ImagenetTraining-imagenet-1k-random-20.0-frac-1over2
/
pytorch-image-models
/timm
/data
/readers
/reader_factory.py
import os | |
from typing import Optional | |
from .reader_image_folder import ReaderImageFolder | |
from .reader_image_in_tar import ReaderImageInTar | |
def create_reader( | |
name: str, | |
root: Optional[str] = None, | |
split: str = 'train', | |
**kwargs, | |
): | |
kwargs = {k: v for k, v in kwargs.items() if v is not None} | |
name = name.lower() | |
name = name.split('/', 1) | |
prefix = '' | |
if len(name) > 1: | |
prefix = name[0] | |
name = name[-1] | |
# FIXME improve the selection right now just tfds prefix or fallback path, will need options to | |
# explicitly select other options shortly | |
if prefix == 'hfds': | |
from .reader_hfds import ReaderHfds # defer Hf datasets import | |
reader = ReaderHfds(name=name, root=root, split=split, **kwargs) | |
elif prefix == 'hfids': | |
from .reader_hfids import ReaderHfids # defer HF datasets import | |
reader = ReaderHfids(name=name, root=root, split=split, **kwargs) | |
elif prefix == 'tfds': | |
from .reader_tfds import ReaderTfds # defer tensorflow import | |
reader = ReaderTfds(name=name, root=root, split=split, **kwargs) | |
elif prefix == 'wds': | |
from .reader_wds import ReaderWds | |
kwargs.pop('download', False) | |
reader = ReaderWds(root=root, name=name, split=split, **kwargs) | |
else: | |
assert os.path.exists(root) | |
# default fallback path (backwards compat), use image tar if root is a .tar file, otherwise image folder | |
# FIXME support split here or in reader? | |
if os.path.isfile(root) and os.path.splitext(root)[1] == '.tar': | |
reader = ReaderImageInTar(root, **kwargs) | |
else: | |
reader = ReaderImageFolder(root, **kwargs) | |
return reader | |