|
import numpy as np |
|
import pandas as pd |
|
|
|
|
|
results = { |
|
'results-imagenet.csv': [ |
|
'results-imagenet-real.csv', |
|
'results-imagenetv2-matched-frequency.csv', |
|
'results-sketch.csv' |
|
], |
|
'results-imagenet-a-clean.csv': [ |
|
'results-imagenet-a.csv', |
|
], |
|
'results-imagenet-r-clean.csv': [ |
|
'results-imagenet-r.csv', |
|
], |
|
} |
|
|
|
|
|
def diff(base_df, test_csv): |
|
base_df['mi'] = base_df.model + '-' + base_df.img_size.astype('str') |
|
base_models = base_df['mi'].values |
|
test_df = pd.read_csv(test_csv) |
|
test_df['mi'] = test_df.model + '-' + test_df.img_size.astype('str') |
|
test_models = test_df['mi'].values |
|
|
|
rank_diff = np.zeros_like(test_models, dtype='object') |
|
top1_diff = np.zeros_like(test_models, dtype='object') |
|
top5_diff = np.zeros_like(test_models, dtype='object') |
|
|
|
for rank, model in enumerate(test_models): |
|
if model in base_models: |
|
base_rank = int(np.where(base_models == model)[0]) |
|
top1_d = test_df['top1'][rank] - base_df['top1'][base_rank] |
|
top5_d = test_df['top5'][rank] - base_df['top5'][base_rank] |
|
|
|
|
|
if rank == base_rank: |
|
rank_diff[rank] = f'0' |
|
elif rank > base_rank: |
|
rank_diff[rank] = f'-{rank - base_rank}' |
|
else: |
|
rank_diff[rank] = f'+{base_rank - rank}' |
|
|
|
|
|
if top1_d >= .0: |
|
top1_diff[rank] = f'+{top1_d:.3f}' |
|
else: |
|
top1_diff[rank] = f'-{abs(top1_d):.3f}' |
|
|
|
|
|
if top5_d >= .0: |
|
top5_diff[rank] = f'+{top5_d:.3f}' |
|
else: |
|
top5_diff[rank] = f'-{abs(top5_d):.3f}' |
|
|
|
else: |
|
rank_diff[rank] = '' |
|
top1_diff[rank] = '' |
|
top5_diff[rank] = '' |
|
|
|
test_df['top1_diff'] = top1_diff |
|
test_df['top5_diff'] = top5_diff |
|
test_df['rank_diff'] = rank_diff |
|
|
|
test_df.drop('mi', axis=1, inplace=True) |
|
base_df.drop('mi', axis=1, inplace=True) |
|
test_df['param_count'] = test_df['param_count'].map('{:,.2f}'.format) |
|
test_df.sort_values(['top1', 'top5', 'model'], ascending=[False, False, True], inplace=True) |
|
test_df.to_csv(test_csv, index=False, float_format='%.3f') |
|
|
|
|
|
for base_results, test_results in results.items(): |
|
base_df = pd.read_csv(base_results) |
|
base_df.sort_values(['top1', 'top5', 'model'], ascending=[False, False, True], inplace=True) |
|
for test_csv in test_results: |
|
diff(base_df, test_csv) |
|
base_df['param_count'] = base_df['param_count'].map('{:,.2f}'.format) |
|
base_df.to_csv(base_results, index=False, float_format='%.3f') |
|
|