ImagenetTraining-imagenet-1k-random-20.0-frac-1over2
/
pytorch-image-models
/timm
/data
/tf_preprocessing.py
""" Tensorflow Preprocessing Adapter | |
Allows use of Tensorflow preprocessing pipeline in PyTorch Transform | |
Copyright of original Tensorflow code below. | |
Hacked together by / Copyright 2020 Ross Wightman | |
""" | |
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# ============================================================================== | |
"""ImageNet preprocessing for MnasNet.""" | |
import tensorflow.compat.v1 as tf | |
import numpy as np | |
IMAGE_SIZE = 224 | |
CROP_PADDING = 32 | |
tf.compat.v1.disable_eager_execution() | |
def distorted_bounding_box_crop(image_bytes, | |
bbox, | |
min_object_covered=0.1, | |
aspect_ratio_range=(0.75, 1.33), | |
area_range=(0.05, 1.0), | |
max_attempts=100, | |
scope=None): | |
"""Generates cropped_image using one of the bboxes randomly distorted. | |
See `tf.image.sample_distorted_bounding_box` for more documentation. | |
Args: | |
image_bytes: `Tensor` of binary image data. | |
bbox: `Tensor` of bounding boxes arranged `[1, num_boxes, coords]` | |
where each coordinate is [0, 1) and the coordinates are arranged | |
as `[ymin, xmin, ymax, xmax]`. If num_boxes is 0 then use the whole | |
image. | |
min_object_covered: An optional `float`. Defaults to `0.1`. The cropped | |
area of the image must contain at least this fraction of any bounding | |
box supplied. | |
aspect_ratio_range: An optional list of `float`s. The cropped area of the | |
image must have an aspect ratio = width / height within this range. | |
area_range: An optional list of `float`s. The cropped area of the image | |
must contain a fraction of the supplied image within in this range. | |
max_attempts: An optional `int`. Number of attempts at generating a cropped | |
region of the image of the specified constraints. After `max_attempts` | |
failures, return the entire image. | |
scope: Optional `str` for name scope. | |
Returns: | |
cropped image `Tensor` | |
""" | |
with tf.name_scope(scope, 'distorted_bounding_box_crop', [image_bytes, bbox]): | |
shape = tf.image.extract_jpeg_shape(image_bytes) | |
sample_distorted_bounding_box = tf.image.sample_distorted_bounding_box( | |
shape, | |
bounding_boxes=bbox, | |
min_object_covered=min_object_covered, | |
aspect_ratio_range=aspect_ratio_range, | |
area_range=area_range, | |
max_attempts=max_attempts, | |
use_image_if_no_bounding_boxes=True) | |
bbox_begin, bbox_size, _ = sample_distorted_bounding_box | |
# Crop the image to the specified bounding box. | |
offset_y, offset_x, _ = tf.unstack(bbox_begin) | |
target_height, target_width, _ = tf.unstack(bbox_size) | |
crop_window = tf.stack([offset_y, offset_x, target_height, target_width]) | |
image = tf.image.decode_and_crop_jpeg(image_bytes, crop_window, channels=3) | |
return image | |
def _at_least_x_are_equal(a, b, x): | |
"""At least `x` of `a` and `b` `Tensors` are equal.""" | |
match = tf.equal(a, b) | |
match = tf.cast(match, tf.int32) | |
return tf.greater_equal(tf.reduce_sum(match), x) | |
def _decode_and_random_crop(image_bytes, image_size, resize_method): | |
"""Make a random crop of image_size.""" | |
bbox = tf.constant([0.0, 0.0, 1.0, 1.0], dtype=tf.float32, shape=[1, 1, 4]) | |
image = distorted_bounding_box_crop( | |
image_bytes, | |
bbox, | |
min_object_covered=0.1, | |
aspect_ratio_range=(3. / 4, 4. / 3.), | |
area_range=(0.08, 1.0), | |
max_attempts=10, | |
scope=None) | |
original_shape = tf.image.extract_jpeg_shape(image_bytes) | |
bad = _at_least_x_are_equal(original_shape, tf.shape(image), 3) | |
image = tf.cond( | |
bad, | |
lambda: _decode_and_center_crop(image_bytes, image_size), | |
lambda: tf.image.resize([image], [image_size, image_size], resize_method)[0]) | |
return image | |
def _decode_and_center_crop(image_bytes, image_size, resize_method): | |
"""Crops to center of image with padding then scales image_size.""" | |
shape = tf.image.extract_jpeg_shape(image_bytes) | |
image_height = shape[0] | |
image_width = shape[1] | |
padded_center_crop_size = tf.cast( | |
((image_size / (image_size + CROP_PADDING)) * | |
tf.cast(tf.minimum(image_height, image_width), tf.float32)), | |
tf.int32) | |
offset_height = ((image_height - padded_center_crop_size) + 1) // 2 | |
offset_width = ((image_width - padded_center_crop_size) + 1) // 2 | |
crop_window = tf.stack([offset_height, offset_width, | |
padded_center_crop_size, padded_center_crop_size]) | |
image = tf.image.decode_and_crop_jpeg(image_bytes, crop_window, channels=3) | |
image = tf.image.resize([image], [image_size, image_size], resize_method)[0] | |
return image | |
def _flip(image): | |
"""Random horizontal image flip.""" | |
image = tf.image.random_flip_left_right(image) | |
return image | |
def preprocess_for_train(image_bytes, use_bfloat16, image_size=IMAGE_SIZE, interpolation='bicubic'): | |
"""Preprocesses the given image for evaluation. | |
Args: | |
image_bytes: `Tensor` representing an image binary of arbitrary size. | |
use_bfloat16: `bool` for whether to use bfloat16. | |
image_size: image size. | |
interpolation: image interpolation method | |
Returns: | |
A preprocessed image `Tensor`. | |
""" | |
resize_method = tf.image.ResizeMethod.BICUBIC if interpolation == 'bicubic' else tf.image.ResizeMethod.BILINEAR | |
image = _decode_and_random_crop(image_bytes, image_size, resize_method) | |
image = _flip(image) | |
image = tf.reshape(image, [image_size, image_size, 3]) | |
image = tf.image.convert_image_dtype( | |
image, dtype=tf.bfloat16 if use_bfloat16 else tf.float32) | |
return image | |
def preprocess_for_eval(image_bytes, use_bfloat16, image_size=IMAGE_SIZE, interpolation='bicubic'): | |
"""Preprocesses the given image for evaluation. | |
Args: | |
image_bytes: `Tensor` representing an image binary of arbitrary size. | |
use_bfloat16: `bool` for whether to use bfloat16. | |
image_size: image size. | |
interpolation: image interpolation method | |
Returns: | |
A preprocessed image `Tensor`. | |
""" | |
resize_method = tf.image.ResizeMethod.BICUBIC if interpolation == 'bicubic' else tf.image.ResizeMethod.BILINEAR | |
image = _decode_and_center_crop(image_bytes, image_size, resize_method) | |
image = tf.reshape(image, [image_size, image_size, 3]) | |
image = tf.image.convert_image_dtype( | |
image, dtype=tf.bfloat16 if use_bfloat16 else tf.float32) | |
return image | |
def preprocess_image(image_bytes, | |
is_training=False, | |
use_bfloat16=False, | |
image_size=IMAGE_SIZE, | |
interpolation='bicubic'): | |
"""Preprocesses the given image. | |
Args: | |
image_bytes: `Tensor` representing an image binary of arbitrary size. | |
is_training: `bool` for whether the preprocessing is for training. | |
use_bfloat16: `bool` for whether to use bfloat16. | |
image_size: image size. | |
interpolation: image interpolation method | |
Returns: | |
A preprocessed image `Tensor` with value range of [0, 255]. | |
""" | |
if is_training: | |
return preprocess_for_train(image_bytes, use_bfloat16, image_size, interpolation) | |
else: | |
return preprocess_for_eval(image_bytes, use_bfloat16, image_size, interpolation) | |
class TfPreprocessTransform: | |
def __init__(self, is_training=False, size=224, interpolation='bicubic'): | |
self.is_training = is_training | |
self.size = size[0] if isinstance(size, tuple) else size | |
self.interpolation = interpolation | |
self._image_bytes = None | |
self.process_image = self._build_tf_graph() | |
self.sess = None | |
def _build_tf_graph(self): | |
with tf.device('/cpu:0'): | |
self._image_bytes = tf.placeholder( | |
shape=[], | |
dtype=tf.string, | |
) | |
img = preprocess_image( | |
self._image_bytes, self.is_training, False, self.size, self.interpolation) | |
return img | |
def __call__(self, image_bytes): | |
if self.sess is None: | |
self.sess = tf.Session() | |
img = self.sess.run(self.process_image, feed_dict={self._image_bytes: image_bytes}) | |
img = img.round().clip(0, 255).astype(np.uint8) | |
if img.ndim < 3: | |
img = np.expand_dims(img, axis=-1) | |
img = np.rollaxis(img, 2) # HWC to CHW | |
return img | |