meg's picture
meg HF staff
Add files using upload-large-folder tool
81d747c verified
raw
history blame
1.73 kB
import os
from typing import Optional
from .reader_image_folder import ReaderImageFolder
from .reader_image_in_tar import ReaderImageInTar
def create_reader(
name: str,
root: Optional[str] = None,
split: str = 'train',
**kwargs,
):
kwargs = {k: v for k, v in kwargs.items() if v is not None}
name = name.lower()
name = name.split('/', 1)
prefix = ''
if len(name) > 1:
prefix = name[0]
name = name[-1]
# FIXME improve the selection right now just tfds prefix or fallback path, will need options to
# explicitly select other options shortly
if prefix == 'hfds':
from .reader_hfds import ReaderHfds # defer Hf datasets import
reader = ReaderHfds(name=name, root=root, split=split, **kwargs)
elif prefix == 'hfids':
from .reader_hfids import ReaderHfids # defer HF datasets import
reader = ReaderHfids(name=name, root=root, split=split, **kwargs)
elif prefix == 'tfds':
from .reader_tfds import ReaderTfds # defer tensorflow import
reader = ReaderTfds(name=name, root=root, split=split, **kwargs)
elif prefix == 'wds':
from .reader_wds import ReaderWds
kwargs.pop('download', False)
reader = ReaderWds(root=root, name=name, split=split, **kwargs)
else:
assert os.path.exists(root)
# default fallback path (backwards compat), use image tar if root is a .tar file, otherwise image folder
# FIXME support split here or in reader?
if os.path.isfile(root) and os.path.splitext(root)[1] == '.tar':
reader = ReaderImageInTar(root, **kwargs)
else:
reader = ReaderImageFolder(root, **kwargs)
return reader