|
""" |
|
CoaT architecture. |
|
|
|
Paper: Co-Scale Conv-Attentional Image Transformers - https://arxiv.org/abs/2104.06399 |
|
|
|
Official CoaT code at: https://github.com/mlpc-ucsd/CoaT |
|
|
|
Modified from timm/models/vision_transformer.py |
|
""" |
|
from typing import List, Optional, Tuple, Union |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD |
|
from timm.layers import PatchEmbed, Mlp, DropPath, to_2tuple, trunc_normal_, _assert, LayerNorm |
|
from ._builder import build_model_with_cfg |
|
from ._registry import register_model, generate_default_cfgs |
|
|
|
__all__ = ['CoaT'] |
|
|
|
|
|
class ConvRelPosEnc(nn.Module): |
|
""" Convolutional relative position encoding. """ |
|
def __init__(self, head_chs, num_heads, window): |
|
""" |
|
Initialization. |
|
Ch: Channels per head. |
|
h: Number of heads. |
|
window: Window size(s) in convolutional relative positional encoding. It can have two forms: |
|
1. An integer of window size, which assigns all attention heads with the same window s |
|
size in ConvRelPosEnc. |
|
2. A dict mapping window size to #attention head splits ( |
|
e.g. {window size 1: #attention head split 1, window size 2: #attention head split 2}) |
|
It will apply different window size to the attention head splits. |
|
""" |
|
super().__init__() |
|
|
|
if isinstance(window, int): |
|
|
|
window = {window: num_heads} |
|
self.window = window |
|
elif isinstance(window, dict): |
|
self.window = window |
|
else: |
|
raise ValueError() |
|
|
|
self.conv_list = nn.ModuleList() |
|
self.head_splits = [] |
|
for cur_window, cur_head_split in window.items(): |
|
dilation = 1 |
|
|
|
|
|
padding_size = (cur_window + (cur_window - 1) * (dilation - 1)) // 2 |
|
cur_conv = nn.Conv2d( |
|
cur_head_split * head_chs, |
|
cur_head_split * head_chs, |
|
kernel_size=(cur_window, cur_window), |
|
padding=(padding_size, padding_size), |
|
dilation=(dilation, dilation), |
|
groups=cur_head_split * head_chs, |
|
) |
|
self.conv_list.append(cur_conv) |
|
self.head_splits.append(cur_head_split) |
|
self.channel_splits = [x * head_chs for x in self.head_splits] |
|
|
|
def forward(self, q, v, size: Tuple[int, int]): |
|
B, num_heads, N, C = q.shape |
|
H, W = size |
|
_assert(N == 1 + H * W, '') |
|
|
|
|
|
q_img = q[:, :, 1:, :] |
|
v_img = v[:, :, 1:, :] |
|
|
|
v_img = v_img.transpose(-1, -2).reshape(B, num_heads * C, H, W) |
|
v_img_list = torch.split(v_img, self.channel_splits, dim=1) |
|
conv_v_img_list = [] |
|
for i, conv in enumerate(self.conv_list): |
|
conv_v_img_list.append(conv(v_img_list[i])) |
|
conv_v_img = torch.cat(conv_v_img_list, dim=1) |
|
conv_v_img = conv_v_img.reshape(B, num_heads, C, H * W).transpose(-1, -2) |
|
|
|
EV_hat = q_img * conv_v_img |
|
EV_hat = F.pad(EV_hat, (0, 0, 1, 0, 0, 0)) |
|
return EV_hat |
|
|
|
|
|
class FactorAttnConvRelPosEnc(nn.Module): |
|
""" Factorized attention with convolutional relative position encoding class. """ |
|
def __init__( |
|
self, |
|
dim, |
|
num_heads=8, |
|
qkv_bias=False, |
|
attn_drop=0., |
|
proj_drop=0., |
|
shared_crpe=None, |
|
): |
|
super().__init__() |
|
self.num_heads = num_heads |
|
head_dim = dim // num_heads |
|
self.scale = head_dim ** -0.5 |
|
|
|
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) |
|
self.attn_drop = nn.Dropout(attn_drop) |
|
self.proj = nn.Linear(dim, dim) |
|
self.proj_drop = nn.Dropout(proj_drop) |
|
|
|
|
|
self.crpe = shared_crpe |
|
|
|
def forward(self, x, size: Tuple[int, int]): |
|
B, N, C = x.shape |
|
|
|
|
|
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) |
|
q, k, v = qkv.unbind(0) |
|
|
|
|
|
k_softmax = k.softmax(dim=2) |
|
factor_att = k_softmax.transpose(-1, -2) @ v |
|
factor_att = q @ factor_att |
|
|
|
|
|
crpe = self.crpe(q, v, size=size) |
|
|
|
|
|
x = self.scale * factor_att + crpe |
|
x = x.transpose(1, 2).reshape(B, N, C) |
|
|
|
|
|
x = self.proj(x) |
|
x = self.proj_drop(x) |
|
|
|
return x |
|
|
|
|
|
class ConvPosEnc(nn.Module): |
|
""" Convolutional Position Encoding. |
|
Note: This module is similar to the conditional position encoding in CPVT. |
|
""" |
|
def __init__(self, dim, k=3): |
|
super(ConvPosEnc, self).__init__() |
|
self.proj = nn.Conv2d(dim, dim, k, 1, k//2, groups=dim) |
|
|
|
def forward(self, x, size: Tuple[int, int]): |
|
B, N, C = x.shape |
|
H, W = size |
|
_assert(N == 1 + H * W, '') |
|
|
|
|
|
cls_token, img_tokens = x[:, :1], x[:, 1:] |
|
|
|
|
|
feat = img_tokens.transpose(1, 2).view(B, C, H, W) |
|
x = self.proj(feat) + feat |
|
x = x.flatten(2).transpose(1, 2) |
|
|
|
|
|
x = torch.cat((cls_token, x), dim=1) |
|
|
|
return x |
|
|
|
|
|
class SerialBlock(nn.Module): |
|
""" Serial block class. |
|
Note: In this implementation, each serial block only contains a conv-attention and a FFN (MLP) module. """ |
|
def __init__( |
|
self, |
|
dim, |
|
num_heads, |
|
mlp_ratio=4., |
|
qkv_bias=False, |
|
proj_drop=0., |
|
attn_drop=0., |
|
drop_path=0., |
|
act_layer=nn.GELU, |
|
norm_layer=nn.LayerNorm, |
|
shared_cpe=None, |
|
shared_crpe=None, |
|
): |
|
super().__init__() |
|
|
|
|
|
self.cpe = shared_cpe |
|
|
|
self.norm1 = norm_layer(dim) |
|
self.factoratt_crpe = FactorAttnConvRelPosEnc( |
|
dim, |
|
num_heads=num_heads, |
|
qkv_bias=qkv_bias, |
|
attn_drop=attn_drop, |
|
proj_drop=proj_drop, |
|
shared_crpe=shared_crpe, |
|
) |
|
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() |
|
|
|
|
|
self.norm2 = norm_layer(dim) |
|
mlp_hidden_dim = int(dim * mlp_ratio) |
|
self.mlp = Mlp( |
|
in_features=dim, |
|
hidden_features=mlp_hidden_dim, |
|
act_layer=act_layer, |
|
drop=proj_drop, |
|
) |
|
|
|
def forward(self, x, size: Tuple[int, int]): |
|
|
|
x = self.cpe(x, size) |
|
cur = self.norm1(x) |
|
cur = self.factoratt_crpe(cur, size) |
|
x = x + self.drop_path(cur) |
|
|
|
|
|
cur = self.norm2(x) |
|
cur = self.mlp(cur) |
|
x = x + self.drop_path(cur) |
|
|
|
return x |
|
|
|
|
|
class ParallelBlock(nn.Module): |
|
""" Parallel block class. """ |
|
def __init__( |
|
self, |
|
dims, |
|
num_heads, |
|
mlp_ratios=[], |
|
qkv_bias=False, |
|
proj_drop=0., |
|
attn_drop=0., |
|
drop_path=0., |
|
act_layer=nn.GELU, |
|
norm_layer=nn.LayerNorm, |
|
shared_crpes=None, |
|
): |
|
super().__init__() |
|
|
|
|
|
self.norm12 = norm_layer(dims[1]) |
|
self.norm13 = norm_layer(dims[2]) |
|
self.norm14 = norm_layer(dims[3]) |
|
self.factoratt_crpe2 = FactorAttnConvRelPosEnc( |
|
dims[1], |
|
num_heads=num_heads, |
|
qkv_bias=qkv_bias, |
|
attn_drop=attn_drop, |
|
proj_drop=proj_drop, |
|
shared_crpe=shared_crpes[1], |
|
) |
|
self.factoratt_crpe3 = FactorAttnConvRelPosEnc( |
|
dims[2], |
|
num_heads=num_heads, |
|
qkv_bias=qkv_bias, |
|
attn_drop=attn_drop, |
|
proj_drop=proj_drop, |
|
shared_crpe=shared_crpes[2], |
|
) |
|
self.factoratt_crpe4 = FactorAttnConvRelPosEnc( |
|
dims[3], |
|
num_heads=num_heads, |
|
qkv_bias=qkv_bias, |
|
attn_drop=attn_drop, |
|
proj_drop=proj_drop, |
|
shared_crpe=shared_crpes[3], |
|
) |
|
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() |
|
|
|
|
|
self.norm22 = norm_layer(dims[1]) |
|
self.norm23 = norm_layer(dims[2]) |
|
self.norm24 = norm_layer(dims[3]) |
|
|
|
assert dims[1] == dims[2] == dims[3] |
|
assert mlp_ratios[1] == mlp_ratios[2] == mlp_ratios[3] |
|
mlp_hidden_dim = int(dims[1] * mlp_ratios[1]) |
|
self.mlp2 = self.mlp3 = self.mlp4 = Mlp( |
|
in_features=dims[1], |
|
hidden_features=mlp_hidden_dim, |
|
act_layer=act_layer, |
|
drop=proj_drop, |
|
) |
|
|
|
def upsample(self, x, factor: float, size: Tuple[int, int]): |
|
""" Feature map up-sampling. """ |
|
return self.interpolate(x, scale_factor=factor, size=size) |
|
|
|
def downsample(self, x, factor: float, size: Tuple[int, int]): |
|
""" Feature map down-sampling. """ |
|
return self.interpolate(x, scale_factor=1.0/factor, size=size) |
|
|
|
def interpolate(self, x, scale_factor: float, size: Tuple[int, int]): |
|
""" Feature map interpolation. """ |
|
B, N, C = x.shape |
|
H, W = size |
|
_assert(N == 1 + H * W, '') |
|
|
|
cls_token = x[:, :1, :] |
|
img_tokens = x[:, 1:, :] |
|
|
|
img_tokens = img_tokens.transpose(1, 2).reshape(B, C, H, W) |
|
img_tokens = F.interpolate( |
|
img_tokens, |
|
scale_factor=scale_factor, |
|
recompute_scale_factor=False, |
|
mode='bilinear', |
|
align_corners=False, |
|
) |
|
img_tokens = img_tokens.reshape(B, C, -1).transpose(1, 2) |
|
|
|
out = torch.cat((cls_token, img_tokens), dim=1) |
|
|
|
return out |
|
|
|
def forward(self, x1, x2, x3, x4, sizes: List[Tuple[int, int]]): |
|
_, S2, S3, S4 = sizes |
|
cur2 = self.norm12(x2) |
|
cur3 = self.norm13(x3) |
|
cur4 = self.norm14(x4) |
|
cur2 = self.factoratt_crpe2(cur2, size=S2) |
|
cur3 = self.factoratt_crpe3(cur3, size=S3) |
|
cur4 = self.factoratt_crpe4(cur4, size=S4) |
|
upsample3_2 = self.upsample(cur3, factor=2., size=S3) |
|
upsample4_3 = self.upsample(cur4, factor=2., size=S4) |
|
upsample4_2 = self.upsample(cur4, factor=4., size=S4) |
|
downsample2_3 = self.downsample(cur2, factor=2., size=S2) |
|
downsample3_4 = self.downsample(cur3, factor=2., size=S3) |
|
downsample2_4 = self.downsample(cur2, factor=4., size=S2) |
|
cur2 = cur2 + upsample3_2 + upsample4_2 |
|
cur3 = cur3 + upsample4_3 + downsample2_3 |
|
cur4 = cur4 + downsample3_4 + downsample2_4 |
|
x2 = x2 + self.drop_path(cur2) |
|
x3 = x3 + self.drop_path(cur3) |
|
x4 = x4 + self.drop_path(cur4) |
|
|
|
|
|
cur2 = self.norm22(x2) |
|
cur3 = self.norm23(x3) |
|
cur4 = self.norm24(x4) |
|
cur2 = self.mlp2(cur2) |
|
cur3 = self.mlp3(cur3) |
|
cur4 = self.mlp4(cur4) |
|
x2 = x2 + self.drop_path(cur2) |
|
x3 = x3 + self.drop_path(cur3) |
|
x4 = x4 + self.drop_path(cur4) |
|
|
|
return x1, x2, x3, x4 |
|
|
|
|
|
class CoaT(nn.Module): |
|
""" CoaT class. """ |
|
def __init__( |
|
self, |
|
img_size=224, |
|
patch_size=16, |
|
in_chans=3, |
|
num_classes=1000, |
|
embed_dims=(64, 128, 320, 512), |
|
serial_depths=(3, 4, 6, 3), |
|
parallel_depth=0, |
|
num_heads=8, |
|
mlp_ratios=(4, 4, 4, 4), |
|
qkv_bias=True, |
|
drop_rate=0., |
|
proj_drop_rate=0., |
|
attn_drop_rate=0., |
|
drop_path_rate=0., |
|
norm_layer=LayerNorm, |
|
return_interm_layers=False, |
|
out_features=None, |
|
crpe_window=None, |
|
global_pool='token', |
|
): |
|
super().__init__() |
|
assert global_pool in ('token', 'avg') |
|
crpe_window = crpe_window or {3: 2, 5: 3, 7: 3} |
|
self.return_interm_layers = return_interm_layers |
|
self.out_features = out_features |
|
self.embed_dims = embed_dims |
|
self.num_features = self.head_hidden_size = embed_dims[-1] |
|
self.num_classes = num_classes |
|
self.global_pool = global_pool |
|
|
|
|
|
img_size = to_2tuple(img_size) |
|
self.patch_embed1 = PatchEmbed( |
|
img_size=img_size, patch_size=patch_size, in_chans=in_chans, |
|
embed_dim=embed_dims[0], norm_layer=nn.LayerNorm) |
|
self.patch_embed2 = PatchEmbed( |
|
img_size=[x // 4 for x in img_size], patch_size=2, in_chans=embed_dims[0], |
|
embed_dim=embed_dims[1], norm_layer=nn.LayerNorm) |
|
self.patch_embed3 = PatchEmbed( |
|
img_size=[x // 8 for x in img_size], patch_size=2, in_chans=embed_dims[1], |
|
embed_dim=embed_dims[2], norm_layer=nn.LayerNorm) |
|
self.patch_embed4 = PatchEmbed( |
|
img_size=[x // 16 for x in img_size], patch_size=2, in_chans=embed_dims[2], |
|
embed_dim=embed_dims[3], norm_layer=nn.LayerNorm) |
|
|
|
|
|
self.cls_token1 = nn.Parameter(torch.zeros(1, 1, embed_dims[0])) |
|
self.cls_token2 = nn.Parameter(torch.zeros(1, 1, embed_dims[1])) |
|
self.cls_token3 = nn.Parameter(torch.zeros(1, 1, embed_dims[2])) |
|
self.cls_token4 = nn.Parameter(torch.zeros(1, 1, embed_dims[3])) |
|
|
|
|
|
self.cpe1 = ConvPosEnc(dim=embed_dims[0], k=3) |
|
self.cpe2 = ConvPosEnc(dim=embed_dims[1], k=3) |
|
self.cpe3 = ConvPosEnc(dim=embed_dims[2], k=3) |
|
self.cpe4 = ConvPosEnc(dim=embed_dims[3], k=3) |
|
|
|
|
|
self.crpe1 = ConvRelPosEnc(head_chs=embed_dims[0] // num_heads, num_heads=num_heads, window=crpe_window) |
|
self.crpe2 = ConvRelPosEnc(head_chs=embed_dims[1] // num_heads, num_heads=num_heads, window=crpe_window) |
|
self.crpe3 = ConvRelPosEnc(head_chs=embed_dims[2] // num_heads, num_heads=num_heads, window=crpe_window) |
|
self.crpe4 = ConvRelPosEnc(head_chs=embed_dims[3] // num_heads, num_heads=num_heads, window=crpe_window) |
|
|
|
|
|
dpr = drop_path_rate |
|
assert dpr == 0.0 |
|
skwargs = dict( |
|
num_heads=num_heads, |
|
qkv_bias=qkv_bias, |
|
proj_drop=proj_drop_rate, |
|
attn_drop=attn_drop_rate, |
|
drop_path=dpr, |
|
norm_layer=norm_layer, |
|
) |
|
|
|
|
|
self.serial_blocks1 = nn.ModuleList([ |
|
SerialBlock( |
|
dim=embed_dims[0], |
|
mlp_ratio=mlp_ratios[0], |
|
shared_cpe=self.cpe1, |
|
shared_crpe=self.crpe1, |
|
**skwargs, |
|
) |
|
for _ in range(serial_depths[0])] |
|
) |
|
|
|
|
|
self.serial_blocks2 = nn.ModuleList([ |
|
SerialBlock( |
|
dim=embed_dims[1], |
|
mlp_ratio=mlp_ratios[1], |
|
shared_cpe=self.cpe2, |
|
shared_crpe=self.crpe2, |
|
**skwargs, |
|
) |
|
for _ in range(serial_depths[1])] |
|
) |
|
|
|
|
|
self.serial_blocks3 = nn.ModuleList([ |
|
SerialBlock( |
|
dim=embed_dims[2], |
|
mlp_ratio=mlp_ratios[2], |
|
shared_cpe=self.cpe3, |
|
shared_crpe=self.crpe3, |
|
**skwargs, |
|
) |
|
for _ in range(serial_depths[2])] |
|
) |
|
|
|
|
|
self.serial_blocks4 = nn.ModuleList([ |
|
SerialBlock( |
|
dim=embed_dims[3], |
|
mlp_ratio=mlp_ratios[3], |
|
shared_cpe=self.cpe4, |
|
shared_crpe=self.crpe4, |
|
**skwargs, |
|
) |
|
for _ in range(serial_depths[3])] |
|
) |
|
|
|
|
|
self.parallel_depth = parallel_depth |
|
if self.parallel_depth > 0: |
|
self.parallel_blocks = nn.ModuleList([ |
|
ParallelBlock( |
|
dims=embed_dims, |
|
mlp_ratios=mlp_ratios, |
|
shared_crpes=(self.crpe1, self.crpe2, self.crpe3, self.crpe4), |
|
**skwargs, |
|
) |
|
for _ in range(parallel_depth)] |
|
) |
|
else: |
|
self.parallel_blocks = None |
|
|
|
|
|
if not self.return_interm_layers: |
|
if self.parallel_blocks is not None: |
|
self.norm2 = norm_layer(embed_dims[1]) |
|
self.norm3 = norm_layer(embed_dims[2]) |
|
else: |
|
self.norm2 = self.norm3 = None |
|
self.norm4 = norm_layer(embed_dims[3]) |
|
|
|
if self.parallel_depth > 0: |
|
|
|
assert embed_dims[1] == embed_dims[2] == embed_dims[3] |
|
self.aggregate = torch.nn.Conv1d(in_channels=3, out_channels=1, kernel_size=1) |
|
self.head_drop = nn.Dropout(drop_rate) |
|
self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity() |
|
else: |
|
|
|
self.aggregate = None |
|
self.head_drop = nn.Dropout(drop_rate) |
|
self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity() |
|
|
|
|
|
trunc_normal_(self.cls_token1, std=.02) |
|
trunc_normal_(self.cls_token2, std=.02) |
|
trunc_normal_(self.cls_token3, std=.02) |
|
trunc_normal_(self.cls_token4, std=.02) |
|
self.apply(self._init_weights) |
|
|
|
def _init_weights(self, m): |
|
if isinstance(m, nn.Linear): |
|
trunc_normal_(m.weight, std=.02) |
|
if isinstance(m, nn.Linear) and m.bias is not None: |
|
nn.init.constant_(m.bias, 0) |
|
elif isinstance(m, nn.LayerNorm): |
|
nn.init.constant_(m.bias, 0) |
|
nn.init.constant_(m.weight, 1.0) |
|
|
|
@torch.jit.ignore |
|
def no_weight_decay(self): |
|
return {'cls_token1', 'cls_token2', 'cls_token3', 'cls_token4'} |
|
|
|
@torch.jit.ignore |
|
def set_grad_checkpointing(self, enable=True): |
|
assert not enable, 'gradient checkpointing not supported' |
|
|
|
@torch.jit.ignore |
|
def group_matcher(self, coarse=False): |
|
matcher = dict( |
|
stem1=r'^cls_token1|patch_embed1|crpe1|cpe1', |
|
serial_blocks1=r'^serial_blocks1\.(\d+)', |
|
stem2=r'^cls_token2|patch_embed2|crpe2|cpe2', |
|
serial_blocks2=r'^serial_blocks2\.(\d+)', |
|
stem3=r'^cls_token3|patch_embed3|crpe3|cpe3', |
|
serial_blocks3=r'^serial_blocks3\.(\d+)', |
|
stem4=r'^cls_token4|patch_embed4|crpe4|cpe4', |
|
serial_blocks4=r'^serial_blocks4\.(\d+)', |
|
parallel_blocks=[ |
|
(r'^parallel_blocks\.(\d+)', None), |
|
(r'^norm|aggregate', (99999,)), |
|
] |
|
) |
|
return matcher |
|
|
|
@torch.jit.ignore |
|
def get_classifier(self) -> nn.Module: |
|
return self.head |
|
|
|
def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None): |
|
self.num_classes = num_classes |
|
if global_pool is not None: |
|
assert global_pool in ('token', 'avg') |
|
self.global_pool = global_pool |
|
self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity() |
|
|
|
def forward_features(self, x0): |
|
B = x0.shape[0] |
|
|
|
|
|
x1 = self.patch_embed1(x0) |
|
H1, W1 = self.patch_embed1.grid_size |
|
x1 = insert_cls(x1, self.cls_token1) |
|
for blk in self.serial_blocks1: |
|
x1 = blk(x1, size=(H1, W1)) |
|
x1_nocls = remove_cls(x1).reshape(B, H1, W1, -1).permute(0, 3, 1, 2).contiguous() |
|
|
|
|
|
x2 = self.patch_embed2(x1_nocls) |
|
H2, W2 = self.patch_embed2.grid_size |
|
x2 = insert_cls(x2, self.cls_token2) |
|
for blk in self.serial_blocks2: |
|
x2 = blk(x2, size=(H2, W2)) |
|
x2_nocls = remove_cls(x2).reshape(B, H2, W2, -1).permute(0, 3, 1, 2).contiguous() |
|
|
|
|
|
x3 = self.patch_embed3(x2_nocls) |
|
H3, W3 = self.patch_embed3.grid_size |
|
x3 = insert_cls(x3, self.cls_token3) |
|
for blk in self.serial_blocks3: |
|
x3 = blk(x3, size=(H3, W3)) |
|
x3_nocls = remove_cls(x3).reshape(B, H3, W3, -1).permute(0, 3, 1, 2).contiguous() |
|
|
|
|
|
x4 = self.patch_embed4(x3_nocls) |
|
H4, W4 = self.patch_embed4.grid_size |
|
x4 = insert_cls(x4, self.cls_token4) |
|
for blk in self.serial_blocks4: |
|
x4 = blk(x4, size=(H4, W4)) |
|
x4_nocls = remove_cls(x4).reshape(B, H4, W4, -1).permute(0, 3, 1, 2).contiguous() |
|
|
|
|
|
if self.parallel_blocks is None: |
|
if not torch.jit.is_scripting() and self.return_interm_layers: |
|
|
|
feat_out = {} |
|
if 'x1_nocls' in self.out_features: |
|
feat_out['x1_nocls'] = x1_nocls |
|
if 'x2_nocls' in self.out_features: |
|
feat_out['x2_nocls'] = x2_nocls |
|
if 'x3_nocls' in self.out_features: |
|
feat_out['x3_nocls'] = x3_nocls |
|
if 'x4_nocls' in self.out_features: |
|
feat_out['x4_nocls'] = x4_nocls |
|
return feat_out |
|
else: |
|
|
|
x4 = self.norm4(x4) |
|
return x4 |
|
|
|
|
|
for blk in self.parallel_blocks: |
|
x2, x3, x4 = self.cpe2(x2, (H2, W2)), self.cpe3(x3, (H3, W3)), self.cpe4(x4, (H4, W4)) |
|
x1, x2, x3, x4 = blk(x1, x2, x3, x4, sizes=[(H1, W1), (H2, W2), (H3, W3), (H4, W4)]) |
|
|
|
if not torch.jit.is_scripting() and self.return_interm_layers: |
|
|
|
feat_out = {} |
|
if 'x1_nocls' in self.out_features: |
|
x1_nocls = remove_cls(x1).reshape(B, H1, W1, -1).permute(0, 3, 1, 2).contiguous() |
|
feat_out['x1_nocls'] = x1_nocls |
|
if 'x2_nocls' in self.out_features: |
|
x2_nocls = remove_cls(x2).reshape(B, H2, W2, -1).permute(0, 3, 1, 2).contiguous() |
|
feat_out['x2_nocls'] = x2_nocls |
|
if 'x3_nocls' in self.out_features: |
|
x3_nocls = remove_cls(x3).reshape(B, H3, W3, -1).permute(0, 3, 1, 2).contiguous() |
|
feat_out['x3_nocls'] = x3_nocls |
|
if 'x4_nocls' in self.out_features: |
|
x4_nocls = remove_cls(x4).reshape(B, H4, W4, -1).permute(0, 3, 1, 2).contiguous() |
|
feat_out['x4_nocls'] = x4_nocls |
|
return feat_out |
|
else: |
|
x2 = self.norm2(x2) |
|
x3 = self.norm3(x3) |
|
x4 = self.norm4(x4) |
|
return [x2, x3, x4] |
|
|
|
def forward_head(self, x_feat: Union[torch.Tensor, List[torch.Tensor]], pre_logits: bool = False): |
|
if isinstance(x_feat, list): |
|
assert self.aggregate is not None |
|
if self.global_pool == 'avg': |
|
x = torch.cat([xl[:, 1:].mean(dim=1, keepdim=True) for xl in x_feat], dim=1) |
|
else: |
|
x = torch.stack([xl[:, 0] for xl in x_feat], dim=1) |
|
x = self.aggregate(x).squeeze(dim=1) |
|
else: |
|
x = x_feat[:, 1:].mean(dim=1) if self.global_pool == 'avg' else x_feat[:, 0] |
|
x = self.head_drop(x) |
|
return x if pre_logits else self.head(x) |
|
|
|
def forward(self, x) -> torch.Tensor: |
|
if not torch.jit.is_scripting() and self.return_interm_layers: |
|
|
|
return self.forward_features(x) |
|
else: |
|
|
|
x_feat = self.forward_features(x) |
|
x = self.forward_head(x_feat) |
|
return x |
|
|
|
|
|
def insert_cls(x, cls_token): |
|
""" Insert CLS token. """ |
|
cls_tokens = cls_token.expand(x.shape[0], -1, -1) |
|
x = torch.cat((cls_tokens, x), dim=1) |
|
return x |
|
|
|
|
|
def remove_cls(x): |
|
""" Remove CLS token. """ |
|
return x[:, 1:, :] |
|
|
|
|
|
def checkpoint_filter_fn(state_dict, model): |
|
out_dict = {} |
|
state_dict = state_dict.get('model', state_dict) |
|
for k, v in state_dict.items(): |
|
|
|
if k.startswith('norm1') or \ |
|
(k.startswith('norm2') and getattr(model, 'norm2', None) is None) or \ |
|
(k.startswith('norm3') and getattr(model, 'norm3', None) is None) or \ |
|
(k.startswith('norm4') and getattr(model, 'norm4', None) is None) or \ |
|
(k.startswith('aggregate') and getattr(model, 'aggregate', None) is None) or \ |
|
(k.startswith('head') and getattr(model, 'head', None) is None): |
|
continue |
|
out_dict[k] = v |
|
return out_dict |
|
|
|
|
|
def _create_coat(variant, pretrained=False, default_cfg=None, **kwargs): |
|
if kwargs.get('features_only', None): |
|
raise RuntimeError('features_only not implemented for Vision Transformer models.') |
|
|
|
model = build_model_with_cfg( |
|
CoaT, |
|
variant, |
|
pretrained, |
|
pretrained_filter_fn=checkpoint_filter_fn, |
|
**kwargs, |
|
) |
|
return model |
|
|
|
|
|
def _cfg_coat(url='', **kwargs): |
|
return { |
|
'url': url, |
|
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None, |
|
'crop_pct': .9, 'interpolation': 'bicubic', 'fixed_input_size': True, |
|
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, |
|
'first_conv': 'patch_embed1.proj', 'classifier': 'head', |
|
**kwargs |
|
} |
|
|
|
|
|
default_cfgs = generate_default_cfgs({ |
|
'coat_tiny.in1k': _cfg_coat(hf_hub_id='timm/'), |
|
'coat_mini.in1k': _cfg_coat(hf_hub_id='timm/'), |
|
'coat_small.in1k': _cfg_coat(hf_hub_id='timm/'), |
|
'coat_lite_tiny.in1k': _cfg_coat(hf_hub_id='timm/'), |
|
'coat_lite_mini.in1k': _cfg_coat(hf_hub_id='timm/'), |
|
'coat_lite_small.in1k': _cfg_coat(hf_hub_id='timm/'), |
|
'coat_lite_medium.in1k': _cfg_coat(hf_hub_id='timm/'), |
|
'coat_lite_medium_384.in1k': _cfg_coat( |
|
hf_hub_id='timm/', |
|
input_size=(3, 384, 384), crop_pct=1.0, crop_mode='squash', |
|
), |
|
}) |
|
|
|
|
|
@register_model |
|
def coat_tiny(pretrained=False, **kwargs) -> CoaT: |
|
model_cfg = dict( |
|
patch_size=4, embed_dims=[152, 152, 152, 152], serial_depths=[2, 2, 2, 2], parallel_depth=6) |
|
model = _create_coat('coat_tiny', pretrained=pretrained, **dict(model_cfg, **kwargs)) |
|
return model |
|
|
|
|
|
@register_model |
|
def coat_mini(pretrained=False, **kwargs) -> CoaT: |
|
model_cfg = dict( |
|
patch_size=4, embed_dims=[152, 216, 216, 216], serial_depths=[2, 2, 2, 2], parallel_depth=6) |
|
model = _create_coat('coat_mini', pretrained=pretrained, **dict(model_cfg, **kwargs)) |
|
return model |
|
|
|
|
|
@register_model |
|
def coat_small(pretrained=False, **kwargs) -> CoaT: |
|
model_cfg = dict( |
|
patch_size=4, embed_dims=[152, 320, 320, 320], serial_depths=[2, 2, 2, 2], parallel_depth=6, **kwargs) |
|
model = _create_coat('coat_small', pretrained=pretrained, **dict(model_cfg, **kwargs)) |
|
return model |
|
|
|
|
|
@register_model |
|
def coat_lite_tiny(pretrained=False, **kwargs) -> CoaT: |
|
model_cfg = dict( |
|
patch_size=4, embed_dims=[64, 128, 256, 320], serial_depths=[2, 2, 2, 2], mlp_ratios=[8, 8, 4, 4]) |
|
model = _create_coat('coat_lite_tiny', pretrained=pretrained, **dict(model_cfg, **kwargs)) |
|
return model |
|
|
|
|
|
@register_model |
|
def coat_lite_mini(pretrained=False, **kwargs) -> CoaT: |
|
model_cfg = dict( |
|
patch_size=4, embed_dims=[64, 128, 320, 512], serial_depths=[2, 2, 2, 2], mlp_ratios=[8, 8, 4, 4]) |
|
model = _create_coat('coat_lite_mini', pretrained=pretrained, **dict(model_cfg, **kwargs)) |
|
return model |
|
|
|
|
|
@register_model |
|
def coat_lite_small(pretrained=False, **kwargs) -> CoaT: |
|
model_cfg = dict( |
|
patch_size=4, embed_dims=[64, 128, 320, 512], serial_depths=[3, 4, 6, 3], mlp_ratios=[8, 8, 4, 4]) |
|
model = _create_coat('coat_lite_small', pretrained=pretrained, **dict(model_cfg, **kwargs)) |
|
return model |
|
|
|
|
|
@register_model |
|
def coat_lite_medium(pretrained=False, **kwargs) -> CoaT: |
|
model_cfg = dict( |
|
patch_size=4, embed_dims=[128, 256, 320, 512], serial_depths=[3, 6, 10, 8]) |
|
model = _create_coat('coat_lite_medium', pretrained=pretrained, **dict(model_cfg, **kwargs)) |
|
return model |
|
|
|
|
|
@register_model |
|
def coat_lite_medium_384(pretrained=False, **kwargs) -> CoaT: |
|
model_cfg = dict( |
|
img_size=384, patch_size=4, embed_dims=[128, 256, 320, 512], serial_depths=[3, 6, 10, 8]) |
|
model = _create_coat('coat_lite_medium_384', pretrained=pretrained, **dict(model_cfg, **kwargs)) |
|
return model |