Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
parquet
Sub-tasks:
multi-class-classification
Languages:
English
Size:
100K - 1M
Tags:
emotion-classification
License:
Update data files
#4
by
albertvillanova
HF staff
- opened
- README.md +48 -47
- data/data.jsonl.gz +3 -0
- data/test.jsonl.gz +3 -0
- data/train.jsonl.gz +3 -0
- data/validation.jsonl.gz +3 -0
- emotion.py +40 -20
README.md
CHANGED
@@ -7,7 +7,7 @@ language_creators:
|
|
7 |
language:
|
8 |
- en
|
9 |
license:
|
10 |
-
-
|
11 |
multilinguality:
|
12 |
- monolingual
|
13 |
size_categories:
|
@@ -71,6 +71,7 @@ train-eval-index:
|
|
71 |
tags:
|
72 |
- emotion-classification
|
73 |
dataset_info:
|
|
|
74 |
features:
|
75 |
- name: text
|
76 |
dtype: string
|
@@ -78,24 +79,44 @@ dataset_info:
|
|
78 |
dtype:
|
79 |
class_label:
|
80 |
names:
|
81 |
-
0: sadness
|
82 |
-
1: joy
|
83 |
-
2: love
|
84 |
-
3: anger
|
85 |
-
4: fear
|
86 |
-
5: surprise
|
87 |
splits:
|
88 |
- name: train
|
89 |
-
num_bytes:
|
90 |
num_examples: 16000
|
91 |
- name: validation
|
92 |
-
num_bytes:
|
93 |
num_examples: 2000
|
94 |
- name: test
|
95 |
-
num_bytes:
|
96 |
num_examples: 2000
|
97 |
-
download_size:
|
98 |
-
dataset_size:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
---
|
100 |
|
101 |
# Dataset Card for "emotion"
|
@@ -150,49 +171,30 @@ Emotion is a dataset of English Twitter messages with six basic emotions: anger,
|
|
150 |
|
151 |
### Data Instances
|
152 |
|
153 |
-
|
154 |
-
|
155 |
-
- **Size of downloaded dataset files:** 1.97 MB
|
156 |
-
- **Size of the generated dataset:** 2.07 MB
|
157 |
-
- **Total amount of disk used:** 4.05 MB
|
158 |
-
|
159 |
-
An example of 'train' looks as follows.
|
160 |
```
|
161 |
{
|
162 |
-
|
163 |
-
|
164 |
}
|
165 |
```
|
166 |
|
167 |
-
#### emotion
|
168 |
-
|
169 |
-
- **Size of downloaded dataset files:** 1.97 MB
|
170 |
-
- **Size of the generated dataset:** 2.09 MB
|
171 |
-
- **Total amount of disk used:** 4.06 MB
|
172 |
-
|
173 |
-
An example of 'validation' looks as follows.
|
174 |
-
```
|
175 |
-
|
176 |
-
```
|
177 |
-
|
178 |
### Data Fields
|
179 |
|
180 |
-
The data fields are
|
181 |
-
|
182 |
-
#### default
|
183 |
- `text`: a `string` feature.
|
184 |
- `label`: a classification label, with possible values including `sadness` (0), `joy` (1), `love` (2), `anger` (3), `fear` (4), `surprise` (5).
|
185 |
|
186 |
-
#### emotion
|
187 |
-
- `text`: a `string` feature.
|
188 |
-
- `label`: a `string` feature.
|
189 |
-
|
190 |
### Data Splits
|
191 |
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
|
|
|
|
|
|
|
|
196 |
|
197 |
## Dataset Creation
|
198 |
|
@@ -246,10 +248,11 @@ The data fields are the same among all splits.
|
|
246 |
|
247 |
### Licensing Information
|
248 |
|
249 |
-
|
250 |
|
251 |
### Citation Information
|
252 |
|
|
|
253 |
```
|
254 |
@inproceedings{saravia-etal-2018-carer,
|
255 |
title = "{CARER}: Contextualized Affect Representations for Emotion Recognition",
|
@@ -268,10 +271,8 @@ The data fields are the same among all splits.
|
|
268 |
pages = "3687--3697",
|
269 |
abstract = "Emotions are expressed in nuanced ways, which varies by collective or individual experiences, knowledge, and beliefs. Therefore, to understand emotion, as conveyed through text, a robust mechanism capable of capturing and modeling different linguistic nuances and phenomena is needed. We propose a semi-supervised, graph-based algorithm to produce rich structural descriptors which serve as the building blocks for constructing contextualized affect representations from text. The pattern-based representations are further enriched with word embeddings and evaluated through several emotion recognition tasks. Our experimental results demonstrate that the proposed method outperforms state-of-the-art techniques on emotion recognition tasks.",
|
270 |
}
|
271 |
-
|
272 |
```
|
273 |
|
274 |
-
|
275 |
### Contributions
|
276 |
|
277 |
-
Thanks to [@lhoestq](https://github.com/lhoestq), [@thomwolf](https://github.com/thomwolf), [@lewtun](https://github.com/lewtun) for adding this dataset.
|
|
|
7 |
language:
|
8 |
- en
|
9 |
license:
|
10 |
+
- other
|
11 |
multilinguality:
|
12 |
- monolingual
|
13 |
size_categories:
|
|
|
71 |
tags:
|
72 |
- emotion-classification
|
73 |
dataset_info:
|
74 |
+
- config_name: split
|
75 |
features:
|
76 |
- name: text
|
77 |
dtype: string
|
|
|
79 |
dtype:
|
80 |
class_label:
|
81 |
names:
|
82 |
+
'0': sadness
|
83 |
+
'1': joy
|
84 |
+
'2': love
|
85 |
+
'3': anger
|
86 |
+
'4': fear
|
87 |
+
'5': surprise
|
88 |
splits:
|
89 |
- name: train
|
90 |
+
num_bytes: 1741597
|
91 |
num_examples: 16000
|
92 |
- name: validation
|
93 |
+
num_bytes: 214703
|
94 |
num_examples: 2000
|
95 |
- name: test
|
96 |
+
num_bytes: 217181
|
97 |
num_examples: 2000
|
98 |
+
download_size: 740883
|
99 |
+
dataset_size: 2173481
|
100 |
+
- config_name: unsplit
|
101 |
+
features:
|
102 |
+
- name: text
|
103 |
+
dtype: string
|
104 |
+
- name: label
|
105 |
+
dtype:
|
106 |
+
class_label:
|
107 |
+
names:
|
108 |
+
'0': sadness
|
109 |
+
'1': joy
|
110 |
+
'2': love
|
111 |
+
'3': anger
|
112 |
+
'4': fear
|
113 |
+
'5': surprise
|
114 |
+
splits:
|
115 |
+
- name: train
|
116 |
+
num_bytes: 45445685
|
117 |
+
num_examples: 416809
|
118 |
+
download_size: 15388281
|
119 |
+
dataset_size: 45445685
|
120 |
---
|
121 |
|
122 |
# Dataset Card for "emotion"
|
|
|
171 |
|
172 |
### Data Instances
|
173 |
|
174 |
+
An example looks as follows.
|
|
|
|
|
|
|
|
|
|
|
|
|
175 |
```
|
176 |
{
|
177 |
+
"text": "im feeling quite sad and sorry for myself but ill snap out of it soon",
|
178 |
+
"label": 0
|
179 |
}
|
180 |
```
|
181 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
182 |
### Data Fields
|
183 |
|
184 |
+
The data fields are:
|
|
|
|
|
185 |
- `text`: a `string` feature.
|
186 |
- `label`: a classification label, with possible values including `sadness` (0), `joy` (1), `love` (2), `anger` (3), `fear` (4), `surprise` (5).
|
187 |
|
|
|
|
|
|
|
|
|
188 |
### Data Splits
|
189 |
|
190 |
+
The dataset has 2 configurations:
|
191 |
+
- split: with a total of 20_000 examples split into train, validation and split
|
192 |
+
- unsplit: with a total of 416_809 examples in a single train split
|
193 |
+
|
194 |
+
| name | train | validation | test |
|
195 |
+
|---------|-------:|-----------:|-----:|
|
196 |
+
| split | 16000 | 2000 | 2000 |
|
197 |
+
| unsplit | 416809 | n/a | n/a |
|
198 |
|
199 |
## Dataset Creation
|
200 |
|
|
|
248 |
|
249 |
### Licensing Information
|
250 |
|
251 |
+
The dataset should be used for educational and research purposes only.
|
252 |
|
253 |
### Citation Information
|
254 |
|
255 |
+
If you use this dataset, please cite:
|
256 |
```
|
257 |
@inproceedings{saravia-etal-2018-carer,
|
258 |
title = "{CARER}: Contextualized Affect Representations for Emotion Recognition",
|
|
|
271 |
pages = "3687--3697",
|
272 |
abstract = "Emotions are expressed in nuanced ways, which varies by collective or individual experiences, knowledge, and beliefs. Therefore, to understand emotion, as conveyed through text, a robust mechanism capable of capturing and modeling different linguistic nuances and phenomena is needed. We propose a semi-supervised, graph-based algorithm to produce rich structural descriptors which serve as the building blocks for constructing contextualized affect representations from text. The pattern-based representations are further enriched with word embeddings and evaluated through several emotion recognition tasks. Our experimental results demonstrate that the proposed method outperforms state-of-the-art techniques on emotion recognition tasks.",
|
273 |
}
|
|
|
274 |
```
|
275 |
|
|
|
276 |
### Contributions
|
277 |
|
278 |
+
Thanks to [@lhoestq](https://github.com/lhoestq), [@thomwolf](https://github.com/thomwolf), [@lewtun](https://github.com/lewtun) for adding this dataset.
|
data/data.jsonl.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8944e6b35cb42294769ac30cf17bd006231545b2eeecfa59324246e192564d1f
|
3 |
+
size 15388281
|
data/test.jsonl.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4524468d0b7ee8eab07a088216cde7f9278f1c574669504a805ed172df6dad75
|
3 |
+
size 74935
|
data/train.jsonl.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:757a0a73f1483f4b3f94783b774cdbf0831722a2b2c9abb5b820b4614ff6882a
|
3 |
+
size 591930
|
data/validation.jsonl.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:50783464882f450f88e61ece964a200e492495eed1472ed520d013bbcd3049be
|
3 |
+
size 74018
|
emotion.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
import
|
2 |
|
3 |
import datasets
|
4 |
from datasets.tasks import TextClassification
|
@@ -27,14 +27,33 @@ _CITATION = """\
|
|
27 |
_DESCRIPTION = """\
|
28 |
Emotion is a dataset of English Twitter messages with six basic emotions: anger, fear, joy, love, sadness, and surprise. For more detailed information please refer to the paper.
|
29 |
"""
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
|
37 |
class Emotion(datasets.GeneratorBasedBuilder):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
def _info(self):
|
39 |
class_names = ["sadness", "joy", "love", "anger", "fear", "surprise"]
|
40 |
return datasets.DatasetInfo(
|
@@ -43,26 +62,27 @@ class Emotion(datasets.GeneratorBasedBuilder):
|
|
43 |
{"text": datasets.Value("string"), "label": datasets.ClassLabel(names=class_names)}
|
44 |
),
|
45 |
supervised_keys=("text", "label"),
|
46 |
-
homepage=
|
47 |
citation=_CITATION,
|
|
|
48 |
task_templates=[TextClassification(text_column="text", label_column="label")],
|
49 |
)
|
50 |
|
51 |
def _split_generators(self, dl_manager):
|
52 |
"""Returns SplitGenerators."""
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
|
|
61 |
|
62 |
def _generate_examples(self, filepath):
|
63 |
"""Generate examples."""
|
64 |
-
with open(filepath, encoding="utf-8") as
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
yield id_, {"text": text, "label": label}
|
|
|
1 |
+
import json
|
2 |
|
3 |
import datasets
|
4 |
from datasets.tasks import TextClassification
|
|
|
27 |
_DESCRIPTION = """\
|
28 |
Emotion is a dataset of English Twitter messages with six basic emotions: anger, fear, joy, love, sadness, and surprise. For more detailed information please refer to the paper.
|
29 |
"""
|
30 |
+
|
31 |
+
_HOMEPAGE = "https://github.com/dair-ai/emotion_dataset"
|
32 |
+
|
33 |
+
_LICENSE = "The dataset should be used for educational and research purposes only"
|
34 |
+
|
35 |
+
_URLS = {
|
36 |
+
"split": {
|
37 |
+
"train": "data/train.jsonl.gz",
|
38 |
+
"validation": "data/validation.jsonl.gz",
|
39 |
+
"test": "data/test.jsonl.gz",
|
40 |
+
},
|
41 |
+
"unsplit": {
|
42 |
+
"train": "data/data.jsonl.gz",
|
43 |
+
},
|
44 |
+
}
|
45 |
|
46 |
|
47 |
class Emotion(datasets.GeneratorBasedBuilder):
|
48 |
+
VERSION = datasets.Version("1.0.0")
|
49 |
+
BUILDER_CONFIGS = [
|
50 |
+
datasets.BuilderConfig(
|
51 |
+
name="split", version=VERSION, description="Dataset split in train, validation and test"
|
52 |
+
),
|
53 |
+
datasets.BuilderConfig(name="unsplit", version=VERSION, description="Unsplit dataset"),
|
54 |
+
]
|
55 |
+
DEFAULT_CONFIG_NAME = "split"
|
56 |
+
|
57 |
def _info(self):
|
58 |
class_names = ["sadness", "joy", "love", "anger", "fear", "surprise"]
|
59 |
return datasets.DatasetInfo(
|
|
|
62 |
{"text": datasets.Value("string"), "label": datasets.ClassLabel(names=class_names)}
|
63 |
),
|
64 |
supervised_keys=("text", "label"),
|
65 |
+
homepage=_HOMEPAGE,
|
66 |
citation=_CITATION,
|
67 |
+
license=_LICENSE,
|
68 |
task_templates=[TextClassification(text_column="text", label_column="label")],
|
69 |
)
|
70 |
|
71 |
def _split_generators(self, dl_manager):
|
72 |
"""Returns SplitGenerators."""
|
73 |
+
paths = dl_manager.download_and_extract(_URLS[self.config.name])
|
74 |
+
if self.config.name == "split":
|
75 |
+
return [
|
76 |
+
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": paths["train"]}),
|
77 |
+
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": paths["validation"]}),
|
78 |
+
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": paths["test"]}),
|
79 |
+
]
|
80 |
+
else:
|
81 |
+
return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": paths["train"]})]
|
82 |
|
83 |
def _generate_examples(self, filepath):
|
84 |
"""Generate examples."""
|
85 |
+
with open(filepath, encoding="utf-8") as f:
|
86 |
+
for idx, line in enumerate(f):
|
87 |
+
example = json.loads(line)
|
88 |
+
yield idx, example
|
|