annotations_creators:
- found
language_creators:
- found
language:
- de
- en
- es
- fr
- ja
- zh
license:
- other
multilinguality:
- monolingual
- multilingual
size_categories:
- 100K<n<1M
- 1M<n<10M
source_datasets:
- original
task_categories:
- summarization
- text-generation
- fill-mask
- text-classification
task_ids:
- text-scoring
- language-modeling
- masked-language-modeling
- sentiment-classification
- sentiment-scoring
- topic-classification
paperswithcode_id: null
pretty_name: The Multilingual Amazon Reviews Corpus
dataset_info:
- config_name: all_languages
features:
- name: review_id
dtype: string
- name: product_id
dtype: string
- name: reviewer_id
dtype: string
- name: stars
dtype: int32
- name: review_body
dtype: string
- name: review_title
dtype: string
- name: language
dtype: string
- name: product_category
dtype: string
splits:
- name: train
num_bytes: 364405048
num_examples: 1200000
- name: validation
num_bytes: 9047533
num_examples: 30000
- name: test
num_bytes: 9099141
num_examples: 30000
download_size: 640320386
dataset_size: 382551722
- config_name: de
features:
- name: review_id
dtype: string
- name: product_id
dtype: string
- name: reviewer_id
dtype: string
- name: stars
dtype: int32
- name: review_body
dtype: string
- name: review_title
dtype: string
- name: language
dtype: string
- name: product_category
dtype: string
splits:
- name: train
num_bytes: 64485678
num_examples: 200000
- name: validation
num_bytes: 1605727
num_examples: 5000
- name: test
num_bytes: 1611044
num_examples: 5000
download_size: 94802490
dataset_size: 67702449
- config_name: en
features:
- name: review_id
dtype: string
- name: product_id
dtype: string
- name: reviewer_id
dtype: string
- name: stars
dtype: int32
- name: review_body
dtype: string
- name: review_title
dtype: string
- name: language
dtype: string
- name: product_category
dtype: string
splits:
- name: train
num_bytes: 58601089
num_examples: 200000
- name: validation
num_bytes: 1474672
num_examples: 5000
- name: test
num_bytes: 1460565
num_examples: 5000
download_size: 86094112
dataset_size: 61536326
- config_name: es
features:
- name: review_id
dtype: string
- name: product_id
dtype: string
- name: reviewer_id
dtype: string
- name: stars
dtype: int32
- name: review_body
dtype: string
- name: review_title
dtype: string
- name: language
dtype: string
- name: product_category
dtype: string
splits:
- name: train
num_bytes: 52375658
num_examples: 200000
- name: validation
num_bytes: 1303958
num_examples: 5000
- name: test
num_bytes: 1312347
num_examples: 5000
download_size: 81345461
dataset_size: 54991963
- config_name: fr
features:
- name: review_id
dtype: string
- name: product_id
dtype: string
- name: reviewer_id
dtype: string
- name: stars
dtype: int32
- name: review_body
dtype: string
- name: review_title
dtype: string
- name: language
dtype: string
- name: product_category
dtype: string
splits:
- name: train
num_bytes: 54593565
num_examples: 200000
- name: validation
num_bytes: 1340763
num_examples: 5000
- name: test
num_bytes: 1364510
num_examples: 5000
download_size: 85917293
dataset_size: 57298838
- config_name: ja
features:
- name: review_id
dtype: string
- name: product_id
dtype: string
- name: reviewer_id
dtype: string
- name: stars
dtype: int32
- name: review_body
dtype: string
- name: review_title
dtype: string
- name: language
dtype: string
- name: product_category
dtype: string
splits:
- name: train
num_bytes: 82401390
num_examples: 200000
- name: validation
num_bytes: 2035391
num_examples: 5000
- name: test
num_bytes: 2048048
num_examples: 5000
download_size: 177773783
dataset_size: 86484829
- config_name: zh
features:
- name: review_id
dtype: string
- name: product_id
dtype: string
- name: reviewer_id
dtype: string
- name: stars
dtype: int32
- name: review_body
dtype: string
- name: review_title
dtype: string
- name: language
dtype: string
- name: product_category
dtype: string
splits:
- name: train
num_bytes: 51947668
num_examples: 200000
- name: validation
num_bytes: 1287106
num_examples: 5000
- name: test
num_bytes: 1302711
num_examples: 5000
download_size: 114387247
dataset_size: 54537485
config_names:
- all_languages
- de
- en
- es
- fr
- ja
- zh
viewer: false
Dataset Card for The Multilingual Amazon Reviews Corpus
Table of Contents
- Dataset Card for amazon_reviews_multi
Dataset Description
- Webpage: https://registry.opendata.aws/amazon-reviews-ml/
- Paper: https://arxiv.org/abs/2010.02573
- Point of Contact: multilingual-reviews-dataset@amazon.com
Dataset Summary
Defunct: Dataset "amazon_reviews_multi" is defunct and no longer accessible due to decision of data providers.
We provide an Amazon product reviews dataset for multilingual text classification. The dataset contains reviews in English, Japanese, German, French, Chinese and Spanish, collected between November 1, 2015 and November 1, 2019. Each record in the dataset contains the review text, the review title, the star rating, an anonymized reviewer ID, an anonymized product ID and the coarse-grained product category (e.g. ‘books’, ‘appliances’, etc.) The corpus is balanced across stars, so each star rating constitutes 20% of the reviews in each language.
For each language, there are 200,000, 5,000 and 5,000 reviews in the training, development and test sets respectively. The maximum number of reviews per reviewer is 20 and the maximum number of reviews per product is 20. All reviews are truncated after 2,000 characters, and all reviews are at least 20 characters long.
Note that the language of a review does not necessarily match the language of its marketplace (e.g. reviews from amazon.de are primarily written in German, but could also be written in English, etc.). For this reason, we applied a language detection algorithm based on the work in Bojanowski et al. (2017) to determine the language of the review text and we removed reviews that were not written in the expected language.
Supported Tasks and Leaderboards
[More Information Needed]
Languages
The dataset contains reviews in English, Japanese, German, French, Chinese and Spanish.
Dataset Structure
Data Instances
Each data instance corresponds to a review. The original JSON for an instance looks like so (German example):
{
"review_id": "de_0784695",
"product_id": "product_de_0572654",
"reviewer_id": "reviewer_de_0645436",
"stars": "1",
"review_body": "Leider, leider nach einmal waschen ausgeblichen . Es sieht super h\u00fcbsch aus , nur leider stinkt es ganz schrecklich und ein Waschgang in der Maschine ist notwendig ! Nach einem mal waschen sah es aus als w\u00e4re es 10 Jahre alt und hatte 1000 e von Waschg\u00e4ngen hinter sich :( echt schade !",
"review_title": "Leider nicht zu empfehlen",
"language": "de",
"product_category": "home"
}
Data Fields
review_id
: A string identifier of the review.product_id
: A string identifier of the product being reviewed.reviewer_id
: A string identifier of the reviewer.stars
: An int between 1-5 indicating the number of stars.review_body
: The text body of the review.review_title
: The text title of the review.language
: The string identifier of the review language.product_category
: String representation of the product's category.
Data Splits
Each language configuration comes with its own train
, validation
, and test
splits. The all_languages
split
is simply a concatenation of the corresponding split across all languages. That is, the train
split for
all_languages
is a concatenation of the train
splits for each of the languages and likewise for validation
and
test
.
Dataset Creation
Curation Rationale
The dataset is motivated by the desire to advance sentiment analysis and text classification in other (non-English) languages.
Source Data
Initial Data Collection and Normalization
The authors gathered the reviews from the marketplaces in the US, Japan, Germany, France, Spain, and China for the English, Japanese, German, French, Spanish, and Chinese languages, respectively. They then ensured the correct language by applying a language detection algorithm, only retaining those of the target language. In a random sample of the resulting reviews, the authors observed a small percentage of target languages that were incorrectly filtered out and a very few mismatched languages that were incorrectly retained.
Who are the source language producers?
The original text comes from Amazon customers reviewing products on the marketplace across a variety of product categories.
Annotations
Annotation process
Each of the fields included are submitted by the user with the review or otherwise associated with the review. No manual or machine-driven annotation was necessary.
Who are the annotators?
N/A
Personal and Sensitive Information
According to the original dataset license terms, you may not:
- link or associate content in the Reviews Corpus with any personal information (including Amazon customer accounts), or
- attempt to determine the identity of the author of any content in the Reviews Corpus.
If you violate any of the foregoing conditions, your license to access and use the Reviews Corpus will automatically terminate without prejudice to any of the other rights or remedies Amazon may have.
Considerations for Using the Data
Social Impact of Dataset
This dataset is part of an effort to encourage text classification research in languages other than English. Such work increases the accessibility of natural language technology to more regions and cultures. Unfortunately, each of the languages included here is relatively high resource and well studied.
Discussion of Biases
The dataset contains only reviews from verified purchases (as described in the paper, section 2.1), and the reviews should conform the Amazon Community Guidelines.
Other Known Limitations
The dataset is constructed so that the distribution of star ratings is balanced. This feature has some advantages for purposes of classification, but some types of language may be over or underrepresented relative to the original distribution of reviews to achieve this balance.
Additional Information
Dataset Curators
Published by Phillip Keung, Yichao Lu, György Szarvas, and Noah A. Smith. Managed by Amazon.
Licensing Information
Amazon has licensed this dataset under its own agreement for non-commercial research usage only. This licence is quite restrictive preventing use anywhere a fee is received including paid for internships etc. A copy of the agreement can be found at the dataset webpage here: https://docs.opendata.aws/amazon-reviews-ml/license.txt
By accessing the Multilingual Amazon Reviews Corpus ("Reviews Corpus"), you agree that the Reviews Corpus is an Amazon Service subject to the Amazon.com Conditions of Use and you agree to be bound by them, with the following additional conditions:
In addition to the license rights granted under the Conditions of Use, Amazon or its content providers grant you a limited, non-exclusive, non-transferable, non-sublicensable, revocable license to access and use the Reviews Corpus for purposes of academic research. You may not resell, republish, or make any commercial use of the Reviews Corpus or its contents, including use of the Reviews Corpus for commercial research, such as research related to a funding or consultancy contract, internship, or other relationship in which the results are provided for a fee or delivered to a for-profit organization. You may not (a) link or associate content in the Reviews Corpus with any personal information (including Amazon customer accounts), or (b) attempt to determine the identity of the author of any content in the Reviews Corpus. If you violate any of the foregoing conditions, your license to access and use the Reviews Corpus will automatically terminate without prejudice to any of the other rights or remedies Amazon may have.
Citation Information
Please cite the following paper (arXiv) if you found this dataset useful:
Phillip Keung, Yichao Lu, György Szarvas and Noah A. Smith. “The Multilingual Amazon Reviews Corpus.” In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, 2020.
@inproceedings{marc_reviews,
title={The Multilingual Amazon Reviews Corpus},
author={Keung, Phillip and Lu, Yichao and Szarvas, György and Smith, Noah A.},
booktitle={Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing},
year={2020}
}
Contributions
Thanks to @joeddav for adding this dataset.