = cudaMalloc((void **)&pointer_, bytes(type, capacity)); if (result != cudaSuccess) { type_ = library::NumericTypeID::kInvalid; capacity_ = 0; pointer_ = nullptr; throw std::bad_alloc(); } } DeviceAllocation::DeviceAllocation( library::NumericTypeID type, library::LayoutTypeID layout_id, std::vector<int> const &extent, std::vector<int64_t> const &stride, int batch_count ): type_(type), batch_stride_(size_t(0)), capacity_(size_t(0)), pointer_(nullptr), batch_count_(1) { reset(type, layout_id, extent, stride, batch_count); } DeviceAllocation::~DeviceAllocation() { if (pointer_) { cudaFree(pointer_); } } DeviceAllocation &DeviceAllocation::reset() { if (pointer_) { cudaFree(pointer_); } type_ = library::NumericTypeID::kInvalid; batch_stride_ = 0; capacity_ = 0; pointer_ = nullptr; layout_ = library::LayoutTypeID::kUnknown; stride_.clear(); extent_.clear(); tensor_ref_buffer_.clear(); batch_count_ = 1; return *this; } DeviceAllocation &DeviceAllocation::reset(library::NumericTypeID type, size_t capacity) { reset(); type_ = type; batch_stride_ = capacity; capacity_ = capacity; cudaError_t result = cudaMalloc((void **)&pointer_, bytes(type_, capacity_)); if (result != cudaSuccess) { throw std::bad_alloc(); } layout_ = library::LayoutTypeID::kUnknown; stride_.clear(); extent_.clear(); batch_count_ = 1; tensor_ref_buffer_.resize(sizeof(pointer_), 0); std::memcpy(tensor_ref_buffer_.data(), &pointer_, sizeof(pointer_)); return *this; } /// Allocates memory for a given layout and tensor DeviceAllocation &DeviceAllocation::reset( library::NumericTypeID type, library::LayoutTypeID layout_id, std::vector<int> const &extent, std::vector<int64_t> const &stride, int batch_count) { reset(); tensor_ref_buffer_.resize(sizeof(pointer_) + (sizeof(int64_t) * library::get_layout_stride_rank(layout_id)), 0); type_ = type; layout_ = layout_id; stride_ = stride; extent_ = extent; batch_count_ = batch_count; batch_stride_ = construct_layout( tensor_ref_buffer_.data() + sizeof(pointer_), layout_id, extent, stride_); capacity_ = batch_stride_ * batch_count_; cudaError_t result = cudaMalloc((void **)&pointer_, bytes(type, capacity_)); if (result != cudaSuccess) { throw std::bad_alloc(); } std::memcpy(tensor_ref_buffer_.data(), &pointer_, sizeof(pointer_)); return *this; } bool DeviceAllocation::good() const { return (capacity_ && pointer_); } library::NumericTypeID DeviceAllocation::type() const { return type_; } void *DeviceAllocation::data() const { return pointer_; } void *DeviceAllocation::batch_data(int batch_idx) const { return static_cast<char *>(data()) + batch_stride_bytes() * batch_idx; } library::LayoutTypeID DeviceAllocation::layout() const { return layout_; } std::vector<int64_t> const & DeviceAllocation::stride() const { return stride_; } /// Gets the extent vector std::vector<int> const & DeviceAllocation::extent() const { return extent_; } /// Gets the number of adjacent tensors in memory int DeviceAllocation::batch_count() const { return batch_count_; } /// Gets the stride (in units of elements) between items int64_t DeviceAllocation::batch_stride() const { return batch_stride_; } /// Gets the stride (in units of bytes) between items int64_t DeviceAllocation::batch_stride_bytes() const { return bytes(type_, batch_stride_); } size_t DeviceAllocation::capacity() const { return capacity_; } size_t DeviceAllocation::bytes() const { return bytes(type_, capacity_); } /// Copies from an equivalent-sized tensor in device memory void DeviceAllocation::copy_from_device(void const *ptr) { if (!bytes()) { #ifndef NDEBUG std::cout << "Skipping copy of size 0 allocation\n"; #endif return; } cudaError_t result = cudaMemcpy(data(), ptr, bytes(), cudaMemcpyDeviceToDevice); if (result != cudaSuccess) { throw std::runtime_error("Failed device-to-device copy"); } } /// Copies from an equivalent-sized tensor in device memory void DeviceAllocation::copy_from_host(void const *ptr) { if (!bytes()) { #ifndef NDEBUG std::cout << "Skipping copy of size 0 allocation\n"; #endif return; } cudaError_t result = cudaMemcpy(data(), ptr, bytes(), cudaMemcpyHostToDevice); if (result != cudaSuccess) { throw std::runtime_error("Failed host-to-device copy"); } } /// Copies from an equivalent-sized tensor in device memory void DeviceAllocation::copy_to_host(void *ptr) { if (!bytes()) { #ifndef NDEBUG std::cout << "Skipping copy of size 0 allocation\n"; #endif return; } cudaError_t result = cudaMemcpy(ptr, data(), bytes(), cudaMemcpyDeviceToHost); if (result != cudaSuccess) { throw std::runtime_error("Failed device-to-host copy"); } } void DeviceAllocation::initialize_random_device(int seed, Distribution dist) { if (!bytes()) { #ifndef NDEBUG std::cout << "Skipping initialization of size 0 allocation\n"; #endif return; } if (!data()) { throw std::runtime_error("Attempting to initialize invalid allocation."); } // Instantiate calls to CURAND here. This file takes a long time to compile for // this reason. switch (type_) { case library::NumericTypeID::kF16: cutlass::reference::device::BlockFillRandom<cutlass::half_t>( reinterpret_cast<cutlass::half_t *>(pointer_), capacity_, seed, dist ); break; case library::NumericTypeID::kBF16: cutlass::reference::device::BlockFillRandom<cutlass::bfloat16_t>( reinterpret_cast<cutlass::bfloat16_t *>(pointer_), capacity_, seed, dist ); break; case library::NumericTypeID::kTF32: cutlass::reference::device::BlockFillRandom<cutlass::tfloat32_t>( reinterpret_cast<cutlass::tfloat32_t *>(pointer_), capacity_, seed, dist ); break; case library::NumericTypeID::kF32: cutlass::reference::device::BlockFillRandom<float>( reinterpret_cast<float *>(pointer_), capacity_, seed, dist ); break; case library::NumericTypeID::kCBF16: cutlass::reference::device::BlockFillRandom<complex<bfloat16_t>>( reinterpret_cast<complex<bfloat16_t> *>(pointer_), capacity_, seed, dist ); break; case library::NumericTypeID::kCTF32: cutlass::reference::device::BlockFillRandom<cutlass::complex<cutlass::tfloat32_t>>( reinterpret_cast<cutlass::complex<cutlass::tfloat32_t> *>(pointer_), capacity_, seed, dist ); break; case library::NumericTypeID::kCF32: cutlass::reference::device::BlockFillRandom<cutlass::complex<float>>( reinterpret_cast<cutlass::complex<float> *>(pointer_), capacity_, seed, dist ); break; case library::NumericTypeID::kFE4M3: cutlass::reference::device::BlockFillRandom<cutlass::float_e4m3_t>( reinterpret_cast<cutlass::float_e4m3_t *>(pointer_), capacity_, seed, dist ); break; case library::NumericTypeID::kFE5M2: cutlass::reference::device::BlockFillRandom<cutlass::float_e5m2_t>( reinterpret_cast<cutlass::float_e5m2_t *>(pointer_), capacity_, seed, dist ); break; case library::NumericTypeID::kF64: cutlass::reference::device::BlockFillRandom<double>( reinterpret_cast<double *>(pointer_), capacity_, seed, dist ); break; case library::NumericTypeID::kCF64: cutlass::reference::device::BlockFillRandom<complex<double>>( reinterpret_cast<complex<double> *>(pointer_), capacity_, seed, dist ); break; case library::NumericTypeID::kS2: cutlass::reference::device::BlockFillRandom<int2b_t>( reinterpret_cast<int2b_t *>(pointer_), capacity_, seed, dist ); break; case library::NumericTypeID::kS4: cutlass::reference::device::BlockFillRandom<int4b_t>( reinterpret_cast<int4b_t *>(pointer_), capacity_, seed, dist ); break; case library::NumericTypeID::kS8: cutlass::reference::device::BlockFillRandom<int8_t>( reinterpret_cast<int8_t *>(pointer_), capacity_, seed, dist ); break; case library::NumericTypeID::kS16: cutlass::reference::device::BlockFillRandom<int16_t>( reinterpret_cast<int16_t *>(pointer_), capacity_, seed, dist ); break; case library::NumericTypeID::kS32: cutlass::reference::device::BlockFillRandom<int32_t>( reinterpret_cast<int32_t *>(pointer_), capacity_, seed, dist ); break; case library::NumericTypeID::kS64: cutlass::reference::device::BlockFillRandom<int64_t>( reinterpret_cast<int64_t *>(pointer_), capacity_, seed, dist ); break; case library::NumericTypeID::kB1: cutlass::reference::device::BlockFillRandom<uint1b_t>( reinterpret_cast<uint1b_t *>(pointer_), capacity_, seed, dist ); break; case library::NumericTypeID::kU2: cutlass::reference::device::BlockFillRandom<uint2b_t>( reinterpret_cast<uint2b_t *>(pointer_), capacity_, seed, dist ); break; case library::NumericTypeID::kU4: cutlass::reference::device::BlockFillRandom<uint4b_t>( reinterpret_cast<uint4b_t *>(pointer_), capacity_, seed, dist ); break; case library::NumericTypeID::kU8: cutlass::reference::device::BlockFillRandom<uint8_t>( reinterpret_cast<uint8_t *>(pointer_), capacity_, seed, dist ); break; case library::NumericTypeID::kU16: cutlass::reference::device::BlockFillRandom<uint16_t>( reinterpret_cast<uint16_t *>(pointer_), capacity_, seed, dist ); break; case library::NumericTypeID::kU32: cutlass::reference::device::BlockFillRandom<uint32_t>( reinterpret_cast<uint32_t *>(pointer_), capacity_, seed, dist ); break; case library::NumericTypeID::kU64: cutlass::reference::device::BlockFillRandom<uint64_t>( reinterpret_cast<uint64_t *>(pointer_), capacity_, seed, dist ); break; default: break; } } void DeviceAllocation::initialize_random_host(int seed, Distribution dist) { if (!bytes()) { #ifndef NDEBUG std::cout << "Skipping initialization of size 0 allocation\n"; #endif return; } if (!data()) { throw std::runtime_error("Attempting to initialize invalid allocation."); } std::vector<uint8_t> host_data(bytes()); switch (type_) { case library::NumericTypeID::kFE4M3: cutlass::reference::host::BlockFillRandom<cutlass::float_e4m3_t>( reinterpret_cast<cutlass::float_e4m3_t *>(host_data.data()), capacity_, seed, dist ); break; case library::NumericTypeID::kFE5M2: cutlass::reference::host::BlockFillRandom<cutlass::float_e5m2_t>( reinterpret_cast<cutlass::float_e5m2_t *>(host_data.data()), capacity_, seed, dist ); break; case library::NumericTypeID::kF16: cutlass::reference::host::BlockFillRandom<cutlass::half_t>( reinterpret_cast<cutlass::half_t *>(host_data.data()), capacity_, seed, dist ); break; case library::NumericTypeID::kBF16: cutlass::reference::host::BlockFillRandom<cutlass::bfloat16_t>( reinterpret_cast<cutlass::bfloat16_t *>(host_data.data()), capacity_, seed, dist ); break; case library::NumericTypeID::kTF32: cutlass::reference::host::BlockFillRandom<cutlass::tfloat32_t>( reinterpret_cast<cutlass::tfloat32_t *>(host_data.data()), capacity_, seed, dist ); break; case library::NumericTypeID::kF32: cutlass::reference::host::BlockFillRandom<float>( reinterpret_cast<float *>(host_data.data()), capacity_, seed, dist ); break; case library::NumericTypeID::kCF16: cutlass::reference::host::BlockFillRandom<cutlass::complex<cutlass::half_t>>( reinterpret_cast<cutlass::complex<cutlass::half_t> *>(host_data.data()), capacity_, seed, dist ); break; case library::NumericTypeID::kCBF16: cutlass::reference::host::BlockFillRandom<cutlass::complex<cutlass::bfloat16_t>>( reinterpret_cast<cutlass::complex<cutlass::bfloat16_t> *>(host_data.data()), capacity_, seed, dist ); break; case library::NumericTypeID::kCTF32: cutlass::reference::host::BlockFillRandom<cutlass::complex<cutlass::tfloat32_t>>( reinterpret_cast<cutlass::complex<cutlass::tfloat32_t> *>(host_data.data()), capacity_, seed, dist ); break; case library::NumericTypeID::kCF32: cutlass::reference::host::BlockFillRandom<cutlass::complex<float>>( reinterpret_cast<cutlass::complex<float> *>(host_data.data()), capacity_, seed, dist ); break; case library::NumericTypeID::kF64: cutlass::reference::host::BlockFillRandom<double>( reinterpret_cast<double *>(host_data.data()), capacity_, seed, dist ); break; case library::NumericTypeID::kCF64: cutlass::reference::host::BlockFillRandom<cutlass::complex<double>>( reinterpret_cast<cutlass::complex<double> *>(host_data.data()), capacity_, seed, dist ); break; case library::NumericTypeID::kS2: cutlass::reference::host::BlockFillRandom<int2b_t>( reinterpret_cast<int2b_t *>(host_data.data()), capacity_, seed, dist ); break; case library::NumericTypeID::kS4: cutlass::reference::host::BlockFillRandom<int4b_t>( reinterpret_cast<int4b_t *>(host_data.data()), capacity_, seed, dist ); break; case library::NumericTypeID::kS8: cutlass::reference::host::BlockFillRandom<int8_t>( reinterpret_cast<int8_t *>(host_data.data()), capacity_, seed, dist ); break; case library::NumericTypeID::kS16: cutlass::reference::host::BlockFillRandom<int16_t>( reinterpret_cast<int16_t *>(host_data.data()), capacity_, seed, dist ); break; case library::NumericTypeID::kS32: cutlass::reference::host::BlockFillRandom<int32_t>( reinterpret_cast<int32_t *>(host_data.data()), capacity_, seed, dist ); break; case library::NumericTypeID::kS64: cutlass::reference::host::BlockFillRandom<int64_t>( reinterpret_cast<int64_t *>(host_data.data()), capacity_, seed, dist ); break; case library::NumericTypeID::kB1: cutlass::reference::host::BlockFillRandom<uint1b_t>( reinterpret_cast<uint1b_t *>(host_data.data()), capacity_, seed, dist ); break; case library::NumericTypeID::kU2: cutlass::reference::host::BlockFillRandom<uint2b_t>( reinterpret_cast<uint2b_t *>(host_data.data()), capacity_, seed, dist ); break; case library::NumericTypeID::kU4: cutlass::reference::host::BlockFillRandom<uint4b_t>( reinterpret_cast<uint4b_t *>(host_data.data()), capacity_, seed, dist ); break; case library::NumericTypeID::kU8: cutlass::reference::host::BlockFillRandom<uint8_t>( reinterpret_cast<uint8_t *>(host_data.data()), capacity_, seed, dist ); break; case library::NumericTypeID::kU16: cutlass::reference::host::BlockFillRandom<uint16_t>( reinterpret_cast<uint16_t *>(host_data.data()), capacity_, seed, dist ); break; case library::NumericTypeID::kU32: cutlass::reference::host::BlockFillRandom<uint32_t>( reinterpret_cast<uint32_t *>(host_data.data()), capacity_, seed, dist ); break; case library::NumericTypeID::kU64: cutlass::reference::host::BlockFillRandom<uint64_t>( reinterpret_cast<uint64_t *>(host_data.data()), capacity_, seed, dist ); break; default: break; } copy_from_host(host_data.data()); } void DeviceAllocation::initialize_sequential_device(Distribution dist) { if (!bytes()) { #ifndef NDEBUG std::cout << "Skipping initialization of size 0 allocation\n"; #endif return; } if (!data()) { throw std::runtime_error("Attempting to initialize invalid allocation."); } switch (type_) { case library::NumericTypeID::kFE4M3: cutlass::reference::device::BlockFillSequential<cutlass::float_e4m3_t>( reinterpret_cast<cutlass::float_e4m3_t *>(pointer_), capacity_, static_cast<cutlass::float_e4m3_t>(dist.sequential.delta), static_cast<cutlass::float_e4m3_t>(dist.sequential.start) ); break; case library::NumericTypeID::kFE5M2: cutlass::reference::device::BlockFillSequential<cutlass::float_e5m2_t>( reinterpret_cast<cutlass::float_e5m2_t *>(pointer_), capacity_, static_cast<cutlass::float_e5m2_t>(dist.sequential.delta), static_cast<cutlass::float_e5m2_t>(dist.sequential.start) ); break; case library::NumericTypeID::kF16: cutlass::reference::device::BlockFillSequential<cutlass::half_t>( reinterpret_cast<cutlass::half_t *>(pointer_), capacity_, static_cast<cutlass::half_t>(dist.sequential.delta), static_cast<cutlass::half_t>(dist.sequential.start) ); break; case library::NumericTypeID::kBF16: cutlass::reference::device::BlockFillSequential<cutlass::bfloat16_t>( reinterpret_cast<cutlass::bfloat16_t *>(pointer_), capacity_, static_cast<cutlass::bfloat16_t>(dist.sequential.delta), static_cast<cutlass::bfloat16_t>(dist.sequential.start) ); break; case library::NumericTypeID::kTF32: cutlass::reference::device::BlockFillSequential<cutlass::tfloat32_t>( reinterpret_cast<cutlass::tfloat32_t *>(pointer_), capacity_, static_cast<cutlass::tfloat32_t>(dist.sequential.delta), static_cast<cutlass::tfloat32_t>(dist.sequential.start) ); break; case library::NumericTypeID::kF32: cutlass::reference::device::BlockFillSequential<float>( reinterpret_cast<float *>(pointer_), capacity_, static_cast<float>(dist.sequential.delta), static_cast<float>(dist.sequential.start) ); break; case library::NumericTypeID::kCF16: cutlass::reference::device::BlockFillSequential<cutlass::complex<cutlass::half_t>>( reinterpret_cast<cutlass::complex<cutlass::half_t> *>(pointer_), capacity_, cutlass::complex<cutlass::half_t>( static_cast<cutlass::half_t>(dist.sequential.delta)), cutlass::complex<cutlass::half_t>( static_cast<cutlass::half_t>(dist.sequential.start)) ); break; case library::NumericTypeID::kCBF16: cutlass::reference::device::BlockFillSequential<cutlass::complex<cutlass::bfloat16_t>>( reinterpret_cast<cutlass::complex<cutlass::bfloat16_t> *>(pointer_), capacity_, cutlass::complex<cutlass::bfloat16_t>( static_cast<cutlass::bfloat16_t>(dist.sequential.delta)), cutlass::complex<cutlass::bfloat16_t>( static_cast<cutlass::bfloat16_t>(dist.sequential.start)) ); break; case library::NumericTypeID::kCTF32: cutlass::reference::device::BlockFillSequential<cutlass::complex<cutlass::tfloat32_t>>( reinterpret_cast<cutlass::complex<cutlass::tfloat32_t> *>(pointer_), capacity_, cutlass::complex<cutlass::tfloat32_t>( static_cast<cutlass::tfloat32_t>(dist.sequential.delta)), cutlass::complex<cutlass::tfloat32_t>( static_cast<cutlass::tfloat32_t>(dist.sequential.start)) ); break; case library::NumericTypeID::kCF32: cutlass::reference::device::BlockFillSequential<cutlass::complex<float>>( reinterpret_cast<cutlass::complex<float> *>(pointer_), capacity_, cutlass::complex<float>( static_cast<float>(dist.sequential.delta)), cutlass::complex<float>( static_cast<float>(dist.sequential.start)) ); break; case library::NumericTypeID::kF64: cutlass::reference::device::BlockFillSequential<double>( reinterpret_cast<double *>(pointer_), capacity_, static_cast<double>(dist.sequential.delta), static_cast<double>(dist.sequential.start) ); break; case library::NumericTypeID::kCF64: cutlass::reference::device::BlockFillSequential<cutlass::complex<double>>( reinterpret_cast<cutlass::complex<double> *>(pointer_), capacity_, cutlass::complex<double>( static_cast<double>(dist.sequential.delta)), cutlass::complex<double>( static_cast<double>(dist.sequential.start)) ); break; case library::NumericTypeID::kS2: cutlass::reference::device::BlockFillSequential<int2b_t>( reinterpret_cast<int2b_t *>(pointer_), capacity_, static_cast<int2b_t>(dist.sequential.delta), static_cast<int2b_t>(dist.sequential.start) ); break; case library::NumericTypeID::kS4: cutlass::reference::device::BlockFillSequential<int4b_t>( reinterpret_cast<int4b_t *>(pointer_), capacity_, static_cast<int4b_t>(dist.sequential.delta), static_cast<int4b_t>(dist.sequential.start) ); break; case library::NumericTypeID::kS8: cutlass::reference::device::BlockFillSequential<int8_t>( reinterpret_cast<int8_t *>(pointer_), capacity_, static_cast<int8_t>(dist.sequential.delta), static_cast<int8_t>(dist.sequential.start) ); break; case library::NumericTypeID::kS16: cutlass::reference::device::BlockFillSequential<int16_t>( reinterpret_cast<int16_t *>(pointer_), capacity_, static_cast<int16_t>(dist.sequential.delta), static_cast<int16_t>(dist.sequential.start) ); break; case library::NumericTypeID::kS32: cutlass::reference::device::BlockFillSequential<int32_t>( reinterpret_cast<int32_t *>(pointer_), capacity_, static_cast<int32_t>(dist.sequential.delta), static_cast<int32_t>(dist.sequential.start) ); break; case library::NumericTypeID::kS64: cutlass::reference::device::BlockFillSequential<int64_t>( reinterpret_cast<int64_t *>(pointer_), capacity_, static_cast<int64_t>(dist.sequential.delta), static_cast<int64_t>(dist.sequential.start) ); break; case library::NumericTypeID::kB1: cutlass::reference::device::BlockFillSequential<uint1b_t>( reinterpret_cast<uint1b_t *>(pointer_), capacity_, static_cast<uint1b_t>(dist.sequential.delta), static_cast<uint1b_t>(dist.sequential.start) ); break; case library::NumericTypeID::kU2: cutlass::reference::device::BlockFillSequential<uint2b_t>( reinterpret_cast<uint2b_t *>(pointer_), capacity_, static_cast<uint2b_t>(dist.sequential.delta), static_cast<uint2b_t>(dist.sequential.start) ); break; case library::NumericTypeID::kU4: cutlass::reference::device::BlockFillSequential<uint4b_t>( reinterpret_cast<uint4b_t *>(pointer_), capacity_, static_cast<uint4b_t>(dist.sequential.delta), static_cast<uint4b_t>(dist.sequential.start) ); break; case library::NumericTypeID::kU8: cutlass::reference::device::BlockFillSequential<uint8_t>( reinterpret_cast<uint8_t *>(pointer_), capacity_, static_cast<uint8_t>(dist.sequential.delta), static_cast<uint8_t>(dist.sequential.start) ); break; case library::NumericTypeID::kU16: cutlass::reference::device::BlockFillSequential<uint16_t>( reinterpret_cast<uint16_t *>(pointer_), capacity_, static_cast<uint16_t>(dist.sequential.delta), static_cast<uint16_t>(dist.sequential.start) ); break; case library::NumericTypeID::kU32: cutlass::reference::device::BlockFillSequential<uint32_t>( reinterpret_cast<uint32_t *>(pointer_), capacity_, static_cast<uint32_t>(dist.sequential.delta), static_cast<uint32_t>(dist.sequential.start) ); break; case library::NumericTypeID::kU64: cutlass::reference::device::BlockFillSequential<uint64_t>( reinterpret_cast<uint64_t *>(pointer_), capacity_, static_cast<uint64_t>(dist.sequential.delta), static_cast<uint64_t>(dist.sequential.start) ); break; default: break; } } void DeviceAllocation::initialize_sequential_host(Distribution dist) { if (!bytes()) { #ifndef NDEBUG std::cout << "Skipping initialization of size 0 allocation\n"; #endif return; } if (!data()) { throw std::runtime_error("Attempting to initialize invalid allocation."); } std::vector<uint8_t> host_data(bytes()); switch (type_) { case library::NumericTypeID::kFE4M3: cutlass::reference::host::BlockFillSequential<cutlass::float_e4m3_t>( reinterpret_cast<cutlass::float_e4m3_t *>(host_data.data()), capacity_, static_cast<cutlass::float_e4m3_t>(dist.sequential.delta), static_cast<cutlass::float_e4m3_t>(dist.sequential.start) ); break; case library::NumericTypeID::kFE5M2: cutlass::reference::host::BlockFillSequential<cutlass::float_e5m2_t>( reinterpret_cast<cutlass::float_e5m2_t *>(host_data.data()), capacity_, static_cast<cutlass::float_e5m2_t>(dist.sequential.delta), static_cast<cutlass::float_e5m2_t>(dist.sequential.start) ); break; case library::NumericTypeID::kF16: cutlass::reference::host::BlockFillSequential<cutlass::half_t>( reinterpret_cast<cutlass::half_t *>(host_data.data()), capacity_, static_cast<cutlass::half_t>(dist.sequential.delta), static_cast<cutlass::half_t>(dist.sequential.start) ); break; case library::NumericTypeID::kBF16: cutlass::reference::host::BlockFillSequential<cutlass::bfloat16_t>( reinterpret_cast<cutlass::bfloat16_t *>(host_data.data()), capacity_, static_cast<cutlass::bfloat16_t>(dist.sequential.delta), static_cast<cutlass::bfloat16_t>(dist.sequential.start) ); break; case library::NumericTypeID::kTF32: cutlass::reference::host::BlockFillSequential<cutlass::tfloat32_t>( reinterpret_cast<cutlass::tfloat32_t *>(host_data.data()), capacity_, static_cast<cutlass::tfloat32_t>(dist.sequential.delta), static_cast<cutlass::tfloat32_t>(dist.sequential.start) ); break; case library::NumericTypeID::kF32: cutlass::reference::host::BlockFillSequential<float>( reinterpret_cast<float *>(host_data.data()), capacity_, static_cast<float>(dist.sequential.delta), static_cast<float>(dist.sequential.start) ); break; case library::NumericTypeID::kCF16: cutlass::reference::host::BlockFillSequential<cutlass::complex<cutlass::half_t>>( reinterpret_cast<cutlass::complex<cutlass::half_t> *>(host_data.data()), capacity_, cutlass::complex<cutlass::half_t>( static_cast<cutlass::half_t>(dist.sequential.delta)), cutlass::complex<cutlass::half_t>( static_cast<cutlass::half_t>(dist.sequential.start)) ); break; case library::NumericTypeID::kCBF16: cutlass::reference::host::BlockFillSequential<cutlass::complex<cutlass::bfloat16_t>>( reinterpret_cast<cutlass::complex<cutlass::bfloat16_t> *>(host_data.data()), capacity_, cutlass::complex<cutlass::bfloat16_t>( static_cast<cutlass::bfloat16_t>(dist.sequential.delta)), cutlass::complex<cutlass::bfloat16_t>( static_cast<cutlass::bfloat16_t>(dist.sequential.start)) ); break; case library::NumericTypeID::kCTF32: cutlass::reference::host::BlockFillSequential<cutlass::complex<cutlass::tfloat32_t>>( reinterpret_cast<cutlass::complex<cutlass::tfloat32_t> *>(host_data.data()), capacity_, cutlass::complex<cutlass::tfloat32_t>( static_cast<cutlass::tfloat32_t>(dist.sequential.delta)), cutlass::complex<cutlass::tfloat32_t>( static_cast<cutlass::tfloat32_t>(dist.sequential.start)) ); break; case library::NumericTypeID::kCF32: cutlass::reference::host::BlockFillSequential<cutlass::complex<float>>( reinterpret_cast<cutlass::complex<float> *>(host_data.data()), capacity_, cutlass::complex<float>( static_cast<float>(dist.sequential.delta)), cutlass::complex<float>( static_cast<float>(dist.sequential.start)) ); break; case library::NumericTypeID::kF64: cutlass::reference::host::BlockFillSequential<double>( reinterpret_cast<double *>(host_data.data()), capacity_, static_cast<double>(dist.sequential.delta), static_cast<double>(dist.sequential.start) ); break; case library::NumericTypeID::kCF64: cutlass::reference::host::BlockFillSequential<cutlass::complex<double>>( reinterpret_cast<cutlass::complex<double> *>(host_data.data()), capacity_, cutlass::complex<double>( static_cast<double>(dist.sequential.delta)), cutlass::complex<double>( static_cast<double>(dist.sequential.start)) ); break; case library::NumericTypeID::kS2: cutlass::reference::host::BlockFillSequential<int2b_t>( reinterpret_cast<int2b_t *>(host_data.data()), capacity_, static_cast<int2b_t>(dist.sequential.delta), static_cast<int2b_t>(dist.sequential.start) ); break; case library::NumericTypeID::kS4: cutlass::reference::host::BlockFillSequential<int4b_t>( reinterpret_cast<int4b_t *>(host_data.data()), capacity_, static_cast<int4b_t>(dist.sequential.delta), static_cast<int4b_t>(dist.sequential.start) ); break; case library::NumericTypeID::kS8: cutlass::reference::host::BlockFillSequential<int8_t>( reinterpret_cast<int8_t *>(host_data.data()), capacity_, static_cast<int8_t>(dist.sequential.delta), static_cast<int8_t>(dist.sequential.start) ); break; case library::NumericTypeID::kS16: cutlass::reference::host::BlockFillSequential<int16_t>( reinterpret_cast<int16_t *>(host_data.data()), capacity_, static_cast<int16_t>(dist.sequential.delta), static_cast<int16_t>(dist.sequential.start) ); break; case library::NumericTypeID::kS32: cutlass::reference::host::BlockFillSequential<int32_t>( reinterpret_cast<int32_t *>(host_data.data()), capacity_, static_cast<int32_t>(dist.sequential.delta), static_cast<int32_t>(dist.sequential.start) ); break; case library::NumericTypeID::kS64: cutlass::reference::host::BlockFillSequential<int64_t>( reinterpret_cast<int64_t *>(host_data.data()), capacity_, static_cast<int64_t>(dist.sequential.delta), static_cast<int64_t>(dist.sequential.start) ); break; case library::NumericTypeID::kB1: cutlass::reference::host::BlockFillSequential<uint1b_t>( reinterpret_cast<uint1b_t *>(host_data.data()), capacity_, static_cast<uint1b_t>(dist.sequential.delta), static_cast<uint1b_t>(dist.sequential.start) ); break; case library::NumericTypeID::kU2: cutlass::reference::host::BlockFillSequential<uint2b_t>( reinterpret_cast<uint2b_t *>(host_data.data()), capacity_, static_cast<uint2b_t>(dist.sequential.delta), static_cast<uint2b_t>(dist.sequential.start) ); break; case library::NumericTypeID::kU4: cutlass::reference::host::BlockFillSequential<uint4b_t>( reinterpret_cast<uint4b_t *>(host_data.data()), capacity_, static_cast<uint4b_t>(dist.sequential.delta), static_cast<uint4b_t>(dist.sequential.start) ); break; case library::NumericTypeID::kU8: cutlass::reference::host::BlockFillSequential<uint8_t>( reinterpret_cast<uint8_t *>(host_data.data()), capacity_, static_cast<uint8_t>(dist.sequential.delta), static_cast<uint8_t>(dist.sequential.start) ); break; case library::NumericTypeID::kU16: cutlass::reference::host::BlockFillSequential<uint16_t>( reinterpret_cast<uint16_t *>(host_data.data()), capacity_, static_cast<uint16_t>(dist.sequential.delta), static_cast<uint16_t>(dist.sequential.start) ); break; case library::NumericTypeID::kU32: cutlass::reference::host::BlockFillSequential<uint32_t>( reinterpret_cast<uint32_t *>(host_data.data()), capacity_, static_cast<uint32_t>(dist.sequential.delta), static_cast<uint32_t>(dist.sequential.start) ); break; case library::NumericTypeID::kU64: cutlass::reference::host::BlockFillSequential<uint64_t>( reinterpret_cast<uint64_t *>(host_data.data()), capacity_, static_cast<uint64_t>(dist.sequential.delta), static_cast<uint64_t>(dist.sequential.start) ); break; default: break; } copy_from_host(host_data.data()); } void DeviceAllocation::initialize_random_sparsemeta_device(int seed, int MetaSizeInBits) { if (!bytes()) { #ifndef NDEBUG std::cout << "Skipping initialization of size 0 allocation\n"; #endif return; } if (!data()) { throw std::runtime_error("Attempting to initialize invalid allocation."); } // Instantiate calls to CURAND here. This file takes a long time to compile for // this reason. switch (type_) { case library::NumericTypeID::kU16: cutlass::reference::device::BlockFillRandomSparseMeta<uint16_t>( reinterpret_cast<uint16_t *>(pointer_), capacity_, seed, MetaSizeInBits ); break; case library::NumericTypeID::kU32: cutlass::reference::device::BlockFillRandomSparseMeta<uint32_t>( reinterpret_cast<uint32_t *>(pointer_), capacity_, seed, MetaSizeInBits ); break; default: break; } } void DeviceAllocation::initialize_random_sparsemeta_host(int seed, int MetaSizeInBits) { if (!bytes()) { #ifndef NDEBUG std::cout << "Skipping initialization of size 0 allocation\n"; #endif return; } if (!data()) { throw std::runtime_error("Attempting to initialize invalid allocation."); } std::vector<uint8_t> host_data(bytes()); switch (type_) { case library::NumericTypeID::kS16: cutlass::reference::host::BlockFillRandomSparseMeta<uint16_t>( reinterpret_cast<uint16_t *>(host_data.data()), capacity_, seed, MetaSizeInBits ); break; case library::NumericTypeID::kS32: cutlass::reference::host::BlockFillRandomSparseMeta<uint32_t>( reinterpret_cast<uint32_t *>(host_data.data()), capacity_, seed, MetaSizeInBits ); break; default: break; } copy_from_host(host_data.data()); } ///////////////////////////////////////////////////////////////////////////////////////////////// /// Returns true if two blocks have exactly the same value bool DeviceAllocation::block_compare_equal( library::NumericTypeID numeric_type, void const *ptr_A, void const *ptr_B, size_t capacity) { switch (numeric_type) { case library::NumericTypeID::kFE4M3: return reference::device::BlockCompareEqual<float_e4m3_t>( reinterpret_cast<float_e4m3_t const *>(ptr_A), reinterpret_cast<float_e4m3_t const *>(ptr_B), capacity); case library::NumericTypeID::kFE5M2: return reference::device::BlockCompareEqual<float_e5m2_t>( reinterpret_cast<float_e5m2_t const *>(ptr_A), reinterpret_cast<float_e5m2_t const *>(ptr_B), capacity); case library::NumericTypeID::kF16: return reference::device::BlockCompareEqual<half_t>( reinterpret_cast<half_t const *>(ptr_A), reinterpret_cast<half_t const *>(ptr_B), capacity); case library::NumericTypeID::kBF16: return reference::device::BlockCompareEqual<bfloat16_t>( reinterpret_cast<bfloat16_t const *>(ptr_A), reinterpret_cast<bfloat16_t const *>(ptr_B), capacity); case library::NumericTypeID::kTF32: return reference::device::BlockCompareEqual<tfloat32_t>( reinterpret_cast<tfloat32_t const *>(ptr_A), reinterpret_cast<tfloat32_t const *>(ptr_B), capacity); case library::NumericTypeID::kF32: return reference::device::BlockCompareEqual<float>( reinterpret_cast<float const *>(ptr_A), reinterpret_cast<float const *>(ptr_B), capacity); case library::NumericTypeID::kCF32: return reference::device::BlockCompareEqual<cutlass::complex<float> >( reinterpret_cast<complex<float> const *>(ptr_A), reinterpret_cast<complex<float> const *>(ptr_B), capacity); case library::NumericTypeID::kCF16: return reference::device::BlockCompareEqual<complex<half_t>>( reinterpret_cast<complex<half_t> const *>(ptr_A), reinterpret_cast<complex<half_t> const *>(ptr_B), capacity); case library::NumericTypeID::kCBF16: return reference::device::BlockCompareEqual<complex<bfloat16_t>>( reinterpret_cast<complex<bfloat16_t> const *>(ptr_A), reinterpret_cast<complex<bfloat16_t> const *>(ptr_B), capacity); case library::NumericTypeID::kCTF32: return reference::device::BlockCompareEqual<complex<tfloat32_t>>( reinterpret_cast<complex<tfloat32_t> const *>(ptr_A), reinterpret_cast<complex<tfloat32_t> const *>(ptr_B), capacity); case library::NumericTypeID::kF64: return reference::device::BlockCompareEqual<double>( reinterpret_cast<double const *>(ptr_A), reinterpret_cast<double const *>(ptr_B), capacity); case library::NumericTypeID::kCF64: return reference::device::BlockCompareEqual<complex<double>>( reinterpret_cast<complex<double> const *>(ptr_A), reinterpret_cast<complex<double> const *>(ptr_B), capacity); case library::NumericTypeID::kS2: return reference::device::BlockCompareEqual<int2b_t>( reinterpret_cast<int2b_t const *>(ptr_A), reinterpret_cast<int2b_t const *>(ptr_B), capacity); case library::NumericTypeID::kS4: return reference::device::BlockCompareEqual<int4b_t>( reinterpret_cast<int4b_t const *>(ptr_A), reinterpret_cast<int4b_t const *>(ptr_B), capacity); case library::NumericTypeID::kS8: return reference::device::BlockCompareEqual<int8_t>( reinterpret_cast<int8_t const *>(ptr_A), reinterpret_cast<int8_t const *>(ptr_B), capacity); case library::NumericTypeID::kS16: return reference::device::BlockCompareEqual<int16_t>( reinterpret_cast<int16_t const *>(ptr_A), reinterpret_cast<int16_t const *>(ptr_B), capacity); case library::NumericTypeID::kS32: return reference::device::BlockCompareEqual<int32_t>( reinterpret_cast<int32_t const *>(ptr_A), reinterpret_cast<int32_t const *>(ptr_B), capacity); case library::NumericTypeID::kS64: return reference::device::BlockCompareEqual<int64_t>( reinterpret_cast<int64_t const *>(ptr_A), reinterpret_cast<int64_t const *>(ptr_B), capacity); case library::NumericTypeID::kB1: return reference::device::BlockCompareEqual<uint1b_t>( reinterpret_cast<uint1b_t const *>(ptr_A), reinterpret_cast<uint1b_t const *>(ptr_B), capacity); case library::NumericTypeID::kU2: return reference::device::BlockCompareEqual<uint2b_t>( reinterpret_cast<uint2b_t const *>(ptr_A), reinterpret_cast<uint2b_t const *>(ptr_B), capacity); case library::NumericTypeID::kU4: return reference::device::BlockCompareEqual<uint4b_t>( reinterpret_cast<uint4b_t const *>(ptr_A), reinterpret_cast<uint4b_t const *>(ptr_B), capacity); case library::NumericTypeID::kU8: return reference::device::BlockCompareEqual<uint8_t>( reinterpret_cast<uint8_t const *>(ptr_A), reinterpret_cast<uint8_t const *>(ptr_B), capacity); case library::NumericTypeID::kU16: return reference::device::BlockCompareEqual<uint16_t>( reinterpret_cast<uint16_t const *>(ptr_A), reinterpret_cast<uint16_t const *>(ptr_B), capacity); case library::NumericTypeID::kU32: return reference::device::BlockCompareEqual<uint32_t>( reinterpret_cast<uint32_t const *>(ptr_A), reinterpret_cast<uint32_t const *>(ptr_B), capacity); case library::NumericTypeID::kU64: return reference::device::BlockCompareEqual<uint64_t>( reinterpret_cast<uint64_t const *>(ptr_A), reinterpret_cast<uint64_t const *>(ptr_B), capacity); default: throw std::runtime_error(std::string("Unsupported numeric type: ") + to_string(numeric_type)); } } /// Returns true if two blocks have approximately the same value bool DeviceAllocation::block_compare_relatively_equal( library::NumericTypeID numeric_type, void const *ptr_A, void const *ptr_B, size_t capacity, double epsilon, double nonzero_floor) { switch (numeric_type) { case library::NumericTypeID::kFE4M3: return reference::device::BlockCompareRelativelyEqual<float_e4m3_t>( reinterpret_cast<float_e4m3_t const *>(ptr_A), reinterpret_cast<float_e4m3_t const *>(ptr_B), capacity, static_cast<float_e4m3_t>(epsilon), static_cast<float_e4m3_t>(nonzero_floor)); case library::NumericTypeID::kFE5M2: return reference::device::BlockCompareRelativelyEqual<float_e5m2_t>( reinterpret_cast<float_e5m2_t const *>(ptr_A), reinterpret_cast<float_e5m2_t const *>(ptr_B), capacity, static_cast<float_e5m2_t>(epsilon), static_cast<float_e5m2_t>(nonzero_floor)); case library::NumericTypeID::kF16: return reference::device::BlockCompareRelativelyEqual<half_t>( reinterpret_cast<half_t const *>(ptr_A), reinterpret_cast<half_t const *>(ptr_B), capacity, static_cast<half_t>(epsilon), static_cast<half_t>(nonzero_floor)); case library::NumericTypeID::kBF16: return reference::device::BlockCompareRelativelyEqual<bfloat16_t>( reinterpret_cast<bfloat16_t const *>(ptr_A), reinterpret_cast<bfloat16_t const *>(ptr_B), capacity, static_cast<bfloat16_t>(epsilon), static_cast<bfloat16_t>(nonzero_floor)); case library::NumericTypeID::kTF32: return reference::device::BlockCompareRelativelyEqual<tfloat32_t>( reinterpret_cast<tfloat32_t const *>(ptr_A), reinterpret_cast<tfloat32_t const *>(ptr_B), capacity, static_cast<tfloat32_t>(epsilon), static_cast<tfloat32_t>(nonzero_floor)); case library::NumericTypeID::kF32: return reference::device::BlockCompareRelativelyEqual<float>( reinterpret_cast<float const *>(ptr_A), reinterpret_cast<float const *>(ptr_B), capacity, static_cast<float>(epsilon), static_cast<float>(nonzero_floor)); case library::NumericTypeID::kF64: return reference::device::BlockCompareRelativelyEqual<double>( reinterpret_cast<double const *>(ptr_A), reinterpret_cast<double const *>(ptr_B), capacity, static_cast<double>(epsilon), static_cast<double>(nonzero_floor)); case library::NumericTypeID::kS2: return reference::device::BlockCompareRelativelyEqual<int2b_t>( reinterpret_cast<int2b_t const *>(ptr_A), reinterpret_cast<int2b_t const *>(ptr_B), capacity, static_cast<int2b_t>(epsilon), static_cast<int2b_t>(nonzero_floor)); case library::NumericTypeID::kS4: return reference::device::BlockCompareRelativelyEqual<int4b_t>( reinterpret_cast<int4b_t const *>(ptr_A), reinterpret_cast<int4b_t const *>(ptr_B), capacity, static_cast<int4b_t>(epsilon), static_cast<int4b_t>(nonzero_floor)); case library::NumericTypeID::kS8: return reference::device::BlockCompareRelativelyEqual<int8_t>( reinterpret_cast<int8_t const *>(ptr_A), reinterpret_cast<int8_t const *>(ptr_B), capacity, static_cast<int8_t>(epsilon), static_cast<int8_t>(nonzero_floor)); case library::NumericTypeID::kS16: return reference::device::BlockCompareRelativelyEqual<int16_t>( reinterpret_cast<int16_t const *>(ptr_A), reinterpret_cast<int16_t const *>(ptr_B), capacity, static_cast<int16_t>(epsilon), static_cast<int16_t>(nonzero_floor)); case library::NumericTypeID::kS32: return reference::device::BlockCompareRelativelyEqual<int32_t>( reinterpret_cast<int32_t const *>(ptr_A), reinterpret_cast<int32_t const *>(ptr_B), capacity, static_cast<int32_t>(epsilon), static_cast<int32_t>(nonzero_floor)); case library::NumericTypeID::kS64: return reference::device::BlockCompareRelativelyEqual<int64_t>( reinterpret_cast<int64_t const *>(ptr_A), reinterpret_cast<int64_t const *>(ptr_B), capacity, static_cast<int64_t>(epsilon), static_cast<int64_t>(nonzero_floor)); case library::NumericTypeID::kB1: return reference::device::BlockCompareRelativelyEqual<uint1b_t>( reinterpret_cast<uint1b_t const *>(ptr_A), reinterpret_cast<uint1b_t const *>(ptr_B), capacity, static_cast<uint1b_t>(epsilon), static_cast<uint1b_t>(nonzero_floor)); case library::NumericTypeID::kU2: return reference::device::BlockCompareRelativelyEqual<uint2b_t>( reinterpret_cast<uint2b_t const *>(ptr_A), reinterpret_cast<uint2b_t const *>(ptr_B), capacity, static_cast<uint2b_t>(epsilon), static_cast<uint2b_t>(nonzero_floor)); case library::NumericTypeID::kU4: return reference::device::BlockCompareRelativelyEqual<uint4b_t>( reinterpret_cast<uint4b_t const *>(ptr_A), reinterpret_cast<uint4b_t const *>(ptr_B), capacity, static_cast<uint4b_t>(epsilon), static_cast<uint4b_t>(nonzero_floor)); case library::NumericTypeID::kU8: return reference::device::BlockCompareRelativelyEqual<uint8_t>( reinterpret_cast<uint8_t const *>(ptr_A), reinterpret_cast<uint8_t const *>(ptr_B), capacity, static_cast<uint8_t>(epsilon), static_cast<uint8_t>(nonzero_floor)); case library::NumericTypeID::kU16: return reference::device::BlockCompareRelativelyEqual<uint16_t>( reinterpret_cast<uint16_t const *>(ptr_A), reinterpret_cast<uint16_t const *>(ptr_B), capacity, static_cast<uint16_t>(epsilon), static_cast<uint16_t>(nonzero_floor)); case library::NumericTypeID::kU32: return reference::device::BlockCompareRelativelyEqual<uint32_t>( reinterpret_cast<uint32_t const *>(ptr_A), reinterpret_cast<uint32_t const *>(ptr_B), capacity, static_cast<uint32_t>(epsilon), static_cast<uint32_t>(nonzero_floor)); case library::NumericTypeID::kU64: return reference::device::BlockCompareRelativelyEqual<uint64_t>( reinterpret_cast<uint64_t const *>(ptr_A), reinterpret_cast<uint64_t const *>(ptr_B), capacity, static_cast<uint64_t>(epsilon), static_cast<uint64_t>(nonzero_floor)); // No relatively equal comparison for complex numbers. // // As a simplification, we can require bitwise equality. This avoids false positives. // (i.e. "pass" really means passing. "Fail" may not actually mean failure given appropriate epsilon.) // case library::NumericTypeID::kCF16: return reference::device::BlockCompareEqual<cutlass::complex<half_t> >( reinterpret_cast<complex<half_t> const *>(ptr_A), reinterpret_cast<complex<half_t> const *>(ptr_B), capacity); case library::NumericTypeID::kCF32: return reference::device::BlockCompareEqual<cutlass::complex<float> >( reinterpret_cast<complex<float> const *>(ptr_A), reinterpret_cast<complex<float> const *>(ptr_B), capacity); case library::NumericTypeID::kCF64: return reference::device::BlockCompareEqual<cutlass::complex<double> >( reinterpret_cast<complex<double> const *>(ptr_A), reinterpret_cast<complex<double> const *>(ptr_B), capacity); default: { throw std::runtime_error(std::string("Unsupported numeric type: ") + to_string(numeric_type)); } } } ///////////////////////////////////////////////////////////////////////////////////////////////// /// Permits copying dynamic vectors into static-length vectors template <typename TensorCoord, int Rank> struct vector_to_coord { vector_to_coord(TensorCoord &coord, std::vector<int> const &vec) { coord[Rank - 1] = vec.at(Rank - 1); if (Rank > 1) { vector_to_coord<TensorCoord, Rank - 1>(coord, vec); } } vector_to_coord(TensorCoord &coord, std::vector<int64_t> const &vec) { coord[Rank - 1] = (int)vec.at(Rank - 1); if (Rank > 1) { vector_to_coord<TensorCoord, Rank - 1>(coord, vec); } } }; /// Permits copying dynamic vectors into static-length vectors template <typename TensorCoord> struct vector_to_coord<TensorCoord, 1> { vector_to_coord(TensorCoord &coord, std::vector<int> const &vec) { coord[0] = vec.at(0); } vector_to_coord(TensorCoord &coord, std::vector<int64_t> const &vec) { coord[0] = (int)vec.at(0); } }; /// Permits copying dynamic vectors into static-length vectors template <typename TensorCoord> struct vector_to_coord<TensorCoord, 0> { vector_to_coord(TensorCoord &coord, std::vector<int> const &vec) { } }; ///////////////////////////////////////////////////////////////////////////////////////////////// template <typename Element, typename Layout> static void write_tensor_csv_static_tensor_view( std::ostream &out, DeviceAllocation &allocation) { Coord<Layout::kRank> extent; Coord<Layout::kStrideRank, typename Layout::Stride::Index> stride; if (allocation.extent().size() != Layout::kRank) { throw std::runtime_error("Allocation extent has invalid rank"); } if (allocation.stride().size() != Layout::kStrideRank) { throw std::runtime_error("Allocation stride has invalid rank"); } vector_to_coord<Coord<Layout::kRank>, Layout::kRank>(extent, allocation.extent()); vector_to_coord<Coord<Layout::kStrideRank, typename Layout::Stride::Index>, Layout::kStrideRank>(stride, allocation.stride()); Layout layout(stride); HostTensor<Element, Layout> host_tensor(extent, layout, false); if (host_tensor.capacity() != allocation.batch_stride()) { throw std::runtime_error("Unexpected capacity to equal."); } host_tensor.copy_in_device_to_host( static_cast<Element const *>(allocation.data()), allocation.batch_stride()); TensorViewWrite(out, host_tensor.host_view()); out << "\n\n"; } ///////////////////////////////////////////////////////////////////////////////////////////////// template <typename T> static void write_tensor_csv_static_type( std::ostream &out, DeviceAllocation &allocation) { switch (allocation.layout()) { case library::LayoutTypeID::kRowMajor: write_tensor_csv_static_tensor_view<T, layout::RowMajor>(out, allocation); break; case library::LayoutTypeID::kColumnMajor: write_tensor_csv_static_tensor_view<T, layout::ColumnMajor>(out, allocation); break; case library::LayoutTypeID::kRowMajorInterleavedK2: write_tensor_csv_static_tensor_view<T, layout::RowMajorInterleaved<2>>(out, allocation); break; case library::LayoutTypeID::kColumnMajorInterleavedK2: write_tensor_csv_static_tensor_view<T, layout::ColumnMajorInterleaved<2>>(out, allocation); break; case library::LayoutTypeID::kRowMajorInterleavedK4: write_tensor_csv_static_tensor_view<T, layout::RowMajorInterleaved<4>>(out, allocation); break; case library::LayoutTypeID::kColumnMajorInterleavedK4: write_tensor_csv_static_tensor_view<T, layout::ColumnMajorInterleaved<4>>(out, allocation); break; case library::LayoutTypeID::kRowMajorInterleavedK16: write_tensor_csv_static_tensor_view<T, layout::RowMajorInterleaved<16>>(out, allocation); break; case library::LayoutTypeID::kColumnMajorInterleavedK16: write_tensor_csv_static_tensor_view<T, layout::ColumnMajorInterleaved<16>>(out, allocation); break; case library::LayoutTypeID::kRowMajorInterleavedK32: write_tensor_csv_static_tensor_view<T, layout::RowMajorInterleaved<32>>(out, allocation); break; case library::LayoutTypeID::kColumnMajorInterleavedK32: write_tensor_csv_static_tensor_view<T, layout::ColumnMajorInterleaved<32>>(out, allocation); break; case library::LayoutTypeID::kRowMajorInterleavedK64: write_tensor_csv_static_tensor_view<T, layout::RowMajorInterleaved<64>>(out, allocation); break; case library::LayoutTypeID::kColumnMajorInterleavedK64: write_tensor_csv_static_tensor_view<T, layout::ColumnMajorInterleaved<64>>(out, allocation); break; case library::LayoutTypeID::kTensorNHWC: write_tensor_csv_static_tensor_view<T, layout::TensorNHWC>(out, allocation); break; case library::LayoutTypeID::kTensorNDHWC: write_tensor_csv_static_tensor_view<T, layout::TensorNDHWC>(out, allocation); break; case library::LayoutTypeID::kTensorNC32HW32: write_tensor_csv_static_tensor_view<T, layout::TensorNCxHWx<32>>(out, allocation); break; case library::LayoutTypeID::kTensorNC64HW64: write_tensor_csv_static_tensor_view<T, layout::TensorNCxHWx<64>>(out, allocation); break; case library::LayoutTypeID::kTensorC32RSK32: write_tensor_csv_static_tensor_view<T, layout::TensorCxRSKx<32>>(out, allocation); break; case library::LayoutTypeID::kTensorC64RSK64: write_tensor_csv_static_tensor_view<T, layout::TensorCxRSKx<64>>(out, allocation); break; default: throw std::runtime_error("Unhandled layout"); } } ///////////////////////////////////////////////////////////////////////////////////////////////// /// Writes a tensor to csv void DeviceAllocation::write_tensor_csv( std::ostream &out) { switch (this->type()) { case library::NumericTypeID::kFE4M3: write_tensor_csv_static_type<float_e4m3_t>(out, *this); break; case library::NumericTypeID::kFE5M2: write_tensor_csv_static_type<float_e5m2_t>(out, *this); break; case library::NumericTypeID::kF16: write_tensor_csv_static_type<half_t>(out, *this); break; case library::NumericTypeID::kBF16: write_tensor_csv_static_type<bfloat16_t>(out, *this); break; case library::NumericTypeID::kTF32: write_tensor_csv_static_type<tfloat32_t>(out, *this); break; case library::NumericTypeID::kF32: write_tensor_csv_static_type<float>(out, *this); break; case library::NumericTypeID::kF64: write_tensor_csv_static_type<double>(out, *this); break; case library::NumericTypeID::kS2: write_tensor_csv_static_type<int2b_t>(out, *this); break; case library::NumericTypeID::kS4: write_tensor_csv_static_type<int4b_t>(out, *this); break; case library::NumericTypeID::kS8: write_tensor_csv_static_type<int8_t>(out, *this); break; case library::NumericTypeID::kS16: write_tensor_csv_static_type<int16_t>(out, *this); break; case library::NumericTypeID::kS32: write_tensor_csv_static_type<int32_t>(out, *this); break; case library::NumericTypeID::kS64: write_tensor_csv_static_type<int64_t>(out, *this); break; case library::NumericTypeID::kB1: write_tensor_csv_static_type<uint1b_t>(out, *this); break; case library::NumericTypeID::kU2: write_tensor_csv_static_type<uint2b_t>(out, *this); break; case library::NumericTypeID::kU4: write_tensor_csv_static_type<uint4b_t>(out, *this); break; case library::NumericTypeID::kU8: write_tensor_csv_static_type<uint8_t>(out, *this); break; case library::NumericTypeID::kU16: write_tensor_csv_static_type<uint16_t>(out, *this); break; case library::NumericTypeID::kU32: write_tensor_csv_static_type<uint32_t>(out, *this); break; case library::NumericTypeID::kU64: write_tensor_csv_static_type<uint64_t>(out, *this); break; case library::NumericTypeID::kCF16: write_tensor_csv_static_type<cutlass::complex<half_t> >(out, *this); break; case library::NumericTypeID::kCF32: write_tensor_csv_static_type<cutlass::complex<float> >(out, *this); break; case library::NumericTypeID::kCF64: write_tensor_csv_static_type<cutlass::complex<double> >(out, *this); break; case library::NumericTypeID::kVoid: // Not dump anything as it is a empty tensor. break; default: throw std::runtime_error(std::string("Unsupported numeric type: ") + to_string(this->type()) ) ; } } template <typename Element, typename Layout> static void tensor_fill_tensor_view(DeviceAllocation &allocation, Element val = Element()) { Coord<Layout::kRank> extent; Coord<Layout::kStrideRank, typename Layout::LongIndex> stride; if (allocation.extent().size() != Layout::kRank) { throw std::runtime_error("Allocation extent has invalid rank"); } if (allocation.stride().size() != Layout::kStrideRank) { throw std::runtime_error("Allocation stride has invalid rank"); } vector_to_coord<Coord<Layout::kRank>, Layout::kRank>(extent, allocation.extent()); vector_to_coord<Coord<Layout::kStrideRank, typename Layout::LongIndex>, Layout::kStrideRank>(stride, allocation.stride()); TensorView<Element, Layout> view( static_cast<Element *>(allocation.data()), Layout(stride), extent ); cutlass::reference::device::TensorFill<Element, Layout>( view, val ); } template <typename Element> static void tensor_fill(DeviceAllocation &allocation, Element val = Element()) { switch (allocation.layout()) { case library::LayoutTypeID::kRowMajor: tensor_fill_tensor_view<Element, layout::RowMajor>(allocation, val); break; case library::LayoutTypeID::kColumnMajor: tensor_fill_tensor_view<Element, layout::ColumnMajor>(allocation, val); break; case library::LayoutTypeID::kTensorNHWC: tensor_fill_tensor_view<Element, layout::TensorNHWC>(allocation, val); break; case library::LayoutTypeID::kTensorNDHWC: tensor_fill_tensor_view<Element, layout::TensorNDHWC>(allocation, val); break; case library::LayoutTypeID::kTensorNC32HW32: tensor_fill_tensor_view<Element, layout::TensorNCxHWx<32>>(allocation, val); break; case library::LayoutTypeID::kTensorNC64HW64: tensor_fill_tensor_view<Element, layout::TensorNCxHWx<64>>(allocation, val); break; case library::LayoutTypeID::kTensorC32RSK32: tensor_fill_tensor_view<Element, layout::TensorCxRSKx<32>>(allocation, val); break; case library::LayoutTypeID::kTensorC64RSK64: tensor_fill_tensor_view<Element, layout::TensorCxRSKx<64>>(allocation, val); break; default: throw std::runtime_error("Unsupported layout"); break; } } /// Fills a tensor uniformly with a value (most frequently used to clear the tensor) void DeviceAllocation::fill_device(double val = 0.0) { switch (this->type()) { case library::NumericTypeID::kFE4M3: tensor_fill<float_e4m3_t>(*this, static_cast<float_e4m3_t>(val)); break; case library::NumericTypeID::kFE5M2: tensor_fill<float_e5m2_t>(*this, static_cast<float_e5m2_t>(val)); break; case library::NumericTypeID::kF16: tensor_fill<half_t>(*this, static_cast<half_t>(val)); break; case library::NumericTypeID::kBF16: tensor_fill<bfloat16_t>(*this, static_cast<bfloat16_t>(val)); break; case library::NumericTypeID::kTF32: tensor_fill<tfloat32_t>(*this, static_cast<tfloat32_t>(val)); break; case library::NumericTypeID::kF32: tensor_fill<float>(*this, static_cast<float>(val)); break; case library::NumericTypeID::kF64: tensor_fill<double>(*this, static_cast<double>(val)); break; case library::NumericTypeID::kS2: tensor_fill<int2b_t>(*this, static_cast<int2b_t>(val)); break; case library::NumericTypeID::kS4: tensor_fill<int4b_t>(*this, static_cast<int4b_t>(val)); break; case library::NumericTypeID::kS8: tensor_fill<int8_t>(*this, static_cast<int8_t>(val)); break; case library::NumericTypeID::kS16: tensor_fill<int16_t>(*this, static_cast<int16_t>(val)); break; case library::NumericTypeID::kS32: tensor_fill<int32_t>(*this, static_cast<int32_t>(val)); break; case library::NumericTypeID::kS64: tensor_fill<int64_t>(*this, static_cast<int64_t>(val)); break; case library::NumericTypeID::kB1: tensor_fill<uint1b_t>(*this, static_cast<uint1b_t>(val)); break; case library::NumericTypeID::kU2: tensor_fill<uint2b_t>(*this, static_cast<uint2b_t>(val)); break; case library::NumericTypeID::kU4: tensor_fill<uint4b_t>(*this, static_cast<uint4b_t>(val)); break; case library::NumericTypeID::kU8: tensor_fill<uint8_t>(*this, static_cast<uint8_t>(val)); break; case library::NumericTypeID::kU16: tensor_fill<uint16_t>(*this, static_cast<uint16_t>(val)); break; case library::NumericTypeID::kU32: tensor_fill<uint32_t>(*this, static_cast<uint32_t>(val)); break; case library::NumericTypeID::kU64: tensor_fill<uint64_t>(*this, static_cast<uint64_t>(val)); break; case library::NumericTypeID::kCF16: tensor_fill<cutlass::complex<half_t> >(*this, from_real<half_t>(val)); break; case library::NumericTypeID::kCF32: tensor_fill<cutlass::complex<float> >(*this, from_real<float>(val)); break; case library::NumericTypeID::kCF64: tensor_fill<cutlass::complex<double> >(*this, from_real<double>(val)); break; default: throw std::runtime_error(std::string("Unsupported numeric type: ") + to_string(this->type())); } } /// Fills a tensor uniformly with a value (most frequently used to clear the tensor) void DeviceAllocation::fill_host(double val = 0.0) { std::vector<uint8_t> host_data(bytes()); switch (this->type()) { case library::NumericTypeID::kFE4M3: cutlass::reference::host::BlockFill<float_e4m3_t>( reinterpret_cast<float_e4m3_t *>(host_data.data()), capacity_, static_cast<float_e4m3_t>(val) ); break; case library::NumericTypeID::kFE5M2: cutlass::reference::host::BlockFill<float_e5m2_t>( reinterpret_cast<float_e5m2_t *>(host_data.data()), capacity_, static_cast<float_e5m2_t>(val) ); break; case library::NumericTypeID::kF16: cutlass::reference::host::BlockFill<half_t>( reinterpret_cast<half_t *>(host_data.data()), capacity_, static_cast<half_t>(val) ); break; case library::NumericTypeID::kBF16: cutlass::reference::host::BlockFill<bfloat16_t>( reinterpret_cast<bfloat16_t *>(host_data.data()), capacity_, static_cast<bfloat16_t>(val) ); break; case library::NumericTypeID::kTF32: cutlass::reference::host::BlockFill<tfloat32_t>( reinterpret_cast<tfloat32_t *>(host_data.data()), capacity_, static_cast<tfloat32_t>(val) ); break; case library::NumericTypeID::kF32: cutlass::reference::host::BlockFill<float>( reinterpret_cast<float *>(host_data.data()), capacity_, static_cast<float>(val) ); break; case library::NumericTypeID::kF64: cutlass::reference::host::BlockFill<double>( reinterpret_cast<double *>(host_data.data()), capacity_, static_cast<double>(val) ); break; case library::NumericTypeID::kS2: cutlass::reference::host::BlockFill<int2b_t>( reinterpret_cast<int2b_t *>(host_data.data()), capacity_, static_cast<int2b_t>(val) ); break; case library::NumericTypeID::kS4: cutlass::reference::host::BlockFill<int4b_t>( reinterpret_cast<int4b_t *>(host_data.data()), capacity_, static_cast<int4b_t>(val) ); break; case library::NumericTypeID::kS8: cutlass::reference::host::BlockFill<int8_t>( reinterpret_cast<int8_t *>(host_data.data()), capacity_, static_cast<int8_t>(val) ); break; case library::NumericTypeID::kS16: cutlass::reference::host::BlockFill<int16_t>( reinterpret_cast<int16_t *>(host_data.data()), capacity_, static_cast<int16_t>(val) ); break; case library::NumericTypeID::kS32: cutlass::reference::host::BlockFill<int32_t>( reinterpret_cast<int32_t *>(host_data.data()), capacity_, static_cast<int32_t>(val) ); break; case library::NumericTypeID::kS64: cutlass::reference::host::BlockFill<int64_t>( reinterpret_cast<int64_t *>(host_data.data()), capacity_, static_cast<int64_t>(val) ); break; case library::NumericTypeID::kB1: cutlass::reference::host::BlockFill<uint1b_t>( reinterpret_cast<uint1b_t *>(host_data.data()), capacity_, static_cast<uint1b_t>(val) ); break; case library::NumericTypeID::kU2: cutlass::reference::host::BlockFill<uint2b_t>( reinterpret_cast<uint2b_t *>(host_data.data()), capacity_, static_cast<uint2b_t>(val) ); break; case library::NumericTypeID::kU4: cutlass::reference::host::BlockFill<uint4b_t>( reinterpret_cast<uint4b_t *>(host_data.data()), capacity_, static_cast<uint4b_t>(val) ); break; case library::NumericTypeID::kU8: cutlass::reference::host::BlockFill<uint8_t>( reinterpret_cast<uint8_t *>(host_data.data()), capacity_, static_cast<uint8_t>(val) ); break; case library::NumericTypeID::kU16: cutlass::reference::host::BlockFill<uint16_t>( reinterpret_cast<uint16_t *>(host_data.data()), capacity_, static_cast<uint16_t>(val) ); break; case library::NumericTypeID::kU32: cutlass::reference::host::BlockFill<uint32_t>( reinterpret_cast<uint32_t *>(host_data.data()), capacity_, static_cast<uint32_t>(val) ); break; case library::NumericTypeID::kU64: cutlass::reference::host::BlockFill<uint64_t>( reinterpret_cast<uint64_t *>(host_data.data()), capacity_, static_cast<uint64_t>(val) ); break; default: throw std::runtime_error(std::string("Unsupported numeric type: ") + to_string(this->type())); } copy_from_host(host_data.data()); } ///////////////////////////////////////////////////////////////////////////////////////////////// } // namespace profiler } // namespace cutlass
tools/profiler/src/device_allocation.cu/0
{ "file_path": "tools/profiler/src/device_allocation.cu", "repo_id": "tools", "token_count": 31435 }
61
/*************************************************************************************************** * Copyright (c) 2023 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. * SPDX-License-Identifier: BSD-3-Clause * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * **************************************************************************************************/ /*! \file \brief GETT device reference code */ #pragma once #include <cute/tensor.hpp> namespace cutlass::reference::device { template < class ATensor, class BTensor, class CTensor, class DTensor, class ElementAccumulator, class ElementEpilogue> __global__ static void gett_kernel( DTensor D, ATensor const A, BTensor const B, CTensor const C, ElementEpilogue alpha, ElementEpilogue beta, ElementAccumulator acc_init) { using namespace cute; static_assert(DTensor::rank == 3, "(M,N,L)"); static_assert(ATensor::rank == 3, "(M,K,L)"); static_assert(BTensor::rank == 3, "(N,K,L)"); static_assert(CTensor::rank == 3, "(M,N,L)"); assert(size<0>(A) == size<0>(D)); // M assert(size<0>(C) == size<0>(D)); // M assert(size<0>(B) == size<1>(D)); // N assert(size<1>(C) == size<1>(D)); // N assert(size<1>(A) == size<1>(B)); // K assert(size<2>(A) == size<2>(D)); // L assert(size<2>(B) == size<2>(D)); // L assert(size<2>(C) == size<2>(D)); // L NumericConverter<ElementAccumulator, typename ATensor::value_type> a_converter; NumericConverter<ElementAccumulator, typename BTensor::value_type> b_converter; NumericConverter<ElementEpilogue, ElementAccumulator> acc_converter; NumericConverter<ElementEpilogue, typename CTensor::value_type> source_converter; NumericConverter<typename DTensor::value_type, ElementEpilogue> output_converter; // Thread id to each element of D for (int tid = threadIdx.x + blockDim.x * blockIdx.x; tid < size(D); tid += blockDim.x * gridDim.x) { // (m,n,l) coordinate auto mnl_coord = idx2crd(tid, product_each(shape(D))); auto m = get<0>(mnl_coord); auto n = get<1>(mnl_coord); auto l = get<2>(mnl_coord); auto A_ml = A(m,_,l); auto B_nl = B(n,_,l); ElementAccumulator accum = ElementAccumulator(0); for (int k = 0; k < size<1>(A); ++k) { ElementAccumulator a = a_converter(A_ml(k)); ElementAccumulator b = b_converter(B_nl(k)); accum += a * b; } ElementEpilogue scaled_output = (alpha * acc_converter(accum)) + (beta * source_converter(C(m,n,l))); D(m,n,l) = output_converter(scaled_output); } } // Most general version template < class ProblemShapeMNKL, class ElementA, class StrideA, class ElementB, class StrideB, class ElementAccumulator, class ElementC, class StrideC, class ElementD, class StrideD, class ElementEpilogue> void gett( ProblemShapeMNKL problem_shape_mnkl, ElementA const* ptr_A, StrideA stride_a_mkl, ElementB const* ptr_B, StrideB stride_b_nkl, ElementAccumulator _, ElementC const* ptr_C, StrideC stride_c_mnl, ElementD * ptr_D, StrideD stride_d_mnl, ElementEpilogue alpha, ElementEpilogue beta, cudaStream_t stream = 0) { using namespace cute; static_assert(cute::rank(ProblemShapeMNKL{}) == 4); auto M = get<0>(problem_shape_mnkl); auto N = get<1>(problem_shape_mnkl); auto K = get<2>(problem_shape_mnkl); auto L = get<3>(problem_shape_mnkl); // Represent the full tensors auto A = make_tensor(make_gmem_ptr(ptr_A), make_shape(M,K,L), stride_a_mkl); // (M,K,L) auto B = make_tensor(make_gmem_ptr(ptr_B), make_shape(N,K,L), stride_b_nkl); // (N,K,L) auto C = make_tensor(make_gmem_ptr(ptr_C), make_shape(M,N,L), stride_c_mnl); // (M,N,L) auto D = make_tensor(make_gmem_ptr(ptr_D), make_shape(M,N,L), stride_d_mnl); // (M,N,L) dim3 dimBlock(256); dim3 dimGrid(240); gett_kernel<<< dimGrid, dimBlock, 0, stream >>>(D, A, B, C, alpha, beta, ElementAccumulator(0)); } } // namespace cutlass::reference::device
tools/util/include/cutlass/util/reference/device/gett.hpp/0
{ "file_path": "tools/util/include/cutlass/util/reference/device/gett.hpp", "repo_id": "tools", "token_count": 1966 }
62