|
from typing import List, Optional, Union |
|
|
|
import torch |
|
from torch import nn as nn |
|
from torch.nn import functional as F |
|
|
|
from .config import use_fused_attn |
|
from .create_conv2d import create_conv2d |
|
from .helpers import to_2tuple |
|
from .pool2d_same import create_pool2d |
|
|
|
|
|
class MultiQueryAttentionV2(nn.Module): |
|
"""Multi Query Attention. |
|
|
|
Fast Transformer Decoding: One Write-Head is All You Need |
|
https://arxiv.org/pdf/1911.02150.pdf |
|
|
|
This is an acceletor optimized version - removing multiple unneccessary |
|
tensor transpose by re-arranging indices according to the following rules: 1) |
|
contracted indices are at the end, 2) other indices have the same order in the |
|
input and output tensores. |
|
|
|
Compared to V1, this gives 3x speed up. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
dim: int, |
|
dim_out: Optional[int] = None, |
|
num_heads: int = 8, |
|
key_dim: int = 64, |
|
value_dim: int = 64, |
|
attn_drop: float = 0., |
|
proj_drop: float = 0., |
|
): |
|
"""Initializer.""" |
|
super().__init__() |
|
dim_out = dim_out or dim |
|
self.num_heads = num_heads |
|
self.key_dim = key_dim |
|
self.value_dim = value_dim |
|
self.scale = key_dim ** -0.5 |
|
|
|
self.query_proj = nn.Parameter(torch.randn([self.num_heads, self.key_dim, dim])) |
|
self.key_proj = nn.Parameter(torch.randn([dim, self.key_dim])) |
|
self.value_proj = nn.Parameter(torch.randn([dim, self.value_dim])) |
|
self.attn_drop = nn.Dropout(attn_drop) |
|
self.out_proj = nn.Parameter(torch.randn([dim_out, self.num_heads, self.value_dim])) |
|
self.proj_drop = nn.Dropout(proj_drop) |
|
|
|
def _reshape_input(self, t): |
|
"""Reshapes a tensor to three dimensions, keeping the first and last.""" |
|
s = t.shape |
|
|
|
|
|
|
|
return t.reshape(s[0], s[1], -1).transpose(1, 2) |
|
|
|
def forward(self, x, m: Optional[torch.Tensor] = None): |
|
"""Run layer computation.""" |
|
s = x.shape |
|
m = m or x |
|
|
|
reshaped_x = self._reshape_input(x) |
|
reshaped_m = self._reshape_input(m) |
|
|
|
q = torch.einsum('bnd,hkd->bnhk', reshaped_x, self.query_proj) |
|
k = torch.einsum('bmd,dk->bmk', reshaped_m, self.key_proj) |
|
|
|
attn = torch.einsum('bnhk,bmk->bnhm', q, k) |
|
attn = attn.softmax(dim=-1) |
|
attn = self.attn_drop(attn) |
|
|
|
v = torch.einsum('bmd,dv->bmv', reshaped_m, self.value_proj) |
|
o = torch.einsum('bnhm,bmv->bnhv', attn, v) |
|
result = torch.einsum('bnhv,dhv->bnd', o, self.out_proj) |
|
result = self.proj_drop(result) |
|
return result.reshape(s) |
|
|
|
|
|
class MultiQueryAttention2d(nn.Module): |
|
"""Multi Query Attention with spatial downsampling. |
|
|
|
3 parameters are introduced for the spatial downsampling: |
|
1. kv_stride: downsampling factor on Key and Values only. |
|
2. query_strides: horizontal & vertical strides on Query only. |
|
|
|
This is an optimized version. |
|
1. Projections in Attention is explict written out as 1x1 Conv2D. |
|
2. Additional reshapes are introduced to bring a up to 3x speed up. |
|
""" |
|
fused_attn: torch.jit.Final[bool] |
|
|
|
def __init__( |
|
self, |
|
dim: int, |
|
dim_out: Optional[int] = None, |
|
num_heads: int = 8, |
|
key_dim: Optional[int] = None, |
|
value_dim: Optional[int] = None, |
|
query_strides: int = 1, |
|
kv_stride: int = 1, |
|
dw_kernel_size: int = 3, |
|
dilation: int = 1, |
|
padding: Union[str, int, List[int]] = '', |
|
attn_drop: float = 0., |
|
proj_drop: float = 0., |
|
norm_layer: nn.Module = nn.BatchNorm2d, |
|
use_bias: bool = False, |
|
): |
|
"""Initializer. |
|
|
|
Args: |
|
num_heads: Number of attention heads. |
|
key_dim: Size of the attention key dimension. |
|
value_dim: Size of the attention value dimension. |
|
query_strides: Vertical stride size for query only. |
|
kv_stride: Key and value stride size. |
|
dw_kernel_size: Spatial dimension of the depthwise kernel. |
|
""" |
|
super().__init__() |
|
dim_out = dim_out or dim |
|
self.num_heads = num_heads |
|
self.key_dim = key_dim or dim // num_heads |
|
self.value_dim = value_dim or dim // num_heads |
|
self.query_strides = to_2tuple(query_strides) |
|
self.kv_stride = kv_stride |
|
self.has_query_strides = any([s > 1 for s in self.query_strides]) |
|
self.scale = self.key_dim ** -0.5 |
|
self.fused_attn = use_fused_attn() |
|
self.drop = attn_drop |
|
|
|
self.query = nn.Sequential() |
|
if self.has_query_strides: |
|
|
|
if padding == 'same': |
|
self.query.add_module('down_pool', create_pool2d( |
|
'avg', |
|
kernel_size=self.query_strides, |
|
padding='same', |
|
)) |
|
else: |
|
|
|
self.query.add_module('down_pool', nn.AvgPool2d(kernel_size=query_strides)) |
|
self.query.add_module('norm', norm_layer(dim)) |
|
self.query.add_module('proj', create_conv2d( |
|
dim, |
|
self.num_heads * self.key_dim, |
|
kernel_size=1, |
|
bias=use_bias, |
|
)) |
|
|
|
self.key = nn.Sequential() |
|
if kv_stride > 1: |
|
self.key.add_module('down_conv', create_conv2d( |
|
dim, |
|
dim, |
|
kernel_size=dw_kernel_size, |
|
stride=kv_stride, |
|
dilation=dilation, |
|
padding=padding, |
|
depthwise=True, |
|
)) |
|
self.key.add_module('norm', norm_layer(dim)) |
|
self.key.add_module('proj', create_conv2d( |
|
dim, |
|
self.key_dim, |
|
kernel_size=1, |
|
padding=padding, |
|
bias=use_bias, |
|
)) |
|
|
|
self.value = nn.Sequential() |
|
if kv_stride > 1: |
|
self.value.add_module('down_conv', create_conv2d( |
|
dim, |
|
dim, |
|
kernel_size=dw_kernel_size, |
|
stride=kv_stride, |
|
dilation=dilation, |
|
padding=padding, |
|
depthwise=True, |
|
)) |
|
self.value.add_module('norm', norm_layer(dim)) |
|
self.value.add_module('proj', create_conv2d( |
|
dim, |
|
self.value_dim, |
|
kernel_size=1, |
|
bias=use_bias, |
|
)) |
|
|
|
self.attn_drop = nn.Dropout(attn_drop) |
|
|
|
self.output = nn.Sequential() |
|
if self.has_query_strides: |
|
self.output.add_module('upsample', nn.Upsample(scale_factor=self.query_strides, mode='bilinear', align_corners=False)) |
|
self.output.add_module('proj', create_conv2d( |
|
self.value_dim * self.num_heads, |
|
dim_out, |
|
kernel_size=1, |
|
bias=use_bias, |
|
)) |
|
self.output.add_module('drop', nn.Dropout(proj_drop)) |
|
|
|
self.einsum = False |
|
|
|
def init_weights(self): |
|
|
|
nn.init.xavier_uniform_(self.query.proj.weight) |
|
nn.init.xavier_uniform_(self.key.proj.weight) |
|
nn.init.xavier_uniform_(self.value.proj.weight) |
|
if self.kv_stride > 1: |
|
nn.init.xavier_uniform_(self.key.down_conv.weight) |
|
nn.init.xavier_uniform_(self.value.down_conv.weight) |
|
nn.init.xavier_uniform_(self.output.proj.weight) |
|
|
|
def _reshape_input(self, t: torch.Tensor): |
|
"""Reshapes a tensor to three dimensions, keeping the batch and channels.""" |
|
s = t.shape |
|
t = t.reshape(s[0], s[1], -1).transpose(1, 2) |
|
if self.einsum: |
|
return t |
|
else: |
|
return t.unsqueeze(1).contiguous() |
|
|
|
def _reshape_projected_query(self, t: torch.Tensor, num_heads: int, key_dim: int): |
|
"""Reshapes projected query: [b, n, n, h x k] -> [b, n x n, h, k].""" |
|
s = t.shape |
|
t = t.reshape(s[0], num_heads, key_dim, -1) |
|
if self.einsum: |
|
return t.permute(0, 3, 1, 2).contiguous() |
|
else: |
|
return t.transpose(-1, -2).contiguous() |
|
|
|
def _reshape_output(self, t: torch.Tensor, num_heads: int, h_px: int, w_px: int): |
|
"""Reshape output:[b, n x n x h, k] -> [b, n, n, hk].""" |
|
s = t.shape |
|
feat_dim = s[-1] * num_heads |
|
if not self.einsum: |
|
t = t.transpose(1, 2) |
|
return t.reshape(s[0], h_px, w_px, feat_dim).permute(0, 3, 1, 2).contiguous() |
|
|
|
def forward(self, x, attn_mask: Optional[torch.Tensor] = None): |
|
"""Run layer computation.""" |
|
B, C, H, W = s = x.shape |
|
|
|
q = self.query(x) |
|
|
|
q = self._reshape_projected_query(q, self.num_heads, self.key_dim) |
|
|
|
k = self.key(x) |
|
|
|
k = self._reshape_input(k) |
|
|
|
v = self.value(x) |
|
|
|
v = self._reshape_input(v) |
|
|
|
|
|
|
|
|
|
if self.einsum: |
|
attn = torch.einsum('blhk,bpk->blhp', q, k) * self.scale |
|
if attn_mask is not None: |
|
|
|
attn = attn + attn_mask |
|
attn = attn.softmax(dim=-1) |
|
attn = self.attn_drop(attn) |
|
o = torch.einsum('blhp,bpk->blhk', attn, v) |
|
else: |
|
if self.fused_attn: |
|
o = F.scaled_dot_product_attention( |
|
q, k, v, |
|
attn_mask=attn_mask, |
|
dropout_p=self.attn_drop.p if self.training else 0. |
|
) |
|
else: |
|
q = q * self.scale |
|
attn = q @ k.transpose(-1, -2) |
|
if attn_mask is not None: |
|
|
|
attn = attn + attn_mask |
|
attn = attn.softmax(dim=-1) |
|
attn = self.attn_drop(attn) |
|
o = attn @ v |
|
|
|
|
|
o = self._reshape_output(o, self.num_heads, H // self.query_strides[0], W // self.query_strides[1]) |
|
x = self.output(o) |
|
return x |
|
|
|
|
|
class Attention2d(nn.Module): |
|
fused_attn: torch.jit.Final[bool] |
|
|
|
""" multi-head attention for 2D NCHW tensors""" |
|
def __init__( |
|
self, |
|
dim: int, |
|
dim_out: Optional[int] = None, |
|
num_heads: int = 32, |
|
bias: bool = True, |
|
expand_first: bool = False, |
|
head_first: bool = False, |
|
attn_drop: float = 0., |
|
proj_drop: float = 0. |
|
): |
|
super().__init__() |
|
dim_out = dim_out or dim |
|
dim_attn = dim_out if expand_first else dim |
|
self.num_heads = num_heads |
|
self.dim_head = dim_attn // num_heads |
|
self.head_first = head_first |
|
self.scale = num_heads ** -0.5 |
|
self.fused_attn = use_fused_attn() |
|
|
|
self.qkv = nn.Conv2d(dim, dim_attn * 3, 1, bias=bias) |
|
self.attn_drop = nn.Dropout(attn_drop) |
|
self.proj = nn.Conv2d(dim_attn, dim_out, 1, bias=bias) |
|
self.proj_drop = nn.Dropout(proj_drop) |
|
|
|
def forward(self, x, attn_mask: Optional[torch.Tensor] = None): |
|
B, C, H, W = x.shape |
|
|
|
if self.head_first: |
|
q, k, v = self.qkv(x).view(B, self.num_heads, self.dim_head * 3, -1).chunk(3, dim=2) |
|
else: |
|
q, k, v = self.qkv(x).reshape(B, 3, self.num_heads, self.dim_head, -1).unbind(1) |
|
|
|
if self.fused_attn: |
|
x = torch.nn.functional.scaled_dot_product_attention( |
|
q.transpose(-1, -2).contiguous(), |
|
k.transpose(-1, -2).contiguous(), |
|
v.transpose(-1, -2).contiguous(), |
|
attn_mask=attn_mask, |
|
dropout_p=self.attn_drop.p if self.training else 0., |
|
).transpose(-1, -2).reshape(B, -1, H, W) |
|
else: |
|
q = q * self.scale |
|
attn = q.transpose(-2, -1) @ k |
|
if attn_mask is not None: |
|
|
|
attn = attn + attn_mask |
|
attn = attn.softmax(dim=-1) |
|
attn = self.attn_drop(attn) |
|
x = (v @ attn.transpose(-2, -1)).view(B, -1, H, W) |
|
|
|
x = self.proj(x) |
|
x = self.proj_drop(x) |
|
return x |
|
|