Search is not available for this dataset
id
int64
1
8.65M
_priority
float64
-149.4
3.07k
2,091,069
29
209,107
4.3
2,091,070
7
2,091,071
19
2,091,072
2
2,091,073
11
2,091,074
33
2,091,075
4
2,091,076
5
2,091,077
2
2,091,078
7
2,091,079
12
209,108
2.58
2,091,080
7
2,091,081
2
2,091,082
28
2,091,083
16
2,091,084
6
2,091,085
61
2,091,086
20
2,091,087
4
2,091,088
6
2,091,089
6
209,109
5.16
2,091,090
9
2,091,091
33
2,091,092
10
2,091,093
21
2,091,094
12
2,091,095
50
2,091,096
14
2,091,097
10
2,091,098
7
2,091,099
8
20,911
1.64
209,110
10.32
2,091,100
9
2,091,101
13
2,091,102
8
2,091,103
10
2,091,104
7
2,091,105
15
2,091,106
29
2,091,107
5
2,091,108
6
2,091,109
12
209,111
2.58
2,091,110
14
2,091,111
22
2,091,112
28
2,091,113
11
2,091,114
18
2,091,115
14
2,091,116
11
2,091,117
34
2,091,118
13
2,091,119
77
209,112
5.16
2,091,120
57
2,091,121
28
2,091,122
26
2,091,123
4
2,091,124
23
2,091,125
16
2,091,126
18
2,091,127
11
2,091,128
16
2,091,129
22
209,113
6.02
2,091,130
6
2,091,131
8
2,091,132
18
2,091,133
6
2,091,134
19
2,091,135
41
2,091,136
9
2,091,137
28
2,091,138
9
2,091,139
14
209,114
1.72
2,091,140
17
2,091,141
63
2,091,142
26
2,091,143
69
2,091,144
26
2,091,145
4
2,091,146
9
2,091,147
11
2,091,148
219
2,091,149
14
209,115
3.44
2,091,150
30
2,091,151
12
2,091,152
5
2,091,153
20
2,091,154
8
2,091,155
26
2,091,156
10
2,091,157
10
2,091,158
17

dataproc5/tmp-danbooru2025-row-priorities

The repo contains priority scores by id for tag blancing task, as part of the dataproc5 pipeline.

import unibox as ub
from dataproc5.pipelines.danbooru.nodes import prepare_balancing_tags, select_balanced_images, prepare_row_priorities

dbr_df = ub.loads("hf://trojblue/danbooru2025-metadata").to_pandas()
tag_counts_all_df = ub.loads("hf://dataproc5/metrics-danbooru2025-alltime-tag-counts").to_pandas()

tag_df = prepare_balancing_tags(dbr_df, tag_counts_all_df, key_col="id")
dbr_df = dbr_df.merge(tag_df, on="id", how="left")

priority_df = prepare_row_priorities(dbr_df, column_name="_priority", key_col="id")
dbr_df = dbr_df.merge(priority_df, on="id", how="left")

# Then you can sort by the new priority
dbr_df.sort_values("_priority", ascending=False, inplace=True)
Downloads last month
31