|
""" DeiT - Data-efficient Image Transformers |
|
|
|
DeiT model defs and weights from https://github.com/facebookresearch/deit, original copyright below |
|
|
|
paper: `DeiT: Data-efficient Image Transformers` - https://arxiv.org/abs/2012.12877 |
|
|
|
paper: `DeiT III: Revenge of the ViT` - https://arxiv.org/abs/2204.07118 |
|
|
|
Modifications copyright 2021, Ross Wightman |
|
""" |
|
|
|
|
|
from functools import partial |
|
from typing import Optional |
|
|
|
import torch |
|
from torch import nn as nn |
|
|
|
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD |
|
from timm.layers import resample_abs_pos_embed |
|
from timm.models.vision_transformer import VisionTransformer, trunc_normal_, checkpoint_filter_fn |
|
from ._builder import build_model_with_cfg |
|
from ._registry import generate_default_cfgs, register_model, register_model_deprecations |
|
|
|
__all__ = ['VisionTransformerDistilled'] |
|
|
|
|
|
class VisionTransformerDistilled(VisionTransformer): |
|
""" Vision Transformer w/ Distillation Token and Head |
|
|
|
Distillation token & head support for `DeiT: Data-efficient Image Transformers` |
|
- https://arxiv.org/abs/2012.12877 |
|
""" |
|
|
|
def __init__(self, *args, **kwargs): |
|
weight_init = kwargs.pop('weight_init', '') |
|
super().__init__(*args, **kwargs, weight_init='skip') |
|
assert self.global_pool in ('token',) |
|
|
|
self.num_prefix_tokens = 2 |
|
self.dist_token = nn.Parameter(torch.zeros(1, 1, self.embed_dim)) |
|
self.pos_embed = nn.Parameter( |
|
torch.zeros(1, self.patch_embed.num_patches + self.num_prefix_tokens, self.embed_dim)) |
|
self.head_dist = nn.Linear(self.embed_dim, self.num_classes) if self.num_classes > 0 else nn.Identity() |
|
self.distilled_training = False |
|
|
|
self.init_weights(weight_init) |
|
|
|
def init_weights(self, mode=''): |
|
trunc_normal_(self.dist_token, std=.02) |
|
super().init_weights(mode=mode) |
|
|
|
@torch.jit.ignore |
|
def group_matcher(self, coarse=False): |
|
return dict( |
|
stem=r'^cls_token|pos_embed|patch_embed|dist_token', |
|
blocks=[ |
|
(r'^blocks\.(\d+)', None), |
|
(r'^norm', (99999,))] |
|
) |
|
|
|
@torch.jit.ignore |
|
def get_classifier(self) -> nn.Module: |
|
return self.head, self.head_dist |
|
|
|
def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None): |
|
self.num_classes = num_classes |
|
self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity() |
|
self.head_dist = nn.Linear(self.embed_dim, self.num_classes) if num_classes > 0 else nn.Identity() |
|
|
|
@torch.jit.ignore |
|
def set_distilled_training(self, enable=True): |
|
self.distilled_training = enable |
|
|
|
def _pos_embed(self, x): |
|
if self.dynamic_img_size: |
|
B, H, W, C = x.shape |
|
prev_grid_size = self.patch_embed.grid_size |
|
pos_embed = resample_abs_pos_embed( |
|
self.pos_embed, |
|
new_size=(H, W), |
|
old_size=prev_grid_size, |
|
num_prefix_tokens=0 if self.no_embed_class else self.num_prefix_tokens, |
|
) |
|
x = x.view(B, -1, C) |
|
else: |
|
pos_embed = self.pos_embed |
|
if self.no_embed_class: |
|
|
|
|
|
x = x + pos_embed |
|
x = torch.cat(( |
|
self.cls_token.expand(x.shape[0], -1, -1), |
|
self.dist_token.expand(x.shape[0], -1, -1), |
|
x), |
|
dim=1) |
|
else: |
|
|
|
|
|
x = torch.cat(( |
|
self.cls_token.expand(x.shape[0], -1, -1), |
|
self.dist_token.expand(x.shape[0], -1, -1), |
|
x), |
|
dim=1) |
|
x = x + pos_embed |
|
return self.pos_drop(x) |
|
|
|
def forward_head(self, x, pre_logits: bool = False) -> torch.Tensor: |
|
x, x_dist = x[:, 0], x[:, 1] |
|
if pre_logits: |
|
return (x + x_dist) / 2 |
|
x = self.head(x) |
|
x_dist = self.head_dist(x_dist) |
|
if self.distilled_training and self.training and not torch.jit.is_scripting(): |
|
|
|
return x, x_dist |
|
else: |
|
|
|
return (x + x_dist) / 2 |
|
|
|
|
|
def _create_deit(variant, pretrained=False, distilled=False, **kwargs): |
|
out_indices = kwargs.pop('out_indices', 3) |
|
model_cls = VisionTransformerDistilled if distilled else VisionTransformer |
|
model = build_model_with_cfg( |
|
model_cls, |
|
variant, |
|
pretrained, |
|
pretrained_filter_fn=partial(checkpoint_filter_fn, adapt_layer_scale=True), |
|
feature_cfg=dict(out_indices=out_indices, feature_cls='getter'), |
|
**kwargs, |
|
) |
|
return model |
|
|
|
|
|
def _cfg(url='', **kwargs): |
|
return { |
|
'url': url, |
|
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None, |
|
'crop_pct': .9, 'interpolation': 'bicubic', 'fixed_input_size': True, |
|
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, |
|
'first_conv': 'patch_embed.proj', 'classifier': 'head', |
|
**kwargs |
|
} |
|
|
|
|
|
default_cfgs = generate_default_cfgs({ |
|
|
|
'deit_tiny_patch16_224.fb_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
url='https://dl.fbaipublicfiles.com/deit/deit_tiny_patch16_224-a1311bcf.pth'), |
|
'deit_small_patch16_224.fb_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
url='https://dl.fbaipublicfiles.com/deit/deit_small_patch16_224-cd65a155.pth'), |
|
'deit_base_patch16_224.fb_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
url='https://dl.fbaipublicfiles.com/deit/deit_base_patch16_224-b5f2ef4d.pth'), |
|
'deit_base_patch16_384.fb_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
url='https://dl.fbaipublicfiles.com/deit/deit_base_patch16_384-8de9b5d1.pth', |
|
input_size=(3, 384, 384), crop_pct=1.0), |
|
|
|
'deit_tiny_distilled_patch16_224.fb_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
url='https://dl.fbaipublicfiles.com/deit/deit_tiny_distilled_patch16_224-b40b3cf7.pth', |
|
classifier=('head', 'head_dist')), |
|
'deit_small_distilled_patch16_224.fb_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
url='https://dl.fbaipublicfiles.com/deit/deit_small_distilled_patch16_224-649709d9.pth', |
|
classifier=('head', 'head_dist')), |
|
'deit_base_distilled_patch16_224.fb_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
url='https://dl.fbaipublicfiles.com/deit/deit_base_distilled_patch16_224-df68dfff.pth', |
|
classifier=('head', 'head_dist')), |
|
'deit_base_distilled_patch16_384.fb_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
url='https://dl.fbaipublicfiles.com/deit/deit_base_distilled_patch16_384-d0272ac0.pth', |
|
input_size=(3, 384, 384), crop_pct=1.0, |
|
classifier=('head', 'head_dist')), |
|
|
|
'deit3_small_patch16_224.fb_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
url='https://dl.fbaipublicfiles.com/deit/deit_3_small_224_1k.pth'), |
|
'deit3_small_patch16_384.fb_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
url='https://dl.fbaipublicfiles.com/deit/deit_3_small_384_1k.pth', |
|
input_size=(3, 384, 384), crop_pct=1.0), |
|
'deit3_medium_patch16_224.fb_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
url='https://dl.fbaipublicfiles.com/deit/deit_3_medium_224_1k.pth'), |
|
'deit3_base_patch16_224.fb_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
url='https://dl.fbaipublicfiles.com/deit/deit_3_base_224_1k.pth'), |
|
'deit3_base_patch16_384.fb_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
url='https://dl.fbaipublicfiles.com/deit/deit_3_base_384_1k.pth', |
|
input_size=(3, 384, 384), crop_pct=1.0), |
|
'deit3_large_patch16_224.fb_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
url='https://dl.fbaipublicfiles.com/deit/deit_3_large_224_1k.pth'), |
|
'deit3_large_patch16_384.fb_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
url='https://dl.fbaipublicfiles.com/deit/deit_3_large_384_1k.pth', |
|
input_size=(3, 384, 384), crop_pct=1.0), |
|
'deit3_huge_patch14_224.fb_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
url='https://dl.fbaipublicfiles.com/deit/deit_3_huge_224_1k.pth'), |
|
|
|
'deit3_small_patch16_224.fb_in22k_ft_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
url='https://dl.fbaipublicfiles.com/deit/deit_3_small_224_21k.pth', |
|
crop_pct=1.0), |
|
'deit3_small_patch16_384.fb_in22k_ft_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
url='https://dl.fbaipublicfiles.com/deit/deit_3_small_384_21k.pth', |
|
input_size=(3, 384, 384), crop_pct=1.0), |
|
'deit3_medium_patch16_224.fb_in22k_ft_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
url='https://dl.fbaipublicfiles.com/deit/deit_3_medium_224_21k.pth', |
|
crop_pct=1.0), |
|
'deit3_base_patch16_224.fb_in22k_ft_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
url='https://dl.fbaipublicfiles.com/deit/deit_3_base_224_21k.pth', |
|
crop_pct=1.0), |
|
'deit3_base_patch16_384.fb_in22k_ft_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
url='https://dl.fbaipublicfiles.com/deit/deit_3_base_384_21k.pth', |
|
input_size=(3, 384, 384), crop_pct=1.0), |
|
'deit3_large_patch16_224.fb_in22k_ft_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
url='https://dl.fbaipublicfiles.com/deit/deit_3_large_224_21k.pth', |
|
crop_pct=1.0), |
|
'deit3_large_patch16_384.fb_in22k_ft_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
url='https://dl.fbaipublicfiles.com/deit/deit_3_large_384_21k.pth', |
|
input_size=(3, 384, 384), crop_pct=1.0), |
|
'deit3_huge_patch14_224.fb_in22k_ft_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
url='https://dl.fbaipublicfiles.com/deit/deit_3_huge_224_21k_v1.pth', |
|
crop_pct=1.0), |
|
}) |
|
|
|
|
|
@register_model |
|
def deit_tiny_patch16_224(pretrained=False, **kwargs) -> VisionTransformer: |
|
""" DeiT-tiny model @ 224x224 from paper (https://arxiv.org/abs/2012.12877). |
|
ImageNet-1k weights from https://github.com/facebookresearch/deit. |
|
""" |
|
model_args = dict(patch_size=16, embed_dim=192, depth=12, num_heads=3) |
|
model = _create_deit('deit_tiny_patch16_224', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
return model |
|
|
|
|
|
@register_model |
|
def deit_small_patch16_224(pretrained=False, **kwargs) -> VisionTransformer: |
|
""" DeiT-small model @ 224x224 from paper (https://arxiv.org/abs/2012.12877). |
|
ImageNet-1k weights from https://github.com/facebookresearch/deit. |
|
""" |
|
model_args = dict(patch_size=16, embed_dim=384, depth=12, num_heads=6) |
|
model = _create_deit('deit_small_patch16_224', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
return model |
|
|
|
|
|
@register_model |
|
def deit_base_patch16_224(pretrained=False, **kwargs) -> VisionTransformer: |
|
""" DeiT base model @ 224x224 from paper (https://arxiv.org/abs/2012.12877). |
|
ImageNet-1k weights from https://github.com/facebookresearch/deit. |
|
""" |
|
model_args = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12) |
|
model = _create_deit('deit_base_patch16_224', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
return model |
|
|
|
|
|
@register_model |
|
def deit_base_patch16_384(pretrained=False, **kwargs) -> VisionTransformer: |
|
""" DeiT base model @ 384x384 from paper (https://arxiv.org/abs/2012.12877). |
|
ImageNet-1k weights from https://github.com/facebookresearch/deit. |
|
""" |
|
model_args = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12) |
|
model = _create_deit('deit_base_patch16_384', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
return model |
|
|
|
|
|
@register_model |
|
def deit_tiny_distilled_patch16_224(pretrained=False, **kwargs) -> VisionTransformerDistilled: |
|
""" DeiT-tiny distilled model @ 224x224 from paper (https://arxiv.org/abs/2012.12877). |
|
ImageNet-1k weights from https://github.com/facebookresearch/deit. |
|
""" |
|
model_args = dict(patch_size=16, embed_dim=192, depth=12, num_heads=3) |
|
model = _create_deit( |
|
'deit_tiny_distilled_patch16_224', pretrained=pretrained, distilled=True, **dict(model_args, **kwargs)) |
|
return model |
|
|
|
|
|
@register_model |
|
def deit_small_distilled_patch16_224(pretrained=False, **kwargs) -> VisionTransformerDistilled: |
|
""" DeiT-small distilled model @ 224x224 from paper (https://arxiv.org/abs/2012.12877). |
|
ImageNet-1k weights from https://github.com/facebookresearch/deit. |
|
""" |
|
model_args = dict(patch_size=16, embed_dim=384, depth=12, num_heads=6) |
|
model = _create_deit( |
|
'deit_small_distilled_patch16_224', pretrained=pretrained, distilled=True, **dict(model_args, **kwargs)) |
|
return model |
|
|
|
|
|
@register_model |
|
def deit_base_distilled_patch16_224(pretrained=False, **kwargs) -> VisionTransformerDistilled: |
|
""" DeiT-base distilled model @ 224x224 from paper (https://arxiv.org/abs/2012.12877). |
|
ImageNet-1k weights from https://github.com/facebookresearch/deit. |
|
""" |
|
model_args = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12) |
|
model = _create_deit( |
|
'deit_base_distilled_patch16_224', pretrained=pretrained, distilled=True, **dict(model_args, **kwargs)) |
|
return model |
|
|
|
|
|
@register_model |
|
def deit_base_distilled_patch16_384(pretrained=False, **kwargs) -> VisionTransformerDistilled: |
|
""" DeiT-base distilled model @ 384x384 from paper (https://arxiv.org/abs/2012.12877). |
|
ImageNet-1k weights from https://github.com/facebookresearch/deit. |
|
""" |
|
model_args = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12) |
|
model = _create_deit( |
|
'deit_base_distilled_patch16_384', pretrained=pretrained, distilled=True, **dict(model_args, **kwargs)) |
|
return model |
|
|
|
|
|
@register_model |
|
def deit3_small_patch16_224(pretrained=False, **kwargs) -> VisionTransformer: |
|
""" DeiT-3 small model @ 224x224 from paper (https://arxiv.org/abs/2204.07118). |
|
ImageNet-1k weights from https://github.com/facebookresearch/deit. |
|
""" |
|
model_args = dict(patch_size=16, embed_dim=384, depth=12, num_heads=6, no_embed_class=True, init_values=1e-6) |
|
model = _create_deit('deit3_small_patch16_224', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
return model |
|
|
|
|
|
@register_model |
|
def deit3_small_patch16_384(pretrained=False, **kwargs) -> VisionTransformer: |
|
""" DeiT-3 small model @ 384x384 from paper (https://arxiv.org/abs/2204.07118). |
|
ImageNet-1k weights from https://github.com/facebookresearch/deit. |
|
""" |
|
model_args = dict(patch_size=16, embed_dim=384, depth=12, num_heads=6, no_embed_class=True, init_values=1e-6) |
|
model = _create_deit('deit3_small_patch16_384', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
return model |
|
|
|
|
|
@register_model |
|
def deit3_medium_patch16_224(pretrained=False, **kwargs) -> VisionTransformer: |
|
""" DeiT-3 medium model @ 224x224 (https://arxiv.org/abs/2012.12877). |
|
ImageNet-1k weights from https://github.com/facebookresearch/deit. |
|
""" |
|
model_args = dict(patch_size=16, embed_dim=512, depth=12, num_heads=8, no_embed_class=True, init_values=1e-6) |
|
model = _create_deit('deit3_medium_patch16_224', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
return model |
|
|
|
|
|
@register_model |
|
def deit3_base_patch16_224(pretrained=False, **kwargs) -> VisionTransformer: |
|
""" DeiT-3 base model @ 224x224 from paper (https://arxiv.org/abs/2204.07118). |
|
ImageNet-1k weights from https://github.com/facebookresearch/deit. |
|
""" |
|
model_args = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, no_embed_class=True, init_values=1e-6) |
|
model = _create_deit('deit3_base_patch16_224', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
return model |
|
|
|
|
|
@register_model |
|
def deit3_base_patch16_384(pretrained=False, **kwargs) -> VisionTransformer: |
|
""" DeiT-3 base model @ 384x384 from paper (https://arxiv.org/abs/2204.07118). |
|
ImageNet-1k weights from https://github.com/facebookresearch/deit. |
|
""" |
|
model_args = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, no_embed_class=True, init_values=1e-6) |
|
model = _create_deit('deit3_base_patch16_384', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
return model |
|
|
|
|
|
@register_model |
|
def deit3_large_patch16_224(pretrained=False, **kwargs) -> VisionTransformer: |
|
""" DeiT-3 large model @ 224x224 from paper (https://arxiv.org/abs/2204.07118). |
|
ImageNet-1k weights from https://github.com/facebookresearch/deit. |
|
""" |
|
model_args = dict(patch_size=16, embed_dim=1024, depth=24, num_heads=16, no_embed_class=True, init_values=1e-6) |
|
model = _create_deit('deit3_large_patch16_224', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
return model |
|
|
|
|
|
@register_model |
|
def deit3_large_patch16_384(pretrained=False, **kwargs) -> VisionTransformer: |
|
""" DeiT-3 large model @ 384x384 from paper (https://arxiv.org/abs/2204.07118). |
|
ImageNet-1k weights from https://github.com/facebookresearch/deit. |
|
""" |
|
model_args = dict(patch_size=16, embed_dim=1024, depth=24, num_heads=16, no_embed_class=True, init_values=1e-6) |
|
model = _create_deit('deit3_large_patch16_384', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
return model |
|
|
|
|
|
@register_model |
|
def deit3_huge_patch14_224(pretrained=False, **kwargs) -> VisionTransformer: |
|
""" DeiT-3 base model @ 384x384 from paper (https://arxiv.org/abs/2204.07118). |
|
ImageNet-1k weights from https://github.com/facebookresearch/deit. |
|
""" |
|
model_args = dict(patch_size=14, embed_dim=1280, depth=32, num_heads=16, no_embed_class=True, init_values=1e-6) |
|
model = _create_deit('deit3_huge_patch14_224', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
return model |
|
|
|
|
|
register_model_deprecations(__name__, { |
|
'deit3_small_patch16_224_in21ft1k': 'deit3_small_patch16_224.fb_in22k_ft_in1k', |
|
'deit3_small_patch16_384_in21ft1k': 'deit3_small_patch16_384.fb_in22k_ft_in1k', |
|
'deit3_medium_patch16_224_in21ft1k': 'deit3_medium_patch16_224.fb_in22k_ft_in1k', |
|
'deit3_base_patch16_224_in21ft1k': 'deit3_base_patch16_224.fb_in22k_ft_in1k', |
|
'deit3_base_patch16_384_in21ft1k': 'deit3_base_patch16_384.fb_in22k_ft_in1k', |
|
'deit3_large_patch16_224_in21ft1k': 'deit3_large_patch16_224.fb_in22k_ft_in1k', |
|
'deit3_large_patch16_384_in21ft1k': 'deit3_large_patch16_384.fb_in22k_ft_in1k', |
|
'deit3_huge_patch14_224_in21ft1k': 'deit3_huge_patch14_224.fb_in22k_ft_in1k' |
|
}) |
|
|