ImagenetTraining-imagenet-1k-random-20.0-frac-1over2
/
pytorch-image-models
/timm
/data
/readers
/reader_wds.py
""" Dataset reader for webdataset | |
Hacked together by / Copyright 2022 Ross Wightman | |
""" | |
import io | |
import json | |
import logging | |
import math | |
import os | |
import random | |
import sys | |
from dataclasses import dataclass | |
from functools import partial | |
from itertools import islice | |
from typing import Any, Callable, Dict, List, Optional, Tuple | |
import torch | |
import torch.distributed as dist | |
import yaml | |
from PIL import Image | |
from torch.utils.data import Dataset, IterableDataset, get_worker_info | |
try: | |
import webdataset as wds | |
from webdataset.filters import _shuffle, getfirst | |
from webdataset.shardlists import expand_urls | |
from webdataset.tariterators import base_plus_ext, url_opener, tar_file_expander, valid_sample | |
except ImportError: | |
wds = None | |
expand_urls = None | |
from .class_map import load_class_map | |
from .reader import Reader | |
from .shared_count import SharedCount | |
_logger = logging.getLogger(__name__) | |
SAMPLE_SHUFFLE_SIZE = int(os.environ.get('WDS_SHUFFLE_SIZE', 8192)) | |
SAMPLE_INITIAL_SIZE = int(os.environ.get('WDS_INITIAL_SIZE', 2048)) | |
def _load_info(root, names=('_info.json', 'info.json')): | |
if isinstance(names, str): | |
names = (names,) | |
tried = [] | |
err_str = '' | |
for n in names: | |
full_path = os.path.join(root, n) | |
try: | |
tried.append(full_path) | |
with wds.gopen(full_path) as f: | |
if n.endswith('.json'): | |
info_dict = json.load(f) | |
else: | |
info_dict = yaml.safe_load(f) | |
return info_dict | |
except Exception as e: | |
err_str = str(e) | |
_logger.warning( | |
f'Dataset info file not found at {tried}. Error: {err_str}. ' | |
'Falling back to provided split and size arg.') | |
return {} | |
class SplitInfo: | |
num_samples: int | |
filenames: Tuple[str] | |
shard_lengths: Tuple[int] = () | |
alt_label: str = '' | |
name: str = '' | |
def _parse_split_info(split: str, info: Dict): | |
def _info_convert(dict_info): | |
return SplitInfo( | |
num_samples=dict_info['num_samples'], | |
filenames=tuple(dict_info['filenames']), | |
shard_lengths=tuple(dict_info['shard_lengths']), | |
alt_label=dict_info.get('alt_label', ''), | |
name=dict_info['name'], | |
) | |
if 'tar' in split or '..' in split: | |
# split in WDS string braceexpand format, sample count can be included with a | separator | |
# ex: `dataset-split-{0000..9999}.tar|100000` for 9999 shards, covering 100,000 samples | |
split = split.split('|') | |
num_samples = 0 | |
split_name = '' | |
if len(split) > 1: | |
num_samples = int(split[1]) | |
split = split[0] | |
if '::' not in split: | |
split_parts = split.split('-', 3) | |
split_idx = len(split_parts) - 1 | |
if split_idx and 'splits' in info and split_parts[split_idx] in info['splits']: | |
split_name = split_parts[split_idx] | |
split_filenames = expand_urls(split) | |
if split_name: | |
split_info = info['splits'][split_name] | |
if not num_samples: | |
_fc = {f: c for f, c in zip(split_info['filenames'], split_info['shard_lengths'])} | |
num_samples = sum(_fc[f] for f in split_filenames) | |
split_info['filenames'] = tuple(_fc.keys()) | |
split_info['shard_lengths'] = tuple(_fc.values()) | |
split_info['num_samples'] = num_samples | |
split_info = _info_convert(split_info) | |
else: | |
split_info = SplitInfo( | |
name=split_name, | |
num_samples=num_samples, | |
filenames=split_filenames, | |
) | |
else: | |
if 'splits' not in info or split not in info['splits']: | |
raise RuntimeError(f"split {split} not found in info ({info.get('splits', {}).keys()})") | |
split = split | |
split_info = info['splits'][split] | |
split_info = _info_convert(split_info) | |
return split_info | |
def log_and_continue(exn): | |
"""Call in an exception handler to ignore exceptions, isssue a warning, and continue.""" | |
_logger.warning(f'Handling webdataset error ({repr(exn)}). Ignoring.') | |
# NOTE: try force an exit on errors that are clearly code / config and not transient | |
if isinstance(exn, TypeError): | |
raise exn | |
return True | |
def _decode( | |
sample, | |
image_key='jpg', | |
image_mode='RGB', | |
target_key='cls', | |
alt_label='' | |
): | |
""" Custom sample decode | |
* decode and convert PIL Image | |
* cls byte string label to int | |
* pass through JSON byte string (if it exists) without parse | |
""" | |
# decode class label, skip if alternate label not valid | |
if alt_label: | |
# alternative labels are encoded in json metadata | |
meta = json.loads(sample['json']) | |
class_label = int(meta[alt_label]) | |
if class_label < 0: | |
# skipped labels currently encoded as -1, may change to a null/None value | |
return None | |
else: | |
class_label = int(sample[target_key]) | |
# decode image | |
img = getfirst(sample, image_key) | |
with io.BytesIO(img) as b: | |
img = Image.open(b) | |
img.load() | |
if image_mode: | |
img = img.convert(image_mode) | |
# json passed through in undecoded state | |
decoded = dict(jpg=img, cls=class_label, json=sample.get('json', None)) | |
return decoded | |
def pytorch_worker_seed(): | |
"""get dataloader worker seed from pytorch""" | |
worker_info = get_worker_info() | |
if worker_info is not None: | |
# favour the seed already created for pytorch dataloader workers if it exists | |
return worker_info.seed | |
# fallback to wds rank based seed | |
return wds.utils.pytorch_worker_seed() | |
if wds is not None: | |
# conditional to avoid mandatory wds import (via inheritance of wds.PipelineStage) | |
class detshuffle2(wds.PipelineStage): | |
def __init__( | |
self, | |
bufsize=1000, | |
initial=100, | |
seed=0, | |
epoch=-1, | |
): | |
self.bufsize = bufsize | |
self.initial = initial | |
self.seed = seed | |
self.epoch = epoch | |
def run(self, src): | |
if isinstance(self.epoch, SharedCount): | |
epoch = self.epoch.value | |
else: | |
# NOTE: this is epoch tracking is problematic in a multiprocess (dataloader workers or train) | |
# situation as different workers may wrap at different times (or not at all). | |
self.epoch += 1 | |
epoch = self.epoch | |
if self.seed < 0: | |
seed = pytorch_worker_seed() + epoch | |
else: | |
seed = self.seed + epoch | |
# _logger.info(f'shuffle seed: {self.seed}, {seed}, epoch: {epoch}') # FIXME temporary | |
rng = random.Random(seed) | |
return _shuffle(src, self.bufsize, self.initial, rng) | |
else: | |
detshuffle2 = None | |
class ResampledShards2(IterableDataset): | |
"""An iterable dataset yielding a list of urls.""" | |
def __init__( | |
self, | |
urls, | |
nshards=sys.maxsize, | |
worker_seed=None, | |
deterministic=True, | |
epoch=-1, | |
): | |
"""Sample shards from the shard list with replacement. | |
:param urls: a list of URLs as a Python list or brace notation string | |
""" | |
super().__init__() | |
urls = wds.shardlists.expand_urls(urls) | |
self.urls = urls | |
assert isinstance(self.urls[0], str) | |
self.nshards = nshards | |
self.rng = random.Random() | |
self.worker_seed = pytorch_worker_seed if worker_seed is None else worker_seed | |
self.deterministic = deterministic | |
self.epoch = epoch | |
def __iter__(self): | |
"""Return an iterator over the shards.""" | |
if isinstance(self.epoch, SharedCount): | |
epoch = self.epoch.value | |
else: | |
# NOTE: this is epoch tracking is problematic in a multiprocess (dataloader workers or train) | |
# situation as different workers may wrap at different times (or not at all). | |
self.epoch += 1 | |
epoch = self.epoch | |
if self.deterministic: | |
# reset seed w/ epoch if deterministic, worker seed should be deterministic due to arg.seed | |
self.rng = random.Random(self.worker_seed() + epoch) | |
for _ in range(self.nshards): | |
index = self.rng.randint(0, len(self.urls) - 1) | |
yield dict(url=self.urls[index]) | |
class ReaderWds(Reader): | |
def __init__( | |
self, | |
root: str, | |
name: Optional[str] = None, | |
split: str = 'train', | |
is_training: bool = False, | |
num_samples: Optional[int] = None, | |
batch_size: int = 1, | |
repeats: int = 0, | |
seed: int = 42, | |
class_map: Optional[dict] = None, | |
input_key: str = 'jpg;png;webp', | |
input_img_mode: str = 'RGB', | |
target_key: str = 'cls', | |
target_img_mode: str = '', | |
filename_key: str = 'filename', | |
sample_shuffle_size: Optional[int] = None, | |
smaple_initial_size: Optional[int] = None, | |
): | |
super().__init__() | |
if wds is None: | |
raise RuntimeError( | |
'Please install webdataset 0.2.x package `pip install git+https://github.com/webdataset/webdataset`.') | |
self.root = root | |
self.is_training = is_training | |
self.batch_size = batch_size | |
self.repeats = repeats | |
self.common_seed = seed # a seed that's fixed across all worker / distributed instances | |
self.shard_shuffle_size = 500 | |
self.sample_shuffle_size = sample_shuffle_size or SAMPLE_SHUFFLE_SIZE | |
self.sample_initial_size = smaple_initial_size or SAMPLE_INITIAL_SIZE | |
self.input_key = input_key | |
self.input_img_mode = input_img_mode | |
self.target_key = target_key | |
self.filename_key = filename_key | |
self.key_ext = '.JPEG' # extension to add to key for original filenames (DS specific, default ImageNet) | |
self.info = _load_info(self.root) | |
self.split_info = _parse_split_info(split, self.info) | |
if num_samples is not None: | |
self.num_samples = num_samples | |
else: | |
self.num_samples = self.split_info.num_samples | |
if is_training and not self.num_samples: | |
raise RuntimeError(f'Invalid split definition, num_samples not specified in train mode.') | |
self.remap_class = False | |
if class_map: | |
self.class_to_idx = load_class_map(class_map) | |
self.remap_class = True | |
else: | |
self.class_to_idx = {} | |
# Distributed world state | |
self.dist_rank = 0 | |
self.dist_num_replicas = 1 | |
if dist.is_available() and dist.is_initialized() and dist.get_world_size() > 1: | |
self.dist_rank = dist.get_rank() | |
self.dist_num_replicas = dist.get_world_size() | |
# Attributes that are updated in _lazy_init | |
self.worker_info = None | |
self.worker_id = 0 | |
self.worker_seed = seed # seed unique to each worker instance | |
self.num_workers = 1 | |
self.global_worker_id = 0 | |
self.global_num_workers = 1 | |
self.init_count = 0 | |
self.epoch_count = SharedCount() | |
# DataPipeline is lazy init, the majority of WDS DataPipeline could be init here, BUT, shuffle seed | |
# is not handled in manner where it can be deterministic for each worker AND initialized up front | |
self.ds = None | |
def set_epoch(self, count): | |
self.epoch_count.value = count | |
def set_loader_cfg( | |
self, | |
num_workers: Optional[int] = None, | |
): | |
if self.ds is not None: | |
return | |
if num_workers is not None: | |
self.num_workers = num_workers | |
self.global_num_workers = self.dist_num_replicas * self.num_workers | |
def _lazy_init(self): | |
""" Lazily initialize worker (in worker processes) | |
""" | |
if self.worker_info is None: | |
worker_info = torch.utils.data.get_worker_info() | |
if worker_info is not None: | |
self.worker_info = worker_info | |
self.worker_id = worker_info.id | |
self.worker_seed = worker_info.seed | |
self.num_workers = worker_info.num_workers | |
self.global_num_workers = self.dist_num_replicas * self.num_workers | |
self.global_worker_id = self.dist_rank * self.num_workers + self.worker_id | |
# init data pipeline | |
abs_shard_filenames = [os.path.join(self.root, f) for f in self.split_info.filenames] | |
pipeline = [wds.SimpleShardList(abs_shard_filenames)] | |
# at this point we have an iterator over all the shards | |
if self.is_training: | |
pipeline.extend([ | |
detshuffle2( | |
self.shard_shuffle_size, | |
seed=self.common_seed, | |
epoch=self.epoch_count, | |
), | |
self._split_by_node_and_worker, | |
# at this point, we have an iterator over the shards assigned to each worker | |
wds.tarfile_to_samples(handler=log_and_continue), | |
wds.shuffle( | |
bufsize=self.sample_shuffle_size, | |
initial=self.sample_initial_size, | |
rng=random.Random(self.worker_seed) # this is why we lazy-init whole DataPipeline | |
), | |
]) | |
else: | |
pipeline.extend([ | |
self._split_by_node_and_worker, | |
# at this point, we have an iterator over the shards assigned to each worker | |
wds.tarfile_to_samples(handler=log_and_continue), | |
]) | |
pipeline.extend([ | |
wds.map( | |
partial( | |
_decode, | |
image_key=self.input_key, | |
image_mode=self.input_img_mode, | |
alt_label=self.split_info.alt_label, | |
), | |
handler=log_and_continue, | |
), | |
wds.rename(image=self.input_key, target=self.target_key) | |
]) | |
self.ds = wds.DataPipeline(*pipeline) | |
def _split_by_node_and_worker(self, src): | |
if self.global_num_workers > 1: | |
for s in islice(src, self.global_worker_id, None, self.global_num_workers): | |
yield s | |
else: | |
for s in src: | |
yield s | |
def _num_samples_per_worker(self): | |
num_worker_samples = self.num_samples / max(self.global_num_workers, self.dist_num_replicas) | |
if self.is_training or self.dist_num_replicas > 1: | |
num_worker_samples = math.ceil(num_worker_samples) | |
if self.is_training: | |
num_worker_samples = math.ceil(num_worker_samples / self.batch_size) * self.batch_size | |
return int(num_worker_samples) | |
def __iter__(self): | |
if self.ds is None: | |
self._lazy_init() | |
num_worker_samples = self._num_samples_per_worker() | |
if self.is_training or self.dist_num_replicas > 1: | |
# NOTE: doing distributed validation w/ WDS is messy, hard to meet constraints that | |
# same # of batches needed across all replicas w/ seeing each sample once. | |
# with_epoch() is simple but could miss a shard's worth of samples in some workers, | |
# and duplicate in others. Best to keep num DL workers low and a divisor of #val shards. | |
ds = self.ds.with_epoch(num_worker_samples) | |
else: | |
ds = self.ds | |
i = 0 | |
# _logger.info(f'start {i}, {self.worker_id}') # FIXME temporary debug | |
for sample in ds: | |
target = sample['target'] | |
if self.remap_class: | |
target = self.class_to_idx[target] | |
yield sample['image'], target | |
i += 1 | |
# _logger.info(f'end {i}, {self.worker_id}') # FIXME temporary debug | |
def __len__(self): | |
num_samples = self._num_samples_per_worker() * self.num_workers | |
return num_samples | |
def _filename(self, index, basename=False, absolute=False): | |
assert False, "Not supported" # no random access to examples | |
def filenames(self, basename=False, absolute=False): | |
""" Return all filenames in dataset, overrides base""" | |
if self.ds is None: | |
self._lazy_init() | |
names = [] | |
for sample in self.ds: | |
if self.filename_key in sample: | |
name = sample[self.filename_key] | |
elif '__key__' in sample: | |
name = sample['__key__'] + self.key_ext | |
else: | |
assert False, "No supported name field present" | |
names.append(name) | |
if len(names) >= self.num_samples: | |
break # safety for ds.repeat() case | |
return names | |