|
|
|
""" Bulk Model Script Runner |
|
|
|
Run validation or benchmark script in separate process for each model |
|
|
|
Benchmark all 'vit*' models: |
|
python bulk_runner.py --model-list 'vit*' --results-file vit_bench.csv benchmark.py --amp -b 512 |
|
|
|
Validate all models: |
|
python bulk_runner.py --model-list all --results-file val.csv --pretrained validate.py --data-dir /imagenet/validation/ --amp -b 512 --retry |
|
|
|
Hacked together by Ross Wightman (https://github.com/rwightman) |
|
""" |
|
import argparse |
|
import os |
|
import sys |
|
import csv |
|
import json |
|
import subprocess |
|
import time |
|
from typing import Callable, List, Tuple, Union |
|
|
|
|
|
from timm.models import is_model, list_models, get_pretrained_cfg, get_arch_pretrained_cfgs |
|
|
|
|
|
parser = argparse.ArgumentParser(description='Per-model process launcher') |
|
|
|
|
|
parser.add_argument( |
|
'--model-list', metavar='NAME', default='', |
|
help='txt file based list of model names to benchmark') |
|
parser.add_argument( |
|
'--results-file', default='', type=str, metavar='FILENAME', |
|
help='Output csv file for validation results (summary)') |
|
parser.add_argument( |
|
'--sort-key', default='', type=str, metavar='COL', |
|
help='Specify sort key for results csv') |
|
parser.add_argument( |
|
"--pretrained", action='store_true', |
|
help="only run models with pretrained weights") |
|
|
|
parser.add_argument( |
|
"--delay", |
|
type=float, |
|
default=0, |
|
help="Interval, in seconds, to delay between model invocations.", |
|
) |
|
parser.add_argument( |
|
"--start_method", type=str, default="spawn", choices=["spawn", "fork", "forkserver"], |
|
help="Multiprocessing start method to use when creating workers.", |
|
) |
|
parser.add_argument( |
|
"--no_python", |
|
help="Skip prepending the script with 'python' - just execute it directly. Useful " |
|
"when the script is not a Python script.", |
|
) |
|
parser.add_argument( |
|
"-m", |
|
"--module", |
|
help="Change each process to interpret the launch script as a Python module, executing " |
|
"with the same behavior as 'python -m'.", |
|
) |
|
|
|
|
|
parser.add_argument( |
|
"script", type=str, |
|
help="Full path to the program/script to be launched for each model config.", |
|
) |
|
parser.add_argument("script_args", nargs=argparse.REMAINDER) |
|
|
|
|
|
def cmd_from_args(args) -> Tuple[Union[Callable, str], List[str]]: |
|
|
|
with_python = not args.no_python |
|
cmd: Union[Callable, str] |
|
cmd_args = [] |
|
if with_python: |
|
cmd = os.getenv("PYTHON_EXEC", sys.executable) |
|
cmd_args.append("-u") |
|
if args.module: |
|
cmd_args.append("-m") |
|
cmd_args.append(args.script) |
|
else: |
|
if args.module: |
|
raise ValueError( |
|
"Don't use both the '--no_python' flag" |
|
" and the '--module' flag at the same time." |
|
) |
|
cmd = args.script |
|
cmd_args.extend(args.script_args) |
|
|
|
return cmd, cmd_args |
|
|
|
|
|
def _get_model_cfgs( |
|
model_names, |
|
num_classes=None, |
|
expand_train_test=False, |
|
include_crop=True, |
|
expand_arch=False, |
|
): |
|
model_cfgs = set() |
|
|
|
for name in model_names: |
|
if expand_arch: |
|
pt_cfgs = get_arch_pretrained_cfgs(name).values() |
|
else: |
|
pt_cfg = get_pretrained_cfg(name) |
|
pt_cfgs = [pt_cfg] if pt_cfg is not None else [] |
|
|
|
for cfg in pt_cfgs: |
|
if cfg.input_size is None: |
|
continue |
|
if num_classes is not None and getattr(cfg, 'num_classes', 0) != num_classes: |
|
continue |
|
|
|
|
|
size = cfg.input_size[-1] |
|
if include_crop: |
|
model_cfgs.add((name, size, cfg.crop_pct)) |
|
else: |
|
model_cfgs.add((name, size)) |
|
|
|
|
|
if expand_train_test and cfg.test_input_size is not None: |
|
test_size = cfg.test_input_size[-1] |
|
if include_crop: |
|
test_crop = cfg.test_crop_pct or cfg.crop_pct |
|
model_cfgs.add((name, test_size, test_crop)) |
|
else: |
|
model_cfgs.add((name, test_size)) |
|
|
|
|
|
if include_crop: |
|
return [(n, {'img-size': r, 'crop-pct': cp}) for n, r, cp in sorted(model_cfgs)] |
|
else: |
|
return [(n, {'img-size': r}) for n, r in sorted(model_cfgs)] |
|
|
|
|
|
def main(): |
|
args = parser.parse_args() |
|
cmd, cmd_args = cmd_from_args(args) |
|
|
|
model_cfgs = [] |
|
if args.model_list == 'all': |
|
model_names = list_models( |
|
pretrained=args.pretrained, |
|
) |
|
model_cfgs = [(n, None) for n in model_names] |
|
elif args.model_list == 'all_in1k': |
|
model_names = list_models(pretrained=True) |
|
model_cfgs = _get_model_cfgs(model_names, num_classes=1000, expand_train_test=True) |
|
elif args.model_list == 'all_res': |
|
model_names = list_models() |
|
model_cfgs = _get_model_cfgs(model_names, expand_train_test=True, include_crop=False, expand_arch=True) |
|
elif not is_model(args.model_list): |
|
|
|
model_names = list_models(args.model_list) |
|
model_cfgs = [(n, None) for n in model_names] |
|
|
|
if not model_cfgs and os.path.exists(args.model_list): |
|
with open(args.model_list) as f: |
|
model_names = [line.rstrip() for line in f] |
|
model_cfgs = _get_model_cfgs( |
|
model_names, |
|
|
|
expand_train_test=True, |
|
|
|
) |
|
|
|
if len(model_cfgs): |
|
results_file = args.results_file or './results.csv' |
|
results = [] |
|
errors = [] |
|
model_strings = '\n'.join([f'{x[0]}, {x[1]}' for x in model_cfgs]) |
|
print(f"Running script on these models:\n {model_strings}") |
|
if not args.sort_key: |
|
if 'benchmark' in args.script: |
|
if any(['train' in a for a in args.script_args]): |
|
sort_key = 'train_samples_per_sec' |
|
else: |
|
sort_key = 'infer_samples_per_sec' |
|
else: |
|
sort_key = 'top1' |
|
else: |
|
sort_key = args.sort_key |
|
print(f'Script: {args.script}, Args: {args.script_args}, Sort key: {sort_key}') |
|
|
|
try: |
|
for m, ax in model_cfgs: |
|
if not m: |
|
continue |
|
args_str = (cmd, *[str(e) for e in cmd_args], '--model', m) |
|
if ax is not None: |
|
extra_args = [(f'--{k}', str(v)) for k, v in ax.items()] |
|
extra_args = [i for t in extra_args for i in t] |
|
args_str += tuple(extra_args) |
|
try: |
|
o = subprocess.check_output(args=args_str).decode('utf-8').split('--result')[-1] |
|
r = json.loads(o) |
|
results.append(r) |
|
except Exception as e: |
|
|
|
|
|
errors.append(dict(model=m, error=str(e))) |
|
if args.delay: |
|
time.sleep(args.delay) |
|
except KeyboardInterrupt as e: |
|
pass |
|
|
|
errors.extend(list(filter(lambda x: 'error' in x, results))) |
|
if errors: |
|
print(f'{len(errors)} models had errors during run.') |
|
for e in errors: |
|
if 'model' in e: |
|
print(f"\t {e['model']} ({e.get('error', 'Unknown')})") |
|
else: |
|
print(e) |
|
|
|
results = list(filter(lambda x: 'error' not in x, results)) |
|
|
|
no_sortkey = list(filter(lambda x: sort_key not in x, results)) |
|
if no_sortkey: |
|
print(f'{len(no_sortkey)} results missing sort key, skipping sort.') |
|
else: |
|
results = sorted(results, key=lambda x: x[sort_key], reverse=True) |
|
|
|
if len(results): |
|
print(f'{len(results)} models run successfully. Saving results to {results_file}.') |
|
write_results(results_file, results) |
|
|
|
|
|
def write_results(results_file, results): |
|
with open(results_file, mode='w') as cf: |
|
dw = csv.DictWriter(cf, fieldnames=results[0].keys()) |
|
dw.writeheader() |
|
for r in results: |
|
dw.writerow(r) |
|
cf.flush() |
|
|
|
|
|
if __name__ == '__main__': |
|
main() |
|
|