|
# File: optimum-quanto-main/bench/generation/evaluate_configurations.py |
|
import argparse |
|
import json |
|
import torch |
|
from evaluate_model import evaluate |
|
from gen_barchart import gen_barchart |
|
from transformers import AutoConfig |
|
from optimum.quanto import qtype |
|
|
|
def evaluate_model_configurations(model_id: str, metric: str, device: torch.device, batch_size: int=32, dtype: torch.dtype=torch.float16): |
|
weights = ['int4', 'int8', 'float8'] |
|
activations = ['none', 'float8'] |
|
|
|
def short_name(qtype: qtype): |
|
return {'none': 'f16' if dtype == torch.float16 else 'bf16', 'int4': 'i4', 'int8': 'i8', 'float8': 'f8'}[qtype] |
|
results = {} |
|
config_name = f"W{short_name('none')}A{short_name('none')}" |
|
print(f'{model_id}[{config_name}]:') |
|
results[config_name] = evaluate(model_id, metric, 'quanto', 'none', 'none', batch_size, device, dtype) |
|
for w in weights: |
|
for a in activations: |
|
config_name = f'W{short_name(w)}A{short_name(a)}' |
|
print(f'{model_id}[{config_name}]:') |
|
results[config_name] = evaluate(model_id, metric, 'quanto', w, a, batch_size, device, dtype) |
|
return results |
|
|
|
def main(): |
|
parser = argparse.ArgumentParser(description='Evaluate quantized model predictions on Lambada Dataset') |
|
parser.add_argument('--seed', type=int, default=1, metavar='S', help='random seed (default: 1)') |
|
parser.add_argument('--model', type=str, default='facebook/opt-350m', help='The name of the trained Model.') |
|
parser.add_argument('--device', type=str, default=None, help='The device to use for generation.') |
|
parser.add_argument('--metric', type=str, default='prediction', choices=['latency', 'prediction', 'perplexity']) |
|
parser.add_argument('--batch_size', type=int, default=32, help='The batch size during evaluation.') |
|
parser.add_argument('--dtype', type=str, help='Use the following dtype to load the model.') |
|
parser.add_argument('--json', action='store_true', help='Dump the results to a json file.') |
|
parser.add_argument('--png', action='store_true', help='Generate a PNG.') |
|
args = parser.parse_args() |
|
torch.manual_seed(args.seed) |
|
if args.device is None: |
|
if torch.cuda.is_available(): |
|
device = torch.device('cuda') |
|
elif torch.backends.mps.is_available(): |
|
device = torch.device('mps') |
|
else: |
|
device = torch.device('cpu') |
|
else: |
|
device = torch.device(args.device) |
|
if args.dtype is None: |
|
config = AutoConfig.from_pretrained(args.model) |
|
dtype = getattr(config, 'torch_dtype', torch.float16) |
|
else: |
|
dtype = torch.float16 if args.dtype == 'fp16' else torch.bfloat16 |
|
results = evaluate_model_configurations(args.model, args.metric, device, batch_size=args.batch_size, dtype=dtype) |
|
if args.json: |
|
model_name = args.model.split('/')[-1] |
|
json_path = f'{model_name}-{args.metric}.json' |
|
with open(json_path, 'w') as fp: |
|
json.dump({model_name: results}, fp, indent=4) |
|
if args.png: |
|
if args.metric == 'latency': |
|
title = f'{args.model}: Mean latency per token' |
|
label = 'Latency (ms)' |
|
elif args.metric == 'prediction': |
|
title = f'{args.model}: Prediction accuracy on Lambada dataset' |
|
label = 'Accuracy' |
|
elif args.metric == 'perplexity': |
|
title = f'{args.model}: Perplexity evaluated on WikiText dataset' |
|
label = 'Perplexity' |
|
gen_barchart(args.model, title, label, results, dtype) |
|
if __name__ == '__main__': |
|
main() |
|
|
|
# File: optimum-quanto-main/bench/generation/evaluate_model.py |
|
import argparse |
|
import torch |
|
from datasets import load_dataset |
|
from metrics.latency import latency |
|
from metrics.perplexity import perplexity |
|
from metrics.prediction import prediction_accuracy |
|
from setup.awq import setup as awq_setup |
|
from setup.bnb import setup as bnb_setup |
|
from setup.hqq import setup as hqq_setup |
|
from setup.quanto import setup as quanto_setup |
|
from transformers import AutoConfig |
|
|
|
@torch.no_grad() |
|
def calibrate(model, tokenizer, batch_size, batches): |
|
samples = batch_size * batches |
|
cal_dataset = load_dataset('lambada', split=['validation'])[0] |
|
model.eval() |
|
total = 0 |
|
for batch in cal_dataset.iter(batch_size=batch_size): |
|
inputs = tokenizer(batch['text'], return_tensors='pt', padding=True) |
|
input_ids = inputs.input_ids.to(model.device) |
|
attention_mask = inputs.attention_mask.to(model.device) |
|
model(input_ids, attention_mask=attention_mask) |
|
total += input_ids.size(0) |
|
if total >= samples: |
|
break |
|
|
|
def evaluate(model_id: str, metric: str, quantizer: str, weights: str, activations: str, batch_size: int, device: torch.device, dtype: torch.dtype=None): |
|
if quantizer == 'quanto': |
|
if dtype is None: |
|
config = AutoConfig.from_pretrained(model_id) |
|
dtype = getattr(config, 'torch_dtype', torch.float16) |
|
(model, tokenizer) = quanto_setup(model_id, weights, activations, batch_size, device, dtype) |
|
elif quantizer == 'awq': |
|
(model, tokenizer) = awq_setup(model_id, weights, activations, group_size=128) |
|
elif quantizer == 'bnb': |
|
(model, tokenizer) = bnb_setup(model_id, weights, activations, device) |
|
elif quantizer == 'hqq': |
|
(model, tokenizer) = hqq_setup(model_id, weights, activations, device) |
|
else: |
|
raise ValueError(f'Unsupported quantizer {quantizer}') |
|
dtype = next(model.parameters()).dtype |
|
weights = dtype if weights == 'none' else weights |
|
activations = dtype if activations == 'none' else activations |
|
print(f'Evaluating {model_id} {metric} with {weights} weights and {activations} activations.') |
|
if metric == 'latency': |
|
return latency(model, tokenizer, device, batch_size=1, prompt_length=512, nb_tokens=512, iterations=3) |
|
elif metric == 'prediction': |
|
return prediction_accuracy(model, tokenizer, batch_size) |
|
elif metric == 'perplexity': |
|
return perplexity(model, tokenizer) |
|
|
|
def main(): |
|
parser = argparse.ArgumentParser(description='Evaluate quantized model metrics') |
|
parser.add_argument('--seed', type=int, default=1, metavar='S', help='random seed (default: 1)') |
|
parser.add_argument('--model', type=str, default='facebook/opt-350m', help='The name of the trained Model.') |
|
parser.add_argument('--device', type=str, default=None, help='The device to use for generation.') |
|
parser.add_argument('--metric', type=str, default='prediction', choices=['latency', 'prediction', 'perplexity']) |
|
parser.add_argument('--quantizer', type=str, default='quanto', choices=['quanto', 'awq', 'bnb', 'hqq']) |
|
parser.add_argument('--weights', type=str, default='none', choices=['none', 'int4', 'int8', 'float8']) |
|
parser.add_argument('--activations', type=str, default='none', choices=['none', 'int8', 'float8']) |
|
parser.add_argument('--batch_size', type=int, default=32, help='The batch size during evaluation.') |
|
parser.add_argument('--dtype', type=str, default='none', choices=['none', 'fp16', 'bf16']) |
|
args = parser.parse_args() |
|
torch.manual_seed(args.seed) |
|
if args.device is None: |
|
if torch.cuda.is_available(): |
|
device = torch.device('cuda') |
|
elif torch.backends.mps.is_available(): |
|
device = torch.device('mps') |
|
else: |
|
device = torch.device('cpu') |
|
else: |
|
device = torch.device(args.device) |
|
dtype = {'none': None, 'fp16': torch.float16, 'bf16': torch.bfloat16}[args.dtype] |
|
evaluate(args.model, args.metric, args.quantizer, args.weights, args.activations, args.batch_size, device, dtype) |
|
if __name__ == '__main__': |
|
main() |
|
|
|
# File: optimum-quanto-main/bench/generation/gen_barchart.py |
|
import argparse |
|
import json |
|
import matplotlib.pyplot as plt |
|
import numpy as np |
|
import torch |
|
|
|
def save_bar_chart(title, labels, ylabel, series, save_path): |
|
x = np.arange(len(labels)) |
|
width = 0.15 |
|
multiplier = 0 |
|
(fig, ax) = plt.subplots(layout='constrained') |
|
fig.set_figwidth(10) |
|
max_value = 0 |
|
for (attribute, measurement) in series.items(): |
|
max_value = max(max_value, max(measurement)) |
|
offset = width * multiplier |
|
rects = ax.bar(x + offset, measurement, width, label=attribute) |
|
ax.bar_label(rects, padding=5) |
|
multiplier += 1 |
|
ax.set_ylabel(ylabel) |
|
ax.set_title(title) |
|
ax.set_xticks(x + width, labels) |
|
ax.legend(loc='upper left', ncols=4) |
|
ax.set_ylim(0, max_value * 1.2) |
|
plt.savefig(save_path) |
|
|
|
def gen_barchart(model_id, title, label, results, dtype): |
|
dtype_str = 'f16' if dtype is torch.float16 else 'bf16' |
|
activations = (dtype_str, 'f8') |
|
weights = ('i4', 'i8', 'f8') |
|
series = {} |
|
reference = round(results[f'W{dtype_str}A{dtype_str}'], 2) |
|
series[f'Weights {dtype_str}'] = [reference] * len(activations) |
|
for w in weights: |
|
name = f'Weights {w}' |
|
series[name] = [] |
|
for a in activations: |
|
result = results[f'W{w}A{a}'] |
|
series[name].append(round(result, 2)) |
|
model_name = model_id.replace('/', '-') |
|
metric_name = label.replace(' ', '_').replace('(', '_').replace(')', '_') |
|
save_bar_chart(title=title, labels=[f'Activations {a}' for a in activations], series=series, ylabel=label, save_path=f'{model_name}_{dtype_str}_{metric_name}.png') |
|
|
|
def main(): |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument('benchmark', type=str, help='A benchmark result file (.json).') |
|
parser.add_argument('--title', type=str, required=True, help='The graph title.') |
|
parser.add_argument('--label', type=str, required=True, help='The graph vertical label.') |
|
args = parser.parse_args() |
|
with open(args.benchmark) as f: |
|
benchmark = json.load(f) |
|
for (model_id, results) in benchmark.items(): |
|
gen_barchart(model_id, args.title, args.label, results) |
|
if __name__ == '__main__': |
|
main() |
|
|
|
# File: optimum-quanto-main/bench/generation/metrics/latency.py |
|
import gc |
|
import time |
|
import numpy as np |
|
import torch |
|
from tqdm.auto import tqdm |
|
from transformers import GenerationConfig |
|
|
|
def latency(model, tokenizer, device, batch_size=1, prompt_length=512, nb_tokens=512, iterations=10): |
|
|
|
def synchronize(device): |
|
if device.type == 'cuda': |
|
torch.cuda.synchronize() |
|
elif device.type == 'mps': |
|
torch.mps.synchronize() |
|
else: |
|
torch.cpu.synchronize() |
|
|
|
def timing_event(device): |
|
if device.type == 'cuda': |
|
return torch.cuda.Event(enable_timing=True) |
|
elif device.type == 'mps': |
|
return torch.mps.Event(enable_timing=True) |
|
|
|
class CPUEvent: |
|
|
|
def __init__(self): |
|
self.time = None |
|
|
|
def record(self): |
|
self.time = time.time() |
|
|
|
def elapsed_time(self, other): |
|
assert self.time is not None |
|
assert other.time is not None |
|
return (other.time - self.time) * 1000 |
|
return CPUEvent() |
|
generation_config = GenerationConfig(max_new_tokens=nb_tokens, min_new_tokens=nb_tokens, use_cache=True, pad_token_id=tokenizer.pad_token_id, num_beams=1, do_sample=False, eos_token_id=None) |
|
if getattr(model, 'generation_config', None) is not None: |
|
model.generation_config.eos_token_id = None |
|
synchronize(device) |
|
if device.type == 'cuda': |
|
torch.cuda.reset_peak_memory_stats() |
|
memory = get_device_memory(device) |
|
if memory is not None: |
|
print(f'Device memory: {memory / 2 ** 30:.4f} GB') |
|
latencies = [] |
|
input_ids = torch.randint(1, model.config.vocab_size - 1, size=(batch_size, prompt_length)).to(device) |
|
masks = torch.ones(batch_size, prompt_length, dtype=torch.int32).to(device) |
|
for _ in tqdm(range(iterations)): |
|
start_event = timing_event(device) |
|
end_event = timing_event(device) |
|
synchronize(device) |
|
start_event.record() |
|
_ = model.generate(input_ids, attention_mask=masks, generation_config=generation_config) |
|
end_event.record() |
|
synchronize(device) |
|
latency_ms = start_event.elapsed_time(end_event) |
|
latencies.append(latency_ms) |
|
if device.type == 'cuda': |
|
peak_memory = torch.cuda.max_memory_allocated() |
|
print(f'Peak memory during benchmark: {peak_memory / 2 ** 30:.4f} GB') |
|
mean_latency = np.mean(latencies) / generation_config.min_new_tokens |
|
print(f'Average latency per token: {mean_latency} ms') |
|
return mean_latency |
|
|
|
def get_device_memory(device): |
|
gc.collect() |
|
if device.type == 'cuda': |
|
torch.cuda.empty_cache() |
|
return torch.cuda.memory_allocated() |
|
elif device.type == 'mps': |
|
torch.mps.empty_cache() |
|
return torch.mps.current_allocated_memory() |
|
return None |
|
|
|
# File: optimum-quanto-main/bench/generation/metrics/perplexity.py |
|
import sys |
|
import numpy as np |
|
import torch |
|
from datasets import load_dataset |
|
from tqdm import tqdm |
|
|
|
class Perplexity: |
|
|
|
def __init__(self, model, tokenizer, dataset_path='wikitext', dataset_name=None, split='test', text_column='text'): |
|
self._model = model |
|
self._tokenizer = tokenizer |
|
self._dataset_path = dataset_path |
|
self._dataset_name = dataset_name |
|
self._split = split |
|
self._text_column = text_column |
|
self._text = self._prepare_data() |
|
|
|
def _prepare_data(self): |
|
if self._dataset_path == 'wikitext': |
|
self._dataset_name = 'wikitext-2-raw-v1' |
|
data = load_dataset(self._dataset_path, self._dataset_name, split=self._split) |
|
text_list = [' \n' if s == '' else s for s in data[self._text_column]] |
|
return ''.join(text_list) |
|
|
|
@staticmethod |
|
def softmax(logits): |
|
e_x = np.exp(logits - np.max(logits)) |
|
return e_x / e_x.sum(axis=0) |
|
|
|
def calculate_perplexity(self, n_ctx=512, n_batch=512): |
|
self._tokenizer.model_max_length = sys.maxsize |
|
tokens = self._tokenizer(self._text, truncation=False, return_tensors='pt').input_ids.to(self._model.device) |
|
nll = 0.0 |
|
count = 0 |
|
curr_ppl = 0 |
|
all_perplexity = [] |
|
with tqdm(range(len(tokens[0]) // n_ctx), desc='Perplexity: - ') as progress: |
|
for i in progress: |
|
(nll, count) = self._process_batch(i, n_ctx, n_batch, tokens, nll, count) |
|
curr_ppl = np.exp(nll / count) |
|
all_perplexity.append(curr_ppl) |
|
progress.set_description(f'Perplexity: {curr_ppl:.4f}') |
|
return all_perplexity |
|
|
|
def _process_batch(self, i, n_ctx, n_batch, tokens, nll, count): |
|
start = i * n_ctx |
|
end = start + n_ctx |
|
num_batches = (n_ctx + n_batch - 1) // n_batch |
|
logits = [] |
|
for j in range(num_batches): |
|
batch_start = start + j * n_batch |
|
batch_size = min(end - batch_start, n_batch) |
|
token_org = tokens[0][batch_start].item() |
|
if j == 0: |
|
tokens[0][batch_start] = self._tokenizer.bos_token_id |
|
batch_logits = self._compute_batch_logits(tokens, batch_start, batch_size) |
|
tokens[0][batch_start] = token_org |
|
logits.append(batch_logits) |
|
for j in range(min(512, n_ctx // 2), n_ctx - 1): |
|
tok_logits = logits[0][0][j].cpu().numpy() |
|
prob = self.softmax(tok_logits)[tokens[0][start + j + 1]] |
|
nll += -np.log(prob, where=prob > 0) |
|
count += 1 |
|
return (nll, count) |
|
|
|
def _compute_batch_logits(self, tokens, batch_start, batch_size): |
|
with torch.no_grad(): |
|
outputs = self._model(tokens[:, batch_start:batch_start + batch_size]) |
|
return outputs.logits.detach() |
|
|
|
def perplexity(model, tokenizer, stride: int=512): |
|
print('Evaluating perplexity') |
|
ppl = Perplexity(model, tokenizer) |
|
ppl_value = np.mean(ppl.calculate_perplexity(n_ctx=stride)) |
|
return ppl_value |
|
|
|
# File: optimum-quanto-main/bench/generation/metrics/prediction.py |
|
import time |
|
import torch |
|
from datasets import load_dataset |
|
|
|
@torch.no_grad() |
|
def prediction_accuracy(model, tokenizer, batch_size, samples=None): |
|
test_dataset = load_dataset('lambada', split=['test'])[0] |
|
model.eval() |
|
(total, hit) = (0, 0) |
|
start = time.time() |
|
for batch in test_dataset.iter(batch_size=batch_size): |
|
inputs = tokenizer(batch['text'], return_tensors='pt', padding=True) |
|
input_ids = inputs.input_ids.to(model.device) |
|
attention_mask = inputs.attention_mask.to(model.device) |
|
labels = input_ids[:, -1] |
|
outputs = model(input_ids[:, :-1], attention_mask=attention_mask[:, :-1]) |
|
preds = outputs.logits[:, -1, :].argmax(dim=-1) |
|
total += labels.size(0) |
|
hit += (preds == labels).sum().item() |
|
if samples is not None and total >= samples: |
|
break |
|
end = time.time() |
|
acc = hit / total |
|
print(f'{total} sequences evaluated in {end - start:.2f} s. accuracy = {acc:.2f}') |
|
return acc |
|
|
|
# File: optimum-quanto-main/bench/generation/setup/awq.py |
|
from awq import AutoAWQForCausalLM |
|
from transformers import AutoTokenizer |
|
|
|
def prepare_inputs_for_generation(input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs): |
|
if past_key_values is not None: |
|
cache_length = past_length = past_key_values[0][0].shape[2] |
|
max_cache_length = None |
|
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]: |
|
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length):] |
|
elif past_length < input_ids.shape[1]: |
|
input_ids = input_ids[:, past_length:] |
|
if max_cache_length is not None and attention_mask is not None and (cache_length + input_ids.shape[1] > max_cache_length): |
|
attention_mask = attention_mask[:, -max_cache_length:] |
|
position_ids = kwargs.get('position_ids', None) |
|
if attention_mask is not None and position_ids is None: |
|
position_ids = attention_mask.long().cumsum(-1) - 1 |
|
position_ids.masked_fill_(attention_mask == 0, 1) |
|
if past_key_values: |
|
position_ids = position_ids[:, -input_ids.shape[1]:] |
|
if inputs_embeds is not None and past_key_values is None: |
|
model_inputs = {'inputs_embeds': inputs_embeds} |
|
else: |
|
model_inputs = {'input_ids': input_ids} |
|
model_inputs.update({'position_ids': position_ids, 'past_key_values': past_key_values, 'use_cache': kwargs.get('use_cache'), 'attention_mask': attention_mask}) |
|
return model_inputs |
|
|
|
def setup(model_id: str, weights: str, activations: str, group_size: int=64, version='GEMV_FAST'): |
|
if activations != 'none': |
|
raise ValueError('Activation quantization is not supported by HQQ') |
|
if weights != 'int4': |
|
raise ValueError('AWQ only supports int4 weights.') |
|
quant_config = {'zero_point': True, 'q_group_size': group_size, 'w_bit': 4, 'version': version} |
|
model = AutoAWQForCausalLM.from_pretrained(model_id) |
|
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True) |
|
tokenizer.pad_token_id = tokenizer.eos_token_id |
|
tokenizer.padding_side = 'left' |
|
model.quantize(tokenizer, quant_config=quant_config) |
|
quant_path = model_id.replace('/', '-') + f'_{group_size}_{version}' |
|
model.save_quantized(quant_path) |
|
model = AutoAWQForCausalLM.from_quantized(quant_path) |
|
model.model.prepare_inputs_for_generation = prepare_inputs_for_generation |
|
model.device = next(model.parameters()).device |
|
return (model, tokenizer) |
|
|
|
# File: optimum-quanto-main/bench/generation/setup/bnb.py |
|
import torch |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig |
|
|
|
def setup(model_id: str, weights: str, activations: str, device: torch.device): |
|
if activations != 'none': |
|
raise ValueError('Activation quantization is not supported by BitsAndBytes') |
|
if weights == 'int4': |
|
quantization_config = BitsAndBytesConfig(load_in_4bit=True, bnb_4bit_quant_type='fp4') |
|
elif weights == 'int8': |
|
quantization_config = BitsAndBytesConfig(load_in_8bit=True) |
|
else: |
|
raise ValueError('BitsAndBytes only supports int4 and int8 weights.') |
|
dtype = torch.float32 if device.type == 'cpu' else torch.float16 |
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
tokenizer.pad_token_id = tokenizer.eos_token_id |
|
tokenizer.padding_side = 'left' |
|
quantization_config.bnb_4bit_compute_dtype = dtype |
|
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=dtype, low_cpu_mem_usage=True, quantization_config=quantization_config) |
|
return (model, tokenizer) |
|
|
|
# File: optimum-quanto-main/bench/generation/setup/hqq.py |
|
import torch |
|
from hqq.core.quantize import BaseQuantizeConfig |
|
from hqq.engine.hf import HQQModelForCausalLM |
|
from transformers import AutoTokenizer |
|
|
|
def setup(model_id: str, weights: str, activations: str, device: torch.device, group_size: int=64): |
|
if activations != 'none': |
|
raise ValueError('Activation quantization is not supported by HQQ') |
|
if weights == 'int4': |
|
quant_config = BaseQuantizeConfig(nbits=4, group_size=group_size) |
|
elif weights == 'int8': |
|
quant_config = BaseQuantizeConfig(nbits=8, group_size=group_size) |
|
else: |
|
raise ValueError('HQQ only supports int4 and int8 weights.') |
|
model = HQQModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16) |
|
model.quantize_model(quant_config=quant_config, compute_dtype=torch.float16, device=device) |
|
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True) |
|
tokenizer.pad_token_id = tokenizer.eos_token_id |
|
tokenizer.padding_side = 'left' |
|
return (model, tokenizer) |
|
|
|
# File: optimum-quanto-main/bench/generation/setup/quanto.py |
|
import time |
|
import torch |
|
from datasets import load_dataset |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
from optimum.quanto import Calibration, freeze, qfloat8, qint4, qint8, quantize |
|
|
|
@torch.no_grad() |
|
def calibrate(model, tokenizer, batch_size, batches): |
|
samples = batch_size * batches |
|
cal_dataset = load_dataset('lambada', split=['validation'])[0] |
|
model.eval() |
|
total = 0 |
|
for batch in cal_dataset.iter(batch_size=batch_size): |
|
inputs = tokenizer(batch['text'], return_tensors='pt', padding=True) |
|
input_ids = inputs.input_ids.to(model.device) |
|
attention_mask = inputs.attention_mask.to(model.device) |
|
model(input_ids, attention_mask=attention_mask) |
|
total += input_ids.size(0) |
|
if total >= samples: |
|
break |
|
|
|
def setup(model_id: str, weights: str, activations: str, batch_size: int, device: torch.device, dtype: torch.dtype): |
|
weights = keyword_to_qtype(weights) |
|
activations = keyword_to_qtype(activations) |
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
tokenizer.pad_token_id = tokenizer.eos_token_id |
|
tokenizer.padding_side = 'left' |
|
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=dtype, low_cpu_mem_usage=True).to(device) |
|
if weights is not None or activations is not None: |
|
print('Quantizing') |
|
start = time.time() |
|
quantization_root = model |
|
if hasattr(model, 'model'): |
|
quantization_root = model.model |
|
quantize(quantization_root, weights=weights, activations=activations) |
|
if activations is not None: |
|
print('Calibrating') |
|
with Calibration(): |
|
calibrate(model, tokenizer, batch_size, batches=4) |
|
print('Freezing') |
|
freeze(model) |
|
print(f'Finished: {time.time() - start:.2f}') |
|
return (model, tokenizer) |
|
|
|
def keyword_to_qtype(k): |
|
return {'none': None, 'int4': qint4, 'int8': qint8, 'float8': qfloat8}[k] |
|
|
|
# File: optimum-quanto-main/bench/kernels/benchmark.py |
|
import argparse |
|
import time |
|
from contextlib import nullcontext |
|
import numpy as np |
|
import torch |
|
from tqdm.auto import tqdm |
|
from optimum.quanto.library import disable_extensions |
|
|
|
def get_unpack_bench(bits, device): |
|
qmax = 2 ** bits |
|
a = torch.randint(0, qmax, [10240, 10240], dtype=torch.uint8).to(device) |
|
|
|
def bench_fn(): |
|
return torch.ops.quanto.unpack(a, bits) |
|
return bench_fn |
|
|
|
def timing(get_bench_func, device, iterations=10): |
|
|
|
def synchronize(device): |
|
if device.type == 'cuda': |
|
torch.cuda.synchronize() |
|
elif device.type == 'mps': |
|
torch.mps.synchronize() |
|
else: |
|
torch.cpu.synchronize() |
|
|
|
def timing_event(device): |
|
if device.type == 'cuda': |
|
return torch.cuda.Event(enable_timing=True) |
|
elif device.type == 'mps': |
|
return torch.mps.Event(enable_timing=True) |
|
|
|
class CPUEvent: |
|
|
|
def __init__(self): |
|
self.time = None |
|
|
|
def record(self): |
|
self.time = time.time() |
|
|
|
def elapsed_time(self, other): |
|
assert self.time is not None |
|
assert other.time is not None |
|
return (other.time - self.time) * 1000 |
|
return CPUEvent() |
|
synchronize(device) |
|
bench_func = get_bench_func(device) |
|
bench_func() |
|
latencies = np.empty((iterations, 2)) |
|
for i in tqdm(range(iterations)): |
|
for (j, context) in enumerate([disable_extensions(), nullcontext()]): |
|
start_event = timing_event(device) |
|
end_event = timing_event(device) |
|
synchronize(device) |
|
start_event.record() |
|
with context: |
|
bench_func() |
|
end_event.record() |
|
synchronize(device) |
|
latencies[i, j] = start_event.elapsed_time(end_event) |
|
return (np.mean(latencies[:, 0]), np.mean(latencies[:, 1])) |
|
GET_BENCH_FUNCTIONS = {'unpack_2bit': lambda device: get_unpack_bench(2, device), 'unpack_4bit': lambda device: get_unpack_bench(4, device)} |
|
|
|
def main(): |
|
parser = argparse.ArgumentParser(description='Kernel benchmark') |
|
parser.add_argument('--kernel', type=str, default=None, help='The kernel to benchmark. None to test all of them') |
|
parser.add_argument('--device', type=str, default=None, help='The device to use for benchmark.') |
|
parser.add_argument('--it', type=int, default=10, help='The number of benchmark iterations') |
|
args = parser.parse_args() |
|
if args.device is None: |
|
if torch.cuda.is_available(): |
|
device = torch.device('cuda') |
|
elif torch.backends.mps.is_available(): |
|
device = torch.device('mps') |
|
else: |
|
device = torch.device('cpu') |
|
else: |
|
device = torch.device(args.device) |
|
all_kernels = GET_BENCH_FUNCTIONS.keys() |
|
kernels = all_kernels if args.kernel is None else [args.kernel] |
|
for kernel in kernels: |
|
get_bench_fn = GET_BENCH_FUNCTIONS[kernel] |
|
(python_ms, ext_ms) = timing(get_bench_fn, device, iterations=args.it) |
|
ratio = python_ms / ext_ms |
|
print(f'\n{kernel}[{device.type}]: python = {python_ms:.3f} ms, ext = {ext_ms:.3f} ms, ratio = {ratio:.1f}x') |
|
if __name__ == '__main__': |
|
main() |
|
|
|
# File: optimum-quanto-main/bench/kernels/benchmark_marlin_fp8.py |
|
import argparse |
|
from typing import Optional |
|
import numpy as np |
|
import torch |
|
from optimum.quanto.tensor.weights.marlin.packed import pack_fp8_as_int32 |
|
M_SHAPES = [1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192] |
|
N_SHAPES = [4096] |
|
K_SHAPES = [4096] |
|
|
|
def run_benchmark(m: Optional[int], n: Optional[int], k: Optional[int], n_runs: int, n_warmup: int, dtype: torch.dtype=torch.float16): |
|
print(f'\n----------- m={m}, n={n}, k={k}') |
|
n_tokens = m |
|
in_features = k |
|
out_features = n |
|
assert m is not None |
|
device = torch.device('cuda') |
|
inputs = torch.rand(n_tokens, in_features, dtype=dtype, device=device) |
|
other_shape = (in_features, out_features) |
|
other_data = torch.rand(other_shape, dtype=dtype, device=device).to(torch.float8_e4m3fn) |
|
other_data_int32 = pack_fp8_as_int32(other_data) |
|
perm = torch.empty(0, dtype=torch.int, device=device) |
|
other_data_repack = torch.ops.quanto.gptq_marlin_repack(b_q_weight=other_data_int32, perm=perm, size_k=in_features, size_n=out_features, num_bits=8) |
|
other_scale = torch.rand(1, dtype=dtype, device=device) |
|
other_scale = other_scale.repeat(1, out_features) |
|
workspace = torch.zeros(out_features // 64 * 16, dtype=torch.int, device=device) |
|
latencies_marlin_fp8 = [] |
|
latencies_torch = [] |
|
with torch.no_grad(): |
|
for i in range(n_runs): |
|
start_event = torch.cuda.Event(enable_timing=True) |
|
end_event = torch.cuda.Event(enable_timing=True) |
|
torch.cuda.synchronize(device) |
|
start_event.record() |
|
_ = torch.ops.quanto.fp8_marlin_gemm(a=inputs, b_q_weight=other_data_repack, b_scales=other_scale, workspace=workspace, num_bits=8, size_m=n_tokens, size_n=out_features, size_k=in_features) |
|
end_event.record() |
|
torch.cuda.synchronize(device) |
|
latency_ms = start_event.elapsed_time(end_event) |
|
if i >= n_warmup: |
|
latencies_marlin_fp8.append(latency_ms) |
|
start_event = torch.cuda.Event(enable_timing=True) |
|
end_event = torch.cuda.Event(enable_timing=True) |
|
torch.cuda.synchronize(device) |
|
start_event.record() |
|
other = other_data.to(dtype) * other_scale |
|
_ = torch.matmul(inputs, other) |
|
end_event.record() |
|
torch.cuda.synchronize(device) |
|
latency_ms = start_event.elapsed_time(end_event) |
|
if i >= n_warmup: |
|
latencies_torch.append(latency_ms) |
|
mean_latency_torch = np.mean(latencies_torch) |
|
mean_latency_marlin_fp8 = np.mean(latencies_marlin_fp8) |
|
print('mean_latency_torch:', mean_latency_torch) |
|
print('mean_latency_marlin_fp8:', mean_latency_marlin_fp8) |
|
return (mean_latency_torch, mean_latency_marlin_fp8) |
|
if __name__ == '__main__': |
|
parser = argparse.ArgumentParser(description='Marlin FP8 kernel benchmark') |
|
parser.add_argument('--nruns', type=int, default=20, help='The number of benchmark iterations') |
|
parser.add_argument('--nwarmup', type=int, default=2, help='The number of warmup iterations (deducted from nruns)') |
|
parser.add_argument('--m', type=int, help='m dimension of A=m*k', default=None) |
|
parser.add_argument('--n', type=int, help='n dimension of B=k*n (out_features)', default=None) |
|
parser.add_argument('--k', type=int, help='k dimension of A=m*k and B=k*n (in_features), hidden_size', default=None) |
|
args = parser.parse_args() |
|
if args.m is not None: |
|
|
|
def shape_generator(): |
|
yield (args.m, args.n, args.k) |
|
else: |
|
|
|
def shape_generator(): |
|
for m in M_SHAPES: |
|
for n in N_SHAPES: |
|
for k in K_SHAPES: |
|
yield (m, n, k) |
|
result = 'm,n_out,k_in,torch_latency_ms,marlin_fp8_latency_ms\n' |
|
for (m, n, k) in shape_generator(): |
|
(mean_latency_torch, mean_latency_marlin_fp8) = run_benchmark(m, n, k, args.nruns, args.nwarmup) |
|
result += ','.join([str(m), str(n), str(k), f'{mean_latency_torch:.4f}', f'{mean_latency_marlin_fp8:.4f}']) + '\n' |
|
print('\nResults:') |
|
print(result) |
|
|
|
# File: optimum-quanto-main/external/awq/pack_intweight.py |
|
import torch |
|
|
|
def pack_intweight(unpacked_qweight, interleave, kstride): |
|
N = unpacked_qweight.shape[0] |
|
K = unpacked_qweight.shape[1] |
|
Packed_Kernel = unpacked_qweight.cpu().numpy().reshape(N, K // 32, 32) |
|
Packed_Kernel = Packed_Kernel.reshape(N, K // 32, 4, 4, 2).transpose(0, 1, 3, 2, 4) |
|
Packed_Kernel = Packed_Kernel.reshape(N, K // 32, 32) |
|
Packed_Kernel = Packed_Kernel.reshape(N, K // 32, 4, 8) |
|
Packed_Kernel = Packed_Kernel.reshape(N, K // 32, 4, 4, 2).transpose(0, 1, 2, 4, 3) |
|
Packed_Kernel = Packed_Kernel.reshape(N, K) |
|
Packed_Kernel = Packed_Kernel.reshape(N // interleave, interleave, K // kstride, kstride) |
|
Packed_Kernel = Packed_Kernel.transpose(0, 2, 1, 3) |
|
Packed_Kernel = Packed_Kernel.reshape(N // interleave, K // kstride, kstride, interleave) |
|
Packed_Kernel = Packed_Kernel[..., 0] | Packed_Kernel[..., 1] << 4 | Packed_Kernel[..., 2] << 8 | Packed_Kernel[..., 3] << 12 |
|
Packed_Kernel = Packed_Kernel.reshape(N // interleave, K) |
|
qweight = torch.tensor(Packed_Kernel.astype('int16')).to(unpacked_qweight.device).contiguous() |
|
return qweight |
|
|
|
# File: optimum-quanto-main/external/awq/packing_utils.py |
|
import torch |
|
AWQ_ORDER = [0, 2, 4, 6, 1, 3, 5, 7] |
|
AWQ_REVERSE_ORDER = [0, 4, 1, 5, 2, 6, 3, 7] |
|
|
|
def pack_awq(intweight: torch.Tensor, reorder=False): |
|
bits = 4 |
|
pack_num = 32 // bits |
|
qweight = torch.zeros(intweight.shape[0], intweight.shape[1] // pack_num, dtype=torch.int32, device=intweight.device) |
|
for col in range(intweight.shape[1] // pack_num): |
|
if reorder: |
|
order_map = [0, 2, 4, 6, 1, 3, 5, 7] |
|
else: |
|
order_map = [0, 1, 2, 3, 4, 5, 6, 7] |
|
for i in range(pack_num): |
|
qweight_col = intweight[:, col * pack_num + order_map[i]] |
|
qweight[:, col] |= qweight_col << i * bits |
|
return qweight |
|
|
|
def unpack_awq(qweight: torch.Tensor, bits: int): |
|
shifts = torch.arange(0, 32, bits, device=qweight.device) |
|
iweights = torch.bitwise_right_shift(qweight[:, :, None], shifts[None, None, :]).to(torch.int8) |
|
iweights = iweights.view(iweights.shape[0], -1) |
|
return iweights |
|
|
|
def reverse_awq_order(iweights: torch.Tensor, bits: int): |
|
reverse_order_tensor = torch.arange(iweights.shape[-1], dtype=torch.int32, device=iweights.device) |
|
reverse_order_tensor = reverse_order_tensor.view(-1, 32 // bits) |
|
reverse_order_tensor = reverse_order_tensor[:, AWQ_REVERSE_ORDER] |
|
reverse_order_tensor = reverse_order_tensor.view(-1) |
|
iweights = iweights[:, reverse_order_tensor] |
|
return iweights |
|
|
|
def pack_exllama(iweights: torch.Tensor, izeros: torch.Tensor, bits: int): |
|
shifts = torch.arange(0, 32, bits, device=iweights.device) |
|
iweights = iweights.view(iweights.shape[0] // (32 // bits), 32 // bits, -1) |
|
qweight = torch.bitwise_left_shift(iweights, shifts[None, :, None]).sum(dim=1).to(torch.int32) |
|
izeros = izeros.view(-1, izeros.shape[1] // (32 // bits), 32 // bits) |
|
qzeros = torch.bitwise_left_shift(izeros, shifts[None, None, :]).sum(dim=-1).to(torch.int32) |
|
return (qweight, qzeros) |
|
|
|
def unpack_reorder_pack(qweight, qzeros, bits): |
|
(iweight, izeros) = unpack_awq(qweight, qzeros, bits) |
|
(iweight, izeros) = reverse_awq_order(iweight, izeros, bits) |
|
iweight = torch.bitwise_and(iweight, 2 ** bits - 1) |
|
izeros = torch.bitwise_and(izeros, 2 ** bits - 1) |
|
izeros = izeros - 1 |
|
(qweight, qzeros) = pack_exllama(iweight, izeros, bits) |
|
return (qweight, qzeros) |
|
|
|
def dequantize_gemm(qweight, qzeros, scales, bits, group_size): |
|
(iweight, izeros) = unpack_awq(qweight, qzeros, bits) |
|
(iweight, izeros) = reverse_awq_order(iweight, izeros, bits) |
|
iweight = torch.bitwise_and(iweight, 2 ** bits - 1) |
|
izeros = torch.bitwise_and(izeros, 2 ** bits - 1) |
|
scales = scales.repeat_interleave(group_size, dim=0) |
|
izeros = izeros.repeat_interleave(group_size, dim=0) |
|
iweight = (iweight - izeros) * scales |
|
return iweight |
|
|
|
# File: optimum-quanto-main/external/smoothquant/smoothquant.py |
|
import argparse |
|
import functools |
|
import os |
|
import torch |
|
import torch.nn as nn |
|
from datasets import load_dataset |
|
from tqdm import tqdm |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
from transformers.models.bloom.modeling_bloom import BloomBlock |
|
from transformers.models.opt.modeling_opt import OPTDecoderLayer |
|
from transformers.models.llama.modeling_llama import LlamaDecoderLayer, LlamaRMSNorm |
|
from transformers.models.mistral.modeling_mistral import MistralDecoderLayer, MistralRMSNorm |
|
|
|
def get_act_scales(model, tokenizer, dataset, num_samples=512, seq_len=512): |
|
model.eval() |
|
device = next(model.parameters()).device |
|
act_scales = {} |
|
|
|
def stat_tensor(name, tensor): |
|
hidden_dim = tensor.shape[-1] |
|
tensor = tensor.view(-1, hidden_dim).abs().detach() |
|
comming_max = torch.max(tensor, dim=0)[0].float().cpu() |
|
if name in act_scales: |
|
act_scales[name] = torch.max(act_scales[name], comming_max) |
|
else: |
|
act_scales[name] = comming_max |
|
|
|
def stat_input_hook(m, x, y, name): |
|
if isinstance(x, tuple): |
|
x = x[0] |
|
stat_tensor(name, x) |
|
hooks = [] |
|
for (name, m) in model.named_modules(): |
|
if isinstance(m, nn.Linear): |
|
hooks.append(m.register_forward_hook(functools.partial(stat_input_hook, name=name))) |
|
for i in tqdm(range(num_samples)): |
|
input_ids = tokenizer(dataset[i]['text'], return_tensors='pt', max_length=seq_len, truncation=True).input_ids.to(device) |
|
model(input_ids) |
|
for h in hooks: |
|
h.remove() |
|
return act_scales |
|
|
|
@torch.no_grad() |
|
def smooth_ln_fcs(ln, fcs, act_scales, alpha=0.5): |
|
if not isinstance(fcs, list): |
|
fcs = [fcs] |
|
assert isinstance(ln, (nn.LayerNorm, LlamaRMSNorm, MistralRMSNorm)) |
|
for fc in fcs: |
|
assert isinstance(fc, nn.Linear) |
|
assert ln.weight.numel() == fc.in_features == act_scales.numel() |
|
(device, dtype) = (fcs[0].weight.device, fcs[0].weight.dtype) |
|
act_scales = act_scales.to(device=device, dtype=dtype) |
|
weight_scales = torch.cat([fc.weight.abs().max(dim=0, keepdim=True)[0] for fc in fcs], dim=0) |
|
weight_scales = weight_scales.max(dim=0)[0].clamp(min=1e-05) |
|
scales = (act_scales.pow(alpha) / weight_scales.pow(1 - alpha)).clamp(min=1e-05).to(device).to(dtype) |
|
ln.weight.div_(scales) |
|
if getattr(ln, 'bias', None) is not None: |
|
ln.bias.div_(scales) |
|
for fc in fcs: |
|
fc.weight.mul_(scales.view(1, -1)) |
|
|
|
@torch.no_grad() |
|
def smooth_lm(model, scales, alpha=0.5): |
|
for (name, module) in model.named_modules(): |
|
if isinstance(module, OPTDecoderLayer): |
|
attn_ln = module.self_attn_layer_norm |
|
qkv = [module.self_attn.q_proj, module.self_attn.k_proj, module.self_attn.v_proj] |
|
qkv_input_scales = scales[name + '.self_attn.q_proj'] |
|
smooth_ln_fcs(attn_ln, qkv, qkv_input_scales, alpha) |
|
ffn_ln = module.final_layer_norm |
|
fc1 = module.fc1 |
|
fc1_input_scales = scales[name + '.fc1'] |
|
smooth_ln_fcs(ffn_ln, fc1, fc1_input_scales, alpha) |
|
elif isinstance(module, BloomBlock): |
|
attn_ln = module.input_layernorm |
|
qkv = module.self_attention.query_key_value |
|
qkv_input_scales = scales[name + '.self_attention.query_key_value'] |
|
smooth_ln_fcs(attn_ln, qkv, qkv_input_scales, alpha) |
|
ffn_ln = module.post_attention_layernorm |
|
fc1 = module.mlp.dense_h_to_4h |
|
fc1_input_scales = scales[name + '.mlp.dense_h_to_4h'] |
|
smooth_ln_fcs(ffn_ln, fc1, fc1_input_scales, alpha) |
|
elif isinstance(module, (LlamaDecoderLayer, MistralDecoderLayer)): |
|
attn_ln = module.input_layernorm |
|
qkv = [module.self_attn.q_proj, module.self_attn.k_proj, module.self_attn.v_proj] |
|
qkv_input_scales = scales[name + '.self_attn.q_proj'] |
|
smooth_ln_fcs(attn_ln, qkv, qkv_input_scales, alpha) |
|
ffn_ln = module.post_attention_layernorm |
|
fc = [module.mlp.gate_proj, module.mlp.up_proj] |
|
fc_input_scales = scales[name + '.mlp.gate_proj'] |
|
smooth_ln_fcs(ffn_ln, fc, fc_input_scales, alpha) |
|
|
|
def main(): |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument('--model', type=str, default='facebook/opt-125m', help='model name') |
|
parser.add_argument('--save-path', type=str, default=None, help='smoothed model model save path') |
|
parser.add_argument('--num-samples', type=int, default=512) |
|
parser.add_argument('--seq-len', type=int, default=512) |
|
parser.add_argument('--device', type=str, default=None, help='The device to use for generation.') |
|
args = parser.parse_args() |
|
if args.device is None: |
|
if torch.cuda.is_available(): |
|
device = torch.device('cuda') |
|
elif torch.backends.mps.is_available(): |
|
device = torch.device('mps') |
|
else: |
|
device = torch.device('cpu') |
|
else: |
|
device = torch.device(args.device) |
|
dataset = load_dataset('lambada', split=f'validation[:{args.num_samples}]').shuffle() |
|
tokenizer = AutoTokenizer.from_pretrained(args.model, model_max_length=args.seq_len) |
|
model = AutoModelForCausalLM.from_pretrained(args.model, torch_dtype='auto').to(device) |
|
act_scales = get_act_scales(model, tokenizer, dataset, args.num_samples, args.seq_len) |
|
smooth_lm(model, act_scales, 0.5) |
|
save_path = args.save_path |
|
if save_path is None: |
|
save_path = os.path.join('smoothed_models', args.model) |
|
model.save_pretrained(save_path) |
|
tokenizer.save_pretrained(save_path) |
|
if __name__ == '__main__': |
|
main() |
|
|
|
# File: optimum-quanto-main/optimum/quanto/calibrate.py |
|
from typing import Optional |
|
import torch |
|
from torch.nn.modules.module import register_module_forward_hook, register_module_forward_pre_hook |
|
from torch.overrides import TorchFunctionMode |
|
from .nn import QModuleMixin |
|
from .tensor import ActivationQBytesTensor, QTensor, axis_to_dim, dtype_info, qint8, qtype |
|
__all__ = ['Calibration', 'absmax_scale'] |
|
|
|
def _updated_scale(scale, new_scale, momentum): |
|
if torch.all(scale == 1): |
|
return new_scale |
|
return momentum * scale + new_scale * (1.0 - momentum) |
|
|
|
def absmax_scale(base: torch.Tensor, qtype: qtype=qint8, axis: Optional[int]=None) -> torch.Tensor: |
|
base = torch.abs(base) |
|
if axis is None: |
|
qranges = torch.max(base) |
|
else: |
|
dim = axis_to_dim(base, axis) |
|
qranges = torch.amax(base, dim=dim, keepdim=True) |
|
info = dtype_info(qtype.dtype) |
|
return qranges / info.max |
|
|
|
class Calibration(TorchFunctionMode): |
|
|
|
def __init__(self, *args, momentum: float=0.9, streamline=True, debug=False, **kwargs): |
|
super().__init__(*args, **kwargs) |
|
self.momentum = momentum |
|
self.streamline = streamline |
|
if streamline: |
|
self.modules_qactivations = {} |
|
self.streamline_hooks = {} |
|
self.debug = debug |
|
|
|
def __torch_function__(self, func, types, args=(), kwargs=None): |
|
kwargs = kwargs if kwargs is not None else {} |
|
qinput = QTensor in types |
|
output = func(*args, **kwargs) |
|
if self.streamline and qinput: |
|
for (i, arg) in enumerate(args): |
|
module = getattr(arg, 'src_module', None) |
|
if module is not None: |
|
if isinstance(output, ActivationQBytesTensor): |
|
self.modules_qactivations[module] = True |
|
elif isinstance(output, torch.Tensor): |
|
qactivations_required = self.modules_qactivations.get(module, False) |
|
self.modules_qactivations[module] = qactivations_required |
|
return output |
|
|
|
def __enter__(self): |
|
super().__enter__() |
|
self.pre_handle = register_module_forward_pre_hook(self.calibrate_input) |
|
self.post_handle = register_module_forward_hook(self.calibrate_output) |
|
|
|
def __exit__(self, exc_type, exc_val, exc_tb): |
|
super().__exit__(exc_type, exc_val, exc_tb) |
|
self.pre_handle.remove() |
|
self.post_handle.remove() |
|
if self.streamline: |
|
for handle in self.streamline_hooks.values(): |
|
handle.remove() |
|
|
|
def calibrate_input(self, module: torch.nn.Module, input, momentum: float=0.9): |
|
if isinstance(module, QModuleMixin) and module.activation_qtype is not None: |
|
input = input[0] |
|
if isinstance(input, ActivationQBytesTensor): |
|
module.input_scale = torch.max(input._scale) |
|
else: |
|
input_scale = absmax_scale(input, module.activation_qtype) |
|
module.input_scale = _updated_scale(module.input_scale, input_scale, momentum) |
|
if self.streamline and module not in self.streamline_hooks: |
|
self.streamline_hooks[module] = module.register_forward_hook(self.tag_outputs) |
|
return input |
|
|
|
def calibrate_output(self, module: torch.nn.Module, input: torch.Tensor, output: torch.Tensor): |
|
if isinstance(module, QModuleMixin) and module.activation_qtype is not None: |
|
output_scale = absmax_scale(output, module.activation_qtype, axis=None) |
|
module.output_scale = _updated_scale(module.output_scale, output_scale, self.momentum) |
|
return output |
|
else: |
|
if self.streamline: |
|
for (name, child) in module.named_children(): |
|
if isinstance(child, QModuleMixin) and child.activation_qtype is not None: |
|
qactivations_required = self.modules_qactivations.get(child, False) |
|
if not qactivations_required: |
|
child.disable_output_quantization() |
|
if self.debug: |
|
for (name, child) in module.named_children(): |
|
if isinstance(child, QModuleMixin): |
|
classname = child.__class__.__name__ |
|
trace = f'{name}({classname}) activations are' |
|
if child.activation_qtype is None: |
|
trace += ' not quantized.' |
|
else: |
|
trace += f' quantized to {child.activation_qtype} with scale {child.output_scale}.' |
|
print(trace) |
|
|
|
def tag_outputs(self, module: torch.nn.Module, input: torch.Tensor, output: torch.Tensor): |
|
output.src_module = module |
|
|
|
# File: optimum-quanto-main/optimum/quanto/library/extensions/cpp/__init__.py |
|
import os |
|
import torch |
|
from ..extension import Extension |
|
__all__ = [] |
|
ext = Extension('quanto_cpp', root_dir=os.path.dirname(__file__), sources=['unpack.cpp', 'pybind_module.cpp'], extra_cflags=['-O3']) |
|
|
|
@torch.library.impl('quanto_ext::unpack', ['CPU']) |
|
def unpack_cpp(t: torch.Tensor, bits: int): |
|
return ext.lib.unpack(t, bits) |
|
|
|
# File: optimum-quanto-main/optimum/quanto/library/extensions/cuda/__init__.py |
|
import os |
|
import torch |
|
from ..extension import Extension |
|
__all__ = [] |
|
|
|
def get_max_cuda_arch(): |
|
capability_list = [] |
|
supported_sm = [int(arch.split('_')[1]) for arch in torch.cuda.get_arch_list() if 'sm_' in arch] |
|
if supported_sm: |
|
max_supported_sm = max(((sm // 10, sm % 10) for sm in supported_sm)) |
|
for i in range(torch.cuda.device_count()): |
|
capability = torch.cuda.get_device_capability(i) |
|
capability = min(max_supported_sm, capability) |
|
if capability not in capability_list: |
|
capability_list.append(capability) |
|
max_capability = max(sorted(capability_list)) if len(capability_list) > 0 else (0, 0) |
|
return f'{max_capability[0]}{max_capability[1]}0' |
|
extra_cflags = ['-g', '-O3', '-fopenmp', '-lgomp', '-std=c++17', '-DENABLE_BF16'] |
|
extra_cuda_cflags = ['-O3', '-std=c++17', '-DENABLE_BF16', '-U__CUDA_NO_HALF_OPERATORS__', '-U__CUDA_NO_HALF_CONVERSIONS__', '-U__CUDA_NO_BFLOAT16_OPERATORS__', '-U__CUDA_NO_BFLOAT16_CONVERSIONS__', '-U__CUDA_NO_BFLOAT162_OPERATORS__', '-U__CUDA_NO_BFLOAT162_CONVERSIONS__', '--expt-relaxed-constexpr', '--expt-extended-lambda', '--use_fast_math', '--threads=8'] |
|
quanto_cuda_arch = get_max_cuda_arch() |
|
extra_cuda_cflags += [f'-DQUANTO_CUDA_ARCH={quanto_cuda_arch}'] |
|
module_path = os.path.dirname(__file__) |
|
sources = ['unpack.cu', 'awq/v2/gemm_cuda.cu', 'awq/v2/gemv_cuda.cu', 'marlin/fp8_marlin.cu', 'marlin/gptq_marlin_repack.cu', 'pybind_module.cpp'] |
|
ext = Extension('quanto_cuda', root_dir=os.path.dirname(__file__), sources=sources, extra_cflags=extra_cflags, extra_cuda_cflags=extra_cuda_cflags) |
|
|
|
@torch.library.impl('quanto_ext::unpack', ['CUDA']) |
|
def unpack_cuda(t: torch.Tensor, bits: int): |
|
return ext.lib.unpack(t, bits) |
|
torch.library.define('quanto::gemm', '(Tensor input, Tensor other, Tensor other_scale, Tensor other_shift, int rows, int out_cols, int in_cols, int bits, int group_size) -> Tensor') |
|
|
|
@torch.library.impl('quanto::gemm', ['CUDA']) |
|
def gemm_cuda(input: torch.Tensor, other: torch.Tensor, scales: torch.Tensor, shift: torch.Tensor, rows: int, out_cols: int, in_cols: int, bits: int, group_size: int): |
|
assert out_cols >= 128 |
|
assert input.dtype == torch.float16 |
|
assert input.numel() == rows * in_cols |
|
assert other.dtype == torch.int16 |
|
assert scales.dtype == torch.float16 |
|
assert scales.shape[-1] == out_cols |
|
assert shift.dtype == torch.float16 |
|
assert shift.shape[-1] == out_cols |
|
assert bits == 4 |
|
assert group_size == 128 |
|
if rows < 8: |
|
return ext.lib.awq_v2_gemv_f16i4(input, other, scales, shift, rows, out_cols, in_cols, group_size) |
|
return ext.lib.awq_v2_gemm_f16i4(input, other, scales, shift) |
|
|
|
@torch.library.custom_op('quanto::fp8_marlin_gemm', mutates_args=(), device_types=['cuda']) |
|
def fp8_marlin_gemm(a: torch.Tensor, b_q_weight: torch.Tensor, b_scales: torch.Tensor, workspace: torch.Tensor, num_bits: int, size_m: int, size_n: int, size_k: int) -> torch.Tensor: |
|
assert b_scales.dtype == torch.float16 or b_scales.dtype == torch.bfloat16 |
|
assert b_q_weight.dim() == 2 |
|
assert b_q_weight.dtype == torch.int32 |
|
return ext.lib.fp8_marlin_gemm(a, b_q_weight, b_scales, workspace, num_bits, size_m, size_n, size_k) |
|
|
|
@torch.library.custom_op('quanto::gptq_marlin_repack', mutates_args=(), device_types=['cuda']) |
|
def gptq_marlin_repack(b_q_weight: torch.Tensor, perm: torch.Tensor, size_k: int, size_n: int, num_bits: int) -> torch.Tensor: |
|
assert b_q_weight.dim() == 2 |
|
assert b_q_weight.dtype == torch.int32 |
|
return ext.lib.gptq_marlin_repack(b_q_weight, perm, size_k, size_n, num_bits) |
|
|
|
# File: optimum-quanto-main/optimum/quanto/library/extensions/extension.py |
|
import os |
|
import shutil |
|
import warnings |
|
from typing import List |
|
import torch |
|
from torch.utils.cpp_extension import load |
|
|
|
class Extension(object): |
|
|
|
def __init__(self, name: str, root_dir: str, sources: List[str], extra_cflags: List[str]=None, extra_cuda_cflags: List[str]=None): |
|
self.name = name |
|
self.sources = [f'{root_dir}/{source}' for source in sources] |
|
self.extra_cflags = extra_cflags |
|
self.extra_cuda_cflags = extra_cuda_cflags |
|
self.build_directory = os.path.join(root_dir, 'build') |
|
self._lib = None |
|
|
|
@property |
|
def lib(self): |
|
if self._lib is None: |
|
version_file = os.path.join(self.build_directory, 'pytorch_version.txt') |
|
if os.path.exists(version_file): |
|
with open(version_file, 'r') as f: |
|
pytorch_build_version = f.read().rstrip() |
|
if pytorch_build_version != torch.__version__: |
|
shutil.rmtree(self.build_directory) |
|
warnings.warn(f'{self.name} was compiled with pytorch {pytorch_build_version}, but {torch.__version__} is installed: it will be recompiled.') |
|
os.makedirs(self.build_directory, exist_ok=True) |
|
self._lib = load(name=self.name, sources=self.sources, extra_cflags=self.extra_cflags, extra_cuda_cflags=self.extra_cuda_cflags, build_directory=self.build_directory) |
|
if not os.path.exists(version_file): |
|
with open(version_file, 'w') as f: |
|
f.write(torch.__version__) |
|
return self._lib |
|
|
|
# File: optimum-quanto-main/optimum/quanto/library/extensions/mps/__init__.py |
|
import os |
|
import torch |
|
from ..extension import Extension |
|
__all__ = [] |
|
ext = Extension('quanto_mps', root_dir=os.path.dirname(__file__), sources=['unpack.mm', 'pybind_module.cpp'], extra_cflags=['-std=c++17']) |
|
|
|
@torch.library.impl('quanto_ext::unpack', 'MPS') |
|
def unpack_mps(t: torch.Tensor, bits: int): |
|
return ext.lib.unpack(t, bits) |
|
|
|
# File: optimum-quanto-main/optimum/quanto/library/ops.py |
|
import warnings |
|
from contextlib import contextmanager |
|
import torch |
|
_ext_enabled = True |
|
|
|
@contextmanager |
|
def disable_extensions(): |
|
try: |
|
global _ext_enabled |
|
_ext_enabled = False |
|
yield |
|
finally: |
|
_ext_enabled = True |
|
|
|
def define(name, schema): |
|
for libname in ['quanto', 'quanto_py', 'quanto_ext']: |
|
torch.library.define(f'{libname}::{name}', schema) |
|
|
|
@torch.library.impl(f'quanto::{name}', 'default') |
|
def impl(*args, **kwargs): |
|
if _ext_enabled: |
|
try: |
|
return getattr(torch.ops.quanto_ext, name)(*args, **kwargs) |
|
except Exception as e: |
|
if isinstance(e, NotImplementedError): |
|
message = f'No optimized kernel found for quanto::{name}.' |
|
else: |
|
message = f'An exception was raised while calling the optimized kernel for quanto::{name}: {e}' |
|
warnings.warn(message + ' Falling back to default implementation.') |
|
return getattr(torch.ops.quanto_py, name)(*args, **kwargs) |
|
define('unpack', '(Tensor self, int bits) -> Tensor') |
|
|
|
# File: optimum-quanto-main/optimum/quanto/library/python/unpack.py |
|
import torch |
|
|
|
@torch.library.impl('quanto_py::unpack', 'default') |
|
def unpack(packed: torch.Tensor, bits: int) -> torch.Tensor: |
|
unpacked = [] |
|
values_per_item = 8 // bits |
|
|
|
def rshift(t: torch.Tensor, bits: int): |
|
if t.device.type == 'mps': |
|
return t // 2 ** bits |
|
return t >> bits |
|
for i in range(values_per_item): |
|
mask = 2 ** (bits * (i + 1)) - 1 |
|
unpacked.append(rshift(packed & mask, bits * i)) |
|
return torch.cat(unpacked).to(torch.uint8) |
|
|
|
# File: optimum-quanto-main/optimum/quanto/library/qbytes_mm.py |
|
import torch |
|
from packaging import version |
|
__all__ = [] |
|
torch.library.define('quanto::qbytes_mm', '(Tensor A, Tensor B, Tensor scales) -> Tensor') |
|
|
|
def qbytes_mm(activations: torch.Tensor, weights: torch.Tensor, output_scales: torch.Tensor) -> torch.Tensor: |
|
activations = activations.to(output_scales.dtype) |
|
if weights.dtype.is_floating_point: |
|
weights = weights.to(output_scales.dtype) |
|
weights = output_scales * weights |
|
return torch.matmul(activations, weights.t()) |
|
|
|
def qbytes_int_mm(activations: torch.Tensor, weights: torch.Tensor, output_scales: torch.Tensor) -> torch.Tensor: |
|
in_features = activations.shape[-1] |
|
out_features = weights.shape[0] |
|
weights = weights.t() |
|
if activations.ndim == 2: |
|
out_data = torch._int_mm(activations, weights) |
|
else: |
|
output_shape = activations.shape[:-1] + (out_features,) |
|
out_data = torch._int_mm(activations.view(-1, in_features), weights) |
|
out_data = out_data.view(output_shape) |
|
fp32_output = out_data.to(torch.float32) * output_scales.t() |
|
return fp32_output.to(output_scales.dtype) |
|
|
|
def qbytes_int8pack_mm(activations: torch.Tensor, weights: torch.Tensor, output_scales: torch.Tensor) -> torch.Tensor: |
|
output_scales = output_scales.flatten() |
|
if activations.ndim == 2: |
|
return torch._weight_int8pack_mm(activations, weights, output_scales) |
|
else: |
|
in_features = activations.shape[-1] |
|
out_features = weights.shape[0] |
|
output_shape = activations.shape[:-1] + (out_features,) |
|
out_data = torch._weight_int8pack_mm(activations.view(-1, in_features), weights, output_scales) |
|
return out_data.view(output_shape) |
|
|
|
@torch.library.impl('quanto::qbytes_mm', 'default') |
|
def qbytes_mm_impl_default(activations: torch.Tensor, weights: torch.Tensor, output_scales: torch.Tensor) -> torch.Tensor: |
|
return qbytes_mm(activations, weights, output_scales) |
|
|
|
@torch.library.impl('quanto::qbytes_mm', 'CUDA') |
|
def qbytes_mm_impl_cuda(activations: torch.Tensor, weights: torch.Tensor, output_scales: torch.Tensor) -> torch.Tensor: |
|
assert activations.ndim in (2, 3) |
|
in_features = activations.shape[-1] |
|
tokens = activations.shape[0] if activations.ndim == 2 else activations.shape[0] * activations.shape[1] |
|
out_features = weights.shape[0] |
|
if activations.dtype == torch.int8 and weights.dtype == torch.int8 and (tokens > 16) and (tokens % 8 == 0) and (in_features % 8 == 0) and (out_features % 8 == 0): |
|
return qbytes_int_mm(activations, weights, output_scales) |
|
return qbytes_mm(activations, weights, output_scales) |
|
|
|
@torch.library.impl('quanto::qbytes_mm', 'CPU') |
|
def qbytes_mm_impl_cpu(activations: torch.Tensor, weights: torch.Tensor, output_scales: torch.Tensor) -> torch.Tensor: |
|
if version.parse(torch.__version__).release > version.parse('2.4.0').release and activations.dtype == torch.int8 and (weights.dtype == torch.int8): |
|
return qbytes_int_mm(activations, weights, output_scales) |
|
in_features = activations.shape[-1] |
|
if activations.dtype == torch.bfloat16 and weights.dtype == torch.int8 and (in_features % 4 == 0): |
|
if type(activations) is not torch.Tensor: |
|
activations = activations.dequantize() |
|
return qbytes_int8pack_mm(activations, weights, output_scales) |
|
return qbytes_mm(activations, weights, output_scales) |
|
|
|
@torch.library.impl('quanto_py::qbytes_mm', 'MPS') |
|
def qbytes_mm_impl_mps(activations: torch.Tensor, weights: torch.Tensor, output_scales: torch.Tensor) -> torch.Tensor: |
|
in_features = activations.shape[-1] |
|
out_features = weights.shape[0] |
|
if version.parse(torch.__version__).release >= version.parse('2.4.0').release and activations.dtype == torch.bfloat16 and (weights.dtype == torch.int8) and (in_features % 32 == 0) and (out_features % 32 == 0): |
|
if type(activations) is not torch.Tensor: |
|
activations = activations.dequantize() |
|
return qbytes_int8pack_mm(activations, weights, output_scales) |
|
return qbytes_mm(activations, weights, output_scales) |
|
|
|
# File: optimum-quanto-main/optimum/quanto/library/quantize.py |
|
from typing import Union |
|
import torch |
|
from ..tensor import dtype_info, group |
|
|
|
@torch.library.custom_op('quanto::quantize_symmetric', mutates_args=()) |
|
def quantize_symmetric(base: torch.Tensor, dtype: torch.dtype, axis: Union[int, None], scale: torch.Tensor) -> torch.Tensor: |
|
if axis is None: |
|
if scale.ndim > 0: |
|
raise ValueError('Scale must be a scalar when quantizing per-tensor') |
|
else: |
|
if base.ndim == 1: |
|
raise ValueError('1D Tensors cannot be quantized per-axis') |
|
if axis == base.ndim - 1: |
|
axis = -1 |
|
if axis not in (0, -1): |
|
raise ValueError('Quantization is only supported along the first or last axis.') |
|
if base.shape[axis] == 1: |
|
raise ValueError(f'Cannot quantize Tensor of shape {base.shape} along axis {axis} of size 1') |
|
if torch.squeeze(scale).ndim > 1: |
|
raise ValueError('Quantizing along multiple axis is not supported') |
|
if scale.ndim != base.ndim: |
|
raise ValueError('When quantizing per-axis, the scale must be broadcastable to the base (Tip: try to add missing dims of length zero).') |
|
data = base / scale |
|
if not dtype.is_floating_point: |
|
data = torch.round(data) |
|
info = dtype_info(dtype) |
|
return torch.clamp(data, min=info.min, max=info.max).to(dtype) |
|
|
|
@torch.library.custom_op('quanto::quantize_affine', mutates_args=()) |
|
def quantize_affine(base: torch.Tensor, bits: int, axis: int, group_size: Union[int, None], scale: torch.Tensor, shift: torch.Tensor) -> torch.Tensor: |
|
if axis not in (0, -1): |
|
raise ValueError('QBitsTensor axis parameter must be 0 (first axis) or -1 (last axis)') |
|
if group_size is not None: |
|
base = group(base, axis=axis, group_size=group_size) |
|
if shift.dtype.is_floating_point: |
|
data = torch.round((base + shift) / scale) |
|
else: |
|
data = torch.round(base / scale) + shift |
|
return torch.clamp(data, min=0, max=2 ** bits - 1).to(torch.uint8) |
|
|
|
# File: optimum-quanto-main/optimum/quanto/models/__init__.py |
|
import importlib |
|
import os |
|
from collections.abc import Mapping |
|
from typing import Any, Dict, List, Optional, Union |
|
|
|
def is_transformers_available() -> bool: |
|
return importlib.util.find_spec('transformers') is not None |
|
|
|
def is_diffusers_available() -> bool: |
|
return importlib.util.find_spec('diffusers') is not None |
|
if is_transformers_available(): |
|
from .transformers_models import * |
|
if is_diffusers_available(): |
|
from .diffusers_models import * |
|
|
|
# File: optimum-quanto-main/optimum/quanto/models/diffusers_models.py |
|
import json |
|
import os |
|
from pathlib import Path |
|
from typing import Any, List, Optional, Union |
|
from huggingface_hub import ModelHubMixin, snapshot_download |
|
from ..quantize import Optimizer, freeze, qtype, quantization_map, quantize, requantize |
|
from . import is_diffusers_available |
|
__all__ = ['QuantizedDiffusersModel', 'QuantizedPixArtTransformer2DModel'] |
|
if not is_diffusers_available(): |
|
raise ImportError(f'{__all__} require the diffusers library') |
|
from diffusers import PixArtTransformer2DModel |
|
from diffusers.models.model_loading_utils import load_state_dict |
|
from diffusers.models.modeling_utils import ModelMixin |
|
from diffusers.utils import CONFIG_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFETENSORS_WEIGHTS_NAME, _get_checkpoint_shard_files, is_accelerate_available |
|
from .shared_dict import ShardedStateDict |
|
|
|
class QuantizedDiffusersModel(ModelHubMixin): |
|
BASE_NAME = 'quanto' |
|
base_class = None |
|
|
|
def __init__(self, model: ModelMixin): |
|
if not isinstance(model, ModelMixin) or len(quantization_map(model)) == 0: |
|
raise ValueError('The source model must be a quantized diffusers model.') |
|
self._wrapped = model |
|
|
|
def __getattr__(self, name: str) -> Any: |
|
try: |
|
return super().__getattr__(name) |
|
except AttributeError: |
|
wrapped = self.__dict__['_wrapped'] |
|
return getattr(wrapped, name) |
|
|
|
def forward(self, *args, **kwargs): |
|
return self._wrapped.forward(*args, **kwargs) |
|
|
|
def __call__(self, *args, **kwargs): |
|
return self._wrapped.forward(*args, **kwargs) |
|
|
|
@staticmethod |
|
def _qmap_name(): |
|
return f'{QuantizedDiffusersModel.BASE_NAME}_qmap.json' |
|
|
|
@classmethod |
|
def quantize(cls, model: ModelMixin, weights: Optional[Union[str, qtype]]=None, activations: Optional[Union[str, qtype]]=None, optimizer: Optional[Optimizer]=None, include: Optional[Union[str, List[str]]]=None, exclude: Optional[Union[str, List[str]]]=None): |
|
if not isinstance(model, ModelMixin): |
|
raise ValueError('The source model must be a diffusers model.') |
|
quantize(model, weights=weights, activations=activations, optimizer=optimizer, include=include, exclude=exclude) |
|
freeze(model) |
|
return cls(model) |
|
|
|
@classmethod |
|
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs): |
|
if cls.base_class is None: |
|
raise ValueError('The `base_class` attribute needs to be configured.') |
|
if not is_accelerate_available(): |
|
raise ValueError('Reloading a quantized diffusers model requires the accelerate library.') |
|
from accelerate import init_empty_weights |
|
if os.path.isdir(pretrained_model_name_or_path): |
|
working_dir = pretrained_model_name_or_path |
|
else: |
|
working_dir = snapshot_download(pretrained_model_name_or_path, **kwargs) |
|
qmap_path = os.path.join(working_dir, cls._qmap_name()) |
|
if not os.path.exists(qmap_path): |
|
raise ValueError(f'No quantization map found in {pretrained_model_name_or_path}: is this a quantized model ?') |
|
model_config_path = os.path.join(working_dir, CONFIG_NAME) |
|
if not os.path.exists(model_config_path): |
|
raise ValueError(f'{CONFIG_NAME} not found in {pretrained_model_name_or_path}.') |
|
with open(qmap_path, 'r', encoding='utf-8') as f: |
|
qmap = json.load(f) |
|
with open(model_config_path, 'r', encoding='utf-8') as f: |
|
original_model_cls_name = json.load(f)['_class_name'] |
|
configured_cls_name = cls.base_class.__name__ |
|
if configured_cls_name != original_model_cls_name: |
|
raise ValueError(f'Configured base class ({configured_cls_name}) differs from what was derived from the provided configuration ({original_model_cls_name}).') |
|
config = cls.base_class.load_config(pretrained_model_name_or_path, **kwargs) |
|
with init_empty_weights(): |
|
model = cls.base_class.from_config(config) |
|
checkpoint_file = os.path.join(working_dir, SAFE_WEIGHTS_INDEX_NAME) |
|
if os.path.exists(checkpoint_file): |
|
(_, sharded_metadata) = _get_checkpoint_shard_files(working_dir, checkpoint_file) |
|
state_dict = ShardedStateDict(working_dir, sharded_metadata['weight_map']) |
|
else: |
|
checkpoint_file = os.path.join(working_dir, SAFETENSORS_WEIGHTS_NAME) |
|
if not os.path.exists(checkpoint_file): |
|
raise ValueError(f'No safetensor weights found in {pretrained_model_name_or_path}.') |
|
state_dict = load_state_dict(checkpoint_file) |
|
requantize(model, state_dict=state_dict, quantization_map=qmap) |
|
model.eval() |
|
return cls(model) |
|
|
|
def _save_pretrained(self, save_directory: Path) -> None: |
|
self._wrapped.save_pretrained(save_directory) |
|
qmap_name = os.path.join(save_directory, self._qmap_name()) |
|
qmap = quantization_map(self._wrapped) |
|
with open(qmap_name, 'w', encoding='utf8') as f: |
|
json.dump(qmap, f, indent=4) |
|
|
|
class QuantizedPixArtTransformer2DModel(QuantizedDiffusersModel): |
|
base_class = PixArtTransformer2DModel |
|
|
|
# File: optimum-quanto-main/optimum/quanto/models/shared_dict.py |
|
import os |
|
from collections.abc import Mapping |
|
from typing import Any, Dict |
|
from safetensors import safe_open |
|
|
|
class ShardedStateDict(Mapping): |
|
|
|
def __init__(self, base_dir: str, tensor_index: Dict[str, str]): |
|
self._base_dir = base_dir |
|
self._index = tensor_index |
|
self._handles = {} |
|
|
|
def __iter__(self): |
|
yield from self._index |
|
|
|
def __len__(self): |
|
return self._index.__len__() |
|
|
|
def __getitem__(self, key: Any) -> Any: |
|
filename = self._index.__getitem__(key) |
|
if filename not in self._handles: |
|
f = safe_open(os.path.join(self._base_dir, filename), framework='pytorch') |
|
self._handles[filename] = f |
|
f = self._handles[filename] |
|
return f.get_tensor(key) |
|
|
|
def __contains__(self, key: object) -> bool: |
|
return self._index.__contains__(key) |
|
|
|
def keys(self): |
|
return self._index.keys() |
|
|
|
# File: optimum-quanto-main/optimum/quanto/models/transformers_models.py |
|
import json |
|
import os |
|
from pathlib import Path |
|
from typing import Any, List, Optional, Union |
|
from huggingface_hub import ModelHubMixin, snapshot_download |
|
from ..nn import QModuleMixin |
|
from ..quantize import Optimizer, freeze, qtype, quantization_map, quantize, requantize |
|
from . import is_transformers_available |
|
from .shared_dict import ShardedStateDict |
|
__all__ = ['QuantizedTransformersModel', 'QuantizedModelForCausalLM'] |
|
if not is_transformers_available(): |
|
raise ImportError(f'{__all__} require the transformers library') |
|
from transformers import AutoConfig, AutoModelForCausalLM, PreTrainedModel |
|
from transformers.modeling_utils import get_checkpoint_shard_files, load_state_dict |
|
from transformers.utils import SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, is_accelerate_available |
|
|
|
class QuantizedTransformersModel(ModelHubMixin): |
|
BASE_NAME = 'quanto' |
|
auto_class = None |
|
|
|
def __init__(self, model: PreTrainedModel): |
|
if not isinstance(model, PreTrainedModel) or len(quantization_map(model)) == 0: |
|
raise ValueError('The source model must be a quantized transformers model.') |
|
self._wrapped = model |
|
|
|
def __getattr__(self, name: str) -> Any: |
|
try: |
|
return super().__getattr__(name) |
|
except AttributeError: |
|
wrapped = self.__dict__['_wrapped'] |
|
return getattr(wrapped, name) |
|
|
|
def forward(self, *args, **kwargs): |
|
return self._wrapped.forward(*args, **kwargs) |
|
|
|
@staticmethod |
|
def _qmap_name(): |
|
return f'{QuantizedTransformersModel.BASE_NAME}_qmap.json' |
|
|
|
@classmethod |
|
def quantize(cls, model: PreTrainedModel, weights: Optional[Union[str, qtype]]=None, activations: Optional[Union[str, qtype]]=None, optimizer: Optional[Optimizer]=None, include: Optional[Union[str, List[str]]]=None, exclude: Optional[Union[str, List[str]]]=None): |
|
if not isinstance(model, PreTrainedModel): |
|
raise ValueError('The source model must be a transformers model.') |
|
quantize(model, weights=weights, activations=activations, optimizer=optimizer, include=include, exclude=exclude) |
|
freeze(model) |
|
return cls(model) |
|
|
|
@classmethod |
|
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs): |
|
if cls.auto_class is None: |
|
raise ValueError('Quantized models cannot be reloaded using {cls}: use a specialized quantized class such as QuantizedModelForCausalLM instead.') |
|
if not is_accelerate_available(): |
|
raise ValueError('Reloading a quantized transformers model requires the accelerate library.') |
|
from accelerate import init_empty_weights |
|
if os.path.isdir(pretrained_model_name_or_path): |
|
working_dir = pretrained_model_name_or_path |
|
else: |
|
working_dir = snapshot_download(pretrained_model_name_or_path, **kwargs) |
|
qmap_path = os.path.join(working_dir, cls._qmap_name()) |
|
if not os.path.exists(qmap_path): |
|
raise ValueError(f'No quantization map found in {pretrained_model_name_or_path}: is this a quantized model ?') |
|
with open(qmap_path, 'r', encoding='utf-8') as f: |
|
qmap = json.load(f) |
|
config = AutoConfig.from_pretrained(pretrained_model_name_or_path, **kwargs) |
|
with init_empty_weights(): |
|
model = cls.auto_class.from_config(config) |
|
checkpoint_file = os.path.join(working_dir, SAFE_WEIGHTS_INDEX_NAME) |
|
if os.path.exists(checkpoint_file): |
|
(checkpoint_file, sharded_metadata) = get_checkpoint_shard_files(working_dir, checkpoint_file) |
|
state_dict = ShardedStateDict(working_dir, sharded_metadata['weight_map']) |
|
else: |
|
checkpoint_file = os.path.join(working_dir, SAFE_WEIGHTS_NAME) |
|
if not os.path.exists(checkpoint_file): |
|
raise ValueError(f'No safetensor weights found in {pretrained_model_name_or_path}.') |
|
state_dict = load_state_dict(checkpoint_file) |
|
requantize(model, state_dict=state_dict, quantization_map=qmap) |
|
if getattr(model.config, 'tie_word_embeddings', True): |
|
model.tie_weights() |
|
model.eval() |
|
return cls(model) |
|
|
|
def _save_pretrained(self, save_directory: Path) -> None: |
|
model = self._wrapped |
|
if getattr(model.config, 'tie_word_embeddings', True): |
|
if isinstance(model.get_input_embeddings(), QModuleMixin) or isinstance(model.get_output_embeddings(), QModuleMixin): |
|
model.config.tie_word_embeddings = False |
|
self._wrapped.save_pretrained(save_directory, safe_serialization=True) |
|
qmap_name = os.path.join(save_directory, self._qmap_name()) |
|
qmap = quantization_map(self._wrapped) |
|
with open(qmap_name, 'w', encoding='utf8') as f: |
|
json.dump(qmap, f, indent=4) |
|
|
|
class QuantizedModelForCausalLM(QuantizedTransformersModel): |
|
auto_class = AutoModelForCausalLM |
|
|
|
# File: optimum-quanto-main/optimum/quanto/nn/qconv2d.py |
|
from typing import Optional |
|
import torch |
|
from ..tensor import Optimizer, qtype |
|
from .qmodule import QModuleMixin, register_qmodule |
|
__all__ = ['QConv2d'] |
|
|
|
@register_qmodule(torch.nn.Conv2d) |
|
class QConv2d(QModuleMixin, torch.nn.Conv2d): |
|
|
|
@classmethod |
|
def qcreate(cls, module, weights: qtype, activations: Optional[qtype]=None, optimizer: Optional[Optimizer]=None, device: Optional[torch.device]=None): |
|
return cls(in_channels=module.in_channels, out_channels=module.out_channels, kernel_size=module.kernel_size, stride=module.stride, padding=module.padding, dilation=module.dilation, groups=module.groups, bias=module.bias is not None, padding_mode=module.padding_mode, dtype=module.weight.dtype, device=device, weights=weights, activations=activations, optimizer=optimizer) |
|
|
|
def forward(self, input: torch.Tensor) -> torch.Tensor: |
|
return self._conv_forward(input, self.qweight, self.bias) |
|
|
|
# File: optimum-quanto-main/optimum/quanto/nn/qlayernorm.py |
|
from typing import Optional |
|
import torch |
|
from ..tensor import Optimizer, qtype |
|
from .qmodule import QModuleMixin, register_qmodule |
|
__all__ = ['QLayerNorm'] |
|
|
|
@register_qmodule(torch.nn.LayerNorm) |
|
class QLayerNorm(QModuleMixin, torch.nn.LayerNorm): |
|
|
|
@classmethod |
|
def qcreate(cls, module, weights: Optional[qtype]=None, activations: Optional[qtype]=None, optimizer: Optional[Optimizer]=None, device: Optional[torch.device]=None): |
|
if activations is None: |
|
return None |
|
return cls(module.normalized_shape, module.eps, module.elementwise_affine, module.bias is not None, dtype=module.weight.dtype, device=device, weights=None, activations=activations, optimizer=None) |
|
|
|
def forward(self, input: torch.Tensor) -> torch.Tensor: |
|
return torch.nn.functional.layer_norm(input, self.normalized_shape, self.weight, self.bias, self.eps) |
|
|
|
# File: optimum-quanto-main/optimum/quanto/nn/qlinear.py |
|
from typing import Optional |
|
import torch |
|
from ..tensor import Optimizer, qtype |
|
from .qmodule import QModuleMixin, register_qmodule |
|
__all__ = ['QLinear'] |
|
|
|
@register_qmodule(torch.nn.Linear) |
|
class QLinear(QModuleMixin, torch.nn.Linear): |
|
|
|
@classmethod |
|
def qcreate(cls, module, weights: qtype, activations: Optional[qtype]=None, optimizer: Optional[Optimizer]=None, device: Optional[torch.device]=None): |
|
return cls(module.in_features, module.out_features, module.bias is not None, dtype=module.weight.dtype, device=device, weights=weights, activations=activations, optimizer=optimizer, quantize_input=True) |
|
|
|
def forward(self, input: torch.Tensor) -> torch.Tensor: |
|
return torch.nn.functional.linear(input, self.qweight, bias=self.bias) |
|
|
|
# File: optimum-quanto-main/optimum/quanto/nn/qmodule.py |
|
from abc import ABC |
|
from typing import Optional, Union |
|
import torch |
|
from ..tensor import ActivationQBytesTensor, Optimizer, QBitsTensor, QTensor, WeightQBytesTensor, qint2, qint4, qtype, qtypes, quantize_activation, quantize_weight |
|
__all__ = ['QModuleMixin', 'register_qmodule', 'quantize_module'] |
|
_QMODULE_TABLE = {} |
|
|
|
def register_qmodule(module_cls): |
|
|
|
def wrapper(cls): |
|
_QMODULE_TABLE[module_cls] = cls |
|
return cls |
|
return wrapper |
|
|
|
def quantize_module(module, weights: Optional[Union[qtype, str]]=None, activations: Optional[Union[qtype, str]]=None, optimizer: Optional[Optimizer]=None): |
|
for cls in _QMODULE_TABLE: |
|
if isinstance(module, cls): |
|
qcls = _QMODULE_TABLE[cls] |
|
return qcls.from_module(module, weights=weights, activations=activations, optimizer=optimizer) |
|
return None |
|
|
|
class QModuleMixin(ABC): |
|
|
|
def __init__(self, *args, weights: Optional[Union[qtype, str]]=None, activations: Optional[Union[qtype, str]]=None, optimizer: Optional[Optimizer]=None, quantize_input: Optional[bool]=False, device: Optional[torch.device]=None, **kwargs): |
|
mro = self.__class__.__mro__ |
|
if torch.nn.Module not in mro: |
|
raise TypeError('Quantized modules must inherit from a torch.nn.Module class') |
|
if mro.index(__class__) > mro.index(torch.nn.Module): |
|
raise TypeError('QModuleMixin must be placed before any torch.nn.Module class in quantized module inheritance.') |
|
super().__init__(*args, device=device, **kwargs) |
|
if weights is not None and (not isinstance(weights, qtype)): |
|
weights = qtypes[weights] |
|
if activations is not None and (not isinstance(activations, qtype)): |
|
activations = qtypes[activations] |
|
self.weight_qtype = weights |
|
self.weight_group_size = None |
|
if self.weight_qtype in (qint2, qint4): |
|
out_features = self.weight.shape[0] |
|
in_features = self.weight.numel() // out_features |
|
group_size = 128 |
|
if in_features > group_size: |
|
while in_features % group_size != 0 and group_size > 32: |
|
group_size -= 32 |
|
if in_features % group_size == 0: |
|
self.weight_group_size = group_size |
|
self.activation_qtype = activations |
|
self._quantize_hooks = {} |
|
if activations is not None: |
|
if quantize_input: |
|
self._quantize_hooks['input'] = self.register_forward_pre_hook(self.quantize_input) |
|
self._quantize_hooks['output'] = self.register_forward_hook(self.quantize_output) |
|
self.optimizer = optimizer |
|
self.register_buffer('input_scale', torch.ones((), dtype=self.weight.dtype, device=device)) |
|
self.register_buffer('output_scale', torch.ones((), dtype=self.weight.dtype, device=device)) |
|
|
|
def disable_output_quantization(self): |
|
if 'output' in self._quantize_hooks: |
|
self._quantize_hooks['output'].remove() |
|
|
|
def _save_to_state_dict(self, destination, prefix, keep_vars): |
|
if self.weight_qtype is None or not self.frozen: |
|
destination[prefix + 'weight'] = self.weight if keep_vars else self.weight.detach() |
|
else: |
|
self.weight.save_to_state_dict(destination, prefix + 'weight.', keep_vars) |
|
if self.bias is not None: |
|
destination[prefix + 'bias'] = self.bias if keep_vars else self.bias.detach() |
|
destination[prefix + 'input_scale'] = self.input_scale if keep_vars else self.input_scale.detach() |
|
destination[prefix + 'output_scale'] = self.output_scale if keep_vars else self.output_scale.detach() |
|
|
|
def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs): |
|
weight_name = prefix + 'weight' |
|
if self.weight_qtype is not None and weight_name not in state_dict: |
|
weight_prefix = weight_name + '.' |
|
if self.weight_qtype.bits == 8: |
|
deserialized_weight = WeightQBytesTensor.load_from_state_dict(state_dict, weight_prefix, qtype=self.weight_qtype, axis=0, size=self.weight.size(), stride=self.weight.stride(), activation_qtype=self.activation_qtype, missing_keys=missing_keys) |
|
else: |
|
deserialized_weight = QBitsTensor.load_from_state_dict(state_dict, weight_prefix, qtype=self.weight_qtype, axis=0, group_size=self.weight_group_size, size=self.weight.size(), stride=self.weight.stride(), missing_keys=missing_keys) |
|
if deserialized_weight is not None: |
|
deserialized_weight = deserialized_weight.optimize() |
|
assign_to_params_buffers = local_metadata.get('assign_to_params_buffers', False) |
|
if assign_to_params_buffers and deserialized_weight is not None: |
|
self.weight = torch.nn.Parameter(deserialized_weight) |
|
elif deserialized_weight is not None: |
|
if type(self.weight.data) is not type(deserialized_weight): |
|
self.weight = torch.nn.Parameter(deserialized_weight.to(self.weight.device)) |
|
else: |
|
self.weight = torch.nn.Parameter(deserialized_weight.to(self.weight.device)) |
|
super()._load_from_state_dict(state_dict, prefix, local_metadata, False, missing_keys, unexpected_keys, error_msgs) |
|
|
|
@classmethod |
|
def from_module(cls, module: torch.nn.Module, weights: Optional[qtype]=None, activations: Optional[qtype]=None, optimizer: Optional[Optimizer]=None): |
|
qmodule = cls.qcreate(module, weights, activations, optimizer, device='meta') |
|
if qmodule is None: |
|
return None |
|
qmodule = qmodule.to_empty(device=module.weight.device) |
|
qmodule.input_scale = torch.ones_like(qmodule.input_scale) |
|
qmodule.output_scale = torch.ones_like(qmodule.output_scale) |
|
with torch.no_grad(): |
|
qmodule.weight = module.weight |
|
if module.bias is not None: |
|
qmodule.bias = module.bias |
|
return qmodule.to(module.weight.device) |
|
|
|
@classmethod |
|
def qcreate(cls, module: torch.nn.Module, weights: Optional[qtype], activations: Optional[qtype]=None, optimizer: Optional[Optimizer]=None, device: Optional[torch.device]=None): |
|
raise NotImplementedError |
|
|
|
@property |
|
def qweight(self): |
|
if self.weight_qtype is None: |
|
return None |
|
if isinstance(self.weight, QTensor): |
|
return self.weight |
|
return quantize_weight(self.weight, qtype=self.weight_qtype, axis=0, group_size=self.weight_group_size, optimizer=self.optimizer, activation_qtype=self.activation_qtype) |
|
|
|
def qforward(self, input: torch.Tensor) -> torch.Tensor: |
|
raise NotImplementedError |
|
|
|
def quantize_input(self, module: torch.nn.Module, input: torch.Tensor) -> torch.Tensor: |
|
input = input[0] |
|
if isinstance(input, ActivationQBytesTensor): |
|
if input.qtype != self.activation_qtype: |
|
raise ValueError(f'Models with heterogeneous quantized activations are not supported: expected {self.activation_qtype.name} input but got {input.qtype.name} instead.') |
|
else: |
|
input = quantize_activation(input, qtype=self.activation_qtype, scale=self.input_scale) |
|
return input |
|
|
|
def quantize_output(self, module: torch.nn.Module, input: torch.Tensor, output: torch.Tensor) -> torch.Tensor: |
|
return quantize_activation(output, qtype=self.activation_qtype, scale=self.output_scale) |
|
|
|
def freeze(self): |
|
qweight = self.qweight |
|
if qweight is not None: |
|
self.weight = torch.nn.Parameter(qweight) |
|
|
|
@property |
|
def frozen(self): |
|
return isinstance(self.weight, QTensor) |
|
|
|
# File: optimum-quanto-main/optimum/quanto/quantize.py |
|
from fnmatch import fnmatch |
|
from typing import Any, Dict, List, Optional, Union |
|
import torch |
|
from .nn import QModuleMixin, quantize_module |
|
from .tensor import Optimizer, qtype |
|
__all__ = ['quantize', 'freeze', 'requantize', 'quantization_map'] |
|
|
|
def set_module_by_name(parent_module, name, child_module): |
|
module_names = name.split('.') |
|
if len(module_names) == 1: |
|
setattr(parent_module, name, child_module) |
|
else: |
|
parent_module_name = name[:name.rindex('.')] |
|
parent_module = parent_module.get_submodule(parent_module_name) |
|
setattr(parent_module, module_names[-1], child_module) |
|
|
|
def _quantize_submodule(model: torch.nn.Module, name: str, module: torch.nn.Module, weights: Optional[Union[str, qtype]]=None, activations: Optional[Union[str, qtype]]=None, optimizer: Optional[Optimizer]=None): |
|
qmodule = quantize_module(module, weights=weights, activations=activations, optimizer=optimizer) |
|
if qmodule is not None: |
|
set_module_by_name(model, name, qmodule) |
|
qmodule.name = name |
|
for (name, param) in module.named_parameters(): |
|
setattr(module, name, None) |
|
del param |
|
|
|
def quantize(model: torch.nn.Module, weights: Optional[Union[str, qtype]]=None, activations: Optional[Union[str, qtype]]=None, optimizer: Optional[Optimizer]=None, include: Optional[Union[str, List[str]]]=None, exclude: Optional[Union[str, List[str]]]=None): |
|
if include is not None: |
|
include = [include] if isinstance(include, str) else include |
|
if exclude is not None: |
|
exclude = [exclude] if isinstance(exclude, str) else exclude |
|
for (name, m) in model.named_modules(): |
|
if include is not None and (not any((fnmatch(name, pattern) for pattern in include))): |
|
continue |
|
if exclude is not None and any((fnmatch(name, pattern) for pattern in exclude)): |
|
continue |
|
_quantize_submodule(model, name, m, weights=weights, activations=activations, optimizer=optimizer) |
|
|
|
def requantize(model: torch.nn.Module, state_dict: Dict[str, Any], quantization_map: Dict[str, Dict[str, str]], device: torch.device=None): |
|
if device is None: |
|
device = next(model.parameters()).device |
|
if device.type == 'meta': |
|
device = torch.device('cpu') |
|
for (name, m) in model.named_modules(): |
|
qconfig = quantization_map.get(name, None) |
|
if qconfig is not None: |
|
weights = qconfig['weights'] |
|
if weights == 'none': |
|
weights = None |
|
activations = qconfig['activations'] |
|
if activations == 'none': |
|
activations = None |
|
_quantize_submodule(model, name, m, weights=weights, activations=activations) |
|
for (name, m) in model.named_modules(): |
|
|
|
def move_tensor(t, device): |
|
if t.device.type == 'meta': |
|
return torch.empty_like(t, device=device) |
|
return t.to(device) |
|
for (name, param) in m.named_parameters(recurse=False): |
|
setattr(m, name, torch.nn.Parameter(move_tensor(param, 'cpu'))) |
|
for (name, param) in m.named_buffers(recurse=False): |
|
setattr(m, name, move_tensor(param, 'cpu')) |
|
model.to(device) |
|
model.load_state_dict(state_dict, strict=False) |
|
|
|
def freeze(model): |
|
for (name, m) in model.named_modules(): |
|
if isinstance(m, QModuleMixin): |
|
m.freeze() |
|
|
|
def quantization_map(model: torch.nn.Module) -> Dict[str, Dict[str, str]]: |
|
config = {} |
|
for (name, m) in model.named_modules(): |
|
if isinstance(m, QModuleMixin): |
|
config[name] = {'weights': m.weight_qtype.name, 'activations': 'none' if m.activation_qtype is None else m.activation_qtype.name} |
|
return config |
|
|
|
# File: optimum-quanto-main/optimum/quanto/subpackage/commands/base.py |
|
from optimum.commands import BaseOptimumCLICommand, CommandInfo |
|
from optimum.commands.optimum_cli import optimum_cli_subcommand |
|
from .quantize import QuantizeCommand |
|
__all__ = ['QuantoCommand'] |
|
|
|
@optimum_cli_subcommand() |
|
class QuantoCommand(BaseOptimumCLICommand): |
|
COMMAND = CommandInfo(name='quanto', help='Hugging Face models quantization tools') |
|
SUBCOMMANDS = (CommandInfo(name='quantize', help='Quantize Hugging Face models.', subcommand_class=QuantizeCommand),) |
|
|
|
# File: optimum-quanto-main/optimum/quanto/subpackage/commands/quantize.py |
|
"""""" |
|
from typing import TYPE_CHECKING |
|
import torch |
|
from optimum.commands import BaseOptimumCLICommand |
|
from optimum.exporters import TasksManager |
|
from ...models import QuantizedTransformersModel |
|
if TYPE_CHECKING: |
|
from argparse import ArgumentParser |
|
SUPPORTED_LIBRARIES = ['transformers'] |
|
|
|
def parse_quantize_args(parser: 'ArgumentParser'): |
|
required_group = parser.add_argument_group('Required arguments') |
|
required_group.add_argument('output', type=str, help='The path to save the quantized model.') |
|
required_group.add_argument('-m', '--model', type=str, required=True, help='Hugging Face Hub model id or path to a local model.') |
|
required_group.add_argument('--weights', type=str, default='int8', choices=['int2', 'int4', 'int8', 'float8'], help='The Hugging Face library to use to load the model.') |
|
optional_group = parser.add_argument_group('Optional arguments') |
|
optional_group.add_argument('--revision', type=str, default=None, help='The Hugging Face model revision.') |
|
optional_group.add_argument('--trust_remote_code', action='store_true', default=False, help='Trust remote code when loading the model.') |
|
optional_group.add_argument('--library', type=str, default=None, choices=SUPPORTED_LIBRARIES, help='The Hugging Face library to use to load the model.') |
|
optional_group.add_argument('--task', type=str, default=None, help='The model task (useful for models supporting multiple tasks).') |
|
optional_group.add_argument('--torch_dtype', type=str, default='auto', choices=['auto', 'fp16', 'bf16'], help='The torch dtype to use when loading the model weights.') |
|
optional_group.add_argument('--device', type=str, default='cpu', help='The device to use when loading the model.') |
|
|
|
class QuantizeCommand(BaseOptimumCLICommand): |
|
|
|
@staticmethod |
|
def parse_args(parser: 'ArgumentParser'): |
|
return parse_quantize_args(parser) |
|
|
|
def run(self): |
|
model_name_or_path = self.args.model |
|
library_name = self.args.library |
|
if library_name is None: |
|
library_name = TasksManager.infer_library_from_model(model_name_or_path) |
|
if library_name not in SUPPORTED_LIBRARIES: |
|
raise ValueError(f'{library_name} models are not supported by this CLI, but can be quantized using the python API directly.') |
|
task = self.args.task |
|
if task is None: |
|
task = TasksManager.infer_task_from_model(model_name_or_path) |
|
torch_dtype = self.args.torch_dtype |
|
if torch_dtype != 'auto': |
|
torch_dtype = torch.float16 if self.args.torch_dtype == 'fp16' else torch.bfloat16 |
|
model = TasksManager.get_model_from_task(task, model_name_or_path, revision=self.args.revision, trust_remote_code=self.args.trust_remote_code, framework='pt', torch_dtype=torch_dtype, device=torch.device(self.args.device), library_name=library_name, low_cpu_mem_usage=True) |
|
weights = f'q{self.args.weights}' |
|
qmodel = QuantizedTransformersModel.quantize(model, weights=weights) |
|
qmodel.save_pretrained(self.args.output) |
|
|
|
# File: optimum-quanto-main/optimum/quanto/tensor/activations/qbytes.py |
|
import ast |
|
import torch |
|
from torch.autograd import Function |
|
from ..qbytes import QBytesTensor |
|
from ..qtensor import qfallback |
|
from ..qtype import qtype, qtypes |
|
__all__ = ['ActivationQBytesTensor'] |
|
|
|
class ActivationQBytesQuantizer(Function): |
|
|
|
@staticmethod |
|
def forward(ctx, base: torch.Tensor, qtype: qtype, scale: torch.Tensor) -> torch.Tensor: |
|
if qtype.bits != 8: |
|
raise ValueError('QBytesTensor can only be of 8-bit qtype') |
|
size = base.size() |
|
stride = base.stride() |
|
data = torch.ops.quanto.quantize_symmetric(base, dtype=qtype.dtype, axis=None, scale=scale) |
|
return ActivationQBytesTensor(qtype, size, stride, data, scale) |
|
|
|
@staticmethod |
|
def backward(ctx, gO): |
|
return (gO, None, None, None, None, None) |
|
|
|
class ActivationQBytesTensor(QBytesTensor): |
|
|
|
@staticmethod |
|
def __new__(cls, qtype, size, stride, data, scale, requires_grad=False): |
|
assert data.device == scale.device |
|
return torch.Tensor._make_wrapper_subclass(cls, size, strides=stride, dtype=scale.dtype, device=data.device, requires_grad=requires_grad) |
|
|
|
def __init__(self, qtype, size, stride, data, scale, requires_grad=False): |
|
super().__init__(qtype, None, size, stride, data, scale, requires_grad) |
|
|
|
@classmethod |
|
def quantize(cls, base: torch.Tensor, qtype: qtype, scale: torch.Tensor) -> torch.Tensor: |
|
return ActivationQBytesQuantizer.apply(base, qtype, scale) |
|
|
|
def __tensor_flatten__(self): |
|
inner_tensors = ['_data', '_scale'] |
|
meta = {'qtype': self._qtype.name, 'size': str(list(self.size())), 'stride': str(list(self.stride()))} |
|
return (inner_tensors, meta) |
|
|
|
@staticmethod |
|
def __tensor_unflatten__(inner_tensors, meta, outer_size, outer_stride): |
|
assert len(inner_tensors) == 2 |
|
assert len(meta) == 3 |
|
(data, scale) = (inner_tensors['_data'], inner_tensors['_scale']) |
|
qtype = qtypes[meta['qtype']] |
|
size = ast.literal_eval(meta['size']) |
|
stride = ast.literal_eval(meta['stride']) |
|
return ActivationQBytesTensor(qtype, size, stride, data, scale) |
|
|
|
@classmethod |
|
def __torch_dispatch__(cls, op, types, args, kwargs=None): |
|
from .qbytes_ops import get_qbytestensor_op_dispatch |
|
kwargs = kwargs or {} |
|
op = op.overloadpacket |
|
qdispatch = get_qbytestensor_op_dispatch(op) |
|
if qdispatch is not None: |
|
return qdispatch(*args, **kwargs) |
|
return qfallback(op, *args, **kwargs) |
|
|
|
# File: optimum-quanto-main/optimum/quanto/tensor/activations/qbytes_ops.py |
|
import numbers |
|
from functools import partial |
|
from typing import Callable, List |
|
import torch |
|
from ..core import dtype_info |
|
from ..qtensor import QTensor, qfallback |
|
from ..qtype import qint8 |
|
from .qbytes import ActivationQBytesTensor |
|
from .quantization import quantize_activation |
|
__all__ = ['get_qbytestensor_op_dispatch', 'register_qbytestensor_op'] |
|
_QBYTESTENSOR_OP_TABLE = {} |
|
|
|
def register_qbytestensor_op(aten_ops: List[Callable]): |
|
|
|
def wrapper(op): |
|
for aten_op in aten_ops: |
|
_QBYTESTENSOR_OP_TABLE[aten_op] = partial(op, aten_op) |
|
return wrapper |
|
|
|
def get_qbytestensor_op_dispatch(aten_op): |
|
return _QBYTESTENSOR_OP_TABLE.get(aten_op, None) |
|
|
|
def is_scalar(t): |
|
return isinstance(t, numbers.Number) or (type(t) is torch.Tensor and len(t.shape) == 0) |
|
|
|
@register_qbytestensor_op([torch.ops.aten._to_copy, torch.ops.aten.to]) |
|
def _to_copy(op, t, dtype=None, **kwargs): |
|
out_data = op(t._data, dtype=t._data.dtype, **kwargs) |
|
out_scale = op(t._scale, dtype=dtype, **kwargs) |
|
return ActivationQBytesTensor(t.qtype, t.size(), t.stride(), out_data, out_scale) |
|
|
|
@register_qbytestensor_op([torch.ops.aten.detach]) |
|
def detach(op, t): |
|
out_data = op(t._data) |
|
out_scale = op(t._scale) |
|
return ActivationQBytesTensor(t.qtype, t.size(), t.stride(), out_data, out_scale) |
|
|
|
@register_qbytestensor_op([torch.ops.aten.cat]) |
|
def cat(op, inputs, dim=0): |
|
if len(inputs) == 2: |
|
(t1, t2) = inputs |
|
if isinstance(t1, ActivationQBytesTensor) and isinstance(t2, ActivationQBytesTensor) and torch.equal(t1._scale, t2._scale) and (t1.qtype == t2.qtype): |
|
if t1.qtype.is_floating_point or t2.qtype.is_floating_point: |
|
return qfallback(op, inputs, dim) |
|
out_data = op([t1._data, t2._data], dim) |
|
return ActivationQBytesTensor(t1.qtype, out_data.size(), out_data.stride(), out_data, t1._scale) |
|
return qfallback(op, inputs, dim) |
|
|
|
@register_qbytestensor_op([torch.ops.aten.lt]) |
|
def lt(op, input, other): |
|
if isinstance(input, ActivationQBytesTensor) and isinstance(other, ActivationQBytesTensor) and torch.equal(input._scale, other._scale): |
|
return op(input._data, other._data) |
|
return qfallback(op, input, other) |
|
|
|
@register_qbytestensor_op([torch.ops.aten.clone]) |
|
def clone(op, t, memory_format=torch.preserve_format): |
|
data_shape = t._data.shape |
|
out_data = t._data.reshape(t.shape) |
|
out_data = op(t._data, memory_format=memory_format) |
|
out_stride = out_data.stride() |
|
out_data = out_data.reshape(data_shape) |
|
out_scale = op(t._scale, memory_format=memory_format) |
|
return ActivationQBytesTensor(t.qtype, t.size(), out_stride, out_data, out_scale) |
|
|
|
@register_qbytestensor_op([torch.ops.aten.copy_]) |
|
def copy_(op, dest, src): |
|
assert dest.qtype == src.qtype |
|
dest._data = op(dest._data, src._data) |
|
dest._scale = op(dest._scale, src._scale) |
|
return dest |
|
|
|
@register_qbytestensor_op([torch.ops.aten.div]) |
|
def div(op, input, other): |
|
if not is_scalar(other): |
|
return op(input.dequantize(), other) |
|
return ActivationQBytesTensor(input.qtype, input.size(), input.stride(), input._data, op(input._scale, other)) |
|
|
|
@register_qbytestensor_op([torch.ops.aten.neg]) |
|
def neg(op, input, *args, **kwargs): |
|
if input.qtype.is_floating_point: |
|
return op(input.dequantize(), *args, **kwargs) |
|
out_data = op(input._data, *args, **kwargs) |
|
return ActivationQBytesTensor(input.qtype, input.size(), input.stride(), out_data, input._scale) |
|
|
|
@register_qbytestensor_op([torch.ops.aten.expand, torch.ops.aten.permute, torch.ops.aten.select, torch.ops.aten.slice, torch.ops.aten.unsqueeze]) |
|
def unary_type_agnostic_op(op, input, *args, **kwargs): |
|
if input.axis is not None: |
|
return op(input.dequantize(), *args, **kwargs) |
|
out_data = op(input._data, *args, **kwargs) |
|
return ActivationQBytesTensor(input.qtype, out_data.size(), out_data.stride(), out_data, input._scale) |
|
|
|
@register_qbytestensor_op([torch.ops.aten.is_same_size]) |
|
def is_same_size(op, input, other): |
|
a = input._data if isinstance(input, ActivationQBytesTensor) else input |
|
b = other._data if isinstance(other, ActivationQBytesTensor) else other |
|
return op(a, b) |
|
|
|
def cannot_mm(t: QTensor): |
|
return t.axis is not None and t.size() != t._data.size() |
|
|
|
@register_qbytestensor_op([torch.ops.aten.bmm]) |
|
def bmm(op, input, other): |
|
if not isinstance(input, ActivationQBytesTensor): |
|
return op(input, other.dequantize()) |
|
if not isinstance(other, QTensor) or input.axis is not None: |
|
return op(input.dequantize(), other) |
|
if input.qtype != qint8 or other.qtype != qint8 or cannot_mm(other): |
|
return qfallback(op, input, other) |
|
out_data = op(input._data.to(torch.float32), other._data.to(torch.float32)) |
|
out_scale = (input._scale * other._scale).to(torch.float32) |
|
return (out_data * out_scale).to(input._scale.dtype) |
|
|
|
@register_qbytestensor_op([torch.ops.aten.mul]) |
|
def mul(op, input, other): |
|
if is_scalar(input): |
|
return ActivationQBytesTensor(other.qtype, other.size(), other.stride(), other._data, input * other._scale) |
|
if is_scalar(other): |
|
return ActivationQBytesTensor(input.qtype, input.size(), input.stride(), input._data, other * input._scale) |
|
return qfallback(op, input, other) |
|
|
|
@register_qbytestensor_op([torch.ops.aten.relu]) |
|
def relu(op, input): |
|
if input.qtype.is_floating_point: |
|
return qfallback(op, input) |
|
out_data = op(input._data) |
|
return ActivationQBytesTensor(input.qtype, input.size(), input.stride(), out_data, input._scale) |
|
|
|
@register_qbytestensor_op([torch.ops.aten._softmax]) |
|
def _softmax(op, input, dim, half_to_float): |
|
float_data = op(input.dequantize(), dim, half_to_float) |
|
out_scale = torch.tensor(1 / dtype_info(input.qtype.dtype).max, dtype=input._scale.dtype).to(input.device) |
|
return quantize_activation(float_data, qtype=input.qtype, scale=out_scale) |
|
|
|
@register_qbytestensor_op([torch.ops.aten.stack]) |
|
def stack(op, inputs, dim=0): |
|
if len(inputs) == 2: |
|
(t1, t2) = inputs |
|
if isinstance(t1, ActivationQBytesTensor) and isinstance(t2, ActivationQBytesTensor) and (t1.axis is None) and (t2.axis is None) and torch.equal(t1._scale, t2._scale) and (t1.qtype == t2.qtype): |
|
out_data = op([t1._data, t2._data], dim) |
|
return ActivationQBytesTensor(t1.qtype, out_data.size(), out_data.stride(), out_data, t1._scale) |
|
return qfallback(inputs, dim) |
|
|
|
@register_qbytestensor_op([torch.ops.aten.split]) |
|
def split(op, input, *args, **kwargs): |
|
if input.axis is not None: |
|
return qfallback(op, input, *args, **kwargs) |
|
out_datas = op(input._data, *args, **kwargs) |
|
return [ActivationQBytesTensor(input.qtype, input.size(), input.stride(), out_data, input._scale) for out_data in out_datas] |
|
|
|
@register_qbytestensor_op([torch.ops.aten.transpose]) |
|
def transpose(op, input, *args): |
|
out_data = op(input._data, *args) |
|
out_size = out_data.size() |
|
out_stride = out_data.stride() |
|
out_scale = input._scale |
|
return ActivationQBytesTensor(input.qtype, out_size, out_stride, out_data, out_scale) |
|
|
|
@register_qbytestensor_op([torch.ops.aten.t]) |
|
def transpose2d(op, input): |
|
out_data = op(input._data) |
|
out_scale = input._scale |
|
(dim0, dim1) = input.size() |
|
out_size = torch.Size([dim1, dim0]) |
|
out_stride = input.stride()[::-1] |
|
return ActivationQBytesTensor(input.qtype, out_size, out_stride, out_data, out_scale) |
|
|
|
@register_qbytestensor_op([torch.ops.aten.view, torch.ops.aten._unsafe_view]) |
|
def view(op, input, *shape): |
|
if input.axis is None: |
|
out_data = op(input._data, *shape) |
|
return ActivationQBytesTensor(input.qtype, out_data.size(), out_data.stride(), out_data, input._scale) |
|
return qfallback(op, input, *shape) |
|
|
|
@register_qbytestensor_op([torch.ops.aten.where]) |
|
def where(op, condition, input, other): |
|
if isinstance(condition, QTensor) or isinstance(other, QTensor): |
|
raise NotImplementedError |
|
float_data = op(condition, input.dequantize(), other) |
|
if input.axis is None: |
|
return quantize_activation(float_data, qtype=input.qtype, scale=input._scale) |
|
return float_data |
|
|
|
# File: optimum-quanto-main/optimum/quanto/tensor/activations/quantization.py |
|
import torch |
|
from ..qtype import qtype |
|
from .qbytes import ActivationQBytesTensor |
|
__all__ = ['quantize_activation'] |
|
|
|
def quantize_activation(t: torch.Tensor, qtype: qtype, scale: torch.Tensor): |
|
if scale.numel() != 1: |
|
raise ValueError('Parameter scale must be a scalar because activations can only be quantized per-tensor') |
|
return ActivationQBytesTensor.quantize(t, qtype, scale) |
|
|
|
# File: optimum-quanto-main/optimum/quanto/tensor/core.py |
|
import torch |
|
__all__ = ['axis_to_dim', 'dtype_info'] |
|
|
|
def dtype_info(dtype): |
|
info = torch.finfo if dtype.is_floating_point else torch.iinfo |
|
return info(dtype) |
|
|
|
def axis_to_dim(t, axis): |
|
dim = list(range(t.ndim)) |
|
if axis == -1: |
|
dim = dim[:-1] |
|
else: |
|
dim.remove(axis) |
|
return dim |
|
|
|
# File: optimum-quanto-main/optimum/quanto/tensor/function.py |
|
import torch |
|
__all__ = ['QuantizedLinearFunction'] |
|
|
|
class QuantizedLinearFunction(torch.autograd.Function): |
|
|
|
@staticmethod |
|
def forward(ctx, input, other, bias=None): |
|
ctx.save_for_backward(input, other) |
|
output = torch.matmul(input, other.t()) |
|
if bias is not None: |
|
output = output + bias |
|
return output |
|
|
|
def backward(ctx, gO): |
|
input_gO = other_gO = bias_gO = None |
|
(input, other) = ctx.saved_tensors |
|
(out_features, in_features) = other.shape |
|
if ctx.needs_input_grad[0]: |
|
input_gO = torch.matmul(gO, other) |
|
if ctx.needs_input_grad[1]: |
|
other_gO = torch.matmul(gO.view(-1, out_features).t(), input.view(-1, in_features)) |
|
if ctx.needs_input_grad[2]: |
|
dim = tuple(range(gO.ndim - 1)) |
|
bias_gO = gO.sum(dim) |
|
return (input_gO, other_gO, bias_gO) |
|
|
|
# File: optimum-quanto-main/optimum/quanto/tensor/optimizers/absmax_optimizer.py |
|
from typing import Optional, Tuple, Union |
|
import torch |
|
from .symmetric_optimizer import SymmetricOptimizer |
|
__all__ = ['AbsmaxOptimizer'] |
|
|
|
class AbsmaxOptimizer(SymmetricOptimizer): |
|
|
|
def optimize(self, base: torch.Tensor, qmax: float, axis: Optional[int]=None) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]: |
|
base = torch.abs(base) |
|
if axis is None: |
|
rmax = torch.max(base) |
|
else: |
|
dim = list(range(1, base.ndim)) if axis == 0 else list(range(0, base.ndim - 1)) |
|
rmax = torch.amax(torch.abs(base), dim=dim, keepdim=True) |
|
return rmax / qmax |
|
|
|
# File: optimum-quanto-main/optimum/quanto/tensor/optimizers/affine_optimizer.py |
|
from typing import Optional, Tuple |
|
import torch |
|
from ..qbits import group |
|
from .optimizer import Optimizer |
|
__all__ = ['AffineOptimizer'] |
|
|
|
class AffineOptimizer(Optimizer): |
|
|
|
def __call__(self, base: torch.Tensor, bits: int, axis: int, group_size: Optional[int]=None) -> Tuple[torch.Tensor, torch.Tensor]: |
|
if axis not in [0, -1]: |
|
raise ValueError('axis parameter must be 0 (first axis) or -1 (last axis)') |
|
if group_size is not None: |
|
base = group(base, axis, group_size) |
|
(scale, shift) = self.optimize(base, bits, axis) |
|
assert scale.dtype == base.dtype |
|
assert shift.dtype == base.dtype |
|
return (scale, shift) |
|
|
|
def optimize(self, base: torch.Tensor, bits: int, axis: int) -> Tuple[torch.Tensor, torch.Tensor]: |
|
raise NotImplementedError |
|
|
|
# File: optimum-quanto-main/optimum/quanto/tensor/optimizers/hqq_optimizer.py |
|
from typing import Optional, Tuple, Union |
|
import torch |
|
from ..qbits import QBitsTensor |
|
from ..qtype import qint2, qint4 |
|
from .max_optimizer import MaxOptimizer |
|
__all__ = ['HqqOptimizer'] |
|
|
|
def shrink_lp_op(x: torch.Tensor, beta: float, lp_norm: float) -> torch.Tensor: |
|
if lp_norm == 1: |
|
return torch.sign(x) * torch.nn.functional.relu(torch.abs(x) - 1.0 / beta) |
|
else: |
|
return torch.sign(x) * torch.nn.functional.relu(torch.abs(x) - 1.0 / beta * torch.pow(torch.abs(x), lp_norm - 1)) |
|
|
|
class HqqOptimizer(MaxOptimizer): |
|
|
|
def __init__(self, lp_norm: Optional[float]=0.7, beta: Optional[int]=10.0, kappa: Optional[float]=1.01, iters: Optional[int]=20, verbose: Optional[bool]=False) -> None: |
|
self.lp_norm = lp_norm |
|
self.beta = beta |
|
self.kappa = kappa |
|
self.iters = iters |
|
self.verbose = verbose |
|
|
|
def optimize(self, base: torch.Tensor, bits: int, axis: int) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]: |
|
(scale, shift) = super().optimize(base, bits, axis) |
|
best_error = None |
|
beta = self.beta |
|
qtype = qint2 if bits == 2 else qint4 |
|
base_q = QBitsTensor.quantize(base, qtype, axis, None, scale, shift) |
|
for i in range(self.iters): |
|
error = base - base_q |
|
if best_error is None: |
|
best_error = float(torch.abs(base - base_q).mean()) |
|
if self.verbose: |
|
print(f'Start error: {best_error:.6f}') |
|
e = shrink_lp_op(error, beta, self.lp_norm) |
|
mean_axis = 0 if axis == -1 else -1 |
|
hqq_shift = torch.mean(base_q._data * scale - (base - e), axis=mean_axis, keepdim=True) |
|
base_q = QBitsTensor.quantize(base, qtype, axis, None, scale, hqq_shift) |
|
mean_error = float(torch.abs(base - base_q).mean()) |
|
if self.verbose: |
|
print(f'HQQ error at it #{i}: {mean_error:.6f}') |
|
if mean_error < best_error: |
|
best_error = mean_error |
|
shift = hqq_shift |
|
beta *= self.kappa |
|
else: |
|
break |
|
return (scale, shift) |
|
|
|
# File: optimum-quanto-main/optimum/quanto/tensor/optimizers/max_optimizer.py |
|
from typing import Tuple, Union |
|
import torch |
|
from .affine_optimizer import AffineOptimizer |
|
__all__ = ['MaxOptimizer'] |
|
|
|
class MaxOptimizer(AffineOptimizer): |
|
|
|
def optimize(self, base: torch.Tensor, bits: int, axis: int) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]: |
|
dim = list(range(1, base.ndim)) if axis == 0 else list(range(0, base.ndim - 1)) |
|
rmin = torch.amin(base, dim=dim, keepdim=True) |
|
rmax = torch.amax(base, dim=dim, keepdim=True) |
|
qmin = -2 ** (bits - 1) |
|
qmax = 2 ** (bits - 1) - 1 |
|
scale = (rmax - rmin) / (qmax - qmin) |
|
shift = -rmin |
|
return (scale, shift) |
|
|
|
# File: optimum-quanto-main/optimum/quanto/tensor/optimizers/symmetric_optimizer.py |
|
from typing import Optional |
|
import torch |
|
from .optimizer import Optimizer |
|
__all__ = ['SymmetricOptimizer'] |
|
|
|
class SymmetricOptimizer(Optimizer): |
|
|
|
def __call__(self, base: torch.Tensor, qmax: float, axis: Optional[int]=None) -> torch.Tensor: |
|
if axis not in [None, 0, -1]: |
|
raise ValueError('axis parameter must be None, 0 (first axis) or -1 (last axis)') |
|
if qmax <= 0.0: |
|
raise ValueError('qmax must be set to the maximum positive value that can be represented by the quantized type.') |
|
scale = self.optimize(base, qmax, axis) |
|
assert scale.dtype == base.dtype |
|
return scale |
|
|
|
def optimize(self, base: torch.Tensor, qmax: float, axis: Optional[int]=None) -> torch.Tensor: |
|
raise NotImplementedError |
|
|
|
# File: optimum-quanto-main/optimum/quanto/tensor/qbits/awq/packed.py |
|
import ast |
|
from copy import copy |
|
from enum import Enum |
|
import numpy as np |
|
import torch |
|
from torch.utils import _pytree as pytree |
|
__all__ = ['AWQPackedTensor', 'AWQPacking'] |
|
AWQ_ORDER = [0, 2, 4, 6, 1, 3, 5, 7] |
|
AWQ_REVERSE_ORDER = [0, 4, 1, 5, 2, 6, 3, 7] |
|
|
|
def pack(unpacked: torch.Tensor, reorder=False): |
|
bits = 4 |
|
pack_num = 32 // bits |
|
packed = torch.zeros(unpacked.shape[0], unpacked.shape[1] // pack_num, dtype=torch.int32, device=unpacked.device) |
|
for col in range(unpacked.shape[1] // pack_num): |
|
if reorder: |
|
order_map = AWQ_ORDER |
|
else: |
|
order_map = [0, 1, 2, 3, 4, 5, 6, 7] |
|
for i in range(pack_num): |
|
packed_col = unpacked[:, col * pack_num + order_map[i]].to(torch.int32) |
|
packed[:, col] |= packed_col << i * bits |
|
return packed |
|
|
|
def reverse_awq_order(t: torch.Tensor): |
|
bits = 4 |
|
reverse_order_tensor = torch.arange(t.shape[-1], dtype=torch.int32, device=t.device) |
|
reverse_order_tensor = reverse_order_tensor.view(-1, 32 // bits) |
|
reverse_order_tensor = reverse_order_tensor[:, AWQ_REVERSE_ORDER] |
|
reverse_order_tensor = reverse_order_tensor.view(-1) |
|
t = t[:, reverse_order_tensor] |
|
return t |
|
|
|
def unpack(packed: torch.Tensor, reorder=False): |
|
bits = 4 |
|
shifts = torch.arange(0, 32, bits, device=packed.device) |
|
unpacked = torch.bitwise_right_shift(packed[:, :, None], shifts[None, None, :]).to(torch.int8) |
|
unpacked = unpacked.view(unpacked.shape[0], -1) |
|
if reorder: |
|
unpacked = reverse_awq_order(unpacked) |
|
unpacked = torch.bitwise_and(unpacked, 2 ** bits - 1) |
|
return unpacked |
|
|
|
def pack_v2(unpacked: torch.Tensor) -> torch.Tensor: |
|
assert unpacked.device.type == 'cuda' |
|
assert unpacked.ndim == 2 |
|
(N, K) = unpacked.shape |
|
I = 4 |
|
S = 64 |
|
packed = unpacked.reshape(N, K // 32, 4, 4, 2).permute(0, 1, 3, 2, 4) |
|
packed = packed.permute(0, 1, 2, 4, 3) |
|
packed = packed.reshape(N, K) |
|
packed = packed.reshape(N // I, I, K // S, S) |
|
packed = packed.permute(0, 2, 1, 3) |
|
packed = packed.reshape(N // I, K // S, S, I) |
|
packed = packed.to(torch.int32) |
|
packed = packed[..., 0] | packed[..., 1] << 4 | packed[..., 2] << 8 | packed[..., 3] << 12 |
|
packed = packed.reshape(N // I, K) |
|
return packed.to(torch.int16).contiguous() |
|
|
|
def unpack_v2(packed): |
|
assert packed.device.type == 'cuda' |
|
assert packed.ndim == 2 |
|
I = 4 |
|
S = 64 |
|
(N_div_I, K) = packed.shape |
|
N = N_div_I * I |
|
unpacked = packed.reshape(N // I, K // S, S, 1) |
|
unpacked = unpacked.cpu().numpy().astype(np.uint16) |
|
unpacked = torch.cat([torch.tensor((unpacked & 15).astype(np.uint8)).to(packed.device), torch.tensor(((unpacked & 240) >> 4).astype(np.uint8)).to(packed.device), torch.tensor(((unpacked & 3840) >> 8).astype(np.uint8)).to(packed.device), torch.tensor(((unpacked & 61440) >> 12).astype(np.uint8)).to(packed.device)], axis=-1) |
|
unpacked = unpacked.reshape(N // I, K // S, I, S) |
|
unpacked = unpacked.permute(0, 2, 1, 3) |
|
unpacked = unpacked.reshape(N, K) |
|
unpacked = unpacked.reshape(N, K // 32, 4, 2, 4).permute(0, 1, 2, 4, 3) |
|
unpacked = unpacked.permute(0, 1, 3, 2, 4) |
|
unpacked = unpacked.reshape(N, K) |
|
return unpacked |
|
|
|
class AWQPacking(Enum): |
|
V1 = 1 |
|
V2 = 2 |
|
|
|
class AWQPackedTensor(torch.Tensor): |
|
|
|
@staticmethod |
|
def __new__(cls, data, packing, reorder, size, stride, requires_grad=False): |
|
assert data.device.type == 'cuda' |
|
assert data.dtype == torch.int32 if packing == AWQPacking.V1 else torch.int16 |
|
assert requires_grad is False |
|
return torch.Tensor._make_wrapper_subclass(cls, size, strides=stride, dtype=torch.uint8, device=data.device, requires_grad=requires_grad) |
|
|
|
def __init__(self, data, packing, reorder, size, stride, requires_grad=False): |
|
self._data = data |
|
self._packing = packing |
|
self._reorder = reorder |
|
|
|
def __repr__(self): |
|
return f'AWQPackedTensor({self._data}, packing={self._packing}, reorder={self._reorder})' |
|
|
|
@classmethod |
|
def pack(cls, t, packing=AWQPacking.V1, reorder=False): |
|
if packing == AWQPacking.V1: |
|
data = pack(t, reorder=reorder) |
|
else: |
|
data = pack_v2(t) |
|
return AWQPackedTensor(data, packing, reorder, t.size(), t.stride()) |
|
|
|
def unpack(self): |
|
if self._packing == AWQPacking.V1: |
|
return unpack(self._data, self._reorder) |
|
return unpack_v2(self._data) |
|
|
|
@property |
|
def dtype(self): |
|
return torch.uint8 |
|
|
|
def __tensor_flatten__(self): |
|
inner_tensors = ['_data'] |
|
meta = {'packing': str(self._packing), 'reorder': str(self._reorder), 'size': str(list(self.size())), 'stride': str(self.stride())} |
|
return (inner_tensors, meta) |
|
|
|
@staticmethod |
|
def __tensor_unflatten__(inner_tensors, meta, outer_size, outer_stride): |
|
assert len(inner_tensors) == 1 |
|
assert len(meta) == 4 |
|
data = inner_tensors['_data'] |
|
packing = ast.literal_eval(meta['packing']) |
|
reorder = ast.literal_eval(meta['reorder']) |
|
size = ast.literal_eval(meta['size']) |
|
stride = ast.literal_eval(meta['stride']) |
|
return AWQPackedTensor(data, packing, reorder, size, stride) |
|
__torch_function__ = torch._C._disabled_torch_function_impl |
|
|
|
@classmethod |
|
def __torch_dispatch__(cls, op, types, args, kwargs=None): |
|
if op.overloadpacket is torch.ops.aten.detach: |
|
t = args[0] |
|
data = op(t._data) |
|
return AWQPackedTensor(data, t._packing, t._reorder, t.size(), t.stride()) |
|
elif op.overloadpacket in (torch.ops.aten._to_copy, torch.ops.aten.to): |
|
t = args[0] |
|
dtype = kwargs.get('dtype', torch.uint8) |
|
if dtype != torch.uint8: |
|
raise ValueError(f'AWQPackedTensor are torch.uint8 only and cannot be moved to {dtype}.') |
|
device = kwargs.get('device', t.device) |
|
if device.type == 'cuda': |
|
data_kwargs = copy(kwargs) |
|
data_kwargs['dtype'] = t._data.dtype |
|
data = op(t._data, **data_kwargs) |
|
return AWQPackedTensor(data, t._packing, t._reorder, t.size(), t.stride()) |
|
(args, kwargs) = pytree.tree_map_only(AWQPackedTensor, lambda x: x.unpack(), (args, kwargs or {})) |
|
return op(*args, **kwargs) |
|
|
|
def numpy(self): |
|
return self.unpack().cpu().numpy() |
|
|
|
# File: optimum-quanto-main/optimum/quanto/tensor/qbits/awq/qbits.py |
|
import ast |
|
import torch |
|
from torch.autograd import Function |
|
from ...function import QuantizedLinearFunction |
|
from ...qtype import qtypes |
|
from ..group import group, ungroup |
|
from ..qbits import QBitsTensor |
|
from .packed import AWQPackedTensor, AWQPacking |
|
__all__ = ['AWQBitsTensor'] |
|
|
|
class AWQBitsDequantizer(Function): |
|
|
|
@staticmethod |
|
def forward(ctx, t): |
|
unpacked = t._data.unpack() |
|
scale = t._scale |
|
shift = t._shift |
|
unpacked = group(unpacked, axis=0, group_size=t._group_size) |
|
n_scales = scale.numel() |
|
scale = scale.t().reshape((n_scales, 1)) |
|
shift = shift.t().reshape((n_scales, 1)) |
|
dqt = scale * unpacked + shift |
|
return ungroup(dqt, axis=t.axis, orig_shape=t.shape) |
|
|
|
@staticmethod |
|
def backward(ctx, gO): |
|
return gO |
|
|
|
class AWQBitsLinearFunction(QuantizedLinearFunction): |
|
|
|
@staticmethod |
|
def forward(ctx, input, other, bias): |
|
ctx.save_for_backward(input, other) |
|
if type(input) is not torch.Tensor: |
|
input = input.dequantize() |
|
(out_features, in_features) = other.shape |
|
rows = input.numel() // in_features |
|
output = torch.ops.quanto.gemm(input, other._data._data, other._scale, other._shift, rows=rows, out_cols=out_features, in_cols=in_features, bits=4, group_size=other._group_size) |
|
if bias is not None: |
|
output = output + bias |
|
return output |
|
|
|
class AWQBitsTensor(QBitsTensor): |
|
|
|
@staticmethod |
|
def __new__(cls, qtype, axis, group_size, size, stride, data, scale, shift, requires_grad=False): |
|
assert data.device.type == 'cuda' |
|
assert data.device == scale.device |
|
assert data.device == shift.device |
|
return torch.Tensor._make_wrapper_subclass(cls, size, strides=stride, dtype=scale.dtype, device=data.device, requires_grad=requires_grad) |
|
|
|
def __init__(self, qtype, axis, group_size, size, stride, data, scale, shift, requires_grad=False): |
|
assert axis == 0 |
|
if not isinstance(data, AWQPackedTensor): |
|
assert type(data) is torch.Tensor |
|
ungrouped = ungroup(data, axis=0, orig_shape=size) |
|
data = AWQPackedTensor.pack(ungrouped, packing=AWQPacking.V2) |
|
(out_features, in_features) = size |
|
scale = scale.reshape(out_features, in_features // group_size).t().contiguous() |
|
shift = shift.reshape(out_features, in_features // group_size).t() |
|
if not shift.dtype.is_floating_point: |
|
shift = scale * shift |
|
shift = -shift.contiguous() |
|
super().__init__(qtype, axis, group_size, size, stride, data, scale, shift) |
|
|
|
def dequantize(self): |
|
return AWQBitsDequantizer.apply(self) |
|
|
|
def qbits_tensor(self): |
|
data = group(self._data.unpack(), axis=self.axis, group_size=self._group_size) |
|
n_scales = self._scale.numel() |
|
scale = self._scale.t().reshape((n_scales, 1)) |
|
shift = -self._shift.t().reshape((n_scales, 1)) |
|
return QBitsTensor(self._qtype, self._axis, self._group_size, self.size(), self.stride(), data, scale, shift) |
|
|
|
def __tensor_flatten__(self): |
|
inner_tensors = ['_data', '_scale', '_shift'] |
|
meta = {'qtype': self._qtype.name, 'axis': str(self._axis), 'group_size': str(self._group_size), 'size': str(list(self.size())), 'stride': str(list(self.stride()))} |
|
return (inner_tensors, meta) |
|
|
|
@staticmethod |
|
def __tensor_unflatten__(inner_tensors, meta, outer_size, outer_stride): |
|
assert len(inner_tensors) == 3 |
|
assert len(meta) == 5 |
|
(data, scale, shift) = (inner_tensors['_data'], inner_tensors['_scale'], inner_tensors['_shift']) |
|
qtype = qtypes[meta['qtype']] |
|
axis = ast.literal_eval(meta['axis']) |
|
group_size = ast.literal_eval(meta['group_size']) |
|
size = ast.literal_eval(meta['size']) |
|
stride = ast.literal_eval(meta['stride']) |
|
return AWQBitsTensor(qtype, axis, group_size, size, stride, data, scale, shift) |
|
|
|
@classmethod |
|
def __torch_function__(cls, func, types, args=(), kwargs=None): |
|
kwargs = kwargs or {} |
|
if func is torch.nn.functional.linear: |
|
|
|
def qlinear(input, other, bias=None): |
|
return AWQBitsLinearFunction.apply(input, other, bias) |
|
return qlinear(*args, **kwargs) |
|
with torch._C.DisableTorchFunctionSubclass(): |
|
return func(*args, **kwargs) |
|
|
|
# File: optimum-quanto-main/optimum/quanto/tensor/qbits/group.py |
|
import math |
|
from typing import List |
|
import torch |
|
__all__ = ['group', 'ungroup', 'grouped_shape'] |
|
|
|
def grouped_shape(shape: List, axis: int, group_size: int) -> List: |
|
if axis not in (0, -1): |
|
raise ValueError('Axis must be 0 or -1 for group-wise quantization') |
|
n_groups = math.prod(shape) // group_size |
|
return (n_groups, group_size) if axis == 0 else (group_size, n_groups) |
|
|
|
def group(base: torch.Tensor, axis: int, group_size: int): |
|
if axis not in (0, -1): |
|
raise ValueError('Axis must be 0 or -1 for group-wise quantization') |
|
axis_dim = base.shape[axis] |
|
axis_numel = base.numel() // axis_dim |
|
if group_size > axis_numel or axis_numel % group_size != 0: |
|
raise ValueError(f'Group size ({group_size}) must be a divisor of ({axis_numel})') |
|
axis_groups = axis_numel // group_size |
|
if axis == 0: |
|
return base.reshape([-1, group_size]) |
|
grouped = base.reshape((axis_groups, group_size, axis_dim)) |
|
grouped = grouped.permute(1, 2, 0) |
|
return grouped.reshape(group_size, axis_dim * axis_groups) |
|
|
|
def ungroup(grouped: torch.Tensor, axis: int, orig_shape: torch.Size): |
|
if grouped.shape == orig_shape: |
|
return grouped |
|
if axis == 0: |
|
return grouped.reshape(orig_shape) |
|
group_size = grouped.shape[0] if axis == -1 else grouped.shape[-1] |
|
axis_dim = orig_shape[axis] |
|
axis_groups = grouped.numel() // axis_dim // group_size |
|
ungrouped = grouped.reshape(group_size, axis_dim, axis_groups) |
|
ungrouped = ungrouped.permute(2, 0, 1) |
|
return ungrouped.reshape(orig_shape) |
|
|
|
# File: optimum-quanto-main/optimum/quanto/tensor/qbits/packed.py |
|
import ast |
|
import torch |
|
from torch.utils import _pytree as pytree |
|
__all__ = ['PackedTensor'] |
|
|
|
def pack_weights(intweights: torch.Tensor, bits: int) -> torch.Tensor: |
|
original_shape = intweights.shape |
|
values_per_item = 8 // bits |
|
row_dim = (original_shape[0] + values_per_item - 1) // values_per_item |
|
if len(original_shape) == 1: |
|
packed_tensor_shape = (row_dim,) |
|
else: |
|
packed_tensor_shape = (row_dim, *original_shape[1:]) |
|
packed = torch.zeros(packed_tensor_shape, device=intweights.device, dtype=torch.uint8) |
|
unpacked = intweights.to(torch.uint8) |
|
|
|
def lshift(t: torch.Tensor, bits: int): |
|
if t.device.type == 'mps': |
|
return t * 2 ** bits |
|
return t << bits |
|
it = min(values_per_item, original_shape[0] // row_dim + 1) |
|
for i in range(it): |
|
start = i * row_dim |
|
end = min(start + row_dim, original_shape[0]) |
|
packed[:end - start] |= lshift(unpacked[start:end], bits * i) |
|
return packed |
|
|
|
class PackedTensor(torch.Tensor): |
|
|
|
@staticmethod |
|
def __new__(cls, data, bits, size, stride, requires_grad=False): |
|
assert data.dtype == torch.uint8 |
|
assert requires_grad is False |
|
return torch.Tensor._make_wrapper_subclass(cls, size, strides=stride, dtype=torch.uint8, device=data.device, requires_grad=requires_grad) |
|
|
|
def __init__(self, data, bits, size, stride, requires_grad=False): |
|
self._bits = bits |
|
self._data = data |
|
|
|
def __repr__(self): |
|
autograd_info = f', grad_fn={self.grad_fn}' if self.grad_fn else ', requires_grad=True' if self.requires_grad else '' |
|
return f'PackedTensor({self._data}, bits={self._bits}, public_dtype={self.dtype}{autograd_info})' |
|
|
|
@classmethod |
|
def pack(cls, t, bits=4): |
|
assert bits in (2, 4) |
|
assert t.dtype == torch.uint8 |
|
data = pack_weights(t, bits) |
|
return PackedTensor(data, bits, t.size(), t.stride()) |
|
|
|
def unpack(self): |
|
unpacked_data = torch.ops.quanto.unpack(self._data, self._bits) |
|
return unpacked_data[:self.shape[0]] |
|
|
|
@property |
|
def bits(self): |
|
return self._bits |
|
|
|
@property |
|
def dtype(self): |
|
return torch.uint8 |
|
|
|
@staticmethod |
|
def load_from_state_dict(state_dict, prefix, bits, size, stride, missing_keys): |
|
if prefix + '_data' not in state_dict: |
|
missing_keys.append(prefix + '_data') |
|
return |
|
inner_tensors_dict = {'_data': state_dict.pop(prefix + '_data')} |
|
meta = [name.replace(prefix, '') for name in state_dict.keys() if name.startswith(prefix)] |
|
meta = {'bits': str(bits), 'size': str(list(size)), 'stride': str(stride)} |
|
return PackedTensor.__tensor_unflatten__(inner_tensors_dict, meta, None, None) |
|
|
|
def __tensor_flatten__(self): |
|
inner_tensors = ['_data'] |
|
meta = {'bits': str(self._bits), 'size': str(list(self.size())), 'stride': str(self.stride())} |
|
return (inner_tensors, meta) |
|
|
|
@staticmethod |
|
def __tensor_unflatten__(inner_tensors, meta, outer_size, outer_stride): |
|
assert len(inner_tensors) == 1 |
|
assert len(meta) == 3 |
|
data = inner_tensors['_data'] |
|
bits = ast.literal_eval(meta['bits']) |
|
size = ast.literal_eval(meta['size']) |
|
stride = ast.literal_eval(meta['stride']) |
|
return PackedTensor(data, bits, size, stride) |
|
__torch_function__ = torch._C._disabled_torch_function_impl |
|
|
|
@classmethod |
|
def __torch_dispatch__(cls, op, types, args, kwargs=None): |
|
if op.overloadpacket is torch.ops.aten.detach: |
|
t = args[0] |
|
data = op(t._data) |
|
return PackedTensor(data, t._bits, t.size(), t.stride()) |
|
elif op.overloadpacket in (torch.ops.aten._to_copy, torch.ops.aten.to): |
|
t = args[0] |
|
dtype = kwargs.get('dtype', torch.uint8) |
|
if dtype != torch.uint8: |
|
raise ValueError(f'PackedTensor are torch.uint8 only and cannot be moved to {dtype}.') |
|
data = op(t._data, **kwargs) |
|
return PackedTensor(data, t._bits, t.size(), t.stride()) |
|
(args, kwargs) = pytree.tree_map_only(PackedTensor, lambda x: x.unpack(), (args, kwargs or {})) |
|
return op(*args, **kwargs) |
|
|
|
def numpy(self): |
|
return self.unpack().cpu().numpy() |
|
|
|
# File: optimum-quanto-main/optimum/quanto/tensor/qbits/qbits.py |
|
import ast |
|
import torch |
|
from packaging import version |
|
from torch.autograd import Function |
|
from ..function import QuantizedLinearFunction |
|
from ..qtensor import QTensor, qfallback |
|
from ..qtype import qint2, qint4, qtype, qtypes |
|
from .group import grouped_shape, ungroup |
|
from .packed import PackedTensor |
|
__all__ = ['QBitsTensor'] |
|
|
|
class QBitsQuantizer(Function): |
|
|
|
@staticmethod |
|
def forward(ctx, base: torch.Tensor, qtype: qtype, axis: int, group_size: int, scale: torch.Tensor, shift: torch.Tensor): |
|
if qtype not in (qint2, qint4): |
|
raise ValueError('QBitsTensor can only be of qint2 or qint4 qtype') |
|
if axis not in (0, -1): |
|
raise ValueError('QBitsTensor axis parameter must be 0 (first axis) or -1 (last axis)') |
|
size = base.size() |
|
stride = base.stride() |
|
data = torch.ops.quanto.quantize_affine(base, bits=qtype.bits, axis=axis, group_size=group_size, scale=scale, shift=shift) |
|
return QBitsTensor.create(qtype, axis, group_size, size, stride, data, scale, shift) |
|
|
|
@staticmethod |
|
def backward(ctx, gO): |
|
return (gO, None, None, None, None, None) |
|
|
|
class QBitsDequantizer(Function): |
|
|
|
@staticmethod |
|
def forward(ctx, t): |
|
data = t._data.unpack() |
|
shift = t._shift |
|
if not shift.dtype.is_floating_point: |
|
data = data.to(torch.int8) - shift.to(torch.int8) |
|
if t.qtype.is_floating_point: |
|
dqt = t._scale * data.to(t._scale.dtype) |
|
else: |
|
dqt = t._scale * data |
|
if shift.dtype.is_floating_point: |
|
dqt -= shift |
|
if t.axis is None: |
|
return dqt |
|
return ungroup(dqt, axis=t.axis, orig_shape=t.shape) |
|
|
|
@staticmethod |
|
def backward(ctx, gO): |
|
return gO |
|
|
|
class QBitsTensor(QTensor): |
|
|
|
@staticmethod |
|
def create(qtype, axis, group_size, size, stride, data, scale, shift, requires_grad=False): |
|
from .awq import AWQBitsTensor |
|
from .tinygemm import TinyGemmQBitsTensor |
|
if qtype == qint4 and size[0] >= 128 and (scale.dtype == torch.float16) and (axis == 0) and (group_size == 128) and (len(size) == 2) and (data.device.type == 'cuda') and (torch.cuda.get_device_capability(data.device)[0] >= 8): |
|
if type(data) is PackedTensor: |
|
data = data.unpack() |
|
return AWQBitsTensor(qtype, axis, group_size, size, stride, data, scale, shift, requires_grad) |
|
if qtype == qint4 and scale.dtype == torch.bfloat16 and (axis == 0) and (group_size == 128) and (len(size) == 2): |
|
if data.device.type == 'cpu' or (data.device.type == 'cuda' and version.parse(torch.version.cuda).release >= (12, 1) and (torch.cuda.get_device_capability(data.device)[0] >= 8)): |
|
if type(data) is PackedTensor: |
|
data = data.unpack() |
|
return TinyGemmQBitsTensor(qtype, axis, group_size, size, stride, data, (scale, shift), requires_grad) |
|
return QBitsTensor(qtype, axis, group_size, size, stride, data, scale, shift, requires_grad) |
|
|
|
@staticmethod |
|
def __new__(cls, qtype, axis, group_size, size, stride, data, scale, shift, requires_grad=False): |
|
assert data.device == scale.device |
|
assert data.device == shift.device |
|
return torch.Tensor._make_wrapper_subclass(cls, size, strides=stride, dtype=scale.dtype, device=data.device, requires_grad=requires_grad) |
|
|
|
def __init__(self, qtype, axis, group_size, size, stride, data, scale, shift, requires_grad=False): |
|
super().__init__(qtype, axis) |
|
if type(data) is torch.Tensor: |
|
data = PackedTensor.pack(data, qtype.bits) |
|
self._data = data |
|
self._scale = scale |
|
self._shift = shift |
|
self._group_size = group_size |
|
|
|
def __repr__(self): |
|
return f'{type(self).__name__}({self._data}, scale={self._scale}, shift={self._shift}, dtype={self.dtype})' |
|
|
|
@classmethod |
|
def quantize(cls, base: torch.Tensor, qtype: qtype, axis: int, group_size: int, scale: torch.Tensor, shift: torch.Tensor): |
|
return QBitsQuantizer.apply(base, qtype, axis, group_size, scale, shift) |
|
|
|
def dequantize(self): |
|
return QBitsDequantizer.apply(self) |
|
|
|
@staticmethod |
|
def load_from_state_dict(state_dict, prefix, qtype, axis, group_size, size, stride, missing_keys): |
|
if group_size is None: |
|
data_size = size |
|
data_stride = stride |
|
else: |
|
data_size = grouped_shape(size, axis, group_size) |
|
assert len(data_size) == 2 |
|
data_stride = (data_size[1], 1) |
|
inner_tensors_dict = {'_data': PackedTensor.load_from_state_dict(state_dict, prefix + '_data.', qtype.bits, data_size, data_stride, missing_keys=missing_keys)} |
|
missing = inner_tensors_dict['_data'] is None |
|
for name in ['_scale', '_shift']: |
|
if prefix + name not in state_dict: |
|
missing_keys.append(prefix + name) |
|
missing = True |
|
else: |
|
inner_tensors_dict[name] = state_dict.pop(prefix + name) |
|
if missing: |
|
return None |
|
meta = {'qtype': qtype.name, 'axis': str(axis), 'group_size': str(group_size), 'size': str(list(size)), 'stride': str(list(stride))} |
|
return QBitsTensor.__tensor_unflatten__(inner_tensors_dict, meta, None, None) |
|
|
|
def optimize(self): |
|
if type(self) is not QBitsTensor: |
|
return self |
|
data = self._data.unpack() |
|
return QBitsTensor.create(self.qtype, self.axis, self._group_size, self.size(), self.stride(), data, self._scale, self._shift, self.requires_grad) |
|
|
|
def save_to_state_dict(self, destination, prefix, keep_vars): |
|
if type(self) is QBitsTensor: |
|
super().save_to_state_dict(destination, prefix, keep_vars) |
|
else: |
|
self.qbits_tensor().save_to_state_dict(destination, prefix, keep_vars) |
|
|
|
def qbits_tensor(self): |
|
raise NotImplementedError |
|
|
|
def __tensor_flatten__(self): |
|
inner_tensors = ['_data', '_scale', '_shift'] |
|
meta = {'qtype': self._qtype.name, 'axis': str(self._axis), 'group_size': str(self._group_size), 'size': str(list(self.size())), 'stride': str(list(self.stride()))} |
|
return (inner_tensors, meta) |
|
|
|
@staticmethod |
|
def __tensor_unflatten__(inner_tensors, meta, outer_size, outer_stride): |
|
assert len(inner_tensors) == 3 |
|
assert len(meta) == 5 |
|
(data, scale, shift) = (inner_tensors['_data'], inner_tensors['_scale'], inner_tensors['_shift']) |
|
qtype = qtypes[meta['qtype']] |
|
axis = ast.literal_eval(meta['axis']) |
|
group_size = ast.literal_eval(meta['group_size']) |
|
size = ast.literal_eval(meta['size']) |
|
stride = ast.literal_eval(meta['stride']) |
|
return QBitsTensor(qtype, axis, group_size, size, stride, data, scale, shift) |
|
|
|
@classmethod |
|
def __torch_function__(cls, func, types, args=(), kwargs=None): |
|
kwargs = kwargs or {} |
|
if func is torch.nn.functional.linear: |
|
|
|
def qlinear(input, other, bias=None): |
|
return QuantizedLinearFunction.apply(input, other, bias) |
|
return qlinear(*args, **kwargs) |
|
elif func is torch.equal: |
|
(input, other) = args |
|
return input.equal(other) |
|
with torch._C.DisableTorchFunctionSubclass(): |
|
return func(*args, **kwargs) |
|
|
|
@classmethod |
|
def __torch_dispatch__(cls, op, types, args, kwargs=None): |
|
from .qbits_ops import get_qbitstensor_op_dispatch |
|
op = op.overloadpacket |
|
qdispatch = get_qbitstensor_op_dispatch(op) |
|
if qdispatch is not None: |
|
return qdispatch(*args, **kwargs) |
|
return qfallback(op, *args, **kwargs) |
|
|
|
# File: optimum-quanto-main/optimum/quanto/tensor/qbits/qbits_ops.py |
|
from functools import partial |
|
from typing import Callable, List |
|
import torch |
|
from .qbits import QBitsTensor |
|
__all__ = ['get_qbitstensor_op_dispatch', 'register_qbitstensor_op'] |
|
_QBITSTENSOR_OP_TABLE = {} |
|
|
|
def register_qbitstensor_op(aten_ops: List[Callable]): |
|
|
|
def wrapper(op): |
|
for aten_op in aten_ops: |
|
_QBITSTENSOR_OP_TABLE[aten_op] = partial(op, aten_op) |
|
return wrapper |
|
|
|
def get_qbitstensor_op_dispatch(aten_op): |
|
return _QBITSTENSOR_OP_TABLE.get(aten_op, None) |
|
|
|
@register_qbitstensor_op([torch.ops.aten._to_copy]) |
|
def _to_copy(op, t, dtype=None, device=None, **kwargs): |
|
if dtype is not None and dtype != t.dtype: |
|
raise ValueError('The dtype of a QBitsTensor cannot be changed') |
|
if type(t) is not QBitsTensor and t.device.type != device.type: |
|
t = t.qbits_tensor() |
|
scale = op(t._scale, dtype=dtype, device=device, **kwargs) |
|
data = op(t._data, device=device, **kwargs) |
|
shift = op(t._shift, device=device, **kwargs) |
|
return QBitsTensor.create(t._qtype, t._axis, t._group_size, t.size(), t.stride(), data, scale, shift) |
|
|
|
@register_qbitstensor_op([torch.ops.aten.detach]) |
|
def detach(op, t): |
|
(inner_tensor_names, meta) = t.__tensor_flatten__() |
|
detached_tensors = {} |
|
for inner_name in inner_tensor_names: |
|
detached_tensors[inner_name] = op(getattr(t, inner_name)) |
|
return t.__class__.__tensor_unflatten__(detached_tensors, meta, t.size(), t.stride()) |
|
|
|
# File: optimum-quanto-main/optimum/quanto/tensor/qbits/tinygemm/packed.py |
|
import ast |
|
from copy import copy |
|
import torch |
|
from packaging import version |
|
from torch.utils import _pytree as pytree |
|
__all__ = ['TinyGemmPackedTensor'] |
|
|
|
class TinyGemmPackedTensor(torch.Tensor): |
|
|
|
@staticmethod |
|
def __new__(cls, data, size, stride, requires_grad=False): |
|
assert data.dtype == torch.int32 |
|
assert requires_grad is False |
|
return torch.Tensor._make_wrapper_subclass(cls, size, strides=stride, dtype=torch.uint8, device=data.device, requires_grad=requires_grad) |
|
|
|
def __init__(self, data, size, stride, requires_grad=False): |
|
self._data = data |
|
|
|
def __repr__(self): |
|
return f'TinyGemmPackedTensor({self._data})' |
|
|
|
@classmethod |
|
def pack(cls, t): |
|
inner_ktiles = 2 |
|
t = t.to(torch.int32).contiguous() |
|
if version.parse(torch.__version__).release >= version.parse('2.5.0').release: |
|
t_uint8 = (t[:, ::2] << 4 | t[:, 1::2]).to(torch.uint8) |
|
data = torch._convert_weight_to_int4pack(t_uint8, innerKTiles=inner_ktiles) |
|
else: |
|
data = torch._convert_weight_to_int4pack(t, innerKTiles=inner_ktiles) |
|
return TinyGemmPackedTensor(data, t.size(), t.stride()) |
|
|
|
def unpack(self): |
|
(out_features, in_features) = self.size() |
|
group_size = 32 |
|
scale_and_shift_shape = (in_features // group_size, out_features, 2) |
|
id_scale_and_shift = torch.ones(scale_and_shift_shape, dtype=torch.bfloat16, device=self.device) |
|
id_scale_and_shift[:, :, 1] = 8 |
|
identity = torch.eye(in_features, dtype=torch.bfloat16, device=self.device) |
|
unpacked_data = torch._weight_int4pack_mm(identity, self._data, group_size, id_scale_and_shift) |
|
return unpacked_data.t().to(torch.uint8) |
|
|
|
@property |
|
def dtype(self): |
|
return torch.uint8 |
|
|
|
def __tensor_flatten__(self): |
|
inner_tensors = ['_data'] |
|
meta = {'size': str(list(self.size())), 'stride': str(self.stride())} |
|
return (inner_tensors, meta) |
|
|
|
@staticmethod |
|
def __tensor_unflatten__(inner_tensors, meta, outer_size, outer_stride): |
|
assert len(inner_tensors) == 1 |
|
assert len(meta) == 2 |
|
data = inner_tensors['_data'] |
|
size = ast.literal_eval(meta['size']) |
|
stride = ast.literal_eval(meta['stride']) |
|
return TinyGemmPackedTensor(data, size, stride) |
|
__torch_function__ = torch._C._disabled_torch_function_impl |
|
|
|
@classmethod |
|
def __torch_dispatch__(cls, op, types, args, kwargs=None): |
|
if op.overloadpacket is torch.ops.aten.detach: |
|
t = args[0] |
|
data = op(t._data) |
|
return TinyGemmPackedTensor(data, t.size(), t.stride()) |
|
elif op.overloadpacket in (torch.ops.aten._to_copy, torch.ops.aten.to): |
|
t = args[0] |
|
dtype = kwargs.get('dtype', torch.uint8) |
|
if dtype != torch.uint8: |
|
raise ValueError(f'TinyGemmPackedTensor are torch.uint8 only and cannot be moved to {dtype}.') |
|
data_kwargs = copy(kwargs) |
|
data_kwargs['dtype'] = t._data.dtype |
|
if kwargs.get('device', t.device).type != t.device.type: |
|
unpacked = t.unpack() |
|
unpacked = op(unpacked, **data_kwargs) |
|
return TinyGemmPackedTensor.pack(unpacked) |
|
data = op(t._data, **data_kwargs) |
|
return TinyGemmPackedTensor(data, t.size(), t.stride()) |
|
(args, kwargs) = pytree.tree_map_only(TinyGemmPackedTensor, lambda x: x.unpack(), (args, kwargs or {})) |
|
return op(*args, **kwargs) |
|
|
|
def numpy(self): |
|
return self.unpack().cpu().numpy() |
|
|
|
# File: optimum-quanto-main/optimum/quanto/tensor/qbits/tinygemm/qbits.py |
|
import ast |
|
import torch |
|
from torch.autograd import Function |
|
from ...function import QuantizedLinearFunction |
|
from ...qtype import qtypes |
|
from ..group import group, ungroup |
|
from ..qbits import QBitsTensor |
|
from .packed import TinyGemmPackedTensor |
|
__all__ = ['TinyGemmQBitsTensor'] |
|
|
|
class TinyGemmQBitsDequantizer(Function): |
|
|
|
@staticmethod |
|
def forward(ctx, t): |
|
qbt = t.qbits_tensor() |
|
return qbt.dequantize() |
|
|
|
@staticmethod |
|
def backward(ctx, gO): |
|
return gO |
|
|
|
class TinyGemmQBitsLinearFunction(QuantizedLinearFunction): |
|
|
|
@staticmethod |
|
def forward(ctx, input, other, bias): |
|
ctx.save_for_backward(input, other) |
|
if type(input) is not torch.Tensor: |
|
input = input.dequantize() |
|
in_features = input.shape[-1] |
|
out_features = other.shape[0] |
|
output_shape = input.shape[:-1] + (out_features,) |
|
output = torch._weight_int4pack_mm(input.view(-1, in_features), other._data._data, other._group_size, other._scale_shift) |
|
output = output.view(output_shape) |
|
if bias is not None: |
|
output = output + bias |
|
return output |
|
|
|
class TinyGemmQBitsTensor(QBitsTensor): |
|
|
|
@staticmethod |
|
def __new__(cls, qtype, axis, group_size, size, stride, data, scale_shift, requires_grad=False): |
|
if isinstance(scale_shift, torch.Tensor): |
|
dtype = scale_shift.dtype |
|
assert data.device == scale_shift.device |
|
else: |
|
assert isinstance(scale_shift, (tuple, list)) |
|
(scale, shift) = scale_shift |
|
dtype = scale.dtype |
|
assert shift.dtype == dtype |
|
assert data.device == scale.device |
|
assert data.device == shift.device |
|
return torch.Tensor._make_wrapper_subclass(cls, size, strides=stride, dtype=dtype, device=data.device, requires_grad=requires_grad) |
|
|
|
def __init__(self, qtype, axis, group_size, size, stride, data, scale_shift, requires_grad=False): |
|
assert axis == 0 |
|
if not isinstance(data, TinyGemmPackedTensor): |
|
assert type(data) is torch.Tensor |
|
assert isinstance(scale_shift, (tuple, list)) |
|
ungrouped = ungroup(data, axis=0, orig_shape=size) |
|
self._data = TinyGemmPackedTensor.pack(ungrouped) |
|
(out_features, in_features) = size |
|
(scale, shift) = scale_shift |
|
scale = scale.reshape(out_features, in_features // group_size, 1) |
|
shift = shift.reshape(out_features, in_features // group_size, 1) |
|
if not shift.dtype.is_floating_point: |
|
shift = scale * shift |
|
min_range = -shift |
|
half_qrange = 2 ** (qtype.bits - 1) * scale |
|
shift = min_range + half_qrange |
|
self._scale_shift = torch.cat([scale, shift], 2).transpose(0, 1).contiguous() |
|
else: |
|
self._data = data |
|
self._scale_shift = scale_shift |
|
self._qtype = qtype |
|
self._axis = axis |
|
self._group_size = group_size |
|
|
|
def dequantize(self): |
|
return TinyGemmQBitsDequantizer.apply(self) |
|
|
|
def qbits_tensor(self): |
|
data = group(self._data.unpack(), axis=self.axis, group_size=self._group_size) |
|
n_scales = self._scale_shift.numel() // 2 |
|
scale = self._scale_shift[:, :, 0].t().reshape((n_scales, 1)) |
|
shift = self._scale_shift[:, :, 1].t().reshape((n_scales, 1)) |
|
half_qrange = 2 ** (self.qtype.bits - 1) * scale |
|
shift = half_qrange - shift |
|
return QBitsTensor(self._qtype, self._axis, self._group_size, self.size(), self.stride(), data, scale, shift) |
|
|
|
def __tensor_flatten__(self): |
|
inner_tensors = ['_data', '_scale_shift'] |
|
meta = {'qtype': self._qtype.name, 'axis': str(self._axis), 'group_size': str(self._group_size), 'size': str(list(self.size())), 'stride': str(list(self.stride()))} |
|
return (inner_tensors, meta) |
|
|
|
@staticmethod |
|
def __tensor_unflatten__(inner_tensors, meta, outer_size, outer_stride): |
|
assert len(inner_tensors) == 2 |
|
assert len(meta) == 5 |
|
(data, scale_shift) = (inner_tensors['_data'], inner_tensors['_scale_shift']) |
|
qtype = qtypes[meta['qtype']] |
|
axis = ast.literal_eval(meta['axis']) |
|
group_size = ast.literal_eval(meta['group_size']) |
|
size = ast.literal_eval(meta['size']) |
|
stride = ast.literal_eval(meta['stride']) |
|
return TinyGemmQBitsTensor(qtype, axis, group_size, size, stride, data, scale_shift) |
|
|
|
@classmethod |
|
def __torch_function__(cls, func, types, args=(), kwargs=None): |
|
kwargs = kwargs or {} |
|
if func is torch.nn.functional.linear: |
|
|
|
def qlinear(input, other, bias=None): |
|
return TinyGemmQBitsLinearFunction.apply(input, other, bias) |
|
return qlinear(*args, **kwargs) |
|
with torch._C.DisableTorchFunctionSubclass(): |
|
return func(*args, **kwargs) |
|
|
|
# File: optimum-quanto-main/optimum/quanto/tensor/qbytes.py |
|
from torch.autograd import Function |
|
from .qtensor import QTensor |
|
__all__ = ['QBytesTensor'] |
|
|
|
class QBytesDequantizer(Function): |
|
|
|
@staticmethod |
|
def forward(ctx, t): |
|
if t.qtype.is_floating_point: |
|
dqt = t._scale * t._data.to(t._scale.dtype) |
|
else: |
|
dqt = t._scale * t._data |
|
return dqt |
|
|
|
@staticmethod |
|
def backward(ctx, gO): |
|
return gO |
|
|
|
class QBytesTensor(QTensor): |
|
|
|
def __init__(self, qtype, axis, size, stride, data, scale, requires_grad=False): |
|
super().__init__(qtype, axis) |
|
self._data = data |
|
self._scale = scale |
|
|
|
def __repr__(self): |
|
return f'{self.__class__}({self._data}, scale={self._scale}, dtype={self.dtype})' |
|
|
|
def dequantize(self): |
|
return QBytesDequantizer.apply(self) |
|
|
|
# File: optimum-quanto-main/optimum/quanto/tensor/qtensor.py |
|
import torch |
|
from torch.utils import _pytree as pytree |
|
__all__ = ['QTensor', 'qfallback'] |
|
|
|
def qfallback(callable, *args, **kwargs): |
|
(args, kwargs) = pytree.tree_map_only(QTensor, lambda x: x.dequantize(), (args, kwargs or {})) |
|
return callable(*args, **kwargs) |
|
|
|
class QTensor(torch.Tensor): |
|
|
|
def __init__(self, qtype, axis): |
|
self._qtype = qtype |
|
self._axis = axis |
|
|
|
def dequantize(self): |
|
raise NotImplementedError |
|
|
|
def save_to_state_dict(self, destination, prefix, keep_vars): |
|
|
|
def serialize_tensor_subclass(t, destination, prefix, keep_vars): |
|
(inner_tensors, meta) = t.__tensor_flatten__() |
|
for name in inner_tensors: |
|
inner_tensor = getattr(t, name) |
|
if type(inner_tensor) is torch.Tensor: |
|
destination[prefix + name] = inner_tensor if keep_vars else inner_tensor.detach() |
|
else: |
|
serialize_tensor_subclass(inner_tensor, destination, prefix + name + '.', keep_vars) |
|
serialize_tensor_subclass(self, destination, prefix, keep_vars) |
|
|
|
@property |
|
def axis(self): |
|
return self._axis |
|
|
|
@property |
|
def qtype(self): |
|
return self._qtype |
|
|
|
def numpy(self): |
|
return self.dequantize().cpu().numpy() |
|
|
|
def equal(self, other): |
|
if type(self) is not type(other): |
|
return False |
|
(self_tensors, self_meta) = self.__tensor_flatten__() |
|
(_, other_meta) = other.__tensor_flatten__() |
|
for (name, value) in self_meta.items(): |
|
if other_meta[name] != value: |
|
return False |
|
for name in self_tensors: |
|
self_t = getattr(self, name) |
|
other_t = getattr(other, name) |
|
if self_t.device.type == 'cpu' and self_t.dtype in (torch.float8_e4m3fn, torch.float8_e5m2): |
|
if self_t.dtype != other_t.dtype: |
|
return False |
|
if not torch.equal(self_t.to(torch.float32), other_t.to(torch.float32)): |
|
return False |
|
elif not torch.equal(self_t, other_t): |
|
return False |
|
return True |
|
|
|
# File: optimum-quanto-main/optimum/quanto/tensor/qtype.py |
|
from dataclasses import dataclass |
|
import torch |
|
|
|
@dataclass |
|
class qtype: |
|
name: str |
|
is_floating_point: bool |
|
bits: int |
|
dtype: torch.dtype |
|
qmin: float |
|
qmax: float |
|
|
|
def __str__(self): |
|
return f'quanto.{self.name}' |
|
|
|
def __hash__(self): |
|
return hash(str(self)) |
|
|
|
def qint(bits): |
|
qmin = -2 ** (bits - 1) |
|
qmax = 2 ** (bits - 1) - 1 |
|
return qtype(f'qint{bits}', is_floating_point=False, bits=bits, dtype=torch.int8, qmin=qmin, qmax=qmax) |
|
qint2 = qint(2) |
|
qint4 = qint(4) |
|
qint8 = qint(8) |
|
|
|
def qfloat(dtype: torch.dtype): |
|
finfo = torch.finfo(dtype) |
|
qmin = finfo.min |
|
qmax = finfo.max |
|
return qtype(f'q{finfo.dtype}', is_floating_point=True, bits=8, dtype=dtype, qmin=qmin, qmax=qmax) |
|
qfloat8_e4m3fn = qfloat(torch.float8_e4m3fn) |
|
qfloat8_e5m2 = qfloat(torch.float8_e5m2) |
|
qfloat8 = qfloat8_e4m3fn |
|
qtypes = {name: q for (name, q) in locals().items() if isinstance(q, qtype)} |
|
__all__ = ['qtype', 'qtypes'] + [str(name) for name in qtypes.keys()] |
|
|
|
# File: optimum-quanto-main/optimum/quanto/tensor/weights/marlin/marlin.py |
|
import ast |
|
import torch |
|
from ...function import QuantizedLinearFunction |
|
from ...qtype import qfloat8_e4m3fn, qtypes |
|
from ..qbytes import WeightQBytesTensor |
|
from .packed import MarlinF8PackedTensor, get_scale_perms |
|
|
|
class MarlinF8QBytesLinearFunction(QuantizedLinearFunction): |
|
|
|
@staticmethod |
|
def forward(ctx, input, other, bias=None): |
|
ctx.save_for_backward(input, other) |
|
input_shape = input.shape |
|
if input.ndim > 2: |
|
input = input.view(-1, input_shape[-1]) |
|
output = torch.ops.quanto.fp8_marlin_gemm(input, b_q_weight=other._data._data, b_scales=other._scale, workspace=other._workspace, num_bits=8, size_m=input.shape[0], size_n=other._scale.shape[1], size_k=input.shape[1]) |
|
if len(input_shape) > 2: |
|
output = output.reshape(input_shape[:-1] + (other._scale.shape[1],)) |
|
return output |
|
|
|
class MarlinF8QBytesTensor(WeightQBytesTensor): |
|
|
|
@staticmethod |
|
def __new__(cls, qtype, axis, size, stride, data, scale, requires_grad=False): |
|
assert data.device.type == 'cuda' |
|
assert data.device == scale.device |
|
return torch.Tensor._make_wrapper_subclass(cls, size, strides=stride, dtype=scale.dtype, device=data.device, requires_grad=requires_grad) |
|
|
|
def __init__(self, qtype, axis, size, stride, data, scale, requires_grad=False): |
|
assert axis == 0 |
|
assert data.ndim == 2 |
|
out_features = size[0] |
|
self._workspace = torch.zeros(out_features // 64 * 16, dtype=torch.int, device=data.device) |
|
if data.dtype != torch.int32: |
|
assert scale.shape == (out_features, 1) |
|
scale_perm_single = get_scale_perms() |
|
scale = scale.reshape((-1, len(scale_perm_single)))[:, scale_perm_single] |
|
scale = scale.reshape(-1, out_features).contiguous() |
|
data_packed = MarlinF8PackedTensor.pack(data) |
|
else: |
|
data_packed = data |
|
super().__init__(qtype, axis, size, stride, data_packed, scale, activation_qtype=qfloat8_e4m3fn, requires_grad=requires_grad) |
|
|
|
def dequantize(self): |
|
float8_data = self._data.unpack() |
|
scale_perm_single = get_scale_perms() |
|
scale_perm_single_rev = torch.empty_like(scale_perm_single) |
|
scale_perm_single_rev[scale_perm_single] = torch.arange(len(scale_perm_single)) |
|
scale_reordered = self._scale.reshape((-1, len(scale_perm_single_rev)))[:, scale_perm_single_rev] |
|
scale_reordered = scale_reordered.reshape(-1, self._scale.shape[1]).contiguous() |
|
return float8_data.to(scale_reordered.dtype) * scale_reordered.T |
|
|
|
def __repr__(self): |
|
return f'MarlinF8QBytesTensor({self._data}, scale={self._scale}, dtype={self.dtype})' |
|
|
|
def weight_qbytes_tensor(self): |
|
data = self._data.unpack() |
|
scale_perm_single = get_scale_perms() |
|
scale_perm_single_rev = torch.empty_like(scale_perm_single) |
|
scale_perm_single_rev[scale_perm_single] = torch.arange(len(scale_perm_single)) |
|
scale_reordered = self._scale.reshape((-1, len(scale_perm_single_rev)))[:, scale_perm_single_rev] |
|
scale_reordered = scale_reordered.reshape(-1, self._scale.shape[1]).t().contiguous() |
|
return WeightQBytesTensor(self._qtype, self._axis, self.size(), self.stride(), data, scale_reordered, self.activation_qtype) |
|
|
|
def __tensor_flatten__(self): |
|
inner_tensors = ['_data', '_scale'] |
|
meta = {'qtype': self._qtype.name, 'axis': str(self._axis), 'size': str(list(self.size())), 'stride': str(list(self.stride()))} |
|
return (inner_tensors, meta) |
|
|
|
@staticmethod |
|
def __tensor_unflatten__(inner_tensors, meta, outer_size, outer_stride): |
|
assert len(inner_tensors) == 2 |
|
assert len(meta) == 4 |
|
(data, scale) = (inner_tensors['_data'], inner_tensors['_scale']) |
|
qtype = qtypes[meta['qtype']] |
|
axis = ast.literal_eval(meta['axis']) |
|
size = ast.literal_eval(meta['size']) |
|
stride = ast.literal_eval(meta['stride']) |
|
return MarlinF8QBytesTensor(qtype, axis, size, stride, data, scale) |
|
|
|
@classmethod |
|
def __torch_function__(cls, func, types, args=(), kwargs=None): |
|
kwargs = kwargs or {} |
|
if func is torch.nn.functional.linear: |
|
|
|
def qlinear(input, other, bias=None): |
|
return MarlinF8QBytesLinearFunction.apply(input, other, bias) |
|
return qlinear(*args, **kwargs) |
|
elif func is torch.equal: |
|
(input, other) = args |
|
return input.equal(other) |
|
with torch._C.DisableTorchFunctionSubclass(): |
|
return func(*args, **kwargs) |
|
|
|
# File: optimum-quanto-main/optimum/quanto/tensor/weights/marlin/packed.py |
|
import ast |
|
from copy import copy |
|
import torch |
|
from torch.utils import _pytree as pytree |
|
|
|
def pack_fp8_as_int32(fp8_tensor: torch.Tensor) -> torch.Tensor: |
|
assert fp8_tensor.dtype == torch.float8_e4m3fn |
|
if fp8_tensor.shape[0] % 4 != 0: |
|
raise ValueError(f'Leading tensor dimension is not divisable by 4: {fp8_tensor.shape[0]}') |
|
reshaped = fp8_tensor.reshape(-1, 4, *fp8_tensor.shape[1:]) |
|
byte_tensor = reshaped.view(torch.uint8) |
|
packed = torch.zeros(fp8_tensor.shape[0] // 4, fp8_tensor.shape[1], dtype=torch.int32, device=fp8_tensor.device) |
|
for i in range(4): |
|
packed.bitwise_or_(byte_tensor[:, i].to(torch.int32) << i * 8) |
|
return packed |
|
|
|
def unpack_int32_to_fp8(int32_tensor: torch.Tensor) -> torch.Tensor: |
|
bits = 8 |
|
unpacked = [] |
|
for i in range(4): |
|
mask = 2 ** (bits * (i + 1)) - 1 |
|
tmp = (int32_tensor & mask) >> bits * i |
|
tmp = tmp.to(torch.uint8) |
|
unpacked.append(tmp) |
|
unpacked = torch.cat(unpacked).view(torch.float8_e4m3fn) |
|
return unpacked |
|
|
|
def get_scale_perms() -> torch.Tensor: |
|
scale_perm_single = [] |
|
for i in range(4): |
|
scale_perm_single.extend([2 * i + j for j in [0, 1, 8, 9, 16, 17, 24, 25]]) |
|
return torch.tensor(scale_perm_single, dtype=torch.int64) |
|
|
|
def get_row_permutation(n_rows: int) -> torch.Tensor: |
|
modulo = n_rows // 4 * 16 - 8 |
|
b = n_rows // 2 |
|
rows_idx = [i * 16 % modulo for i in range(b)] |
|
rows_idx[-1] = rows_idx[-2] + 16 if b > 2 else 8 |
|
rows_idx = torch.tensor(rows_idx) |
|
rows_idx = torch.cat((rows_idx, rows_idx + 1)) |
|
rows_idx = torch.tile(rows_idx[:, None], (1, 4)) |
|
rows_idx = rows_idx + torch.tensor([[0, 2, 4, 6]]) |
|
rows_idx = rows_idx.reshape(-1) |
|
rows_idx_rev = torch.empty_like(rows_idx) |
|
rows_idx_rev[rows_idx] = torch.arange(len(rows_idx)) |
|
return rows_idx_rev |
|
|
|
def get_column_permutation(n_col: int) -> torch.Tensor: |
|
tile_size = 256 |
|
n_blocks = n_col // tile_size |
|
a = torch.arange(tile_size) |
|
rest = a % 8 |
|
frac = a // 8 |
|
original_index = 32 * rest + frac |
|
original_index = torch.arange(n_blocks)[:, None] * 256 + original_index |
|
original_index = original_index.reshape(-1) |
|
original_index = original_index.reshape(4 * n_blocks, 64) |
|
tmp1 = torch.arange(4) |
|
tmp1 = tmp1.repeat(n_blocks, 1).T.reshape(-1) |
|
tmp2 = torch.arange(n_blocks) * 4 |
|
tmp2 = tmp2.repeat(4) |
|
remap_col_index = tmp1 + tmp2 |
|
original_index = original_index[remap_col_index] |
|
original_index = original_index.reshape(-1) |
|
return original_index |
|
|
|
class MarlinF8PackedTensor(torch.Tensor): |
|
|
|
def __new__(cls, data, size, stride, requires_grad=False): |
|
assert data.device.type == 'cuda' |
|
assert data.dtype == torch.int32 |
|
assert requires_grad is False |
|
return torch.Tensor._make_wrapper_subclass(cls, size, strides=stride, dtype=torch.int32, device=data.device, requires_grad=requires_grad) |
|
|
|
def __init__(self, data, size, stride, requires_grad=False): |
|
self._data = data |
|
|
|
def __repr__(self): |
|
return f'MarlinF8PackedTensor({self._data})' |
|
|
|
@classmethod |
|
def pack(cls, tensor: torch.Tensor): |
|
(out_features, in_features) = tensor.shape |
|
data_int32 = pack_fp8_as_int32(tensor.T) |
|
perm = torch.empty(0, dtype=torch.int, device=tensor.device) |
|
data_int32 = torch.ops.quanto.gptq_marlin_repack(b_q_weight=data_int32, perm=perm, size_k=in_features, size_n=out_features, num_bits=8) |
|
return cls(data_int32, size=tensor.size(), stride=tensor.stride()) |
|
|
|
def unpack(self) -> torch.Tensor: |
|
float8_data = unpack_int32_to_fp8(self._data) |
|
uint8_data = float8_data.view(torch.uint8) |
|
(n_rows, n_col) = uint8_data.shape |
|
column_map = get_column_permutation(n_col=n_col) |
|
uint8_data = uint8_data.T.contiguous() |
|
uint8_data = uint8_data[column_map] |
|
uint8_data = uint8_data.T.contiguous() |
|
uint8_data = uint8_data.reshape(uint8_data.shape[0] * 4, -1) |
|
row_map = get_row_permutation(n_rows=n_rows) |
|
uint8_data = uint8_data[row_map] |
|
float8_data = uint8_data.view(torch.float8_e4m3fn) |
|
float8_data = float8_data.T |
|
return float8_data |
|
|
|
@property |
|
def dtype(self): |
|
return torch.int32 |
|
|
|
def __tensor_flatten__(self): |
|
inner_tensors = ['_data'] |
|
meta = {'size': str(list(self.size())), 'stride': str(self.stride())} |
|
return (inner_tensors, meta) |
|
|
|
@staticmethod |
|
def __tensor_unflatten__(inner_tensors, meta, outer_size, outer_stride): |
|
assert len(inner_tensors) == 1 |
|
assert len(meta) == 2 |
|
data = inner_tensors['_data'] |
|
size = ast.literal_eval(meta['size']) |
|
stride = ast.literal_eval(meta['stride']) |
|
return MarlinF8PackedTensor(data, size, stride) |
|
__torch_function__ = torch._C._disabled_torch_function_impl |
|
|
|
@classmethod |
|
def __torch_dispatch__(cls, op, types, args, kwargs=None): |
|
if op.overloadpacket is torch.ops.aten.detach: |
|
t = args[0] |
|
data = op(t._data) |
|
return cls(data, t.size(), t.stride()) |
|
elif op.overloadpacket in (torch.ops.aten._to_copy, torch.ops.aten.to): |
|
t = args[0] |
|
dtype = kwargs.get('dtype', torch.uint8) |
|
if dtype != torch.float8_e4m3fn: |
|
raise ValueError(f'MarlinF8PackedTensor are torch.int32 only and cannot be moved to {dtype}.') |
|
device = kwargs.get('device', t.device) |
|
if device.type == 'cuda': |
|
data_kwargs = copy(kwargs) |
|
data_kwargs['dtype'] = t._data.dtype |
|
data = op(t._data, **data_kwargs) |
|
return cls(data, t.size(), t.stride()) |
|
else: |
|
(args, kwargs) = pytree.tree_map_only(cls, lambda x: x.unpack(), (args, kwargs or {})) |
|
return op(*args, **kwargs) |
|
|
|
# File: optimum-quanto-main/optimum/quanto/tensor/weights/qbytes.py |
|
import ast |
|
from typing import Optional |
|
import torch |
|
from torch.autograd import Function |
|
from ..function import QuantizedLinearFunction |
|
from ..qbytes import QBytesTensor |
|
from ..qtensor import qfallback |
|
from ..qtype import qtype, qtypes |
|
__all__ = ['WeightQBytesTensor'] |
|
|
|
class WeightQBytesQuantizer(Function): |
|
|
|
@staticmethod |
|
def forward(ctx, base: torch.Tensor, qtype: qtype, axis: int, scale: torch.Tensor, activation_qtype: Optional[qtype]) -> torch.Tensor: |
|
if qtype.bits != 8: |
|
raise ValueError('QBytesTensor can only be of 8-bit qtype') |
|
data = torch.ops.quanto.quantize_symmetric(base, dtype=qtype.dtype, axis=axis, scale=scale) |
|
return WeightQBytesTensor.create(qtype, axis, size=base.size(), stride=base.stride(), data=data, scale=scale, activation_qtype=activation_qtype) |
|
|
|
@staticmethod |
|
def backward(ctx, gO): |
|
return (gO, None, None, None, None, None) |
|
|
|
class WeightQBytesLinearFunction(QuantizedLinearFunction): |
|
|
|
@staticmethod |
|
def forward(ctx, input, other, bias=None): |
|
ctx.save_for_backward(input, other) |
|
if isinstance(input, QBytesTensor): |
|
output = torch.ops.quanto.qbytes_mm(input._data, other._data, input._scale * other._scale) |
|
else: |
|
output = torch.ops.quanto.qbytes_mm(input, other._data, other._scale) |
|
if bias is not None: |
|
output = output + bias |
|
return output |
|
|
|
class WeightQBytesTensor(QBytesTensor): |
|
|
|
@staticmethod |
|
def create(qtype, axis, size, stride, data, scale, activation_qtype: Optional[qtype]=None, requires_grad=False): |
|
from .marlin import MarlinF8QBytesTensor |
|
if qtype == qtypes['qfloat8_e4m3fn'] and activation_qtype is None and (scale.dtype in [torch.float16, torch.bfloat16]) and (len(size) == 2) and (data.device.type == 'cuda') and (axis == 0) and (torch.cuda.get_device_capability(data.device)[0] >= 8): |
|
if data.dtype == torch.int32 or (data.shape[0] % 64 == 0 and data.shape[1] % 16 == 0): |
|
return MarlinF8QBytesTensor(qtype, axis, size, stride, data, scale, requires_grad) |
|
return WeightQBytesTensor(qtype, axis, size, stride, data, scale, activation_qtype, requires_grad) |
|
|
|
@staticmethod |
|
def __new__(cls, qtype, axis, size, stride, data, scale, activation_qtype, requires_grad=False): |
|
assert data.device == scale.device |
|
return torch.Tensor._make_wrapper_subclass(cls, size, strides=stride, dtype=scale.dtype, device=data.device, requires_grad=requires_grad) |
|
|
|
def __init__(self, qtype, axis, size, stride, data, scale, activation_qtype, requires_grad=False): |
|
super().__init__(qtype, axis, size, stride, data, scale, requires_grad=requires_grad) |
|
self.activation_qtype = activation_qtype |
|
|
|
@classmethod |
|
def quantize(cls, base: torch.Tensor, qtype: qtype, axis: int, scale: torch.Tensor, activation_qtype: Optional[qtype]=None) -> torch.Tensor: |
|
return WeightQBytesQuantizer.apply(base, qtype, axis, scale, activation_qtype) |
|
|
|
@staticmethod |
|
def load_from_state_dict(state_dict, prefix, qtype, axis, size, stride, activation_qtype, missing_keys): |
|
inner_tensors_dict = {} |
|
missing = False |
|
for name in ['_data', '_scale']: |
|
if prefix + name not in state_dict: |
|
missing_keys.append(prefix + name) |
|
missing = True |
|
else: |
|
inner_tensors_dict[name] = state_dict.pop(prefix + name) |
|
if missing: |
|
return None |
|
meta = {'qtype': qtype.name, 'axis': str(axis), 'size': str(list(size)), 'stride': str(list(stride)), 'activation_qtype': 'none' if activation_qtype is None else activation_qtype.name} |
|
return WeightQBytesTensor.__tensor_unflatten__(inner_tensors_dict, meta, None, None) |
|
|
|
def optimize(self): |
|
if type(self) is not WeightQBytesTensor: |
|
return self |
|
return WeightQBytesTensor.create(self.qtype, self.axis, self.size(), self.stride(), self._data, self._scale, self.activation_qtype, self.requires_grad) |
|
|
|
def save_to_state_dict(self, destination, prefix, keep_vars): |
|
if type(self) is WeightQBytesTensor: |
|
super().save_to_state_dict(destination, prefix, keep_vars) |
|
else: |
|
self.weight_qbytes_tensor().save_to_state_dict(destination, prefix, keep_vars) |
|
|
|
def weight_qbytes_tensor(self): |
|
raise NotImplementedError |
|
|
|
def __tensor_flatten__(self): |
|
inner_tensors = ['_data', '_scale'] |
|
meta = {'qtype': self._qtype.name, 'axis': str(self._axis), 'size': str(list(self.size())), 'stride': str(list(self.stride())), 'activation_qtype': 'none' if self.activation_qtype is None else self.activation_qtype.name} |
|
return (inner_tensors, meta) |
|
|
|
@staticmethod |
|
def __tensor_unflatten__(inner_tensors, meta, outer_size, outer_stride): |
|
assert len(inner_tensors) == 2 |
|
assert len(meta) == 5 |
|
(data, scale) = (inner_tensors['_data'], inner_tensors['_scale']) |
|
qtype = qtypes[meta['qtype']] |
|
axis = ast.literal_eval(meta['axis']) |
|
size = ast.literal_eval(meta['size']) |
|
stride = ast.literal_eval(meta['stride']) |
|
activation_qtype = None if meta['activation_qtype'] == 'none' else qtypes[meta['activation_qtype']] |
|
return WeightQBytesTensor(qtype, axis, size, stride, data, scale, activation_qtype) |
|
|
|
@classmethod |
|
def __torch_function__(cls, func, types, args=(), kwargs=None): |
|
kwargs = kwargs or {} |
|
if func is torch.nn.functional.linear: |
|
|
|
def qlinear(input, other, bias=None): |
|
return WeightQBytesLinearFunction.apply(input, other, bias) |
|
return qlinear(*args, **kwargs) |
|
elif func is torch.equal: |
|
(input, other) = args |
|
return input.equal(other) |
|
with torch._C.DisableTorchFunctionSubclass(): |
|
return func(*args, **kwargs) |
|
|
|
@classmethod |
|
def __torch_dispatch__(cls, op, types, args, kwargs=None): |
|
op = op.overloadpacket |
|
if op is torch.ops.aten.detach: |
|
t = args[0] |
|
(inner_tensor_names, meta) = t.__tensor_flatten__() |
|
detached_tensors = {} |
|
for inner_name in inner_tensor_names: |
|
detached_tensors[inner_name] = op(getattr(t, inner_name)) |
|
return cls.__tensor_unflatten__(detached_tensors, meta, t.size(), t.stride()) |
|
elif op in [torch.ops.aten._to_copy, torch.ops.aten.to]: |
|
t = args[0] |
|
dtype = kwargs.pop('dtype', t.dtype) |
|
device = kwargs.pop('device', t.device) |
|
if dtype != t.dtype: |
|
raise ValueError('The dtype of a weights Tensor cannot be changed') |
|
if type(t) is not WeightQBytesTensor and t.device.type != device.type: |
|
t = t.weight_qbytes_tensor() |
|
out_data = op(t._data, device=device, **kwargs) |
|
out_scale = op(t._scale, device=device, **kwargs) |
|
return WeightQBytesTensor.create(t.qtype, t.axis, t.size(), t.stride(), out_data, out_scale, activation_qtype=t.activation_qtype, requires_grad=t.requires_grad) |
|
elif op is torch.ops.aten.t and cls is WeightQBytesTensor: |
|
t = args[0] |
|
out_data = op(t._data) |
|
out_scale = t._scale |
|
out_axis = t.axis |
|
(dim0, dim1) = t.size() |
|
out_size = torch.Size([dim1, dim0]) |
|
out_stride = t.stride()[::-1] |
|
if t.axis is not None: |
|
out_scale = op(out_scale) |
|
out_axis = 0 if out_axis == -1 else -1 |
|
return WeightQBytesTensor(t.qtype, out_axis, out_size, out_stride, out_data, out_scale, t.activation_qtype) |
|
kwargs = kwargs or {} |
|
return qfallback(op, *args, **kwargs) |
|
|
|
# File: optimum-quanto-main/optimum/quanto/tensor/weights/quantization.py |
|
from typing import Optional |
|
import torch |
|
from ..optimizers import AbsmaxOptimizer, AffineOptimizer, MaxOptimizer, Optimizer, SymmetricOptimizer |
|
from ..qbits import QBitsTensor |
|
from ..qtype import qtype |
|
from .qbytes import WeightQBytesTensor |
|
__all__ = ['quantize_weight'] |
|
default_affine_optimizer = MaxOptimizer() |
|
default_symmetric_optimizer = AbsmaxOptimizer() |
|
|
|
def quantize_weight(t: torch.Tensor, qtype: qtype, axis: int, group_size: Optional[int]=None, optimizer: Optional[Optimizer]=None, zeropoint: bool=False, activation_qtype: Optional[qtype]=None): |
|
if axis not in (0, -1): |
|
raise ValueError('axis parameter must be 0 (first axis) or -1 (last axis)') |
|
if qtype.bits == 8: |
|
if optimizer is None: |
|
optimizer = default_symmetric_optimizer |
|
elif not isinstance(optimizer, SymmetricOptimizer): |
|
raise ValueError('A SymmetricOptimizer is expected') |
|
if group_size is not None: |
|
raise ValueError('group_size cannot be specified for 8-bit qtypes.') |
|
if axis is not None and t.shape[axis] == 1: |
|
axis = None |
|
scale = optimizer(t, qtype.qmax, axis) |
|
return WeightQBytesTensor.quantize(t, qtype, axis, scale, activation_qtype) |
|
if optimizer is None: |
|
optimizer = default_affine_optimizer |
|
elif not isinstance(optimizer, AffineOptimizer): |
|
raise ValueError('An AffineOptimizer is expected') |
|
(scale, shift) = optimizer(t, qtype.bits, axis, group_size) |
|
if zeropoint: |
|
shift = torch.clamp(torch.round(shift / scale), 0, 2 ** qtype.bits - 1).to(torch.uint8) |
|
return QBitsTensor.quantize(t, qtype, axis, group_size, scale, shift) |
|
|
|
|