|
import hashlib |
|
import json |
|
import logging |
|
import os |
|
from functools import partial |
|
from pathlib import Path |
|
from tempfile import TemporaryDirectory |
|
from typing import Iterable, List, Optional, Tuple, Union |
|
|
|
import torch |
|
from torch.hub import HASH_REGEX, download_url_to_file, urlparse |
|
|
|
try: |
|
from torch.hub import get_dir |
|
except ImportError: |
|
from torch.hub import _get_torch_home as get_dir |
|
|
|
try: |
|
import safetensors.torch |
|
_has_safetensors = True |
|
except ImportError: |
|
_has_safetensors = False |
|
|
|
try: |
|
from typing import Literal |
|
except ImportError: |
|
from typing_extensions import Literal |
|
|
|
from timm import __version__ |
|
from timm.models._pretrained import filter_pretrained_cfg |
|
|
|
try: |
|
from huggingface_hub import ( |
|
create_repo, get_hf_file_metadata, |
|
hf_hub_download, hf_hub_url, |
|
repo_type_and_id_from_hf_id, upload_folder) |
|
from huggingface_hub.utils import EntryNotFoundError |
|
hf_hub_download = partial(hf_hub_download, library_name="timm", library_version=__version__) |
|
_has_hf_hub = True |
|
except ImportError: |
|
hf_hub_download = None |
|
_has_hf_hub = False |
|
|
|
_logger = logging.getLogger(__name__) |
|
|
|
__all__ = ['get_cache_dir', 'download_cached_file', 'has_hf_hub', 'hf_split', 'load_model_config_from_hf', |
|
'load_state_dict_from_hf', 'save_for_hf', 'push_to_hf_hub'] |
|
|
|
|
|
HF_WEIGHTS_NAME = "pytorch_model.bin" |
|
HF_SAFE_WEIGHTS_NAME = "model.safetensors" |
|
HF_OPEN_CLIP_WEIGHTS_NAME = "open_clip_pytorch_model.bin" |
|
HF_OPEN_CLIP_SAFE_WEIGHTS_NAME = "open_clip_model.safetensors" |
|
|
|
|
|
def get_cache_dir(child_dir: str = ''): |
|
""" |
|
Returns the location of the directory where models are cached (and creates it if necessary). |
|
""" |
|
|
|
if os.getenv('TORCH_MODEL_ZOO'): |
|
_logger.warning('TORCH_MODEL_ZOO is deprecated, please use env TORCH_HOME instead') |
|
|
|
hub_dir = get_dir() |
|
child_dir = () if not child_dir else (child_dir,) |
|
model_dir = os.path.join(hub_dir, 'checkpoints', *child_dir) |
|
os.makedirs(model_dir, exist_ok=True) |
|
return model_dir |
|
|
|
|
|
def download_cached_file( |
|
url: Union[str, List[str], Tuple[str, str]], |
|
check_hash: bool = True, |
|
progress: bool = False, |
|
cache_dir: Optional[Union[str, Path]] = None, |
|
): |
|
if isinstance(url, (list, tuple)): |
|
url, filename = url |
|
else: |
|
parts = urlparse(url) |
|
filename = os.path.basename(parts.path) |
|
if cache_dir: |
|
os.makedirs(cache_dir, exist_ok=True) |
|
else: |
|
cache_dir = get_cache_dir() |
|
cached_file = os.path.join(cache_dir, filename) |
|
if not os.path.exists(cached_file): |
|
_logger.info('Downloading: "{}" to {}\n'.format(url, cached_file)) |
|
hash_prefix = None |
|
if check_hash: |
|
r = HASH_REGEX.search(filename) |
|
hash_prefix = r.group(1) if r else None |
|
download_url_to_file(url, cached_file, hash_prefix, progress=progress) |
|
return cached_file |
|
|
|
|
|
def check_cached_file( |
|
url: Union[str, List[str], Tuple[str, str]], |
|
check_hash: bool = True, |
|
cache_dir: Optional[Union[str, Path]] = None, |
|
): |
|
if isinstance(url, (list, tuple)): |
|
url, filename = url |
|
else: |
|
parts = urlparse(url) |
|
filename = os.path.basename(parts.path) |
|
if not cache_dir: |
|
cache_dir = get_cache_dir() |
|
cached_file = os.path.join(cache_dir, filename) |
|
if os.path.exists(cached_file): |
|
if check_hash: |
|
r = HASH_REGEX.search(filename) |
|
hash_prefix = r.group(1) if r else None |
|
if hash_prefix: |
|
with open(cached_file, 'rb') as f: |
|
hd = hashlib.sha256(f.read()).hexdigest() |
|
if hd[:len(hash_prefix)] != hash_prefix: |
|
return False |
|
return True |
|
return False |
|
|
|
|
|
def has_hf_hub(necessary: bool = False): |
|
if not _has_hf_hub and necessary: |
|
|
|
raise RuntimeError( |
|
'Hugging Face hub model specified but package not installed. Run `pip install huggingface_hub`.') |
|
return _has_hf_hub |
|
|
|
|
|
def hf_split(hf_id: str): |
|
|
|
rev_split = hf_id.split('@') |
|
assert 0 < len(rev_split) <= 2, 'hf_hub id should only contain one @ character to identify revision.' |
|
hf_model_id = rev_split[0] |
|
hf_revision = rev_split[-1] if len(rev_split) > 1 else None |
|
return hf_model_id, hf_revision |
|
|
|
|
|
def load_cfg_from_json(json_file: Union[str, Path]): |
|
with open(json_file, "r", encoding="utf-8") as reader: |
|
text = reader.read() |
|
return json.loads(text) |
|
|
|
|
|
def download_from_hf( |
|
model_id: str, |
|
filename: str, |
|
cache_dir: Optional[Union[str, Path]] = None, |
|
): |
|
hf_model_id, hf_revision = hf_split(model_id) |
|
return hf_hub_download( |
|
hf_model_id, |
|
filename, |
|
revision=hf_revision, |
|
cache_dir=cache_dir, |
|
) |
|
|
|
|
|
def load_model_config_from_hf( |
|
model_id: str, |
|
cache_dir: Optional[Union[str, Path]] = None, |
|
): |
|
assert has_hf_hub(True) |
|
cached_file = download_from_hf(model_id, 'config.json', cache_dir=cache_dir) |
|
|
|
hf_config = load_cfg_from_json(cached_file) |
|
if 'pretrained_cfg' not in hf_config: |
|
|
|
pretrained_cfg = hf_config |
|
hf_config = {} |
|
hf_config['architecture'] = pretrained_cfg.pop('architecture') |
|
hf_config['num_features'] = pretrained_cfg.pop('num_features', None) |
|
if 'labels' in pretrained_cfg: |
|
pretrained_cfg['label_names'] = pretrained_cfg.pop('labels') |
|
hf_config['pretrained_cfg'] = pretrained_cfg |
|
|
|
|
|
pretrained_cfg = hf_config['pretrained_cfg'] |
|
pretrained_cfg['hf_hub_id'] = model_id |
|
pretrained_cfg['source'] = 'hf-hub' |
|
|
|
|
|
if 'num_classes' in hf_config: |
|
pretrained_cfg['num_classes'] = hf_config['num_classes'] |
|
|
|
|
|
if 'label_names' in hf_config: |
|
pretrained_cfg['label_names'] = hf_config.pop('label_names') |
|
if 'label_descriptions' in hf_config: |
|
pretrained_cfg['label_descriptions'] = hf_config.pop('label_descriptions') |
|
|
|
model_args = hf_config.get('model_args', {}) |
|
model_name = hf_config['architecture'] |
|
return pretrained_cfg, model_name, model_args |
|
|
|
|
|
def load_state_dict_from_hf( |
|
model_id: str, |
|
filename: str = HF_WEIGHTS_NAME, |
|
weights_only: bool = False, |
|
cache_dir: Optional[Union[str, Path]] = None, |
|
): |
|
assert has_hf_hub(True) |
|
hf_model_id, hf_revision = hf_split(model_id) |
|
|
|
|
|
if _has_safetensors: |
|
for safe_filename in _get_safe_alternatives(filename): |
|
try: |
|
cached_safe_file = hf_hub_download( |
|
repo_id=hf_model_id, |
|
filename=safe_filename, |
|
revision=hf_revision, |
|
cache_dir=cache_dir, |
|
) |
|
_logger.info( |
|
f"[{model_id}] Safe alternative available for '{filename}' " |
|
f"(as '{safe_filename}'). Loading weights using safetensors.") |
|
return safetensors.torch.load_file(cached_safe_file, device="cpu") |
|
except EntryNotFoundError: |
|
pass |
|
|
|
|
|
cached_file = hf_hub_download( |
|
hf_model_id, |
|
filename=filename, |
|
revision=hf_revision, |
|
cache_dir=cache_dir, |
|
) |
|
_logger.debug(f"[{model_id}] Safe alternative not found for '{filename}'. Loading weights using default pytorch.") |
|
try: |
|
state_dict = torch.load(cached_file, map_location='cpu', weights_only=weights_only) |
|
except TypeError: |
|
state_dict = torch.load(cached_file, map_location='cpu') |
|
return state_dict |
|
|
|
|
|
def load_custom_from_hf( |
|
model_id: str, |
|
filename: str, |
|
model: torch.nn.Module, |
|
cache_dir: Optional[Union[str, Path]] = None, |
|
): |
|
assert has_hf_hub(True) |
|
hf_model_id, hf_revision = hf_split(model_id) |
|
cached_file = hf_hub_download( |
|
hf_model_id, |
|
filename=filename, |
|
revision=hf_revision, |
|
cache_dir=cache_dir, |
|
) |
|
return model.load_pretrained(cached_file) |
|
|
|
|
|
def save_config_for_hf( |
|
model: torch.nn.Module, |
|
config_path: str, |
|
model_config: Optional[dict] = None, |
|
model_args: Optional[dict] = None |
|
): |
|
model_config = model_config or {} |
|
hf_config = {} |
|
pretrained_cfg = filter_pretrained_cfg(model.pretrained_cfg, remove_source=True, remove_null=True) |
|
|
|
hf_config['architecture'] = pretrained_cfg.pop('architecture') |
|
hf_config['num_classes'] = model_config.pop('num_classes', model.num_classes) |
|
|
|
|
|
hf_config['num_features'] = model_config.pop('num_features', model.num_features) |
|
global_pool_type = model_config.pop('global_pool', getattr(model, 'global_pool', None)) |
|
if isinstance(global_pool_type, str) and global_pool_type: |
|
hf_config['global_pool'] = global_pool_type |
|
|
|
|
|
if 'labels' in model_config: |
|
_logger.warning( |
|
"'labels' as a config field for is deprecated. Please use 'label_names' and 'label_descriptions'." |
|
" Renaming provided 'labels' field to 'label_names'.") |
|
model_config.setdefault('label_names', model_config.pop('labels')) |
|
|
|
label_names = model_config.pop('label_names', None) |
|
if label_names: |
|
assert isinstance(label_names, (dict, list, tuple)) |
|
|
|
|
|
hf_config['label_names'] = label_names |
|
|
|
label_descriptions = model_config.pop('label_descriptions', None) |
|
if label_descriptions: |
|
assert isinstance(label_descriptions, dict) |
|
|
|
hf_config['label_descriptions'] = label_descriptions |
|
|
|
if model_args: |
|
hf_config['model_args'] = model_args |
|
|
|
hf_config['pretrained_cfg'] = pretrained_cfg |
|
hf_config.update(model_config) |
|
|
|
with config_path.open('w') as f: |
|
json.dump(hf_config, f, indent=2) |
|
|
|
|
|
def save_for_hf( |
|
model: torch.nn.Module, |
|
save_directory: str, |
|
model_config: Optional[dict] = None, |
|
model_args: Optional[dict] = None, |
|
safe_serialization: Union[bool, Literal["both"]] = False, |
|
): |
|
assert has_hf_hub(True) |
|
save_directory = Path(save_directory) |
|
save_directory.mkdir(exist_ok=True, parents=True) |
|
|
|
|
|
tensors = model.state_dict() |
|
if safe_serialization is True or safe_serialization == "both": |
|
assert _has_safetensors, "`pip install safetensors` to use .safetensors" |
|
safetensors.torch.save_file(tensors, save_directory / HF_SAFE_WEIGHTS_NAME) |
|
if safe_serialization is False or safe_serialization == "both": |
|
torch.save(tensors, save_directory / HF_WEIGHTS_NAME) |
|
|
|
config_path = save_directory / 'config.json' |
|
save_config_for_hf( |
|
model, |
|
config_path, |
|
model_config=model_config, |
|
model_args=model_args, |
|
) |
|
|
|
|
|
def push_to_hf_hub( |
|
model: torch.nn.Module, |
|
repo_id: str, |
|
commit_message: str = 'Add model', |
|
token: Optional[str] = None, |
|
revision: Optional[str] = None, |
|
private: bool = False, |
|
create_pr: bool = False, |
|
model_config: Optional[dict] = None, |
|
model_card: Optional[dict] = None, |
|
model_args: Optional[dict] = None, |
|
safe_serialization: Union[bool, Literal["both"]] = 'both', |
|
): |
|
""" |
|
Arguments: |
|
(...) |
|
safe_serialization (`bool` or `"both"`, *optional*, defaults to `False`): |
|
Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`). |
|
Can be set to `"both"` in order to push both safe and unsafe weights. |
|
""" |
|
|
|
repo_url = create_repo(repo_id, token=token, private=private, exist_ok=True) |
|
|
|
|
|
|
|
_, repo_owner, repo_name = repo_type_and_id_from_hf_id(repo_url) |
|
repo_id = f"{repo_owner}/{repo_name}" |
|
|
|
|
|
try: |
|
get_hf_file_metadata(hf_hub_url(repo_id=repo_id, filename="README.md", revision=revision)) |
|
has_readme = True |
|
except EntryNotFoundError: |
|
has_readme = False |
|
|
|
|
|
with TemporaryDirectory() as tmpdir: |
|
|
|
save_for_hf( |
|
model, |
|
tmpdir, |
|
model_config=model_config, |
|
model_args=model_args, |
|
safe_serialization=safe_serialization, |
|
) |
|
|
|
|
|
if not has_readme: |
|
model_card = model_card or {} |
|
model_name = repo_id.split('/')[-1] |
|
readme_path = Path(tmpdir) / "README.md" |
|
readme_text = generate_readme(model_card, model_name) |
|
readme_path.write_text(readme_text) |
|
|
|
|
|
return upload_folder( |
|
repo_id=repo_id, |
|
folder_path=tmpdir, |
|
revision=revision, |
|
create_pr=create_pr, |
|
commit_message=commit_message, |
|
) |
|
|
|
|
|
def generate_readme(model_card: dict, model_name: str): |
|
readme_text = "---\n" |
|
readme_text += "tags:\n- image-classification\n- timm\n" |
|
readme_text += "library_name: timm\n" |
|
readme_text += f"license: {model_card.get('license', 'apache-2.0')}\n" |
|
if 'details' in model_card and 'Dataset' in model_card['details']: |
|
readme_text += 'datasets:\n' |
|
if isinstance(model_card['details']['Dataset'], (tuple, list)): |
|
for d in model_card['details']['Dataset']: |
|
readme_text += f"- {d.lower()}\n" |
|
else: |
|
readme_text += f"- {model_card['details']['Dataset'].lower()}\n" |
|
if 'Pretrain Dataset' in model_card['details']: |
|
if isinstance(model_card['details']['Pretrain Dataset'], (tuple, list)): |
|
for d in model_card['details']['Pretrain Dataset']: |
|
readme_text += f"- {d.lower()}\n" |
|
else: |
|
readme_text += f"- {model_card['details']['Pretrain Dataset'].lower()}\n" |
|
readme_text += "---\n" |
|
readme_text += f"# Model card for {model_name}\n" |
|
if 'description' in model_card: |
|
readme_text += f"\n{model_card['description']}\n" |
|
if 'details' in model_card: |
|
readme_text += f"\n## Model Details\n" |
|
for k, v in model_card['details'].items(): |
|
if isinstance(v, (list, tuple)): |
|
readme_text += f"- **{k}:**\n" |
|
for vi in v: |
|
readme_text += f" - {vi}\n" |
|
elif isinstance(v, dict): |
|
readme_text += f"- **{k}:**\n" |
|
for ki, vi in v.items(): |
|
readme_text += f" - {ki}: {vi}\n" |
|
else: |
|
readme_text += f"- **{k}:** {v}\n" |
|
if 'usage' in model_card: |
|
readme_text += f"\n## Model Usage\n" |
|
readme_text += model_card['usage'] |
|
readme_text += '\n' |
|
|
|
if 'comparison' in model_card: |
|
readme_text += f"\n## Model Comparison\n" |
|
readme_text += model_card['comparison'] |
|
readme_text += '\n' |
|
|
|
if 'citation' in model_card: |
|
readme_text += f"\n## Citation\n" |
|
if not isinstance(model_card['citation'], (list, tuple)): |
|
citations = [model_card['citation']] |
|
else: |
|
citations = model_card['citation'] |
|
for c in citations: |
|
readme_text += f"```bibtex\n{c}\n```\n" |
|
return readme_text |
|
|
|
|
|
def _get_safe_alternatives(filename: str) -> Iterable[str]: |
|
"""Returns potential safetensors alternatives for a given filename. |
|
|
|
Use case: |
|
When downloading a model from the Huggingface Hub, we first look if a .safetensors file exists and if yes, we use it. |
|
Main use case is filename "pytorch_model.bin" => check for "model.safetensors" or "pytorch_model.safetensors". |
|
""" |
|
if filename == HF_WEIGHTS_NAME: |
|
yield HF_SAFE_WEIGHTS_NAME |
|
if filename == HF_OPEN_CLIP_WEIGHTS_NAME: |
|
yield HF_OPEN_CLIP_SAFE_WEIGHTS_NAME |
|
if filename not in (HF_WEIGHTS_NAME, HF_OPEN_CLIP_WEIGHTS_NAME) and filename.endswith(".bin"): |
|
yield filename[:-4] + ".safetensors" |
|
|