Response
stringlengths 613
2.3k
| Input
stringlengths 30
7.14k
| Instruction
stringlengths 22
601
|
---|---|---|
{"config": {"background": "#f9f9f9", "area": {"fill": "#ab5787"}, "line": {"stroke": "#ab5787"}, "rect": {"fill": "#ab5787"}, "bar": {"fill": "#ab5787"}, "point": {"fill": "#ab5787", "size": 30}, "axis": {"domainColor": "#979797", "domainWidth": 0.5, "gridWidth": 0.2, "labelColor": "#979797", "tickColor": "#979797", "tickWidth": 0.2, "titleColor": "#979797"}, "axisBand": {"grid": false}, "axisX": {"grid": true, "tickSize": 10}, "axisY": {"domain": false, "grid": true, "tickSize": 0}, "legend": {"labelFontSize": 11, "padding": 1, "symbolSize": 30, "symbolType": "square"}, "range": {"category": ["#ab5787", "#51b2e5", "#703c5c", "#168dd9", "#d190b6", "#00609f", "#d365ba", "#154866", "#666666", "#c4c4c4"]}}, "data": {"url": "data/1000.tsv"}, "mark": "line", "encoding": {"color": {"value": "#c4c4c4"}, "x": {"type": "temporal", "axis": {"labelAngle": -45}, "bin": false, "field": "Year"}, "y": {"type": "quantitative", "axis": {"title": "Ticket price in U.S. dollars"}, "field": "Ticket price in U\\.S\\. dollars"}}, "title": ["National Football League average ticket", "price from 2006 to 2019 (in U.S. dollars)"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"} | Year Ticket price in U.S. dollars Dec 31, 2005 62.38 Dec 31, 2006 67.11 Dec 31, 2007 72.2 Dec 31, 2008 74.99 Dec 31, 2009 76.47 Dec 31, 2010 77.34 Dec 31, 2011 78.38 Dec 31, 2012 81.54 Dec 31, 2013 84.43 Dec 31, 2014 85.83 Dec 31, 2015 92.98 Dec 31, 2017 100.26 Dec 31, 2018 102.35 | The ticket price shown for 2006 is just over 60 dollars, and it rises from that point to just over 100 dollars in 2018. The line upward is quite steep, almost always rising sharply each year. |
{"config": {"range": {"category": ["#4c78a8", "#9ecae9", "#f58518", "#ffbf79", "#54a24b", "#88d27a", "#b79a20", "#f2cf5b", "#439894", "#83bcb6", "#e45756", "#ff9d98", "#79706e", "#bab0ac", "#d67195", "#fcbfd2", "#b279a2", "#d6a5c9", "#9e765f", "#d8b5a5"]}}, "data": {"url": "data/10010.tsv"}, "mark": "area", "encoding": {"color": {"value": "#f2cf5b"}, "x": {"type": "temporal", "axis": {"labelAngle": 45}, "bin": false, "field": "Month"}, "y": {"type": "quantitative", "axis": {"labelAngle": -60, "title": "Number of viewers in thousands"}, "field": "Number of viewers in thousands"}}, "title": ["Average viewers of Minecraft on Twitch worldwide", "from January 2018 to November 2020 (in 1,000s)"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"} | Month Number of viewers in thousands Dec 31, 2017 5.37 Jan 31, 2018 4.96 Feb 28, 2018 4.87 Mar 31, 2018 5.55 Apr 30, 2018 4.13 May 31, 2018 4.27 Jun 30, 2018 7.06 Jul 31, 2018 7.17 Aug 31, 2018 5.6 Sep 30, 2018 5.91 Oct 31, 2018 5.96 Nov 30, 2018 8.58 Dec 31, 2018 14.53 Jan 31, 2019 9.33 Feb 28, 2019 7.31 Mar 31, 2019 8.55 Apr 30, 2019 11.98 May 31, 2019 23.72 Jun 30, 2019 25.15 Jul 31, 2019 44.01 Aug 31, 2019 32.79 Sep 30, 2019 20.32 Oct 31, 2019 21.92 Nov 30, 2019 22.81 Dec 31, 2019 25.18 Jan 31, 2020 24.7 Feb 29, 2020 30.82 Mar 31, 2020 57.2 Apr 30, 2020 55.28 May 31, 2020 54.01 Jun 30, 2020 71.07 Jul 31, 2020 54.16 Aug 31, 2020 54.13 Sep 30, 2020 66.99 Oct 31, 2020 106.29 | Viewers of Minecraft on twitch has gradually increased between 2018 and 2020 but drastically increased beetween jan 2020 and Nov 2020. |
{"config": {"range": {"category": ["#4c78a8", "#9ecae9", "#f58518", "#ffbf79", "#54a24b", "#88d27a", "#b79a20", "#f2cf5b", "#439894", "#83bcb6", "#e45756", "#ff9d98", "#79706e", "#bab0ac", "#d67195", "#fcbfd2", "#b279a2", "#d6a5c9", "#9e765f", "#d8b5a5"]}}, "data": {"url": "data/10010.tsv"}, "mark": "area", "encoding": {"color": {"value": "#f2cf5b"}, "x": {"type": "temporal", "axis": {"labelAngle": 45}, "bin": false, "field": "Month"}, "y": {"type": "quantitative", "axis": {"labelAngle": -60, "title": "Number of viewers in thousands"}, "field": "Number of viewers in thousands"}}, "title": ["Average viewers of Minecraft on Twitch worldwide", "from January 2018 to November 2020 (in 1,000s)"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"} | Month Number of viewers in thousands Dec 31, 2017 5.37 Jan 31, 2018 4.96 Feb 28, 2018 4.87 Mar 31, 2018 5.55 Apr 30, 2018 4.13 May 31, 2018 4.27 Jun 30, 2018 7.06 Jul 31, 2018 7.17 Aug 31, 2018 5.6 Sep 30, 2018 5.91 Oct 31, 2018 5.96 Nov 30, 2018 8.58 Dec 31, 2018 14.53 Jan 31, 2019 9.33 Feb 28, 2019 7.31 Mar 31, 2019 8.55 Apr 30, 2019 11.98 May 31, 2019 23.72 Jun 30, 2019 25.15 Jul 31, 2019 44.01 Aug 31, 2019 32.79 Sep 30, 2019 20.32 Oct 31, 2019 21.92 Nov 30, 2019 22.81 Dec 31, 2019 25.18 Jan 31, 2020 24.7 Feb 29, 2020 30.82 Mar 31, 2020 57.2 Apr 30, 2020 55.28 May 31, 2020 54.01 Jun 30, 2020 71.07 Jul 31, 2020 54.16 Aug 31, 2020 54.13 Sep 30, 2020 66.99 Oct 31, 2020 106.29 | Minecraft viewing on Twitch sharply increased in the last few years. |
{"config": {"range": {"category": ["#4c78a8", "#9ecae9", "#f58518", "#ffbf79", "#54a24b", "#88d27a", "#b79a20", "#f2cf5b", "#439894", "#83bcb6", "#e45756", "#ff9d98", "#79706e", "#bab0ac", "#d67195", "#fcbfd2", "#b279a2", "#d6a5c9", "#9e765f", "#d8b5a5"]}}, "data": {"url": "data/10016.tsv"}, "mark": "bar", "encoding": {"color": {"value": "#bab0ac"}, "x": {"type": "nominal", "axis": {}, "bin": false, "field": "Response"}, "y": {"type": "quantitative", "axis": {"title": "Share of respondents"}, "field": "Share of respondents"}}, "title": ["Which of the following social and economic", "issues concern you the most ?"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"} | Response Share of respondents Finding a job 0.63 Environment 0.37 Sanitary system 0.25 Security 0.24 School system 0.24 Taxes 0.23 Recession and financial crisis 0.23 Immigration 0.21 Pensions 0.19 Public debt 0.1 Right to housing 0.09 Purchasing power / inflation 0.08 Nuclear 0.07 Tax havens 0.03 Social housing 0.01 None of these 0.01 | The main issue is finding a job which would fit in with maslows hierarchy of needs. Once you have a job and have income you worry about other things like the taxation you pay; how much is in your pocket. Surprisingly the environment is very high up, this is surprising. |
{"config": {"background": "#fff", "area": {"fill": "#3e5c69"}, "line": {"stroke": "#3e5c69"}, "rect": {"fill": "#3e5c69"}, "bar": {"fill": "#3e5c69"}, "point": {"color": "#3e5c69"}, "axis": {"domainWidth": 0.5, "grid": true, "labelPadding": 2, "tickSize": 5, "tickWidth": 0.5, "titleFontWeight": "normal"}, "axisBand": {"grid": false}, "axisX": {"gridWidth": 0.2}, "axisY": {"gridDash": [3], "gridWidth": 0.4}, "legend": {"labelFontSize": 11, "padding": 1, "symbolType": "square"}, "range": {"category": ["#3e5c69", "#6793a6", "#182429", "#0570b0", "#3690c0", "#74a9cf", "#a6bddb", "#e2ddf2"]}}, "data": {"url": "data/10018.tsv"}, "mark": "bar", "encoding": {"color": {"value": "#3690c0"}, "x": {"type": "nominal", "axis": {"labelAngle": -60}, "bin": false, "field": "Years of age"}, "y": {"type": "quantitative", "axis": {"title": "Share of death row prisoners"}, "field": "Share of death row prisoners"}}, "title": ["Share of prisoners under sentence of death", "in the United States at year-end 2018 , by", "age group"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"} | Years of age Share of death row prisoners 18-19 0 20-24 0.002 25-29 0.019 30-34 0.049 35-39 0.094 40-44 0.141 45-49 0.18 50-54 0.158 55-59 0.156 60-64 0.098 65 or older 0.102 | Death rates have peaked in pensioners in the United States. |
{"config": {"background": "#fff", "area": {"fill": "#3e5c69"}, "line": {"stroke": "#3e5c69"}, "rect": {"fill": "#3e5c69"}, "bar": {"fill": "#3e5c69"}, "point": {"color": "#3e5c69"}, "axis": {"domainWidth": 0.5, "grid": true, "labelPadding": 2, "tickSize": 5, "tickWidth": 0.5, "titleFontWeight": "normal"}, "axisBand": {"grid": false}, "axisX": {"gridWidth": 0.2}, "axisY": {"gridDash": [3], "gridWidth": 0.4}, "legend": {"labelFontSize": 11, "padding": 1, "symbolType": "square"}, "range": {"category": ["#3e5c69", "#6793a6", "#182429", "#0570b0", "#3690c0", "#74a9cf", "#a6bddb", "#e2ddf2"]}}, "data": {"url": "data/10018.tsv"}, "mark": "bar", "encoding": {"color": {"value": "#3690c0"}, "x": {"type": "nominal", "axis": {"labelAngle": -60}, "bin": false, "field": "Years of age"}, "y": {"type": "quantitative", "axis": {"title": "Share of death row prisoners"}, "field": "Share of death row prisoners"}}, "title": ["Share of prisoners under sentence of death", "in the United States at year-end 2018 , by", "age group"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"} | Years of age Share of death row prisoners 18-19 0 20-24 0.002 25-29 0.019 30-34 0.049 35-39 0.094 40-44 0.141 45-49 0.18 50-54 0.158 55-59 0.156 60-64 0.098 65 or older 0.102 | Share of prisoners under sentence of death in the United States was the highest among 45-49 years old. It was the lowest among those aged 18-19. The trend was clearly growing until the age of 45-49 where it reached its peak. Then it started to fall. The decline is remarkably pronounced after the age of 60. |
{"config": {"background": "#000", "title": {"color": "#fff", "subtitleColor": "#fff"}, "style": {"guide-label": {"fill": "#fff"}, "guide-title": {"fill": "#fff"}}, "axis": {"domainColor": "#fff", "gridColor": "#888", "tickColor": "#fff"}, "range": {"category": ["#7fc97f", "#beaed4", "#fdc086", "#ffff99", "#386cb0", "#f0027f", "#bf5b17", "#666666"]}}, "data": {"url": "data/10021.tsv"}, "mark": "bar", "encoding": {"color": {"value": "#666666"}, "x": {"type": "quantitative", "axis": {"labelAngle": 30, "title": "Number of fan club members in thousands"}, "field": "Number of fan club members in thousands"}, "y": {"type": "nominal", "axis": {}, "bin": false, "field": "Season"}}, "title": ["Number of fan club members of FC Bayern", "Munich from 2005/06 to 2018 (in 1,000s)"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"} | Number of fan club members in thousands Season 350.92 Nov 2018 340.47 2017/18 330.56 2016/17 325.42 2015/16 306.77 2014/15 283.56 2013/14 262.08 2012/13 231.2 2011/12 204.24 2010/11 190.75 2009/10 181.69 2008/09 176.98 2007/08 164.58 2006/07 156.67 2005/06 | There are thousands of Bayern Munich fans and this number has seen a steady growth over the last twelve years. The number of fans has grown by about a third. |
{"config": {"background": "#FFFFFF", "title": {"anchor": "start", "fontSize": 18, "font": "Lato"}, "axisX": {"domain": true, "domainColor": "#000000", "domainWidth": 1, "grid": false, "labelFontSize": 12, "labelFont": "Lato", "tickColor": "#000000", "tickSize": 5, "titleFontSize": 12, "titlePadding": 10, "titleFont": "Lato"}, "axisY": {"domain": false, "domainWidth": 1, "grid": true, "gridColor": "#DEDDDD", "gridWidth": 1, "labelFontSize": 12, "labelFont": "Lato", "labelPadding": 8, "ticks": false, "titleFontSize": 12, "titlePadding": 10, "titleFont": "Lato", "titleAngle": 0, "titleY": -10, "titleX": 18}, "legend": {"labelFontSize": 12, "labelFont": "Lato", "symbolSize": 100, "titleFontSize": 12, "titlePadding": 10, "titleFont": "Lato", "orient": "right", "offset": 10}, "view": {"stroke": "transparent"}, "range": {"category": ["#1696d2", "#ec008b", "#fdbf11", "#000000", "#d2d2d2", "#55b748"], "diverging": ["#ca5800", "#fdbf11", "#fdd870", "#fff2cf", "#cfe8f3", "#73bfe2", "#1696d2", "#0a4c6a"], "heatmap": ["#ca5800", "#fdbf11", "#fdd870", "#fff2cf", "#cfe8f3", "#73bfe2", "#1696d2", "#0a4c6a"], "ordinal": ["#cfe8f3", "#a2d4ec", "#73bfe2", "#46abdb", "#1696d2", "#12719e"], "ramp": ["#CFE8F3", "#A2D4EC", "#73BFE2", "#46ABDB", "#1696D2", "#12719E", "#0A4C6A", "#062635"]}, "area": {"fill": "#1696d2"}, "rect": {"fill": "#1696d2"}, "line": {"color": "#1696d2", "stroke": "#1696d2", "strokeWidth": 5}, "trail": {"color": "#1696d2", "stroke": "#1696d2", "strokeWidth": 0, "size": 1}, "point": {"color": "#1696d2", "size": 30}, "text": {"font": "Lato", "color": "#1696d2", "fontSize": 11, "align": "center", "fontWeight": 400, "size": 11}, "style": {"bar": {"fill": "#1696d2", "stroke": null}}}, "data": {"url": "data/10023.tsv"}, "mark": "line", "encoding": {"color": {"value": "#fdbf11"}, "x": {"type": "temporal", "axis": {"labelAngle": 30}, "bin": false, "field": "Year"}, "y": {"type": "quantitative", "axis": {"title": "Total number of users in millions"}, "field": "Total number of users in millions"}}, "title": ["Total number of users of payment app Tikkie", "in the Netherlands from 2016 to 2019 (in", "millions)"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"} | Year Total number of users in millions Jun 19, 2016 0 Sep 21, 2016 0.1 May 14, 2017 0.5 Aug 11, 2017 1.4 Aug 21, 2017 1 Nov 21, 2017 1.3 Jan 04, 2018 2.5 Jan 28, 2018 2 Jun 24, 2018 3 Nov 21, 2018 4 Oct 16, 2019 6 Dec 03, 2019 5 | The growth of users increased the most between 2018 and 2019 (users nearly doubled from nearly 3 million to 6 million). From 2017 users have gone from approximately 1/4 million to 6 million. |
{"config": {"range": {"category": ["#393b79", "#5254a3", "#6b6ecf", "#9c9ede", "#637939", "#8ca252", "#b5cf6b", "#cedb9c", "#8c6d31", "#bd9e39", "#e7ba52", "#e7cb94", "#843c39", "#ad494a", "#d6616b", "#e7969c", "#7b4173", "#a55194", "#ce6dbd", "#de9ed6"]}}, "data": {"url": "data/1002.tsv"}, "mark": "bar", "encoding": {"color": {"value": "#5254a3"}, "x": {"type": "quantitative", "axis": {"title": "Number of players"}, "field": "Number of players"}, "y": {"type": "nominal", "axis": {"labelAngle": 60}, "bin": false, "field": "association football league"}}, "title": ["Domestic leagues with the most players at", "the 2018 FIFA World Cup in Russia"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"} | Number of players association football league 108 Premier League (England) 78 Primera División (Spain) 62 1.Bundesliga (Germany) 58 Serie A (Italy) 47 Ligue 1 (France) 36 Premier Liga (Russia) 30 Saudi Professional League (Saudi Arabia) 22 Süper Lig (Turkey) 21 Championship (England) 21 Liga MX Apertura (Mexico) 21 Liga MX Clausura (Mexico) | The English Premier League has the greatest number of players at the World Cup. |
{"config": {"background": "#ffffff", "title": {"anchor": "start", "color": "#000000", "font": "Benton Gothic Bold, sans-serif", "fontSize": 22, "fontWeight": "normal"}, "area": {"fill": "#82c6df"}, "line": {"stroke": "#82c6df", "strokeWidth": 2}, "rect": {"fill": "#82c6df"}, "bar": {"fill": "#82c6df"}, "point": {"color": "#82c6df", "size": 30}, "axis": {"labelFont": "Benton Gothic, sans-serif", "labelFontSize": 11.5, "labelFontWeight": "normal", "titleFont": "Benton Gothic Bold, sans-serif", "titleFontSize": 13, "titleFontWeight": "normal"}, "axisX": {"labelPadding": 4, "tickSize": 3}, "axisY": {"labelBaseline": "middle", "maxExtent": 45, "minExtent": 45, "tickSize": 2, "titleAlign": "left", "titleAngle": 0, "titleX": -45, "titleY": -11}, "legend": {"labelFont": "Benton Gothic, sans-serif", "labelFontSize": 11.5, "symbolType": "square", "titleFont": "Benton Gothic Bold, sans-serif", "titleFontSize": 13, "titleFontWeight": "normal"}, "range": {"category": ["#ec8431", "#829eb1", "#c89d29", "#3580b1", "#adc839", "#ab7fb4"], "diverging": ["#e68a4f", "#f4bb6a", "#f9e39c", "#dadfe2", "#a6b7c6", "#849eae"], "heatmap": ["#fbf2c7", "#f9e39c", "#f8d36e", "#f4bb6a", "#e68a4f", "#d15a40", "#ab4232"], "ordinal": ["#fbf2c7", "#f9e39c", "#f8d36e", "#f4bb6a", "#e68a4f", "#d15a40", "#ab4232"], "ramp": ["#fbf2c7", "#f9e39c", "#f8d36e", "#f4bb6a", "#e68a4f", "#d15a40", "#ab4232"]}}, "data": {"url": "data/10034.tsv"}, "mark": "bar", "encoding": {"color": {"value": "#adc839"}, "x": {"type": "quantitative", "axis": {"labelAngle": 90, "title": "Average ticket price in U.S. dollars"}, "field": "Average ticket price in U\\.S\\. dollars"}, "y": {"type": "nominal", "axis": {}, "bin": false, "field": "Year"}}, "title": ["Average ticket price Tampa Bay Lightning", "(NHL) games from 2005/06 to 2014/15 (in U.S.", "dollars)"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"} | Average ticket price in U.S. dollars Year 44.5 14/15 42.23 13/14 38.12 12/13 37.73 11/12 37.73 10/11 37.73 09/10 35.76 08/09 42.41 07/08 43.94 06/07 44.27 05/06 | bar chart no significant change. the trend is in 08/09 - 12/13. |
{"config": {"background": "#333", "title": {"color": "#fff", "subtitleColor": "#fff"}, "style": {"guide-label": {"fill": "#fff"}, "guide-title": {"fill": "#fff"}}, "axis": {"domainColor": "#fff", "gridColor": "#888", "tickColor": "#fff"}, "range": {"category": ["#1b9e77", "#d95f02", "#7570b3", "#e7298a", "#66a61e", "#e6ab02", "#a6761d", "#666666"]}}, "data": {"url": "data/10042.tsv"}, "mark": "line", "encoding": {"color": {"value": "#d95f02"}, "x": {"type": "temporal", "axis": {}, "bin": false, "field": "Year"}, "y": {"type": "quantitative", "axis": {"title": "Total prescriptions in millions"}, "field": "Total prescriptions in millions"}}, "title": ["Number of levothyroxine prescriptions in", "the U.S. from 2004 to 2017 (in millions)"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"} | Year Total prescriptions in millions Dec 31, 2003 87.27 Dec 31, 2004 86.93 Dec 31, 2005 94.53 Dec 31, 2006 93.52 Dec 31, 2007 97.02 Dec 31, 2008 100.63 Dec 31, 2009 107.14 Dec 31, 2010 100.62 Dec 31, 2011 96.88 Dec 31, 2012 97.81 Dec 31, 2013 99.99 Dec 31, 2014 112.87 Dec 31, 2015 114.34 Dec 31, 2016 101.93 | There is a positive correlation with the increasing year and total prescription in millions. After 2016 there is a strong rapid linear decline in the total prescription in millions despite the 2014-16 2 year block having the most increase in total prescription in millions. The total highest prescription is just before 2016. |
{"config": {"range": {"category": ["#393b79", "#5254a3", "#6b6ecf", "#9c9ede", "#637939", "#8ca252", "#b5cf6b", "#cedb9c", "#8c6d31", "#bd9e39", "#e7ba52", "#e7cb94", "#843c39", "#ad494a", "#d6616b", "#e7969c", "#7b4173", "#a55194", "#ce6dbd", "#de9ed6"]}}, "data": {"url": "data/10045.tsv"}, "mark": "bar", "encoding": {"color": {"value": "#7b4173"}, "x": {"type": "nominal", "axis": {}, "bin": false, "field": "big city"}, "y": {"type": "quantitative", "axis": {"title": "Index points"}, "field": "Index points"}}, "title": ["Self-isolation index during the coronavirus", "(COVID-19) outbreak in Russia on January", "3 , 2021 , by largest city"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"} | big city Index points Omsk 3.6 Novosibirsk 3.4 Krasnoyarsk 3.2 Volgograd 3.1 Perm 3.1 Voronezh 3.1 Nizhny Novgorod 3 Samara 3 Ufa 3 Yekaterinburg 3 Saint Petersburg 3 Rostov-on-Don 3 Chelyabinsk 3 Moscow 2.9 Kazan 2.6 | The majorly of the big cities are at 3 index points. Omsk has the largest value of 3.5 index points. Kazan has the lowest value of 2.5 index points. |
{"config": {"range": {"category": ["#393b79", "#5254a3", "#6b6ecf", "#9c9ede", "#637939", "#8ca252", "#b5cf6b", "#cedb9c", "#8c6d31", "#bd9e39", "#e7ba52", "#e7cb94", "#843c39", "#ad494a", "#d6616b", "#e7969c", "#7b4173", "#a55194", "#ce6dbd", "#de9ed6"]}}, "data": {"url": "data/10046.tsv"}, "mark": "bar", "encoding": {"color": {"value": "#5254a3"}, "x": {"type": "quantitative", "axis": {"title": "Number of units sold in millions"}, "field": "Number of units sold in millions"}, "y": {"type": "nominal", "axis": {"labelAngle": -60}, "bin": false, "field": "human"}}, "title": ["Best-selling music albums on digital music", "platforms in China in 2019 (in millions)"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"} | Number of units sold in millions human 3.01 'Going To Powerfully Burst' - R1SE (Chinese) 1.84 'Wa' - Chris Lee (Chinese) 1.64 'Lover' - Taylor Swift (English) 0.81 'MIRRORS' - Jackson Wang (English) 0.72 'The Wind' - Rocket Girls 101 (Chinese) 0.7 'More Than Forever' - NINE PERCENT (Chinese) 0.67 'Kill This Love' - Blackpink (Korean) 0.52 'Map of the Soul: Persona' - BTS (Korean) 0.42 'Thank U, Next' - Ariana Grande (English) 0.34 'Obsession' - EXO (Korean) | Among the 10 best selling albums most are similar in units sold except for 3 which sold more than double. |
{"config": {"view": {"fill": "#e5e5e5"}, "area": {"fill": "#000"}, "line": {"stroke": "#000"}, "rect": {"fill": "#000"}, "bar": {"fill": "#000"}, "point": {"color": "#000", "size": 40}, "axis": {"domain": false, "grid": true, "gridColor": "#FFFFFF", "gridOpacity": 1, "labelColor": "#7F7F7F", "labelPadding": 4, "tickColor": "#7F7F7F", "tickSize": 5.67, "titleFontSize": 16, "titleFontWeight": "normal"}, "legend": {"labelBaseline": "middle", "labelFontSize": 11, "symbolSize": 40}, "range": {"category": ["#000000", "#7F7F7F", "#1A1A1A", "#999999", "#333333", "#B0B0B0", "#4D4D4D", "#C9C9C9", "#666666", "#DCDCDC"]}}, "data": {"url": "data/10048.tsv"}, "mark": "bar", "encoding": {"color": {"value": "#DCDCDC"}, "x": {"type": "quantitative", "axis": {"title": "Passenger journeys in millions"}, "field": "Passenger journeys in millions"}, "y": {"type": "nominal", "axis": {"labelAngle": 60}, "bin": false, "field": "Year"}}, "title": ["Number of passenger journeys on the Docklands", "Light Railway between 2000/01 and 2019/20", "(in millions)"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"} | Passenger journeys in millions Year 116.8 19/20 121.8 18/19 119.6 17/18 122.3 16/17 116.9 15/16 110.2 14/15 101.6 13/14 100 12/13 86.1 11/12 78.3 10/11 69.4 09/10 67.8 08/09 66.6 07/08 63.9 06/07 53.5 05/06 50.1 04/05 48.5 03/04 45.7 02/03 41.3 01/02 38.4 00/01 | More and more people are using the docklands railway. In 2016/17 it recorded its highest amount of passemger journeys recorded. |
{"config": {"view": {"fill": "#e5e5e5"}, "area": {"fill": "#000"}, "line": {"stroke": "#000"}, "rect": {"fill": "#000"}, "bar": {"fill": "#000"}, "point": {"color": "#000", "size": 40}, "axis": {"domain": false, "grid": true, "gridColor": "#FFFFFF", "gridOpacity": 1, "labelColor": "#7F7F7F", "labelPadding": 4, "tickColor": "#7F7F7F", "tickSize": 5.67, "titleFontSize": 16, "titleFontWeight": "normal"}, "legend": {"labelBaseline": "middle", "labelFontSize": 11, "symbolSize": 40}, "range": {"category": ["#000000", "#7F7F7F", "#1A1A1A", "#999999", "#333333", "#B0B0B0", "#4D4D4D", "#C9C9C9", "#666666", "#DCDCDC"]}}, "data": {"url": "data/10048.tsv"}, "mark": "bar", "encoding": {"color": {"value": "#DCDCDC"}, "x": {"type": "quantitative", "axis": {"title": "Passenger journeys in millions"}, "field": "Passenger journeys in millions"}, "y": {"type": "nominal", "axis": {"labelAngle": 60}, "bin": false, "field": "Year"}}, "title": ["Number of passenger journeys on the Docklands", "Light Railway between 2000/01 and 2019/20", "(in millions)"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"} | Passenger journeys in millions Year 116.8 19/20 121.8 18/19 119.6 17/18 122.3 16/17 116.9 15/16 110.2 14/15 101.6 13/14 100 12/13 86.1 11/12 78.3 10/11 69.4 09/10 67.8 08/09 66.6 07/08 63.9 06/07 53.5 05/06 50.1 04/05 48.5 03/04 45.7 02/03 41.3 01/02 38.4 00/01 | The number of journeys has almost tripled during the years shown, with smalls decreases in 2017\18 and 19\20. |
{"config": {"range": {"category": ["#4c78a8", "#9ecae9", "#f58518", "#ffbf79", "#54a24b", "#88d27a", "#b79a20", "#f2cf5b", "#439894", "#83bcb6", "#e45756", "#ff9d98", "#79706e", "#bab0ac", "#d67195", "#fcbfd2", "#b279a2", "#d6a5c9", "#9e765f", "#d8b5a5"]}}, "data": {"url": "data/10049.tsv"}, "mark": "area", "encoding": {"color": {"value": "#fcbfd2"}, "x": {"type": "temporal", "axis": {"labelAngle": -45}, "bin": false, "field": "Year"}, "y": {"type": "quantitative", "axis": {"title": "Turnover in million GBP"}, "field": "Turnover in million GBP"}}, "title": ["Turnover from retail sale of tools and equipment", "for house and garden in the United Kingdom", "(UK) from 2008 to 2018 (in million GBP)"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"} | Year Turnover in million GBP Dec 31, 2007 3131 Dec 31, 2008 2964 Dec 31, 2009 3088 Dec 31, 2010 3566 Dec 31, 2011 3887 Dec 31, 2012 4235 Dec 31, 2013 3916 Dec 31, 2014 4476 Dec 31, 2015 4761 Dec 31, 2016 5093 Dec 31, 2017 5135 | The line starts fairly evenly. There is then a general upward trend to 2013. There is then a small dip in 2014 before rising more sharply this time. |
{"config": {"background": "#333", "title": {"color": "#fff", "subtitleColor": "#fff"}, "style": {"guide-label": {"fill": "#fff"}, "guide-title": {"fill": "#fff"}}, "axis": {"domainColor": "#fff", "gridColor": "#888", "tickColor": "#fff"}, "range": {"category": ["#1b9e77", "#d95f02", "#7570b3", "#e7298a", "#66a61e", "#e6ab02", "#a6761d", "#666666"]}}, "data": {"url": "data/10053.tsv"}, "mark": "area", "encoding": {"color": {"value": "#e6ab02"}, "x": {"type": "temporal", "axis": {"labelAngle": -60}, "bin": false, "field": "Year"}, "y": {"type": "quantitative", "axis": {"labelAngle": -60, "title": "Per capita consumption in pounds"}, "field": "Per capita consumption in pounds"}}, "title": ["Per capita consumption of frozen yogurt", "in the United States from 2000 to 2019 (in", "pounds)"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"} | Year Per capita consumption in pounds Dec 31, 1999 2.01 Dec 31, 2000 1.5 Dec 31, 2001 1.47 Dec 31, 2002 1.45 Dec 31, 2003 1.32 Dec 31, 2004 1.34 Dec 31, 2005 1.32 Dec 31, 2006 1.48 Dec 31, 2007 1.55 Dec 31, 2008 0.9 Dec 31, 2009 1 Dec 31, 2010 1.2 Dec 31, 2011 1.1 Dec 31, 2012 1.4 Dec 31, 2013 1.3 Dec 31, 2014 1.4 Dec 31, 2015 1.2 Dec 31, 2016 1.2 Dec 31, 2017 1 Dec 31, 2018 1.1 | Consumption of frozen yogurt in the USA has halved by a rate of some 2 pounds consumption to 1 pound from the year 2000 to 2016. |
{"config": {"range": {"category": ["#4c78a8", "#9ecae9", "#f58518", "#ffbf79", "#54a24b", "#88d27a", "#b79a20", "#f2cf5b", "#439894", "#83bcb6", "#e45756", "#ff9d98", "#79706e", "#bab0ac", "#d67195", "#fcbfd2", "#b279a2", "#d6a5c9", "#9e765f", "#d8b5a5"]}}, "data": {"url": "data/10055.tsv"}, "mark": "line", "encoding": {"color": {"value": "#b79a20"}, "x": {"type": "temporal", "axis": {"labelAngle": -60}, "bin": false, "field": "Year"}, "y": {"type": "quantitative", "axis": {"title": "Revenue in million U.S. dollars"}, "field": "Revenue in million U\\.S\\. dollars"}}, "title": ["Net revenue generated by Activision from", "2007 to 2019 (in million U.S. dollars)"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"} | Year Revenue in million U.S. dollars Dec 31, 2006 1513 Dec 31, 2007 2152 Dec 31, 2008 3156 Dec 31, 2009 2769 Dec 31, 2010 2828 Dec 31, 2011 3072 Dec 31, 2012 2895 Dec 31, 2013 2686 Dec 31, 2014 2700 Dec 31, 2015 2220 Dec 31, 2016 2628 Dec 31, 2017 2458 Dec 31, 2018 2219 | The revenue increased to over 3000 million dollars in 2009 and took a hit in 2016 decreasing to below 2500 million dollars. |
{"config": {"area": {"fill": "#30a2da"}, "axis": {"domainColor": "#cbcbcb", "grid": true, "gridColor": "#cbcbcb", "gridWidth": 1, "labelColor": "#999", "labelFontSize": 10, "titleColor": "#333", "tickColor": "#cbcbcb", "tickSize": 10, "titleFontSize": 14, "titlePadding": 10, "labelPadding": 4}, "axisBand": {"grid": false}, "background": "#f0f0f0", "view": {"fill": "#f0f0f0"}, "legend": {"labelColor": "#333", "labelFontSize": 11, "padding": 1, "symbolSize": 30, "symbolType": "square", "titleColor": "#333", "titleFontSize": 14, "titlePadding": 10}, "line": {"stroke": "#30a2da", "strokeWidth": 2}, "rect": {"fill": "#30a2da"}, "bar": {"binSpacing": 2, "fill": "#30a2da", "stroke": null}, "range": {"category": ["#30a2da", "#fc4f30", "#e5ae38", "#6d904f", "#8b8b8b", "#b96db8", "#ff9e27", "#56cc60", "#52d2ca", "#52689e", "#545454", "#9fe4f8"], "diverging": ["#cc0020", "#e77866", "#f6e7e1", "#d6e8ed", "#91bfd9", "#1d78b5"], "heatmap": ["#d6e8ed", "#cee0e5", "#91bfd9", "#549cc6", "#1d78b5"]}, "point": {"filled": true, "shape": "circle"}, "title": {"anchor": "start", "fontSize": 24, "fontWeight": 600, "offset": 20}}, "data": {"url": "data/10059.tsv"}, "mark": "area", "encoding": {"color": {"value": "#52d2ca"}, "x": {"type": "temporal", "axis": {}, "bin": false, "field": "Year"}, "y": {"type": "quantitative", "axis": {"title": "Sales volume in tonnes"}, "field": "Sales volume in tonnes"}}, "title": ["Sales volume of tea manufactured in the", "United Kingdom (UK) from 2008 to 2019 (in", "tons)"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"} | Year Sales volume in tonnes Dec 31, 2007 140398 Dec 31, 2008 134122 Dec 31, 2009 131826 Dec 31, 2010 135453 Dec 31, 2011 135185 Dec 31, 2012 136447 Dec 31, 2013 96766 Dec 31, 2014 100248 Dec 31, 2015 102164 Dec 31, 2016 91743 Dec 31, 2017 94668 Dec 31, 2018 99927 | Since 2013 sales in tea have dropped to around 100,000 tonnes. |
{"config": {"background": "#000", "title": {"color": "#fff", "subtitleColor": "#fff"}, "style": {"guide-label": {"fill": "#fff"}, "guide-title": {"fill": "#fff"}}, "axis": {"domainColor": "#fff", "gridColor": "#888", "tickColor": "#fff"}, "range": {"category": ["#7fc97f", "#beaed4", "#fdc086", "#ffff99", "#386cb0", "#f0027f", "#bf5b17", "#666666"]}}, "data": {"url": "data/1005.tsv"}, "mark": "bar", "encoding": {"color": {"value": "#666666"}, "x": {"type": "quantitative", "axis": {"labelAngle": 90, "title": "Inhabitants in millions"}, "field": "Inhabitants in millions"}, "y": {"type": "nominal", "axis": {}, "bin": false, "field": "Year"}}, "title": ["Singapore : Total population from 2015 to", "2025 (in million inhabitants)"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"} | Inhabitants in millions Year 6.11 2025* 6.04 2024* 5.97 2023* 5.9 2022* 5.84 2021* 5.77 2020* 5.7 2019 5.64 2018 5.61 2017 5.61 2016 5.54 2015 | The population in Singapore is predicted to increase after 2022. |
{"config": {"background": "#000", "title": {"color": "#fff", "subtitleColor": "#fff"}, "style": {"guide-label": {"fill": "#fff"}, "guide-title": {"fill": "#fff"}}, "axis": {"domainColor": "#fff", "gridColor": "#888", "tickColor": "#fff"}, "range": {"category": ["#7fc97f", "#beaed4", "#fdc086", "#ffff99", "#386cb0", "#f0027f", "#bf5b17", "#666666"]}}, "data": {"url": "data/1005.tsv"}, "mark": "bar", "encoding": {"color": {"value": "#666666"}, "x": {"type": "quantitative", "axis": {"labelAngle": 90, "title": "Inhabitants in millions"}, "field": "Inhabitants in millions"}, "y": {"type": "nominal", "axis": {}, "bin": false, "field": "Year"}}, "title": ["Singapore : Total population from 2015 to", "2025 (in million inhabitants)"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"} | Inhabitants in millions Year 6.11 2025* 6.04 2024* 5.97 2023* 5.9 2022* 5.84 2021* 5.77 2020* 5.7 2019 5.64 2018 5.61 2017 5.61 2016 5.54 2015 | Overall the trend of Singaporean residents are increasing year on year. It is predicted to be over 6 million residents in 2025. |
{"config": {"area": {"fill": "#30a2da"}, "axis": {"domainColor": "#cbcbcb", "grid": true, "gridColor": "#cbcbcb", "gridWidth": 1, "labelColor": "#999", "labelFontSize": 10, "titleColor": "#333", "tickColor": "#cbcbcb", "tickSize": 10, "titleFontSize": 14, "titlePadding": 10, "labelPadding": 4}, "axisBand": {"grid": false}, "background": "#f0f0f0", "view": {"fill": "#f0f0f0"}, "legend": {"labelColor": "#333", "labelFontSize": 11, "padding": 1, "symbolSize": 30, "symbolType": "square", "titleColor": "#333", "titleFontSize": 14, "titlePadding": 10}, "line": {"stroke": "#30a2da", "strokeWidth": 2}, "rect": {"fill": "#30a2da"}, "bar": {"binSpacing": 2, "fill": "#30a2da", "stroke": null}, "range": {"category": ["#30a2da", "#fc4f30", "#e5ae38", "#6d904f", "#8b8b8b", "#b96db8", "#ff9e27", "#56cc60", "#52d2ca", "#52689e", "#545454", "#9fe4f8"], "diverging": ["#cc0020", "#e77866", "#f6e7e1", "#d6e8ed", "#91bfd9", "#1d78b5"], "heatmap": ["#d6e8ed", "#cee0e5", "#91bfd9", "#549cc6", "#1d78b5"]}, "point": {"filled": true, "shape": "circle"}, "title": {"anchor": "start", "fontSize": 24, "fontWeight": 600, "offset": 20}}, "data": {"url": "data/10060.tsv"}, "mark": "area", "encoding": {"color": {"value": "#8b8b8b"}, "x": {"type": "temporal", "axis": {}, "bin": false, "field": "Year"}, "y": {"type": "quantitative", "axis": {"title": "Annual spending in million U.S. dollars"}, "field": "Annual spending in million U\\.S\\. dollars"}}, "title": ["Annual sales and marketing expenditure of", "Twitter from 2010 to 2019 (in million U.S.", "dollars)"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"} | Year Annual spending in million U.S. dollars Dec 31, 2009 0.0629 Dec 31, 2010 0.2599 Dec 31, 2011 0.8655 Dec 31, 2012 3.1622 Dec 31, 2013 6.1411 Dec 31, 2014 8.7149 Dec 31, 2015 9.5783 Dec 31, 2016 7.1742 Dec 31, 2017 7.7136 Dec 31, 2018 9.1381 | Spending increased dramatically from 2012 to 2015.it continued at a steadier pace to its peak in 2016 afterwhich it declined in 2017 to the levels in 2014.it then reverted back to its peak. |
{"config": {"range": {"category": ["#393b79", "#5254a3", "#6b6ecf", "#9c9ede", "#637939", "#8ca252", "#b5cf6b", "#cedb9c", "#8c6d31", "#bd9e39", "#e7ba52", "#e7cb94", "#843c39", "#ad494a", "#d6616b", "#e7969c", "#7b4173", "#a55194", "#ce6dbd", "#de9ed6"]}}, "data": {"url": "data/10072.tsv"}, "mark": "line", "encoding": {"color": {"value": "#bd9e39"}, "x": {"type": "temporal", "axis": {}, "bin": false, "field": "Year"}, "y": {"type": "quantitative", "axis": {"title": "Age in years"}, "field": "Age in years"}}, "title": ["Average age of ocean cruise passengers in", "the United Kingdom (UK) from 2005 to 2018"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"} | Year Age in years Dec 31, 2004 54 Dec 31, 2005 53 Dec 31, 2006 53 Dec 31, 2007 54 Dec 31, 2008 56 Dec 31, 2009 55 Dec 31, 2010 56 Dec 31, 2011 56 Dec 31, 2012 57 Dec 31, 2013 58 Dec 31, 2014 56 Dec 31, 2015 56 Dec 31, 2016 56 Dec 31, 2017 57 | Every year passengers are all above the age of 50. They are all in the same age range and there is no one younger. The graph suggests people in the same age group go on this cruise. |
{"config": {"range": {"category": ["#393b79", "#5254a3", "#6b6ecf", "#9c9ede", "#637939", "#8ca252", "#b5cf6b", "#cedb9c", "#8c6d31", "#bd9e39", "#e7ba52", "#e7cb94", "#843c39", "#ad494a", "#d6616b", "#e7969c", "#7b4173", "#a55194", "#ce6dbd", "#de9ed6"]}}, "data": {"url": "data/10072.tsv"}, "mark": "line", "encoding": {"color": {"value": "#bd9e39"}, "x": {"type": "temporal", "axis": {}, "bin": false, "field": "Year"}, "y": {"type": "quantitative", "axis": {"title": "Age in years"}, "field": "Age in years"}}, "title": ["Average age of ocean cruise passengers in", "the United Kingdom (UK) from 2005 to 2018"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"} | Year Age in years Dec 31, 2004 54 Dec 31, 2005 53 Dec 31, 2006 53 Dec 31, 2007 54 Dec 31, 2008 56 Dec 31, 2009 55 Dec 31, 2010 56 Dec 31, 2011 56 Dec 31, 2012 57 Dec 31, 2013 58 Dec 31, 2014 56 Dec 31, 2015 56 Dec 31, 2016 56 Dec 31, 2017 57 | There seems to be no significant relationship between the average age of ocean cruise passengers in the UK from 2015 to 2018 but there seems to be a dip between 2006 and 2008. |
{"config": {"area": {"fill": "#30a2da"}, "axis": {"domainColor": "#cbcbcb", "grid": true, "gridColor": "#cbcbcb", "gridWidth": 1, "labelColor": "#999", "labelFontSize": 10, "titleColor": "#333", "tickColor": "#cbcbcb", "tickSize": 10, "titleFontSize": 14, "titlePadding": 10, "labelPadding": 4}, "axisBand": {"grid": false}, "background": "#f0f0f0", "view": {"fill": "#f0f0f0"}, "legend": {"labelColor": "#333", "labelFontSize": 11, "padding": 1, "symbolSize": 30, "symbolType": "square", "titleColor": "#333", "titleFontSize": 14, "titlePadding": 10}, "line": {"stroke": "#30a2da", "strokeWidth": 2}, "rect": {"fill": "#30a2da"}, "bar": {"binSpacing": 2, "fill": "#30a2da", "stroke": null}, "range": {"category": ["#30a2da", "#fc4f30", "#e5ae38", "#6d904f", "#8b8b8b", "#b96db8", "#ff9e27", "#56cc60", "#52d2ca", "#52689e", "#545454", "#9fe4f8"], "diverging": ["#cc0020", "#e77866", "#f6e7e1", "#d6e8ed", "#91bfd9", "#1d78b5"], "heatmap": ["#d6e8ed", "#cee0e5", "#91bfd9", "#549cc6", "#1d78b5"]}, "point": {"filled": true, "shape": "circle"}, "title": {"anchor": "start", "fontSize": 24, "fontWeight": 600, "offset": 20}}, "data": {"url": "data/10074.tsv"}, "mark": "area", "encoding": {"color": {"value": "#6d904f"}, "x": {"type": "temporal", "axis": {"labelAngle": 60}, "bin": false, "field": "Year"}, "y": {"type": "quantitative", "axis": {"labelAngle": 45, "title": "Youth unemployment rate"}, "field": "Youth unemployment rate"}}, "title": ["Oman : Youth unemployment rate from 1999", "to 2020"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"} | Year Youth unemployment rate Dec 31, 1998 0.156 Dec 31, 1999 0.1462 Dec 31, 2000 0.1468 Dec 31, 2001 0.1513 Dec 31, 2002 0.1546 Dec 31, 2003 0.1536 Dec 31, 2004 0.147 Dec 31, 2005 0.1344 Dec 31, 2006 0.1263 Dec 31, 2007 0.1242 Dec 31, 2008 0.1528 Dec 31, 2009 0.1546 Dec 31, 2010 0.1452 Dec 31, 2011 0.145 Dec 31, 2012 0.1492 Dec 31, 2013 0.1483 Dec 31, 2014 0.1503 Dec 31, 2015 0.139 Dec 31, 2016 0.134 Dec 31, 2017 0.1317 Dec 31, 2018 0.1319 Dec 31, 2019 0.1375 | Youth unemployment has not changed too drastically, with 2007 seeing the lowest amount of unemployment. |
{"config": {"background": "#fff", "area": {"fill": "#3e5c69"}, "line": {"stroke": "#3e5c69"}, "rect": {"fill": "#3e5c69"}, "bar": {"fill": "#3e5c69"}, "point": {"color": "#3e5c69"}, "axis": {"domainWidth": 0.5, "grid": true, "labelPadding": 2, "tickSize": 5, "tickWidth": 0.5, "titleFontWeight": "normal"}, "axisBand": {"grid": false}, "axisX": {"gridWidth": 0.2}, "axisY": {"gridDash": [3], "gridWidth": 0.4}, "legend": {"labelFontSize": 11, "padding": 1, "symbolType": "square"}, "range": {"category": ["#3e5c69", "#6793a6", "#182429", "#0570b0", "#3690c0", "#74a9cf", "#a6bddb", "#e2ddf2"]}}, "data": {"url": "data/1008.tsv"}, "mark": "area", "encoding": {"color": {"value": "#0570b0"}, "x": {"type": "temporal", "axis": {"labelAngle": 30}, "bin": false, "field": "Year"}, "y": {"type": "quantitative", "axis": {"labelAngle": -45, "title": "Number of participants in millions"}, "field": "Number of participants in millions"}}, "title": ["Number of participants in gymnastics in", "the United States from 2006 to 2017 (in millions)"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"} | Year Number of participants in millions Dec 31, 2005 3.63 Dec 31, 2006 4.07 Dec 31, 2007 3.88 Dec 31, 2008 4.02 Dec 31, 2009 4.82 Dec 31, 2010 4.83 Dec 31, 2011 5.4 Dec 31, 2012 4.97 Dec 31, 2013 4.62 Dec 31, 2014 4.68 Dec 31, 2015 5.38 Dec 31, 2016 4.81 | From the area chart it can be sure that from 2006 to 2017 and after wards there is a minimum of 3.7 millions of participants there in gymnastics in the United States. |
{"config": {"area": {"fill": "#30a2da"}, "axis": {"domainColor": "#cbcbcb", "grid": true, "gridColor": "#cbcbcb", "gridWidth": 1, "labelColor": "#999", "labelFontSize": 10, "titleColor": "#333", "tickColor": "#cbcbcb", "tickSize": 10, "titleFontSize": 14, "titlePadding": 10, "labelPadding": 4}, "axisBand": {"grid": false}, "background": "#f0f0f0", "view": {"fill": "#f0f0f0"}, "legend": {"labelColor": "#333", "labelFontSize": 11, "padding": 1, "symbolSize": 30, "symbolType": "square", "titleColor": "#333", "titleFontSize": 14, "titlePadding": 10}, "line": {"stroke": "#30a2da", "strokeWidth": 2}, "rect": {"fill": "#30a2da"}, "bar": {"binSpacing": 2, "fill": "#30a2da", "stroke": null}, "range": {"category": ["#30a2da", "#fc4f30", "#e5ae38", "#6d904f", "#8b8b8b", "#b96db8", "#ff9e27", "#56cc60", "#52d2ca", "#52689e", "#545454", "#9fe4f8"], "diverging": ["#cc0020", "#e77866", "#f6e7e1", "#d6e8ed", "#91bfd9", "#1d78b5"], "heatmap": ["#d6e8ed", "#cee0e5", "#91bfd9", "#549cc6", "#1d78b5"]}, "point": {"filled": true, "shape": "circle"}, "title": {"anchor": "start", "fontSize": 24, "fontWeight": 600, "offset": 20}}, "data": {"url": "data/10095.tsv"}, "mark": "bar", "encoding": {"color": {"value": "#52d2ca"}, "x": {"type": "nominal", "axis": {}, "bin": false, "field": "Year"}, "y": {"type": "quantitative", "axis": {"labelAngle": 0, "title": "Euro cents per kilowatt-hour"}, "field": "Euro cents per kilowatt-hour"}}, "title": ["Natural gas prices for households in Poland", "from 2010 to 2018 , semi-annually (in euro", "cents per kilowatt-hour)"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"} | Year Euro cents per kilowatt-hour 2018 S1 4.23 2017 S2 4.42 2017 S1 4.17 2016 S2 4.41 2016 S1 3.92 2015 S2 4.98 2015 S1 5.01 2014 S2 5 2014 S1 4.89 2013 S2 5.09 2013 S1 4.7 2012 S2 5.76 2012 S1 4.69 2011 S2 5 2011 S1 4.63 2010 S2 5.05 2010 S1 4.25 | Natural gas prices for households in Poland from 2010 to 2018, semi annually (ine euro cents per kilowatt-hour) peaked at their highest in 2012 S2 and dropped to their lowest in 2016 S1. |
{"config": {"area": {"fill": "#30a2da"}, "axis": {"domainColor": "#cbcbcb", "grid": true, "gridColor": "#cbcbcb", "gridWidth": 1, "labelColor": "#999", "labelFontSize": 10, "titleColor": "#333", "tickColor": "#cbcbcb", "tickSize": 10, "titleFontSize": 14, "titlePadding": 10, "labelPadding": 4}, "axisBand": {"grid": false}, "background": "#f0f0f0", "view": {"fill": "#f0f0f0"}, "legend": {"labelColor": "#333", "labelFontSize": 11, "padding": 1, "symbolSize": 30, "symbolType": "square", "titleColor": "#333", "titleFontSize": 14, "titlePadding": 10}, "line": {"stroke": "#30a2da", "strokeWidth": 2}, "rect": {"fill": "#30a2da"}, "bar": {"binSpacing": 2, "fill": "#30a2da", "stroke": null}, "range": {"category": ["#30a2da", "#fc4f30", "#e5ae38", "#6d904f", "#8b8b8b", "#b96db8", "#ff9e27", "#56cc60", "#52d2ca", "#52689e", "#545454", "#9fe4f8"], "diverging": ["#cc0020", "#e77866", "#f6e7e1", "#d6e8ed", "#91bfd9", "#1d78b5"], "heatmap": ["#d6e8ed", "#cee0e5", "#91bfd9", "#549cc6", "#1d78b5"]}, "point": {"filled": true, "shape": "circle"}, "title": {"anchor": "start", "fontSize": 24, "fontWeight": 600, "offset": 20}}, "data": {"url": "data/10095.tsv"}, "mark": "bar", "encoding": {"color": {"value": "#52d2ca"}, "x": {"type": "nominal", "axis": {}, "bin": false, "field": "Year"}, "y": {"type": "quantitative", "axis": {"labelAngle": 0, "title": "Euro cents per kilowatt-hour"}, "field": "Euro cents per kilowatt-hour"}}, "title": ["Natural gas prices for households in Poland", "from 2010 to 2018 , semi-annually (in euro", "cents per kilowatt-hour)"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"} | Year Euro cents per kilowatt-hour 2018 S1 4.23 2017 S2 4.42 2017 S1 4.17 2016 S2 4.41 2016 S1 3.92 2015 S2 4.98 2015 S1 5.01 2014 S2 5 2014 S1 4.89 2013 S2 5.09 2013 S1 4.7 2012 S2 5.76 2012 S1 4.69 2011 S2 5 2011 S1 4.63 2010 S2 5.05 2010 S1 4.25 | Numbers have remained fairly consistent. Peak was 2012 S2 and low was 2016 S1. |
{"config": {"area": {"fill": "#30a2da"}, "axis": {"domainColor": "#cbcbcb", "grid": true, "gridColor": "#cbcbcb", "gridWidth": 1, "labelColor": "#999", "labelFontSize": 10, "titleColor": "#333", "tickColor": "#cbcbcb", "tickSize": 10, "titleFontSize": 14, "titlePadding": 10, "labelPadding": 4}, "axisBand": {"grid": false}, "background": "#f0f0f0", "view": {"fill": "#f0f0f0"}, "legend": {"labelColor": "#333", "labelFontSize": 11, "padding": 1, "symbolSize": 30, "symbolType": "square", "titleColor": "#333", "titleFontSize": 14, "titlePadding": 10}, "line": {"stroke": "#30a2da", "strokeWidth": 2}, "rect": {"fill": "#30a2da"}, "bar": {"binSpacing": 2, "fill": "#30a2da", "stroke": null}, "range": {"category": ["#30a2da", "#fc4f30", "#e5ae38", "#6d904f", "#8b8b8b", "#b96db8", "#ff9e27", "#56cc60", "#52d2ca", "#52689e", "#545454", "#9fe4f8"], "diverging": ["#cc0020", "#e77866", "#f6e7e1", "#d6e8ed", "#91bfd9", "#1d78b5"], "heatmap": ["#d6e8ed", "#cee0e5", "#91bfd9", "#549cc6", "#1d78b5"]}, "point": {"filled": true, "shape": "circle"}, "title": {"anchor": "start", "fontSize": 24, "fontWeight": 600, "offset": 20}}, "data": {"url": "data/10099.tsv"}, "mark": "line", "encoding": {"color": {"value": "#6d904f"}, "x": {"type": "temporal", "axis": {"labelAngle": 90}, "bin": false, "field": "Year"}, "y": {"type": "quantitative", "axis": {"title": "Number of residents per square mile"}, "field": "Number of residents per square mile"}}, "title": ["Population density in Ohio from 1960 to", "2018"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"} | Year Number of residents per square mile Dec 31, 1959 237 Dec 31, 1969 260.8 Dec 31, 1979 264.3 Dec 31, 1989 265.5 Dec 31, 1999 277.8 Dec 31, 2009 282.3 Dec 31, 2011 282.5 Dec 31, 2012 283.2 Dec 31, 2013 283.7 Dec 31, 2014 284.2 Dec 31, 2015 284.2 Dec 31, 2016 285.3 Dec 31, 2017 286.1 | The density of population has increased over 58 years. |
{"config": {"view": {"fill": "#e5e5e5"}, "area": {"fill": "#000"}, "line": {"stroke": "#000"}, "rect": {"fill": "#000"}, "bar": {"fill": "#000"}, "point": {"color": "#000", "size": 40}, "axis": {"domain": false, "grid": true, "gridColor": "#FFFFFF", "gridOpacity": 1, "labelColor": "#7F7F7F", "labelPadding": 4, "tickColor": "#7F7F7F", "tickSize": 5.67, "titleFontSize": 16, "titleFontWeight": "normal"}, "legend": {"labelBaseline": "middle", "labelFontSize": 11, "symbolSize": 40}, "range": {"category": ["#000000", "#7F7F7F", "#1A1A1A", "#999999", "#333333", "#B0B0B0", "#4D4D4D", "#C9C9C9", "#666666", "#DCDCDC"]}}, "data": {"url": "data/10118.tsv"}, "mark": "bar", "encoding": {"color": {"value": "#7F7F7F"}, "x": {"type": "nominal", "axis": {}, "bin": false, "field": "Year"}, "y": {"type": "quantitative", "axis": {"labelAngle": -60, "title": "Budget balance to GDP ratio"}, "field": "Budget balance to GDP ratio"}}, "title": ["Budget balance in the United States from", "2015 to 2025 in relation to gross domestic", "product (GDP)"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"} | Year Budget balance to GDP ratio 2025* −0.055 2024* −0.0541 2023* −0.0555 2022* −0.0649 2021* −0.0867 2020* −0.1872 2019 −0.0635 2018 −0.0579 2017 −0.0459 2016 −0.0436 2015 −0.0356 | 2020 shows a year with the lowest budget balance to GDP ratio. |
{"config": {"view": {"fill": "#e5e5e5"}, "area": {"fill": "#000"}, "line": {"stroke": "#000"}, "rect": {"fill": "#000"}, "bar": {"fill": "#000"}, "point": {"color": "#000", "size": 40}, "axis": {"domain": false, "grid": true, "gridColor": "#FFFFFF", "gridOpacity": 1, "labelColor": "#7F7F7F", "labelPadding": 4, "tickColor": "#7F7F7F", "tickSize": 5.67, "titleFontSize": 16, "titleFontWeight": "normal"}, "legend": {"labelBaseline": "middle", "labelFontSize": 11, "symbolSize": 40}, "range": {"category": ["#000000", "#7F7F7F", "#1A1A1A", "#999999", "#333333", "#B0B0B0", "#4D4D4D", "#C9C9C9", "#666666", "#DCDCDC"]}}, "data": {"url": "data/10122.tsv"}, "mark": "line", "encoding": {"color": {"value": "#B0B0B0"}, "x": {"type": "temporal", "axis": {"labelAngle": -45}, "bin": false, "field": "Response"}, "y": {"type": "quantitative", "axis": {"title": "Share of urban population in total population"}, "field": "Share of urban population in total population"}}, "title": ["Lebanon : Urbanization from 2009 to 2019"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"} | Response Share of urban population in total population Dec 31, 2008 0.8719 Dec 31, 2009 0.8733 Dec 31, 2010 0.8748 Dec 31, 2011 0.8764 Dec 31, 2012 0.8779 Dec 31, 2013 0.8795 Dec 31, 2014 0.8811 Dec 31, 2015 0.8827 Dec 31, 2016 0.8843 Dec 31, 2017 0.8859 Dec 31, 2018 0.8876 | The urbanisation rate increased very slightly from about 0.95 to almost 1. |
{"config": {"background": "#ffffff", "title": {"anchor": "start", "color": "#000000", "font": "Benton Gothic Bold, sans-serif", "fontSize": 22, "fontWeight": "normal"}, "area": {"fill": "#82c6df"}, "line": {"stroke": "#82c6df", "strokeWidth": 2}, "rect": {"fill": "#82c6df"}, "bar": {"fill": "#82c6df"}, "point": {"color": "#82c6df", "size": 30}, "axis": {"labelFont": "Benton Gothic, sans-serif", "labelFontSize": 11.5, "labelFontWeight": "normal", "titleFont": "Benton Gothic Bold, sans-serif", "titleFontSize": 13, "titleFontWeight": "normal"}, "axisX": {"labelPadding": 4, "tickSize": 3}, "axisY": {"labelBaseline": "middle", "maxExtent": 45, "minExtent": 45, "tickSize": 2, "titleAlign": "left", "titleAngle": 0, "titleX": -45, "titleY": -11}, "legend": {"labelFont": "Benton Gothic, sans-serif", "labelFontSize": 11.5, "symbolType": "square", "titleFont": "Benton Gothic Bold, sans-serif", "titleFontSize": 13, "titleFontWeight": "normal"}, "range": {"category": ["#ec8431", "#829eb1", "#c89d29", "#3580b1", "#adc839", "#ab7fb4"], "diverging": ["#e68a4f", "#f4bb6a", "#f9e39c", "#dadfe2", "#a6b7c6", "#849eae"], "heatmap": ["#fbf2c7", "#f9e39c", "#f8d36e", "#f4bb6a", "#e68a4f", "#d15a40", "#ab4232"], "ordinal": ["#fbf2c7", "#f9e39c", "#f8d36e", "#f4bb6a", "#e68a4f", "#d15a40", "#ab4232"], "ramp": ["#fbf2c7", "#f9e39c", "#f8d36e", "#f4bb6a", "#e68a4f", "#d15a40", "#ab4232"]}}, "data": {"url": "data/10123.tsv"}, "mark": "line", "encoding": {"color": {"value": "#ab7fb4"}, "x": {"type": "temporal", "axis": {}, "bin": false, "field": "Response"}, "y": {"type": "quantitative", "axis": {"labelAngle": -60, "title": "Share of urban population in total population"}, "field": "Share of urban population in total population"}}, "title": ["Niger : Urbanization from 2009 to 2019"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"} | Response Share of urban population in total population Dec 31, 2008 0.1623 Dec 31, 2009 0.1622 Dec 31, 2010 0.1622 Dec 31, 2011 0.1621 Dec 31, 2012 0.1621 Dec 31, 2013 0.1622 Dec 31, 2014 0.1625 Dec 31, 2015 0.1629 Dec 31, 2016 0.1635 Dec 31, 2017 0.1643 Dec 31, 2018 0.1652 | The share of Urban Population is very even from 2009 to 2017, with a slight growth from 2017 to 2019. |
{"config": {"range": {"category": ["#393b79", "#5254a3", "#6b6ecf", "#9c9ede", "#637939", "#8ca252", "#b5cf6b", "#cedb9c", "#8c6d31", "#bd9e39", "#e7ba52", "#e7cb94", "#843c39", "#ad494a", "#d6616b", "#e7969c", "#7b4173", "#a55194", "#ce6dbd", "#de9ed6"]}}, "data": {"url": "data/10126.tsv"}, "mark": "bar", "encoding": {"color": {"value": "#8ca252"}, "x": {"type": "nominal", "axis": {}, "bin": false, "field": "profession"}, "y": {"type": "quantitative", "axis": {"title": "Rate per 100,000 full-time equivalent workers"}, "field": "Rate per 100,000 full-time equivalent workers"}}, "title": ["Occupations with high fatal work injury", "rates in the U.S. in 2019"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"} | profession Rate per 100,000 full-time equivalent workers Logging workers 68.9 Fishers and related fishing workers 145 Aircraft pilots and flight engineers 61.8 Roofers 54 Refuse and recyclable material collectors 35.2 Driver/sales workers and truck drivers 26.8 Farmers, ranchers, and other agricultural managers 23.2 Structural iron and steel workers 26.3 Helpers, construction trades 40 Grounds maintenance workers 19.8 | The lowest incidence is 20 for ground maintenance workers. The highest incidence is 148 for fishers and fishing industry workers. The fishing industry is an outlier as the other industries' range is between 20 and 70. Out of 10 industries depicted, 6 have incidence below 50. 3 have incidence between 55 and 70. The mean, if we disregard the fisheries, seems to be around 40. The chart is difficult to read. |
{"config": {"range": {"category": ["#393b79", "#5254a3", "#6b6ecf", "#9c9ede", "#637939", "#8ca252", "#b5cf6b", "#cedb9c", "#8c6d31", "#bd9e39", "#e7ba52", "#e7cb94", "#843c39", "#ad494a", "#d6616b", "#e7969c", "#7b4173", "#a55194", "#ce6dbd", "#de9ed6"]}}, "data": {"url": "data/10126.tsv"}, "mark": "bar", "encoding": {"color": {"value": "#8ca252"}, "x": {"type": "nominal", "axis": {}, "bin": false, "field": "profession"}, "y": {"type": "quantitative", "axis": {"title": "Rate per 100,000 full-time equivalent workers"}, "field": "Rate per 100,000 full-time equivalent workers"}}, "title": ["Occupations with high fatal work injury", "rates in the U.S. in 2019"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"} | profession Rate per 100,000 full-time equivalent workers Logging workers 68.9 Fishers and related fishing workers 145 Aircraft pilots and flight engineers 61.8 Roofers 54 Refuse and recyclable material collectors 35.2 Driver/sales workers and truck drivers 26.8 Farmers, ranchers, and other agricultural managers 23.2 Structural iron and steel workers 26.3 Helpers, construction trades 40 Grounds maintenance workers 19.8 | Fishers and related fishing workers have the highest fatal work injury rates in the United States in 2019 (almost 150 per 100,000). Grounds maintenance workers have the lowest. |
{"config": {"background": "#333", "title": {"color": "#fff", "subtitleColor": "#fff"}, "style": {"guide-label": {"fill": "#fff"}, "guide-title": {"fill": "#fff"}}, "axis": {"domainColor": "#fff", "gridColor": "#888", "tickColor": "#fff"}, "range": {"category": ["#1b9e77", "#d95f02", "#7570b3", "#e7298a", "#66a61e", "#e6ab02", "#a6761d", "#666666"]}}, "data": {"url": "data/10128.tsv"}, "mark": "area", "encoding": {"color": {"value": "#7570b3"}, "x": {"type": "temporal", "axis": {"labelAngle": 30}, "bin": false, "field": "Year"}, "y": {"type": "quantitative", "axis": {"title": "Number of children born per woman"}, "field": "Number of children born per woman"}}, "title": ["Vietnam : Fertility rate from 2008 to 2018"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"} | Year Number of children born per woman Dec 31, 2007 1.92 Dec 31, 2008 1.93 Dec 31, 2009 1.94 Dec 31, 2010 1.95 Dec 31, 2011 1.96 Dec 31, 2012 1.98 Dec 31, 2013 2 Dec 31, 2014 2.01 Dec 31, 2015 2.03 Dec 31, 2016 2.04 Dec 31, 2017 2.05 | Over the 10 year period the fertility rate in Vietnam is gradually increasing from around 1.9 Children born per woman in 2008 to about 2.1 children in 2018. |
{"config": {"background": "#333", "title": {"color": "#fff", "subtitleColor": "#fff"}, "style": {"guide-label": {"fill": "#fff"}, "guide-title": {"fill": "#fff"}}, "axis": {"domainColor": "#fff", "gridColor": "#888", "tickColor": "#fff"}, "range": {"category": ["#1b9e77", "#d95f02", "#7570b3", "#e7298a", "#66a61e", "#e6ab02", "#a6761d", "#666666"]}}, "data": {"url": "data/10128.tsv"}, "mark": "area", "encoding": {"color": {"value": "#7570b3"}, "x": {"type": "temporal", "axis": {"labelAngle": 30}, "bin": false, "field": "Year"}, "y": {"type": "quantitative", "axis": {"title": "Number of children born per woman"}, "field": "Number of children born per woman"}}, "title": ["Vietnam : Fertility rate from 2008 to 2018"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"} | Year Number of children born per woman Dec 31, 2007 1.92 Dec 31, 2008 1.93 Dec 31, 2009 1.94 Dec 31, 2010 1.95 Dec 31, 2011 1.96 Dec 31, 2012 1.98 Dec 31, 2013 2 Dec 31, 2014 2.01 Dec 31, 2015 2.03 Dec 31, 2016 2.04 Dec 31, 2017 2.05 | In the years 2008 to 2018 the average number of women born per woman in Vietnam has increased. |
{"config": {"background": "#333", "title": {"color": "#fff", "subtitleColor": "#fff"}, "style": {"guide-label": {"fill": "#fff"}, "guide-title": {"fill": "#fff"}}, "axis": {"domainColor": "#fff", "gridColor": "#888", "tickColor": "#fff"}, "range": {"category": ["#1b9e77", "#d95f02", "#7570b3", "#e7298a", "#66a61e", "#e6ab02", "#a6761d", "#666666"]}}, "data": {"url": "data/10160.tsv"}, "mark": "bar", "encoding": {"color": {"value": "#66a61e"}, "x": {"type": "quantitative", "axis": {"title": "Euro cents per kilowatt-hour"}, "field": "Euro cents per kilowatt-hour"}, "y": {"type": "nominal", "axis": {}, "bin": false, "field": "Year"}}, "title": ["Natural gas prices for households in Spain", "from 2010 to 2018 , semi-annually (in euro", "cents per kilowatt-hour)"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"} | Euro cents per kilowatt-hour Year 6.65 2018 S1 8.65 2017 S2 6.67 2017 S1 8.57 2016 S2 6.77 2016 S1 9.56 2015 S2 7.31 2015 S1 9.59 2014 S2 7.52 2014 S1 8.92 2013 S2 7.32 2013 S1 8.63 2012 S2 6.61 2012 S1 5.4 2011 S2 5.36 2011 S1 5.4 2010 S2 5.34 2010 S1 | Gas prices were lower between 2010- 2011 - they rose after that but remained stable. |
{"config": {"background": "#fff", "area": {"fill": "#4572a7"}, "line": {"stroke": "#4572a7", "strokeWidth": 2}, "rect": {"fill": "#4572a7"}, "bar": {"fill": "#4572a7"}, "point": {"color": "#4572a7", "strokeWidth": 1.5, "size": 50}, "axis": {"bandPosition": 0.5, "grid": true, "gridColor": "#000000", "gridOpacity": 1, "gridWidth": 0.5, "labelPadding": 10, "tickSize": 5, "tickWidth": 0.5}, "axisBand": {"grid": false, "tickExtra": true}, "legend": {"labelBaseline": "middle", "labelFontSize": 11, "symbolSize": 50, "symbolType": "square"}, "range": {"category": ["#4572a7", "#aa4643", "#8aa453", "#71598e", "#4598ae", "#d98445", "#94aace", "#d09393", "#b9cc98", "#a99cbc"]}}, "data": {"url": "data/10161.tsv"}, "mark": "line", "encoding": {"color": {"value": "#71598e"}, "x": {"type": "temporal", "axis": {"labelAngle": -30}, "bin": false, "field": "Year"}, "y": {"type": "quantitative", "axis": {"title": "Average annual wages in euros"}, "field": "Average annual wages in euros"}}, "title": ["Average annual wages in Portugal from 2000", "to 2019 (in euros)"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"} | Year Average annual wages in euros Dec 31, 1999 17724 Dec 31, 2000 17802 Dec 31, 2001 17793 Dec 31, 2002 17747 Dec 31, 2003 17777 Dec 31, 2004 17675 Dec 31, 2005 17292 Dec 31, 2006 17414 Dec 31, 2007 17358 Dec 31, 2008 18159 Dec 31, 2009 18090 Dec 31, 2010 18058 Dec 31, 2011 17282 Dec 31, 2012 17614 Dec 31, 2013 17311 Dec 31, 2014 17260 Dec 31, 2015 17160 Dec 31, 2016 17237 Dec 31, 2017 17416 Dec 31, 2018 17562 | The average income in Portugal over 20 years, from 2000 to 2019, hasn't varied massively. The maximum variation seems to occur between 2011 and 2012. Nevertheless, average income in Portugal fluctuates between 17000 and 18500 a year. |
{"config": {"area": {"fill": "#30a2da"}, "axis": {"domainColor": "#cbcbcb", "grid": true, "gridColor": "#cbcbcb", "gridWidth": 1, "labelColor": "#999", "labelFontSize": 10, "titleColor": "#333", "tickColor": "#cbcbcb", "tickSize": 10, "titleFontSize": 14, "titlePadding": 10, "labelPadding": 4}, "axisBand": {"grid": false}, "background": "#f0f0f0", "view": {"fill": "#f0f0f0"}, "legend": {"labelColor": "#333", "labelFontSize": 11, "padding": 1, "symbolSize": 30, "symbolType": "square", "titleColor": "#333", "titleFontSize": 14, "titlePadding": 10}, "line": {"stroke": "#30a2da", "strokeWidth": 2}, "rect": {"fill": "#30a2da"}, "bar": {"binSpacing": 2, "fill": "#30a2da", "stroke": null}, "range": {"category": ["#30a2da", "#fc4f30", "#e5ae38", "#6d904f", "#8b8b8b", "#b96db8", "#ff9e27", "#56cc60", "#52d2ca", "#52689e", "#545454", "#9fe4f8"], "diverging": ["#cc0020", "#e77866", "#f6e7e1", "#d6e8ed", "#91bfd9", "#1d78b5"], "heatmap": ["#d6e8ed", "#cee0e5", "#91bfd9", "#549cc6", "#1d78b5"]}, "point": {"filled": true, "shape": "circle"}, "title": {"anchor": "start", "fontSize": 24, "fontWeight": 600, "offset": 20}}, "data": {"url": "data/10163.tsv"}, "mark": "line", "encoding": {"color": {"value": "#52d2ca"}, "x": {"type": "temporal", "axis": {"labelAngle": -90}, "bin": false, "field": "Month"}, "y": {"type": "quantitative", "axis": {"labelAngle": -30, "title": "Consumer price index*"}, "field": "Consumer price index*"}}, "title": ["Monthly consumer price index (CPI) of lamb", "and goat meat in Italy from January 2019", "to November 2020"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"} | Month Consumer price index* Dec 31, 2018 101.7 Jan 31, 2019 101.5 Feb 28, 2019 101.5 Mar 31, 2019 102.1 Apr 30, 2019 102.1 May 31, 2019 101.9 Jun 30, 2019 101.8 Jul 31, 2019 101.9 Aug 31, 2019 101.9 Sep 30, 2019 102.4 Oct 31, 2019 102.5 Nov 30, 2019 103.3 Dec 31, 2019 102.8 Jan 31, 2020 102.7 Feb 29, 2020 102.8 Mar 31, 2020 104 Apr 30, 2020 104.2 May 31, 2020 104 Jun 30, 2020 103.5 Jul 31, 2020 103.8 Aug 31, 2020 103.8 Sep 30, 2020 104.3 Oct 31, 2020 104.5 | The price of meat in Italy has risen fairly steadily over the course of two years. The price of meat has been over 100 on the consumer price index between january 2019 and november 2020. |
{"config": {"background": "#000", "title": {"color": "#fff", "subtitleColor": "#fff"}, "style": {"guide-label": {"fill": "#fff"}, "guide-title": {"fill": "#fff"}}, "axis": {"domainColor": "#fff", "gridColor": "#888", "tickColor": "#fff"}, "range": {"category": ["#7fc97f", "#beaed4", "#fdc086", "#ffff99", "#386cb0", "#f0027f", "#bf5b17", "#666666"]}}, "data": {"url": "data/10170.tsv"}, "mark": "bar", "encoding": {"color": {"value": "#fdc086"}, "x": {"type": "quantitative", "axis": {"title": "Number of employees"}, "field": "Number of employees"}, "y": {"type": "nominal", "axis": {"labelAngle": 30}, "bin": false, "field": "Year"}}, "title": ["Employment in United States copper mines", "and mills from 2006 to 2019"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"} | Number of employees Year 12000 2019* 11700 2018 10500 2017 10100 2016 11200 2015 12100 2014 12000 2013 11400 2012 10600 2011 9500 2010 8300 2009 11900 2008 9700 2007 8400 2006 | Periods found difficult to recruit and retain staff. |
{"config": {"view": {"stroke": "transparent"}, "background": "transparent", "font": "Segoe UI", "header": {"titleFont": "wf_standard-font, helvetica, arial, sans-serif", "titleFontSize": 16, "titleColor": "#252423", "labelFont": "Segoe UI", "labelFontSize": 13.333333333333332, "labelColor": "#605E5C"}, "axis": {"ticks": false, "grid": false, "domain": false, "labelColor": "#605E5C", "labelFontSize": 12, "titleFont": "wf_standard-font, helvetica, arial, sans-serif", "titleColor": "#252423", "titleFontSize": 16, "titleFontWeight": "normal"}, "axisQuantitative": {"tickCount": 3, "grid": true, "gridColor": "#C8C6C4", "gridDash": [1, 5], "labelFlush": false}, "axisBand": {"tickExtra": true}, "axisX": {"labelPadding": 5}, "axisY": {"labelPadding": 10}, "bar": {"fill": "#118DFF"}, "line": {"stroke": "#118DFF", "strokeWidth": 3, "strokeCap": "round", "strokeJoin": "round"}, "text": {"font": "Segoe UI", "fontSize": 12, "fill": "#605E5C"}, "area": {"fill": "#118DFF", "line": true, "opacity": 0.6}, "rect": {"fill": "#118DFF"}, "point": {"fill": "#118DFF", "filled": true, "size": 75}, "legend": {"titleFont": "Segoe UI", "titleFontWeight": "bold", "titleColor": "#605E5C", "labelFont": "Segoe UI", "labelFontSize": 13.333333333333332, "labelColor": "#605E5C", "symbolType": "circle", "symbolSize": 75}, "range": {"category": ["#118DFF", "#12239E", "#E66C37", "#6B007B", "#E044A7", "#744EC2", "#D9B300", "#D64550"], "diverging": ["#DEEFFF", "#118DFF"], "heatmap": ["#DEEFFF", "#118DFF"], "ordinal": ["#DEEFFF", "#c7e4ff", "#b0d9ff", "#9aceff", "#83c3ff", "#6cb9ff", "#55aeff", "#3fa3ff", "#2898ff", "#118DFF"]}}, "data": {"url": "data/10173.tsv"}, "mark": "line", "encoding": {"color": {"value": "#E66C37"}, "x": {"type": "temporal", "axis": {}, "bin": false, "field": "Year"}, "y": {"type": "quantitative", "axis": {"labelAngle": 45, "title": "Number of hospital beds"}, "field": "Number of hospital beds"}}, "title": ["Number of hospital beds in Finland from", "2008 to 2018"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"} | Year Number of hospital beds Dec 31, 2007 34901 Dec 31, 2008 33380 Dec 31, 2009 31396 Dec 31, 2010 29751 Dec 31, 2011 28685 Dec 31, 2012 26500 Dec 31, 2013 24741 Dec 31, 2014 23854 Dec 31, 2015 21835 Dec 31, 2016 18072 Dec 31, 2017 19921 | Hospital beds in Finland have be largely falling during the time period of the charr from 30 thousand to 19 thousand. In recent years a slight increase can be seen,. |
{"config": {"view": {"stroke": "transparent"}, "background": "transparent", "font": "Segoe UI", "header": {"titleFont": "wf_standard-font, helvetica, arial, sans-serif", "titleFontSize": 16, "titleColor": "#252423", "labelFont": "Segoe UI", "labelFontSize": 13.333333333333332, "labelColor": "#605E5C"}, "axis": {"ticks": false, "grid": false, "domain": false, "labelColor": "#605E5C", "labelFontSize": 12, "titleFont": "wf_standard-font, helvetica, arial, sans-serif", "titleColor": "#252423", "titleFontSize": 16, "titleFontWeight": "normal"}, "axisQuantitative": {"tickCount": 3, "grid": true, "gridColor": "#C8C6C4", "gridDash": [1, 5], "labelFlush": false}, "axisBand": {"tickExtra": true}, "axisX": {"labelPadding": 5}, "axisY": {"labelPadding": 10}, "bar": {"fill": "#118DFF"}, "line": {"stroke": "#118DFF", "strokeWidth": 3, "strokeCap": "round", "strokeJoin": "round"}, "text": {"font": "Segoe UI", "fontSize": 12, "fill": "#605E5C"}, "area": {"fill": "#118DFF", "line": true, "opacity": 0.6}, "rect": {"fill": "#118DFF"}, "point": {"fill": "#118DFF", "filled": true, "size": 75}, "legend": {"titleFont": "Segoe UI", "titleFontWeight": "bold", "titleColor": "#605E5C", "labelFont": "Segoe UI", "labelFontSize": 13.333333333333332, "labelColor": "#605E5C", "symbolType": "circle", "symbolSize": 75}, "range": {"category": ["#118DFF", "#12239E", "#E66C37", "#6B007B", "#E044A7", "#744EC2", "#D9B300", "#D64550"], "diverging": ["#DEEFFF", "#118DFF"], "heatmap": ["#DEEFFF", "#118DFF"], "ordinal": ["#DEEFFF", "#c7e4ff", "#b0d9ff", "#9aceff", "#83c3ff", "#6cb9ff", "#55aeff", "#3fa3ff", "#2898ff", "#118DFF"]}}, "data": {"url": "data/10173.tsv"}, "mark": "line", "encoding": {"color": {"value": "#E66C37"}, "x": {"type": "temporal", "axis": {}, "bin": false, "field": "Year"}, "y": {"type": "quantitative", "axis": {"labelAngle": 45, "title": "Number of hospital beds"}, "field": "Number of hospital beds"}}, "title": ["Number of hospital beds in Finland from", "2008 to 2018"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"} | Year Number of hospital beds Dec 31, 2007 34901 Dec 31, 2008 33380 Dec 31, 2009 31396 Dec 31, 2010 29751 Dec 31, 2011 28685 Dec 31, 2012 26500 Dec 31, 2013 24741 Dec 31, 2014 23854 Dec 31, 2015 21835 Dec 31, 2016 18072 Dec 31, 2017 19921 | The number of hospital beds in Finlad linearly decreased from 2008 to 2017 (trough) and slightly increased up to 20,000 beds in 2018. |
{"config": {"background": "#000", "title": {"color": "#fff", "subtitleColor": "#fff"}, "style": {"guide-label": {"fill": "#fff"}, "guide-title": {"fill": "#fff"}}, "axis": {"domainColor": "#fff", "gridColor": "#888", "tickColor": "#fff"}, "range": {"category": ["#7fc97f", "#beaed4", "#fdc086", "#ffff99", "#386cb0", "#f0027f", "#bf5b17", "#666666"]}}, "data": {"url": "data/10174.tsv"}, "mark": "bar", "encoding": {"color": {"value": "#f0027f"}, "x": {"type": "quantitative", "axis": {"title": "Number of establishments"}, "field": "Number of establishments"}, "y": {"type": "nominal", "axis": {"labelAngle": 0}, "bin": false, "field": "province of Canada"}}, "title": ["Number of plumbing and HVAC contractor establishments", "in Canada in 2019 , by province"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"} | Number of establishments province of Canada 10580 Ontario 4151 British Columbia 3826 Alberta 3783 Quebec 927 Saskatchewan 822 Manitoba 597 Nova Scotia 447 New Brunswick 250 Newfoundland and Labrador 125 Prince Edward Island 51 Yukon 29 Northwest Territories 7 Nunavut | Ontario has over 10,000 plumbing and HVAC contractor establishments. All other provinces have under 6,000 establishments. Nunavut has none. |
{"config": {"area": {"fill": "#30a2da"}, "axis": {"domainColor": "#cbcbcb", "grid": true, "gridColor": "#cbcbcb", "gridWidth": 1, "labelColor": "#999", "labelFontSize": 10, "titleColor": "#333", "tickColor": "#cbcbcb", "tickSize": 10, "titleFontSize": 14, "titlePadding": 10, "labelPadding": 4}, "axisBand": {"grid": false}, "background": "#f0f0f0", "view": {"fill": "#f0f0f0"}, "legend": {"labelColor": "#333", "labelFontSize": 11, "padding": 1, "symbolSize": 30, "symbolType": "square", "titleColor": "#333", "titleFontSize": 14, "titlePadding": 10}, "line": {"stroke": "#30a2da", "strokeWidth": 2}, "rect": {"fill": "#30a2da"}, "bar": {"binSpacing": 2, "fill": "#30a2da", "stroke": null}, "range": {"category": ["#30a2da", "#fc4f30", "#e5ae38", "#6d904f", "#8b8b8b", "#b96db8", "#ff9e27", "#56cc60", "#52d2ca", "#52689e", "#545454", "#9fe4f8"], "diverging": ["#cc0020", "#e77866", "#f6e7e1", "#d6e8ed", "#91bfd9", "#1d78b5"], "heatmap": ["#d6e8ed", "#cee0e5", "#91bfd9", "#549cc6", "#1d78b5"]}, "point": {"filled": true, "shape": "circle"}, "title": {"anchor": "start", "fontSize": 24, "fontWeight": 600, "offset": 20}}, "data": {"url": "data/10176.tsv"}, "mark": "line", "encoding": {"color": {"value": "#ff9e27"}, "x": {"type": "temporal", "axis": {}, "bin": false, "field": "Year"}, "y": {"type": "quantitative", "axis": {"labelAngle": 30, "title": "Operating revenue in million U.S. dollars"}, "field": "Operating revenue in million U\\.S\\. dollars"}}, "title": ["Waste Management Inc. 's operating revenue", "from FY 2007 to FY 2019 (in million U.S.", "dollars)"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"} | Year Operating revenue in million U.S. dollars Dec 31, 2006 13310 Dec 31, 2007 13388 Dec 31, 2008 11791 Dec 31, 2009 12515 Dec 31, 2010 13378 Dec 31, 2011 13649 Dec 31, 2012 13983 Dec 31, 2013 13996 Dec 31, 2014 12961 Dec 31, 2015 13609 Dec 31, 2016 14485 Dec 31, 2017 14914 Dec 31, 2018 15455 | The operating revenue has not increased by much, although the increase is steady. I’m 2007 the value was slightly under 15 million dollars, and presently the value is slightly over 15 million dollars. There have been decreases in revenue over time, but the trend increases overall. |
{"config": {"background": "#333", "title": {"color": "#fff", "subtitleColor": "#fff"}, "style": {"guide-label": {"fill": "#fff"}, "guide-title": {"fill": "#fff"}}, "axis": {"domainColor": "#fff", "gridColor": "#888", "tickColor": "#fff"}, "range": {"category": ["#1b9e77", "#d95f02", "#7570b3", "#e7298a", "#66a61e", "#e6ab02", "#a6761d", "#666666"]}}, "data": {"url": "data/10178.tsv"}, "mark": "area", "encoding": {"color": {"value": "#66a61e"}, "x": {"type": "temporal", "axis": {"labelAngle": -30}, "bin": false, "field": "Response"}, "y": {"type": "quantitative", "axis": {"title": "Percentage of population"}, "field": "Percentage of population"}}, "title": ["Poverty rate in Michigan from 2000 to 2019"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"} | Response Percentage of population Dec 31, 1999 0.101 Dec 31, 2000 0.106 Dec 31, 2001 0.11 Dec 31, 2002 0.114 Dec 31, 2003 0.123 Dec 31, 2004 0.132 Dec 31, 2005 0.135 Dec 31, 2006 0.14 Dec 31, 2007 0.144 Dec 31, 2008 0.162 Dec 31, 2009 0.168 Dec 31, 2010 0.175 Dec 31, 2011 0.174 Dec 31, 2012 0.17 Dec 31, 2013 0.162 Dec 31, 2014 0.158 Dec 31, 2015 0.15 Dec 31, 2016 0.142 Dec 31, 2017 0.141 Dec 31, 2018 0.13 | The poverty rate in Michigan increased between 2000 and 2011. After 2011, it began to drop until 2019. The lowest poverty rate of around 10% was in 2000. The highest poverty rate of around 19% was in 2011. |
{"config": {"range": {"category": ["#393b79", "#5254a3", "#6b6ecf", "#9c9ede", "#637939", "#8ca252", "#b5cf6b", "#cedb9c", "#8c6d31", "#bd9e39", "#e7ba52", "#e7cb94", "#843c39", "#ad494a", "#d6616b", "#e7969c", "#7b4173", "#a55194", "#ce6dbd", "#de9ed6"]}}, "data": {"url": "data/10185.tsv"}, "mark": "bar", "encoding": {"color": {"value": "#de9ed6"}, "x": {"type": "quantitative", "axis": {"title": "Production in standard cubic meters"}, "field": "Production in standard cubic meters"}, "y": {"type": "nominal", "axis": {"labelAngle": 30}, "bin": false, "field": "region of Italy"}}, "title": ["Natural gas production in Italy in 2018", ", by region (in standard cubic meters)"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"} | Production in standard cubic meters region of Italy 3380762482 Offshore production 1572312738 Basilicata 198271433 Emilia-Romagna 186430397 Sicily 84484437 Apulia 72832056 Molise 17539855 Lombardy 13909598 Abruzzo 8741927 Marche 7631694 Piedmont 6052898 Calabria 2668557 Tuscany 1563978 Veneto | The overwhelming majority of natural gas production in Italy comes from off-shore sources. Apulia, Sicily, Molise and Emilia-Romagna are the only regions of Italy with any notable natural gas production. |
{"config": {"area": {"fill": "#30a2da"}, "axis": {"domainColor": "#cbcbcb", "grid": true, "gridColor": "#cbcbcb", "gridWidth": 1, "labelColor": "#999", "labelFontSize": 10, "titleColor": "#333", "tickColor": "#cbcbcb", "tickSize": 10, "titleFontSize": 14, "titlePadding": 10, "labelPadding": 4}, "axisBand": {"grid": false}, "background": "#f0f0f0", "view": {"fill": "#f0f0f0"}, "legend": {"labelColor": "#333", "labelFontSize": 11, "padding": 1, "symbolSize": 30, "symbolType": "square", "titleColor": "#333", "titleFontSize": 14, "titlePadding": 10}, "line": {"stroke": "#30a2da", "strokeWidth": 2}, "rect": {"fill": "#30a2da"}, "bar": {"binSpacing": 2, "fill": "#30a2da", "stroke": null}, "range": {"category": ["#30a2da", "#fc4f30", "#e5ae38", "#6d904f", "#8b8b8b", "#b96db8", "#ff9e27", "#56cc60", "#52d2ca", "#52689e", "#545454", "#9fe4f8"], "diverging": ["#cc0020", "#e77866", "#f6e7e1", "#d6e8ed", "#91bfd9", "#1d78b5"], "heatmap": ["#d6e8ed", "#cee0e5", "#91bfd9", "#549cc6", "#1d78b5"]}, "point": {"filled": true, "shape": "circle"}, "title": {"anchor": "start", "fontSize": 24, "fontWeight": 600, "offset": 20}}, "data": {"url": "data/10187.tsv"}, "mark": "area", "encoding": {"color": {"value": "#fc4f30"}, "x": {"type": "temporal", "axis": {"labelAngle": -45}, "bin": false, "field": "Year"}, "y": {"type": "quantitative", "axis": {"labelAngle": -30, "title": "Value per head in U.S. dollars"}, "field": "Value per head in U\\.S\\. dollars"}}, "title": ["Value per head of cattle and calves in the", "U.S. from 2001 to 2018 (in U.S. dollars)"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"} | Year Value per head in U.S. dollars Dec 31, 2000 725 Dec 31, 2001 747 Dec 31, 2002 728 Dec 31, 2003 818 Dec 31, 2004 916 Dec 31, 2005 1009 Dec 31, 2006 922 Dec 31, 2007 990 Dec 31, 2008 872 Dec 31, 2009 832 Dec 31, 2010 947 Dec 31, 2011 1111 Dec 31, 2012 1139 Dec 31, 2013 1223 Dec 31, 2014 1584 Dec 31, 2015 1410 Dec 31, 2016 1109 Dec 31, 2017 1146 | The value per head of cattle and calves stayed quite stable from 2000 for a few years. The value per head of cattle and calves sharply increased in 2005 to almost double the price but then fell in the next five years. After 2010 the value per head of cattle and calves once again rose sharply and for around five years, the price was almost treble what it was originally. After 2015 the value per head of cattle and calves has declined but looks to show signs of recovery and increase again. |
{"config": {"range": {"category": ["#393b79", "#5254a3", "#6b6ecf", "#9c9ede", "#637939", "#8ca252", "#b5cf6b", "#cedb9c", "#8c6d31", "#bd9e39", "#e7ba52", "#e7cb94", "#843c39", "#ad494a", "#d6616b", "#e7969c", "#7b4173", "#a55194", "#ce6dbd", "#de9ed6"]}}, "data": {"url": "data/10191.tsv"}, "mark": "line", "encoding": {"color": {"value": "#5254a3"}, "x": {"type": "temporal", "axis": {}, "bin": false, "field": "Year"}, "y": {"type": "quantitative", "axis": {"labelAngle": 30, "title": "Number of hospital beds"}, "field": "Number of hospital beds"}}, "title": ["Number of hospital beds in Spain from 2010", "to 2020"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"} | Year Number of hospital beds Dec 31, 2009 161022 Dec 31, 2010 161022 Dec 31, 2011 162538 Dec 31, 2012 162070 Dec 31, 2013 159970 Dec 31, 2014 159297 Dec 31, 2015 158566 Dec 31, 2016 157665 Dec 31, 2017 158269 Dec 31, 2018 158292 Dec 31, 2019 157249 | The chart shows that the amount of hospital beds has remained fairly constant for the 10 years shown. |
{"config": {"background": "#fff", "area": {"fill": "#4572a7"}, "line": {"stroke": "#4572a7", "strokeWidth": 2}, "rect": {"fill": "#4572a7"}, "bar": {"fill": "#4572a7"}, "point": {"color": "#4572a7", "strokeWidth": 1.5, "size": 50}, "axis": {"bandPosition": 0.5, "grid": true, "gridColor": "#000000", "gridOpacity": 1, "gridWidth": 0.5, "labelPadding": 10, "tickSize": 5, "tickWidth": 0.5}, "axisBand": {"grid": false, "tickExtra": true}, "legend": {"labelBaseline": "middle", "labelFontSize": 11, "symbolSize": 50, "symbolType": "square"}, "range": {"category": ["#4572a7", "#aa4643", "#8aa453", "#71598e", "#4598ae", "#d98445", "#94aace", "#d09393", "#b9cc98", "#a99cbc"]}}, "data": {"url": "data/101.tsv"}, "mark": "line", "encoding": {"color": {"value": "#94aace"}, "x": {"type": "temporal", "axis": {"labelAngle": -60}, "bin": false, "field": "Year"}, "y": {"type": "quantitative", "axis": {"title": "Number of retail stores"}, "field": "Number of retail stores"}}, "title": ["Total Nike retail stores worldwide from", "2009 to 2020"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"} | Year Number of retail stores Dec 31, 2008 674 Dec 31, 2009 689 Dec 31, 2010 756 Dec 31, 2011 826 Dec 31, 2012 753 Dec 31, 2013 858 Dec 31, 2014 931 Dec 31, 2015 1045 Dec 31, 2016 1142 Dec 31, 2017 1182 Dec 31, 2018 1152 Dec 31, 2019 1096 | The number of stores increases over time from 2010 to 2012, a small decrease is the observed over the next year. There is another increase until 2018, the graph then decreases after this date. The peak amount of shops is in 2018 at just under 1200 shops, up from just under 700 shops at the beginning of the graph. The drop in shops in 2013 takes the number of shops to around 750. |
{"config": {"range": {"category": ["#393b79", "#5254a3", "#6b6ecf", "#9c9ede", "#637939", "#8ca252", "#b5cf6b", "#cedb9c", "#8c6d31", "#bd9e39", "#e7ba52", "#e7cb94", "#843c39", "#ad494a", "#d6616b", "#e7969c", "#7b4173", "#a55194", "#ce6dbd", "#de9ed6"]}}, "data": {"url": "data/10203.tsv"}, "mark": "area", "encoding": {"color": {"value": "#393b79"}, "x": {"type": "temporal", "axis": {"labelAngle": 45}, "bin": false, "field": "Year"}, "y": {"type": "quantitative", "axis": {"labelAngle": 60, "title": "Volume in thousand litres"}, "field": "Volume in thousand litres"}}, "title": ["Annual volume of Scotch whisky released", "for consumption in the United Kingdom (UK)", "from 2000 to 2015 (in 1,000 litres)"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"} | Year Volume in thousand litres Dec 31, 1999 31382 Dec 31, 2000 32079 Dec 31, 2001 32069 Dec 31, 2002 31830 Dec 31, 2003 31930 Dec 31, 2004 30088 Dec 31, 2005 28259 Dec 31, 2006 28591 Dec 31, 2007 28938 Dec 31, 2008 25810 Dec 31, 2009 26685 Dec 31, 2010 25209 Dec 31, 2011 25235 Dec 31, 2012 24490 Dec 31, 2013 23319 Dec 31, 2014 23783 | In the 15years the volume of Scotch whiskey that has been released for consumption has declined. |
{"config": {"area": {"fill": "#30a2da"}, "axis": {"domainColor": "#cbcbcb", "grid": true, "gridColor": "#cbcbcb", "gridWidth": 1, "labelColor": "#999", "labelFontSize": 10, "titleColor": "#333", "tickColor": "#cbcbcb", "tickSize": 10, "titleFontSize": 14, "titlePadding": 10, "labelPadding": 4}, "axisBand": {"grid": false}, "background": "#f0f0f0", "view": {"fill": "#f0f0f0"}, "legend": {"labelColor": "#333", "labelFontSize": 11, "padding": 1, "symbolSize": 30, "symbolType": "square", "titleColor": "#333", "titleFontSize": 14, "titlePadding": 10}, "line": {"stroke": "#30a2da", "strokeWidth": 2}, "rect": {"fill": "#30a2da"}, "bar": {"binSpacing": 2, "fill": "#30a2da", "stroke": null}, "range": {"category": ["#30a2da", "#fc4f30", "#e5ae38", "#6d904f", "#8b8b8b", "#b96db8", "#ff9e27", "#56cc60", "#52d2ca", "#52689e", "#545454", "#9fe4f8"], "diverging": ["#cc0020", "#e77866", "#f6e7e1", "#d6e8ed", "#91bfd9", "#1d78b5"], "heatmap": ["#d6e8ed", "#cee0e5", "#91bfd9", "#549cc6", "#1d78b5"]}, "point": {"filled": true, "shape": "circle"}, "title": {"anchor": "start", "fontSize": 24, "fontWeight": 600, "offset": 20}}, "data": {"url": "data/10207.tsv"}, "mark": "bar", "encoding": {"color": {"value": "#545454"}, "x": {"type": "nominal", "axis": {"labelAngle": 90}, "bin": false, "field": "Year"}, "y": {"type": "quantitative", "axis": {"title": "Number of employees"}, "field": "Number of employees"}}, "title": ["Number of employees of Ryanair from fiscal", "year 2011 to 2020"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"} | Year Number of employees 2020 17268 2019* 16840 2018 14583 2017 13026 2016 11458 2015 9393 2014 8992 2013 9137 2012 8388 2011 8560 | The number of employees of Ryanair has increased from 2011 to 2020. In 2011 there were approximately 8,000 employees, whereas in 2020 there were approximately 19,000 employees. |
{"config": {"background": "#fff", "area": {"fill": "#4572a7"}, "line": {"stroke": "#4572a7", "strokeWidth": 2}, "rect": {"fill": "#4572a7"}, "bar": {"fill": "#4572a7"}, "point": {"color": "#4572a7", "strokeWidth": 1.5, "size": 50}, "axis": {"bandPosition": 0.5, "grid": true, "gridColor": "#000000", "gridOpacity": 1, "gridWidth": 0.5, "labelPadding": 10, "tickSize": 5, "tickWidth": 0.5}, "axisBand": {"grid": false, "tickExtra": true}, "legend": {"labelBaseline": "middle", "labelFontSize": 11, "symbolSize": 50, "symbolType": "square"}, "range": {"category": ["#4572a7", "#aa4643", "#8aa453", "#71598e", "#4598ae", "#d98445", "#94aace", "#d09393", "#b9cc98", "#a99cbc"]}}, "data": {"url": "data/10209.tsv"}, "mark": "bar", "encoding": {"color": {"value": "#d98445"}, "x": {"type": "nominal", "axis": {"labelAngle": -30}, "bin": false, "field": "Country"}, "y": {"type": "quantitative", "axis": {"title": "Subscriptions per 100 inhabitants"}, "field": "Subscriptions per 100 inhabitants"}}, "title": ["Leading countries with the most mobile broadband", "subscriptions per 100 inhabitants in 2017"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"} | Country Subscriptions per 100 inhabitants Macao (China) 321.8 United Arab Emirates 243.4 Finland 153.8 Singapore 148.2 Bahrain 147.3 Australia 134.9 Estonia 133.4 Japan 133.2 United States 132.9 Denmark 129 Brunei Darussalam 126.6 Sweden 122.6 Liechtenstein 122.6 Latvia 117.9 Qatar 117.4 Costa Rica 116.6 San Marino 113.8 Iceland 113.3 South Korea 112.8 Uruguay 112.1 | china has the most broadband subscribers along with united arab emerates. |
{"config": {"background": "#fff", "area": {"fill": "#4572a7"}, "line": {"stroke": "#4572a7", "strokeWidth": 2}, "rect": {"fill": "#4572a7"}, "bar": {"fill": "#4572a7"}, "point": {"color": "#4572a7", "strokeWidth": 1.5, "size": 50}, "axis": {"bandPosition": 0.5, "grid": true, "gridColor": "#000000", "gridOpacity": 1, "gridWidth": 0.5, "labelPadding": 10, "tickSize": 5, "tickWidth": 0.5}, "axisBand": {"grid": false, "tickExtra": true}, "legend": {"labelBaseline": "middle", "labelFontSize": 11, "symbolSize": 50, "symbolType": "square"}, "range": {"category": ["#4572a7", "#aa4643", "#8aa453", "#71598e", "#4598ae", "#d98445", "#94aace", "#d09393", "#b9cc98", "#a99cbc"]}}, "data": {"url": "data/10209.tsv"}, "mark": "bar", "encoding": {"color": {"value": "#d98445"}, "x": {"type": "nominal", "axis": {"labelAngle": -30}, "bin": false, "field": "Country"}, "y": {"type": "quantitative", "axis": {"title": "Subscriptions per 100 inhabitants"}, "field": "Subscriptions per 100 inhabitants"}}, "title": ["Leading countries with the most mobile broadband", "subscriptions per 100 inhabitants in 2017"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"} | Country Subscriptions per 100 inhabitants Macao (China) 321.8 United Arab Emirates 243.4 Finland 153.8 Singapore 148.2 Bahrain 147.3 Australia 134.9 Estonia 133.4 Japan 133.2 United States 132.9 Denmark 129 Brunei Darussalam 126.6 Sweden 122.6 Liechtenstein 122.6 Latvia 117.9 Qatar 117.4 Costa Rica 116.6 San Marino 113.8 Iceland 113.3 South Korea 112.8 Uruguay 112.1 | China had the most subscriptions at 325. China and United Arab are the highest 2 countries and the rest are averaged at about 125. |
{"config": {"background": "#fff", "area": {"fill": "#4572a7"}, "line": {"stroke": "#4572a7", "strokeWidth": 2}, "rect": {"fill": "#4572a7"}, "bar": {"fill": "#4572a7"}, "point": {"color": "#4572a7", "strokeWidth": 1.5, "size": 50}, "axis": {"bandPosition": 0.5, "grid": true, "gridColor": "#000000", "gridOpacity": 1, "gridWidth": 0.5, "labelPadding": 10, "tickSize": 5, "tickWidth": 0.5}, "axisBand": {"grid": false, "tickExtra": true}, "legend": {"labelBaseline": "middle", "labelFontSize": 11, "symbolSize": 50, "symbolType": "square"}, "range": {"category": ["#4572a7", "#aa4643", "#8aa453", "#71598e", "#4598ae", "#d98445", "#94aace", "#d09393", "#b9cc98", "#a99cbc"]}}, "data": {"url": "data/10209.tsv"}, "mark": "bar", "encoding": {"color": {"value": "#d98445"}, "x": {"type": "nominal", "axis": {"labelAngle": -30}, "bin": false, "field": "Country"}, "y": {"type": "quantitative", "axis": {"title": "Subscriptions per 100 inhabitants"}, "field": "Subscriptions per 100 inhabitants"}}, "title": ["Leading countries with the most mobile broadband", "subscriptions per 100 inhabitants in 2017"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"} | Country Subscriptions per 100 inhabitants Macao (China) 321.8 United Arab Emirates 243.4 Finland 153.8 Singapore 148.2 Bahrain 147.3 Australia 134.9 Estonia 133.4 Japan 133.2 United States 132.9 Denmark 129 Brunei Darussalam 126.6 Sweden 122.6 Liechtenstein 122.6 Latvia 117.9 Qatar 117.4 Costa Rica 116.6 San Marino 113.8 Iceland 113.3 South Korea 112.8 Uruguay 112.1 | All countries have more than 100 subscriptions per 100 inhabitants in 2017. Two Asian countries far exceed 100 subscriptions per 100 inhabitants. China has more than three times the amount of subscriptions per per 100 inhabitants than the countries with the least subscriptions. The majority of the countries are between 100 and 150 subscriptions per 100 inhabitants. The UAE is a small country yet is the country with the second highest amount of subscriptions per 100 inhabitants. |
{"config": {"background": "#666", "title": {"color": "#fff", "subtitleColor": "#fff"}, "style": {"guide-label": {"fill": "#fff"}, "guide-title": {"fill": "#fff"}}, "axis": {"domainColor": "#fff", "gridColor": "#888", "tickColor": "#fff"}, "range": {"category": ["#fbb4ae", "#b3cde3", "#ccebc5", "#decbe4", "#fed9a6", "#ffffcc", "#e5d8bd", "#fddaec", "#f2f2f2", "#b3e2cd", "#fdcdac", "#cbd5e8", "#f4cae4", "#e6f5c9", "#fff2ae", "#f1e2cc", "#cccccc"]}}, "data": {"url": "data/10214.tsv"}, "mark": "line", "encoding": {"color": {"value": "#ccebc5"}, "x": {"type": "temporal", "axis": {}, "bin": false, "field": "Year"}, "y": {"type": "quantitative", "axis": {"title": "Number of employees in thousands"}, "field": "Number of employees in thousands"}}, "title": ["Employment in restaurant and mobile food", "service businesses in the United Kingdom", "(UK) from 2008 to 2018 (in 1,000s)"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"} | Year Number of employees in thousands Dec 31, 2007 753 Dec 31, 2008 644 Dec 31, 2009 684 Dec 31, 2010 765 Dec 31, 2011 783 Dec 31, 2012 860 Dec 31, 2013 834 Dec 31, 2014 901 Dec 31, 2015 967 Dec 31, 2016 1000 Dec 31, 2017 1081 | Employee numbers fell in both 2009 and 2014. The sharpest fall was in 2009. The 2009 fall skews the rest of the data enough that if a trend line were to be drawn from 2008-2018, it would show a very different picture to a trend line drawn from 2009 to 2018. The trends 2009-13 and 2014-18 show similar rates of growth, with blips occurring in 2009 and 2014. |
{"config": {"background": "#666", "title": {"color": "#fff", "subtitleColor": "#fff"}, "style": {"guide-label": {"fill": "#fff"}, "guide-title": {"fill": "#fff"}}, "axis": {"domainColor": "#fff", "gridColor": "#888", "tickColor": "#fff"}, "range": {"category": ["#fbb4ae", "#b3cde3", "#ccebc5", "#decbe4", "#fed9a6", "#ffffcc", "#e5d8bd", "#fddaec", "#f2f2f2", "#b3e2cd", "#fdcdac", "#cbd5e8", "#f4cae4", "#e6f5c9", "#fff2ae", "#f1e2cc", "#cccccc"]}}, "data": {"url": "data/10227.tsv"}, "mark": "area", "encoding": {"color": {"value": "#fed9a6"}, "x": {"type": "temporal", "axis": {"labelAngle": 45}, "bin": false, "field": "Month"}, "y": {"type": "quantitative", "axis": {"labelAngle": 45, "title": "Number of active cases"}, "field": "Number of active cases"}}, "title": ["Active coronavirus (COVID-19) cases in Italy", "since February 2020 (as of January 5 , 2021)"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"} | Month Number of active cases Feb 14, 2020 3 Feb 15, 2020 3 Feb 16, 2020 3 Feb 17, 2020 3 Feb 18, 2020 3 Feb 19, 2020 4 Feb 20, 2020 19 Feb 21, 2020 75 Feb 22, 2020 152 Feb 23, 2020 221 Feb 24, 2020 310 Feb 25, 2020 455 Feb 26, 2020 593 Feb 27, 2020 822 Feb 28, 2020 1049 Feb 29, 2020 1577 Mar 01, 2020 1835 Mar 02, 2020 2263 Mar 03, 2020 2706 Mar 04, 2020 3296 Mar 05, 2020 3916 Mar 06, 2020 5061 Mar 07, 2020 6387 Mar 08, 2020 7985 Mar 09, 2020 8514 Mar 10, 2020 10590 Mar 11, 2020 12839 Mar 12, 2020 14955 Mar 13, 2020 17750 Mar 14, 2020 20603 Mar 15, 2020 23073 Mar 16, 2020 26062 Mar 17, 2020 28710 Mar 18, 2020 33190 Mar 19, 2020 37860 Mar 20, 2020 42681 Mar 21, 2020 46638 Mar 22, 2020 50418 Mar 23, 2020 54030 Mar 24, 2020 57521 Mar 25, 2020 62031 Mar 26, 2020 66414 Mar 27, 2020 70065 Mar 28, 2020 73880 Mar 29, 2020 75528 Mar 30, 2020 77635 Mar 31, 2020 80572 Apr 01, 2020 83049 Apr 02, 2020 85388 Apr 03, 2020 88274 Apr 04, 2020 91246 Apr 05, 2020 93187 Apr 06, 2020 94067 Apr 07, 2020 95262 Apr 08, 2020 96877 Apr 09, 2020 98273 Apr 10, 2020 100269 Apr 11, 2020 102253 Apr 12, 2020 103616 Apr 13, 2020 104291 Apr 14, 2020 105418 Apr 15, 2020 106607 Apr 16, 2020 106962 Apr 17, 2020 107771 Apr 18, 2020 108257 Apr 19, 2020 108237 Apr 20, 2020 107709 Apr 21, 2020 107699 Apr 22, 2020 106848 Apr 23, 2020 106527 Apr 24, 2020 105847 Apr 25, 2020 106103 Apr 26, 2020 105813 Apr 27, 2020 105205 Apr 28, 2020 104657 Apr 29, 2020 101551 Apr 30, 2020 100943 May 01, 2020 100704 May 02, 2020 100179 May 03, 2020 99980 May 04, 2020 98467 May 05, 2020 91528 May 06, 2020 89624 May 07, 2020 87961 May 08, 2020 84842 May 09, 2020 83324 May 10, 2020 82488 May 11, 2020 81266 May 12, 2020 78457 May 13, 2020 76440 May 14, 2020 72070 May 15, 2020 70187 May 16, 2020 68351 May 17, 2020 66553 May 18, 2020 65129 May 19, 2020 62752 May 20, 2020 60960 May 21, 2020 59322 May 22, 2020 57752 May 23, 2020 56549 May 24, 2020 55300 May 25, 2020 52942 May 26, 2020 50966 May 27, 2020 47986 May 28, 2020 46175 May 29, 2020 43691 May 30, 2020 42097 May 31, 2020 41367 Jun 01, 2020 39893 Jun 02, 2020 39297 Jun 03, 2020 38429 Jun 04, 2020 36976 Jun 05, 2020 35877 Jun 06, 2020 35262 Jun 07, 2020 34730 Jun 08, 2020 32872 Jun 09, 2020 31710 Jun 10, 2020 30637 Jun 11, 2020 28997 Jun 12, 2020 27485 Jun 13, 2020 26274 Jun 14, 2020 25909 Jun 15, 2020 24569 Jun 16, 2020 23925 Jun 17, 2020 23101 Jun 18, 2020 21543 Jun 19, 2020 21212 Jun 20, 2020 20972 Jun 21, 2020 20637 Jun 22, 2020 19573 Jun 23, 2020 18655 Jun 24, 2020 18303 Jun 25, 2020 17638 Jun 26, 2020 16836 Jun 27, 2020 16681 Jun 28, 2020 16496 Jun 29, 2020 15563 Jun 30, 2020 15255 Jul 01, 2020 15060 Jul 02, 2020 14884 Jul 03, 2020 14621 Jul 04, 2020 14642 Jul 05, 2020 14709 Jul 06, 2020 14242 Jul 07, 2020 13595 Jul 08, 2020 13459 Jul 09, 2020 13428 Jul 10, 2020 13303 Jul 11, 2020 13179 Jul 12, 2020 13157 Jul 13, 2020 12919 Jul 14, 2020 12493 Jul 15, 2020 12473 Jul 16, 2020 12456 Jul 17, 2020 12368 Jul 18, 2020 12440 Jul 19, 2020 12404 Jul 20, 2020 12248 Jul 21, 2020 12322 Jul 22, 2020 12404 Jul 23, 2020 12301 Jul 24, 2020 12442 Jul 25, 2020 12565 Jul 26, 2020 12581 Jul 27, 2020 12609 Jul 28, 2020 12616 Jul 29, 2020 12230 Jul 30, 2020 12422 Jul 31, 2020 12457 Aug 01, 2020 12456 Aug 02, 2020 12474 Aug 03, 2020 12482 Aug 04, 2020 12646 Aug 05, 2020 12694 Aug 06, 2020 12924 Aug 07, 2020 12953 Aug 08, 2020 13263 Aug 09, 2020 13368 Aug 10, 2020 13561 Aug 11, 2020 13791 Aug 12, 2020 14081 Aug 13, 2020 14249 Aug 14, 2020 14406 Aug 15, 2020 14733 Aug 16, 2020 14867 Aug 17, 2020 15089 Aug 18, 2020 15360 Aug 19, 2020 16014 Aug 20, 2020 16678 Aug 21, 2020 17503 Aug 22, 2020 18438 Aug 23, 2020 19195 Aug 24, 2020 19714 Aug 25, 2020 20753 Aug 26, 2020 21932 Aug 27, 2020 23035 Aug 28, 2020 24156 Aug 29, 2020 25205 Aug 30, 2020 26078 Aug 31, 2020 26754 Sep 01, 2020 27817 Sep 02, 2020 28915 Sep 03, 2020 30099 Sep 04, 2020 31194 Sep 05, 2020 32078 Sep 06, 2020 32993 Sep 07, 2020 33789 Sep 08, 2020 34734 Sep 09, 2020 35708 Sep 10, 2020 36767 Sep 11, 2020 37503 Sep 12, 2020 38509 Sep 13, 2020 39187 Sep 14, 2020 39712 Sep 15, 2020 40532 Sep 16, 2020 41413 Sep 17, 2020 42457 Sep 18, 2020 43161 Sep 19, 2020 44098 Sep 20, 2020 45079 Sep 21, 2020 45489 Sep 22, 2020 46114 Sep 23, 2020 46780 Sep 24, 2020 47718 Sep 25, 2020 48593 Sep 26, 2020 49618 Sep 27, 2020 50323 Sep 28, 2020 50630 Sep 29, 2020 51263 Sep 30, 2020 52647 Oct 01, 2020 53997 Oct 02, 2020 55566 Oct 03, 2020 57429 Oct 04, 2020 58903 Oct 05, 2020 60134 Oct 06, 2020 62576 Oct 07, 2020 65952 Oct 08, 2020 70110 Oct 09, 2020 74829 Oct 10, 2020 79075 Oct 11, 2020 82764 Oct 12, 2020 87193 Oct 13, 2020 92445 Oct 14, 2020 99266 Oct 15, 2020 107312 Oct 16, 2020 116935 Oct 17, 2020 126237 Oct 18, 2020 134003 Oct 19, 2020 142739 Oct 20, 2020 155442 Oct 21, 2020 169302 Oct 22, 2020 186002 Oct 23, 2020 203182 Oct 24, 2020 222241 Oct 25, 2020 236684 Oct 26, 2020 255090 Oct 27, 2020 276457 Oct 28, 2020 299191 Oct 29, 2020 325786 Oct 30, 2020 351386 Oct 31, 2020 378129 Nov 01, 2020 396512 Nov 02, 2020 418142 Nov 03, 2020 443235 Nov 04, 2020 472348 Nov 05, 2020 499118 Nov 06, 2020 532536 Nov 07, 2020 558636 Nov 08, 2020 573334 Nov 09, 2020 590110 Nov 10, 2020 613358 Nov 11, 2020 635054 Nov 12, 2020 663926 Nov 13, 2020 688435 Nov 14, 2020 712490 Nov 15, 2020 717784 Nov 16, 2020 733810 Nov 17, 2020 743168 Nov 18, 2020 761671 Nov 19, 2020 777176 Nov 20, 2020 791746 Nov 21, 2020 805947 Nov 22, 2020 796849 Nov 23, 2020 798386 Nov 24, 2020 791697 Nov 25, 2020 795845 Nov 26, 2020 787893 Nov 27, 2020 789308 Nov 28, 2020 795771 Nov 29, 2020 788471 Nov 30, 2020 779945 Dec 01, 2020 761230 Dec 02, 2020 759982 Dec 03, 2020 757702 Dec 04, 2020 754169 Dec 05, 2020 755306 Dec 06, 2020 748819 Dec 07, 2020 737525 Dec 08, 2020 710515 Dec 09, 2020 696527 Dec 10, 2020 690323 Dec 11, 2020 684848 Dec 12, 2020 686031 Dec 13, 2020 675109 Dec 14, 2020 663313 Dec 15, 2020 645706 Dec 16, 2020 635343 Dec 17, 2020 627798 Dec 18, 2020 620166 Dec 19, 2020 622760 Dec 20, 2020 613582 Dec 21, 2020 605955 Dec 22, 2020 598816 Dec 23, 2020 593692 Dec 24, 2020 579886 Dec 25, 2020 580943 Dec 26, 2020 581760 Dec 27, 2020 575221 Dec 28, 2020 568728 Dec 29, 2020 564395 Dec 30, 2020 569896 Dec 31, 2020 574767 Jan 01, 2021 577062 Jan 02, 2021 576214 Jan 03, 2021 570458 Jan 04, 2021 569161 | There's an initial increase in cases in April 21, before reducing down to little between july-october. Cases increase significantly, to almost 8x that of April's cases, in October. The cases begin to drop off sharply towards december, though remains high, just below 600000. |
{"config": {"area": {"fill": "#3366CC"}, "rect": {"fill": "#3366CC"}, "bar": {"fill": "#3366CC"}, "point": {"stroke": "#3366CC"}, "circle": {"fill": "#3366CC"}, "background": "#fff", "padding": {"top": 10, "right": 10, "bottom": 10, "left": 10}, "style": {"guide-label": {"font": "Arial, sans-serif", "fontSize": 12}, "guide-title": {"font": "Arial, sans-serif", "fontSize": 12}, "group-title": {"font": "Arial, sans-serif", "fontSize": 12}}, "title": {"font": "Arial, sans-serif", "fontSize": 14, "fontWeight": "bold", "dy": -3, "anchor": "start"}, "axis": {"gridColor": "#ccc", "tickColor": "#ccc", "domain": false, "grid": true}, "range": {"category": ["#4285F4", "#DB4437", "#F4B400", "#0F9D58", "#AB47BC", "#00ACC1", "#FF7043", "#9E9D24", "#5C6BC0", "#F06292", "#00796B", "#C2185B"], "heatmap": ["#c6dafc", "#5e97f6", "#2a56c6"]}}, "data": {"url": "data/10235.tsv"}, "mark": "bar", "encoding": {"color": {"value": "#5C6BC0"}, "x": {"type": "quantitative", "axis": {"labelAngle": -60, "title": "Box office revenue in million U.S. dollars"}, "field": "Box office revenue in million U\\.S\\. dollars"}, "y": {"type": "nominal", "axis": {"labelAngle": 30}, "bin": false, "field": "film"}}, "title": ["Box office gross for horror movies in North", "America as of September 2020 (in million", "U.S. dollars)"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"} | Box office revenue in million U.S. dollars film 64.91 The Invisible Man 26.44 Fantas Island 15.5 The New Mutants 15.47 The Turning 15.35 Gretel & Hansel 12.61 Brahms: The Boy II 8.81 The Grudge 2.14 The Lodge 1.82 The Wretched 0.94 Ban-do | Only 2 horror films in North America as of September 2020 grossed over 20 million dollar while 4 films grossed less than 10 million dollars. |
{"config": {"view": {"stroke": "transparent"}, "background": "transparent", "font": "Segoe UI", "header": {"titleFont": "wf_standard-font, helvetica, arial, sans-serif", "titleFontSize": 16, "titleColor": "#252423", "labelFont": "Segoe UI", "labelFontSize": 13.333333333333332, "labelColor": "#605E5C"}, "axis": {"ticks": false, "grid": false, "domain": false, "labelColor": "#605E5C", "labelFontSize": 12, "titleFont": "wf_standard-font, helvetica, arial, sans-serif", "titleColor": "#252423", "titleFontSize": 16, "titleFontWeight": "normal"}, "axisQuantitative": {"tickCount": 3, "grid": true, "gridColor": "#C8C6C4", "gridDash": [1, 5], "labelFlush": false}, "axisBand": {"tickExtra": true}, "axisX": {"labelPadding": 5}, "axisY": {"labelPadding": 10}, "bar": {"fill": "#118DFF"}, "line": {"stroke": "#118DFF", "strokeWidth": 3, "strokeCap": "round", "strokeJoin": "round"}, "text": {"font": "Segoe UI", "fontSize": 12, "fill": "#605E5C"}, "area": {"fill": "#118DFF", "line": true, "opacity": 0.6}, "rect": {"fill": "#118DFF"}, "point": {"fill": "#118DFF", "filled": true, "size": 75}, "legend": {"titleFont": "Segoe UI", "titleFontWeight": "bold", "titleColor": "#605E5C", "labelFont": "Segoe UI", "labelFontSize": 13.333333333333332, "labelColor": "#605E5C", "symbolType": "circle", "symbolSize": 75}, "range": {"category": ["#118DFF", "#12239E", "#E66C37", "#6B007B", "#E044A7", "#744EC2", "#D9B300", "#D64550"], "diverging": ["#DEEFFF", "#118DFF"], "heatmap": ["#DEEFFF", "#118DFF"], "ordinal": ["#DEEFFF", "#c7e4ff", "#b0d9ff", "#9aceff", "#83c3ff", "#6cb9ff", "#55aeff", "#3fa3ff", "#2898ff", "#118DFF"]}}, "data": {"url": "data/10244.tsv"}, "mark": "line", "encoding": {"color": {"value": "#12239E"}, "x": {"type": "temporal", "axis": {"labelAngle": 45}, "bin": false, "field": "Year"}, "y": {"type": "quantitative", "axis": {"title": "Revenue in billion U.S. dollars"}, "field": "Revenue in billion U\\.S\\. dollars"}}, "title": ["KBR Inc. 's global revenue from FY 2009", "to FY 2019 (in billion U.S. dollars)"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"} | Year Revenue in billion U.S. dollars Dec 31, 2008 12.06 Dec 31, 2009 9.96 Dec 31, 2010 9.1 Dec 31, 2011 7.77 Dec 31, 2012 7.21 Dec 31, 2013 6.37 Dec 31, 2014 5.1 Dec 31, 2015 4.27 Dec 31, 2016 4.17 Dec 31, 2017 4.91 Dec 31, 2018 5.64 | The company's global revenue has been decreasing every year, it reached a plateau in 2015, and has began increasing again since 2017. |
{"config": {"view": {"fill": "#e5e5e5"}, "area": {"fill": "#000"}, "line": {"stroke": "#000"}, "rect": {"fill": "#000"}, "bar": {"fill": "#000"}, "point": {"color": "#000", "size": 40}, "axis": {"domain": false, "grid": true, "gridColor": "#FFFFFF", "gridOpacity": 1, "labelColor": "#7F7F7F", "labelPadding": 4, "tickColor": "#7F7F7F", "tickSize": 5.67, "titleFontSize": 16, "titleFontWeight": "normal"}, "legend": {"labelBaseline": "middle", "labelFontSize": 11, "symbolSize": 40}, "range": {"category": ["#000000", "#7F7F7F", "#1A1A1A", "#999999", "#333333", "#B0B0B0", "#4D4D4D", "#C9C9C9", "#666666", "#DCDCDC"]}}, "data": {"url": "data/10252.tsv"}, "mark": "line", "encoding": {"color": {"value": "#666666"}, "x": {"type": "temporal", "axis": {}, "bin": false, "field": "Year"}, "y": {"type": "quantitative", "axis": {"title": "Social welfare expenditure in million SEK"}, "field": "Social welfare expenditure in million SEK"}}, "title": ["Social welfare expenditure in Sweden from", "2009 to 2019 (in million SEK)"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"} | Year Social welfare expenditure in million SEK Dec 31, 2008 11059 Dec 31, 2009 11594 Dec 31, 2010 11248 Dec 31, 2011 10621 Dec 31, 2012 10803 Dec 31, 2013 10546 Dec 31, 2014 10589 Dec 31, 2015 10522 Dec 31, 2016 10691 Dec 31, 2017 11182 Dec 31, 2018 11602 | 2010 and 2018 were the years of highest social welfare expenditure in Sweden. 2014 and 2016 had the lowest Swedish social welfare expenditure. The largest drop in expenditure was between 2010 and 2012. From 2016 to 2019 there has been an upward trend in social welfare expenditure. |
{"config": {"background": "#ffffff", "title": {"anchor": "start", "color": "#000000", "font": "Benton Gothic Bold, sans-serif", "fontSize": 22, "fontWeight": "normal"}, "area": {"fill": "#82c6df"}, "line": {"stroke": "#82c6df", "strokeWidth": 2}, "rect": {"fill": "#82c6df"}, "bar": {"fill": "#82c6df"}, "point": {"color": "#82c6df", "size": 30}, "axis": {"labelFont": "Benton Gothic, sans-serif", "labelFontSize": 11.5, "labelFontWeight": "normal", "titleFont": "Benton Gothic Bold, sans-serif", "titleFontSize": 13, "titleFontWeight": "normal"}, "axisX": {"labelPadding": 4, "tickSize": 3}, "axisY": {"labelBaseline": "middle", "maxExtent": 45, "minExtent": 45, "tickSize": 2, "titleAlign": "left", "titleAngle": 0, "titleX": -45, "titleY": -11}, "legend": {"labelFont": "Benton Gothic, sans-serif", "labelFontSize": 11.5, "symbolType": "square", "titleFont": "Benton Gothic Bold, sans-serif", "titleFontSize": 13, "titleFontWeight": "normal"}, "range": {"category": ["#ec8431", "#829eb1", "#c89d29", "#3580b1", "#adc839", "#ab7fb4"], "diverging": ["#e68a4f", "#f4bb6a", "#f9e39c", "#dadfe2", "#a6b7c6", "#849eae"], "heatmap": ["#fbf2c7", "#f9e39c", "#f8d36e", "#f4bb6a", "#e68a4f", "#d15a40", "#ab4232"], "ordinal": ["#fbf2c7", "#f9e39c", "#f8d36e", "#f4bb6a", "#e68a4f", "#d15a40", "#ab4232"], "ramp": ["#fbf2c7", "#f9e39c", "#f8d36e", "#f4bb6a", "#e68a4f", "#d15a40", "#ab4232"]}}, "data": {"url": "data/10254.tsv"}, "mark": "bar", "encoding": {"color": {"value": "#3580b1"}, "x": {"type": "nominal", "axis": {}, "bin": false, "field": "business"}, "y": {"type": "quantitative", "axis": {"title": "Mobile reach"}, "field": "Mobile reach"}}, "title": ["Most popular health and fitness apps in", "the United States as of May 2018 , by reach"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"} | business Mobile reach Fitbit 0.13 MyFitnessPal 0.09 S Health (for Samsung) 0.07 Weight Watchers 0.02 Google Fit 0.01 My Calendar - Period Tracker 0.01 Garmin Connect Mobile 0.01 Sleep Cycle alarm clock 0.01 Nike+ Running 0.01 Walk with Map My Walk GPS Walking 0.01 | Fit bit was by far the most popular in phone reach than any other the other fitness apps. |
{"config": {"background": "#ffffff", "title": {"anchor": "start", "color": "#000000", "font": "Benton Gothic Bold, sans-serif", "fontSize": 22, "fontWeight": "normal"}, "area": {"fill": "#82c6df"}, "line": {"stroke": "#82c6df", "strokeWidth": 2}, "rect": {"fill": "#82c6df"}, "bar": {"fill": "#82c6df"}, "point": {"color": "#82c6df", "size": 30}, "axis": {"labelFont": "Benton Gothic, sans-serif", "labelFontSize": 11.5, "labelFontWeight": "normal", "titleFont": "Benton Gothic Bold, sans-serif", "titleFontSize": 13, "titleFontWeight": "normal"}, "axisX": {"labelPadding": 4, "tickSize": 3}, "axisY": {"labelBaseline": "middle", "maxExtent": 45, "minExtent": 45, "tickSize": 2, "titleAlign": "left", "titleAngle": 0, "titleX": -45, "titleY": -11}, "legend": {"labelFont": "Benton Gothic, sans-serif", "labelFontSize": 11.5, "symbolType": "square", "titleFont": "Benton Gothic Bold, sans-serif", "titleFontSize": 13, "titleFontWeight": "normal"}, "range": {"category": ["#ec8431", "#829eb1", "#c89d29", "#3580b1", "#adc839", "#ab7fb4"], "diverging": ["#e68a4f", "#f4bb6a", "#f9e39c", "#dadfe2", "#a6b7c6", "#849eae"], "heatmap": ["#fbf2c7", "#f9e39c", "#f8d36e", "#f4bb6a", "#e68a4f", "#d15a40", "#ab4232"], "ordinal": ["#fbf2c7", "#f9e39c", "#f8d36e", "#f4bb6a", "#e68a4f", "#d15a40", "#ab4232"], "ramp": ["#fbf2c7", "#f9e39c", "#f8d36e", "#f4bb6a", "#e68a4f", "#d15a40", "#ab4232"]}}, "data": {"url": "data/10254.tsv"}, "mark": "bar", "encoding": {"color": {"value": "#3580b1"}, "x": {"type": "nominal", "axis": {}, "bin": false, "field": "business"}, "y": {"type": "quantitative", "axis": {"title": "Mobile reach"}, "field": "Mobile reach"}}, "title": ["Most popular health and fitness apps in", "the United States as of May 2018 , by reach"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"} | business Mobile reach Fitbit 0.13 MyFitnessPal 0.09 S Health (for Samsung) 0.07 Weight Watchers 0.02 Google Fit 0.01 My Calendar - Period Tracker 0.01 Garmin Connect Mobile 0.01 Sleep Cycle alarm clock 0.01 Nike+ Running 0.01 Walk with Map My Walk GPS Walking 0.01 | Fitbit has the largest mobile reach overall by a large margin followed by MyFitnessPal and S Health. |
{"config": {"range": {"category": ["#393b79", "#5254a3", "#6b6ecf", "#9c9ede", "#637939", "#8ca252", "#b5cf6b", "#cedb9c", "#8c6d31", "#bd9e39", "#e7ba52", "#e7cb94", "#843c39", "#ad494a", "#d6616b", "#e7969c", "#7b4173", "#a55194", "#ce6dbd", "#de9ed6"]}}, "data": {"url": "data/10258.tsv"}, "mark": "line", "encoding": {"color": {"value": "#e7969c"}, "x": {"type": "temporal", "axis": {"labelAngle": -60}, "bin": false, "field": "Year"}, "y": {"type": "quantitative", "axis": {"title": "Franchise value in million U.S. dollars"}, "field": "Franchise value in million U\\.S\\. dollars"}}, "title": ["Indiana Pacers franchise value from 2003", "to 2020 (in million U.S. dollars)"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"} | Year Franchise value in million U.S. dollars Dec 31, 2002 246 Dec 31, 2003 280 Dec 31, 2004 311 Dec 31, 2005 324 Dec 31, 2006 340 Dec 31, 2007 333 Dec 31, 2008 303 Dec 31, 2009 281 Dec 31, 2010 269 Dec 31, 2011 283 Dec 31, 2012 383 Dec 31, 2013 475 Dec 31, 2014 830 Dec 31, 2015 840 Dec 31, 2016 880 Dec 31, 2017 1175 Dec 31, 2018 1400 Dec 31, 2019 1525 | Value of the pacers remains fairly consistent from 2003 to around 2012 at under 500 million dollars. From 2012 to 2015 there is a sharp rise going to around 800 million dollars. A small platue in value occurs between 2015 and 2017/18 followed by a final large rise to 1.5 Billion dollars to 2020. |
{"config": {"view": {"stroke": "transparent"}, "background": "transparent", "font": "Segoe UI", "header": {"titleFont": "wf_standard-font, helvetica, arial, sans-serif", "titleFontSize": 16, "titleColor": "#252423", "labelFont": "Segoe UI", "labelFontSize": 13.333333333333332, "labelColor": "#605E5C"}, "axis": {"ticks": false, "grid": false, "domain": false, "labelColor": "#605E5C", "labelFontSize": 12, "titleFont": "wf_standard-font, helvetica, arial, sans-serif", "titleColor": "#252423", "titleFontSize": 16, "titleFontWeight": "normal"}, "axisQuantitative": {"tickCount": 3, "grid": true, "gridColor": "#C8C6C4", "gridDash": [1, 5], "labelFlush": false}, "axisBand": {"tickExtra": true}, "axisX": {"labelPadding": 5}, "axisY": {"labelPadding": 10}, "bar": {"fill": "#118DFF"}, "line": {"stroke": "#118DFF", "strokeWidth": 3, "strokeCap": "round", "strokeJoin": "round"}, "text": {"font": "Segoe UI", "fontSize": 12, "fill": "#605E5C"}, "area": {"fill": "#118DFF", "line": true, "opacity": 0.6}, "rect": {"fill": "#118DFF"}, "point": {"fill": "#118DFF", "filled": true, "size": 75}, "legend": {"titleFont": "Segoe UI", "titleFontWeight": "bold", "titleColor": "#605E5C", "labelFont": "Segoe UI", "labelFontSize": 13.333333333333332, "labelColor": "#605E5C", "symbolType": "circle", "symbolSize": 75}, "range": {"category": ["#118DFF", "#12239E", "#E66C37", "#6B007B", "#E044A7", "#744EC2", "#D9B300", "#D64550"], "diverging": ["#DEEFFF", "#118DFF"], "heatmap": ["#DEEFFF", "#118DFF"], "ordinal": ["#DEEFFF", "#c7e4ff", "#b0d9ff", "#9aceff", "#83c3ff", "#6cb9ff", "#55aeff", "#3fa3ff", "#2898ff", "#118DFF"]}}, "data": {"url": "data/1025.tsv"}, "mark": "area", "encoding": {"color": {"value": "#744EC2"}, "x": {"type": "temporal", "axis": {"labelAngle": -45}, "bin": false, "field": "Year"}, "y": {"type": "quantitative", "axis": {"title": "Price in U.S. dollars per metric ton"}, "field": "Price in U\\.S\\. dollars per metric ton"}}, "title": ["Neodymium oxide price worldwide from 2009", "to 2025 (in U.S. dollars per metric ton)"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"} | Year Price in U.S. dollars per metric ton Dec 31, 2008 15427 Dec 31, 2010 251741 Dec 31, 2015 39327 Dec 31, 2017 49804 Dec 31, 2018 44578 Dec 31, 2019 41700 Dec 31, 2020 44000 Dec 31, 2021 44200 Dec 31, 2022 46000 Dec 31, 2023 56500 Dec 31, 2024 77500 | The line indicates a dramatic increase in the neodymium oxide price between 2009 and 2011, rising from under 25,000 to nearly 300,000 US dollars per metric ton. This peak then subsided to about 40,000 by 2016. The price is projected to remain relatively stable at 40,000 until 2023 before increasing to 80,000 per metric ton by 2025. |
{"config": {"view": {"stroke": "transparent"}, "background": "transparent", "font": "Segoe UI", "header": {"titleFont": "wf_standard-font, helvetica, arial, sans-serif", "titleFontSize": 16, "titleColor": "#252423", "labelFont": "Segoe UI", "labelFontSize": 13.333333333333332, "labelColor": "#605E5C"}, "axis": {"ticks": false, "grid": false, "domain": false, "labelColor": "#605E5C", "labelFontSize": 12, "titleFont": "wf_standard-font, helvetica, arial, sans-serif", "titleColor": "#252423", "titleFontSize": 16, "titleFontWeight": "normal"}, "axisQuantitative": {"tickCount": 3, "grid": true, "gridColor": "#C8C6C4", "gridDash": [1, 5], "labelFlush": false}, "axisBand": {"tickExtra": true}, "axisX": {"labelPadding": 5}, "axisY": {"labelPadding": 10}, "bar": {"fill": "#118DFF"}, "line": {"stroke": "#118DFF", "strokeWidth": 3, "strokeCap": "round", "strokeJoin": "round"}, "text": {"font": "Segoe UI", "fontSize": 12, "fill": "#605E5C"}, "area": {"fill": "#118DFF", "line": true, "opacity": 0.6}, "rect": {"fill": "#118DFF"}, "point": {"fill": "#118DFF", "filled": true, "size": 75}, "legend": {"titleFont": "Segoe UI", "titleFontWeight": "bold", "titleColor": "#605E5C", "labelFont": "Segoe UI", "labelFontSize": 13.333333333333332, "labelColor": "#605E5C", "symbolType": "circle", "symbolSize": 75}, "range": {"category": ["#118DFF", "#12239E", "#E66C37", "#6B007B", "#E044A7", "#744EC2", "#D9B300", "#D64550"], "diverging": ["#DEEFFF", "#118DFF"], "heatmap": ["#DEEFFF", "#118DFF"], "ordinal": ["#DEEFFF", "#c7e4ff", "#b0d9ff", "#9aceff", "#83c3ff", "#6cb9ff", "#55aeff", "#3fa3ff", "#2898ff", "#118DFF"]}}, "data": {"url": "data/1025.tsv"}, "mark": "area", "encoding": {"color": {"value": "#744EC2"}, "x": {"type": "temporal", "axis": {"labelAngle": -45}, "bin": false, "field": "Year"}, "y": {"type": "quantitative", "axis": {"title": "Price in U.S. dollars per metric ton"}, "field": "Price in U\\.S\\. dollars per metric ton"}}, "title": ["Neodymium oxide price worldwide from 2009", "to 2025 (in U.S. dollars per metric ton)"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"} | Year Price in U.S. dollars per metric ton Dec 31, 2008 15427 Dec 31, 2010 251741 Dec 31, 2015 39327 Dec 31, 2017 49804 Dec 31, 2018 44578 Dec 31, 2019 41700 Dec 31, 2020 44000 Dec 31, 2021 44200 Dec 31, 2022 46000 Dec 31, 2023 56500 Dec 31, 2024 77500 | Neodymium oxide price reached its peak around the year 2011. The price of Neodymium oxide was the lowest in 2016. After reaching its peak, the price of Neodymium oxide went down sharply. We could recently observe the significant increase of the price of Neodymium oxide. |
{"config": {"background": "#fff", "area": {"fill": "#4572a7"}, "line": {"stroke": "#4572a7", "strokeWidth": 2}, "rect": {"fill": "#4572a7"}, "bar": {"fill": "#4572a7"}, "point": {"color": "#4572a7", "strokeWidth": 1.5, "size": 50}, "axis": {"bandPosition": 0.5, "grid": true, "gridColor": "#000000", "gridOpacity": 1, "gridWidth": 0.5, "labelPadding": 10, "tickSize": 5, "tickWidth": 0.5}, "axisBand": {"grid": false, "tickExtra": true}, "legend": {"labelBaseline": "middle", "labelFontSize": 11, "symbolSize": 50, "symbolType": "square"}, "range": {"category": ["#4572a7", "#aa4643", "#8aa453", "#71598e", "#4598ae", "#d98445", "#94aace", "#d09393", "#b9cc98", "#a99cbc"]}}, "data": {"url": "data/10262.tsv"}, "mark": "bar", "encoding": {"color": {"value": "#71598e"}, "x": {"type": "quantitative", "axis": {"labelAngle": 45, "title": "Inhabitants in millions"}, "field": "Inhabitants in millions"}, "y": {"type": "nominal", "axis": {}, "bin": false, "field": "Year"}}, "title": ["Kuwait : Total population from 2015 to 2025", "(in million inhabitants)"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"} | Inhabitants in millions Year 5.6 2025* 5.45 2024* 5.3 2023* 5.16 2022* 5.02 2021* 4.88 2020* 4.75 2019* 4.62 2018 4.44 2017 4.33 2016 4.18 2015 | Over the past 10 years Kuwait has had a steady increase in population. |
{"config": {"background": "#fff", "area": {"fill": "#4572a7"}, "line": {"stroke": "#4572a7", "strokeWidth": 2}, "rect": {"fill": "#4572a7"}, "bar": {"fill": "#4572a7"}, "point": {"color": "#4572a7", "strokeWidth": 1.5, "size": 50}, "axis": {"bandPosition": 0.5, "grid": true, "gridColor": "#000000", "gridOpacity": 1, "gridWidth": 0.5, "labelPadding": 10, "tickSize": 5, "tickWidth": 0.5}, "axisBand": {"grid": false, "tickExtra": true}, "legend": {"labelBaseline": "middle", "labelFontSize": 11, "symbolSize": 50, "symbolType": "square"}, "range": {"category": ["#4572a7", "#aa4643", "#8aa453", "#71598e", "#4598ae", "#d98445", "#94aace", "#d09393", "#b9cc98", "#a99cbc"]}}, "data": {"url": "data/10262.tsv"}, "mark": "bar", "encoding": {"color": {"value": "#71598e"}, "x": {"type": "quantitative", "axis": {"labelAngle": 45, "title": "Inhabitants in millions"}, "field": "Inhabitants in millions"}, "y": {"type": "nominal", "axis": {}, "bin": false, "field": "Year"}}, "title": ["Kuwait : Total population from 2015 to 2025", "(in million inhabitants)"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"} | Inhabitants in millions Year 5.6 2025* 5.45 2024* 5.3 2023* 5.16 2022* 5.02 2021* 4.88 2020* 4.75 2019* 4.62 2018 4.44 2017 4.33 2016 4.18 2015 | There has been a steady increase in inhabitants in Kuwait from 2015 to 2018, pushing from just over 4 million inhabitants to over 4.5 million. The predicted growth continues after this, reaching a predicted 5 million in 2021, and by 2025 it is predicted that there will be over 5.5 million inhabitants in Kuwait. |
{"config": {"background": "#666", "title": {"color": "#fff", "subtitleColor": "#fff"}, "style": {"guide-label": {"fill": "#fff"}, "guide-title": {"fill": "#fff"}}, "axis": {"domainColor": "#fff", "gridColor": "#888", "tickColor": "#fff"}, "range": {"category": ["#fbb4ae", "#b3cde3", "#ccebc5", "#decbe4", "#fed9a6", "#ffffcc", "#e5d8bd", "#fddaec", "#f2f2f2", "#b3e2cd", "#fdcdac", "#cbd5e8", "#f4cae4", "#e6f5c9", "#fff2ae", "#f1e2cc", "#cccccc"]}}, "data": {"url": "data/10264.tsv"}, "mark": "area", "encoding": {"color": {"value": "#e5d8bd"}, "x": {"type": "temporal", "axis": {}, "bin": false, "field": "Year"}, "y": {"type": "quantitative", "axis": {"labelAngle": -30, "title": "Number of people"}, "field": "Number of people"}}, "title": ["Number of individuals identifying as Muslim", "in Finland from 2009 to 2019"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"} | Year Number of people Dec 31, 2008 8230 Dec 31, 2009 9393 Dec 31, 2010 10088 Dec 31, 2011 10596 Dec 31, 2012 11125 Dec 31, 2013 12327 Dec 31, 2014 13289 Dec 31, 2015 14141 Dec 31, 2016 15359 Dec 31, 2017 16057 Dec 31, 2018 16674 | There is a steady increase in number of people identifying as muslims in Finland. |
{"config": {"background": "#000", "title": {"color": "#fff", "subtitleColor": "#fff"}, "style": {"guide-label": {"fill": "#fff"}, "guide-title": {"fill": "#fff"}}, "axis": {"domainColor": "#fff", "gridColor": "#888", "tickColor": "#fff"}, "range": {"category": ["#7fc97f", "#beaed4", "#fdc086", "#ffff99", "#386cb0", "#f0027f", "#bf5b17", "#666666"]}}, "data": {"url": "data/10268.tsv"}, "mark": "bar", "encoding": {"color": {"value": "#fdc086"}, "x": {"type": "nominal", "axis": {}, "bin": false, "field": "state-owned enterprise"}, "y": {"type": "quantitative", "axis": {"title": "Brand strength index"}, "field": "Brand strength index"}}, "title": ["Ranking of the strongest Indonesian brands", "in 2020 , by brand strength index"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"} | state-owned enterprise Brand strength index BCA 91.6 Telkom Indonesia 87.5 BNI 85.2 Mandiri 85.1 Bank BRI 84.9 Pertamina 81.7 Semen Indonesia 78.9 Jasa Marga 78.3 XL 76.7 Umild 76 | All of the brands have a fairly similar brand strength index. The brand with the highest brand strength index is BCA, whilst Umild. |
{"config": {"background": "#000", "title": {"color": "#fff", "subtitleColor": "#fff"}, "style": {"guide-label": {"fill": "#fff"}, "guide-title": {"fill": "#fff"}}, "axis": {"domainColor": "#fff", "gridColor": "#888", "tickColor": "#fff"}, "range": {"category": ["#7fc97f", "#beaed4", "#fdc086", "#ffff99", "#386cb0", "#f0027f", "#bf5b17", "#666666"]}}, "data": {"url": "data/10268.tsv"}, "mark": "bar", "encoding": {"color": {"value": "#fdc086"}, "x": {"type": "nominal", "axis": {}, "bin": false, "field": "state-owned enterprise"}, "y": {"type": "quantitative", "axis": {"title": "Brand strength index"}, "field": "Brand strength index"}}, "title": ["Ranking of the strongest Indonesian brands", "in 2020 , by brand strength index"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"} | state-owned enterprise Brand strength index BCA 91.6 Telkom Indonesia 87.5 BNI 85.2 Mandiri 85.1 Bank BRI 84.9 Pertamina 81.7 Semen Indonesia 78.9 Jasa Marga 78.3 XL 76.7 Umild 76 | All the brand strengths are over 70. 6 of the 10 companies have brand strength over 80. BCA has the highest brand strength and Umild has the lowest brand strength. |
{"config": {"background": "#ffffff", "title": {"anchor": "start", "color": "#000000", "font": "Benton Gothic Bold, sans-serif", "fontSize": 22, "fontWeight": "normal"}, "area": {"fill": "#82c6df"}, "line": {"stroke": "#82c6df", "strokeWidth": 2}, "rect": {"fill": "#82c6df"}, "bar": {"fill": "#82c6df"}, "point": {"color": "#82c6df", "size": 30}, "axis": {"labelFont": "Benton Gothic, sans-serif", "labelFontSize": 11.5, "labelFontWeight": "normal", "titleFont": "Benton Gothic Bold, sans-serif", "titleFontSize": 13, "titleFontWeight": "normal"}, "axisX": {"labelPadding": 4, "tickSize": 3}, "axisY": {"labelBaseline": "middle", "maxExtent": 45, "minExtent": 45, "tickSize": 2, "titleAlign": "left", "titleAngle": 0, "titleX": -45, "titleY": -11}, "legend": {"labelFont": "Benton Gothic, sans-serif", "labelFontSize": 11.5, "symbolType": "square", "titleFont": "Benton Gothic Bold, sans-serif", "titleFontSize": 13, "titleFontWeight": "normal"}, "range": {"category": ["#ec8431", "#829eb1", "#c89d29", "#3580b1", "#adc839", "#ab7fb4"], "diverging": ["#e68a4f", "#f4bb6a", "#f9e39c", "#dadfe2", "#a6b7c6", "#849eae"], "heatmap": ["#fbf2c7", "#f9e39c", "#f8d36e", "#f4bb6a", "#e68a4f", "#d15a40", "#ab4232"], "ordinal": ["#fbf2c7", "#f9e39c", "#f8d36e", "#f4bb6a", "#e68a4f", "#d15a40", "#ab4232"], "ramp": ["#fbf2c7", "#f9e39c", "#f8d36e", "#f4bb6a", "#e68a4f", "#d15a40", "#ab4232"]}}, "data": {"url": "data/10281.tsv"}, "mark": "bar", "encoding": {"color": {"value": "#adc839"}, "x": {"type": "nominal", "axis": {}, "bin": false, "field": "Year"}, "y": {"type": "quantitative", "axis": {"title": "Number of points scored"}, "field": "Number of points scored"}}, "title": ["Total number of points scored by Kobe Bryant", "in the NBA from 1996 to 2016 , by season"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"} | Year Number of points scored 2015-16 1161 2014-15 782 2013-14 83 2012-13 2133 2011-12 1616 2010-11 2078 2009-10 1970 2008-09 2201 2007-08 2323 2006-07 2430 2005-06 2832 2004-05 1819 2003-04 1557 2002-03 2461 2001-02 2019 2000-01 1938 1999-00 1485 1998-99 996 1997-98 1220 1996-97 539 | The number of points scored in a season trended upwards with years passed up to the mid point and then the trend reversed and the number of points fell on a year by year basis. |
{"config": {"background": "#666", "title": {"color": "#fff", "subtitleColor": "#fff"}, "style": {"guide-label": {"fill": "#fff"}, "guide-title": {"fill": "#fff"}}, "axis": {"domainColor": "#fff", "gridColor": "#888", "tickColor": "#fff"}, "range": {"category": ["#fbb4ae", "#b3cde3", "#ccebc5", "#decbe4", "#fed9a6", "#ffffcc", "#e5d8bd", "#fddaec", "#f2f2f2", "#b3e2cd", "#fdcdac", "#cbd5e8", "#f4cae4", "#e6f5c9", "#fff2ae", "#f1e2cc", "#cccccc"]}}, "data": {"url": "data/10283.tsv"}, "mark": "line", "encoding": {"color": {"value": "#b3e2cd"}, "x": {"type": "temporal", "axis": {"labelAngle": 45}, "bin": false, "field": "Year"}, "y": {"type": "quantitative", "axis": {"labelAngle": 45, "title": "Direct investments in billion U.S. dollars"}, "field": "Direct investments in billion U\\.S\\. dollars"}}, "title": ["Direct investment position of the United", "States in Mexico from 2000 to 2019 (in billion", "U.S. dollars , on a historical-cost basis)"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"} | Year Direct investments in billion U.S. dollars Dec 31, 1999 39.35 Dec 31, 2000 52.54 Dec 31, 2001 56.3 Dec 31, 2002 56.85 Dec 31, 2003 63.38 Dec 31, 2004 73.69 Dec 31, 2005 82.97 Dec 31, 2006 91.05 Dec 31, 2007 87.44 Dec 31, 2008 84.05 Dec 31, 2009 85.75 Dec 31, 2010 85.6 Dec 31, 2011 104.39 Dec 31, 2012 86.43 Dec 31, 2013 94.48 Dec 31, 2014 101.33 Dec 31, 2015 98.42 Dec 31, 2016 100.17 Dec 31, 2017 95.87 Dec 31, 2018 100.89 | There has been an overall increase in direct investment since 2000 with over a 60 billion dollar net increase. |
{"config": {"background": "#f9f9f9", "area": {"fill": "#ab5787"}, "line": {"stroke": "#ab5787"}, "rect": {"fill": "#ab5787"}, "bar": {"fill": "#ab5787"}, "point": {"fill": "#ab5787", "size": 30}, "axis": {"domainColor": "#979797", "domainWidth": 0.5, "gridWidth": 0.2, "labelColor": "#979797", "tickColor": "#979797", "tickWidth": 0.2, "titleColor": "#979797"}, "axisBand": {"grid": false}, "axisX": {"grid": true, "tickSize": 10}, "axisY": {"domain": false, "grid": true, "tickSize": 0}, "legend": {"labelFontSize": 11, "padding": 1, "symbolSize": 30, "symbolType": "square"}, "range": {"category": ["#ab5787", "#51b2e5", "#703c5c", "#168dd9", "#d190b6", "#00609f", "#d365ba", "#154866", "#666666", "#c4c4c4"]}}, "data": {"url": "data/10284.tsv"}, "mark": "bar", "encoding": {"color": {"value": "#d365ba"}, "x": {"type": "nominal", "axis": {"labelAngle": 30}, "bin": false, "field": "Year"}, "y": {"type": "quantitative", "axis": {"labelAngle": 30, "title": "Penetration in percent"}, "field": "Penetration in percent"}}, "title": ["PC penetration per capita in Western Europe", "from 2000 to 2015 (in percent)"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"} | Year Penetration in percent 2015* 0.5 2014* 0.47 2013* 0.45 2012* 0.42 2011* 0.39 2010 0.36 2009 0.33 2008 0.29 2007 0.26 2006 0.24 2005 0.22 2004 0.19 2003 0.17 2002 0.16 2001 0.14 2000 0.13 | PC penetration per capita in western Europe has increased year on year from 2000 to 2015 with a peak of 0.5 in 2015. |
{"config": {"background": "#666", "title": {"color": "#fff", "subtitleColor": "#fff"}, "style": {"guide-label": {"fill": "#fff"}, "guide-title": {"fill": "#fff"}}, "axis": {"domainColor": "#fff", "gridColor": "#888", "tickColor": "#fff"}, "range": {"category": ["#fbb4ae", "#b3cde3", "#ccebc5", "#decbe4", "#fed9a6", "#ffffcc", "#e5d8bd", "#fddaec", "#f2f2f2", "#b3e2cd", "#fdcdac", "#cbd5e8", "#f4cae4", "#e6f5c9", "#fff2ae", "#f1e2cc", "#cccccc"]}}, "data": {"url": "data/10286.tsv"}, "mark": "bar", "encoding": {"color": {"value": "#e5d8bd"}, "x": {"type": "nominal", "axis": {}, "bin": false, "field": "Country"}, "y": {"type": "quantitative", "axis": {"title": "Number of Shop-in-Stores"}, "field": "Number of Shop-in-Stores"}}, "title": ["Number of ESPRIT Shop-in-Stores worldwide", "in 2019 , by country"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"} | Country Number of Shop-in-Stores Germany 1887 France 254 Spain 152 Austria 98 Others** 56 Finland 45 Switzerland 40 Benelux 36 Italy 29 United Kingdom 9 Sweden 5 Denmark 2 Ireland 1 | Germany is way ahead in this example. Sandemanian countries all faired very low.. Uk and Ireland there was low. In the bar chart France which was significantly lower was next in line after Germany. |
{"config": {"background": "#666", "title": {"color": "#fff", "subtitleColor": "#fff"}, "style": {"guide-label": {"fill": "#fff"}, "guide-title": {"fill": "#fff"}}, "axis": {"domainColor": "#fff", "gridColor": "#888", "tickColor": "#fff"}, "range": {"category": ["#fbb4ae", "#b3cde3", "#ccebc5", "#decbe4", "#fed9a6", "#ffffcc", "#e5d8bd", "#fddaec", "#f2f2f2", "#b3e2cd", "#fdcdac", "#cbd5e8", "#f4cae4", "#e6f5c9", "#fff2ae", "#f1e2cc", "#cccccc"]}}, "data": {"url": "data/10288.tsv"}, "mark": "bar", "encoding": {"color": {"value": "#b3e2cd"}, "x": {"type": "nominal", "axis": {"labelAngle": -90}, "bin": false, "field": "Response"}, "y": {"type": "quantitative", "axis": {"title": "Share of households"}, "field": "Share of households"}}, "title": ["Share of households with internet access", "in Romania from 2007 to 2018"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"} | Response Share of households 2018 0.81 2017 0.76 2016 0.72 2015 0.68 2014* 0.61 2013 0.58 2012 0.54 2011 0.47 2010 0.42 2009 0.38 2008 0.3 2007 0.22 | As time goes on, greater shares of households have internet access in Romania. The increase of households that have internet access from 2013 to 2014 was the least compared to the increase in other years. |
{"config": {"background": "#666", "title": {"color": "#fff", "subtitleColor": "#fff"}, "style": {"guide-label": {"fill": "#fff"}, "guide-title": {"fill": "#fff"}}, "axis": {"domainColor": "#fff", "gridColor": "#888", "tickColor": "#fff"}, "range": {"category": ["#fbb4ae", "#b3cde3", "#ccebc5", "#decbe4", "#fed9a6", "#ffffcc", "#e5d8bd", "#fddaec", "#f2f2f2", "#b3e2cd", "#fdcdac", "#cbd5e8", "#f4cae4", "#e6f5c9", "#fff2ae", "#f1e2cc", "#cccccc"]}}, "data": {"url": "data/10288.tsv"}, "mark": "bar", "encoding": {"color": {"value": "#b3e2cd"}, "x": {"type": "nominal", "axis": {"labelAngle": -90}, "bin": false, "field": "Response"}, "y": {"type": "quantitative", "axis": {"title": "Share of households"}, "field": "Share of households"}}, "title": ["Share of households with internet access", "in Romania from 2007 to 2018"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"} | Response Share of households 2018 0.81 2017 0.76 2016 0.72 2015 0.68 2014* 0.61 2013 0.58 2012 0.54 2011 0.47 2010 0.42 2009 0.38 2008 0.3 2007 0.22 | The response rate increased every year. The share of households with internet access in Romania increased every year. |
{"config": {"background": "#fff", "area": {"fill": "#4572a7"}, "line": {"stroke": "#4572a7", "strokeWidth": 2}, "rect": {"fill": "#4572a7"}, "bar": {"fill": "#4572a7"}, "point": {"color": "#4572a7", "strokeWidth": 1.5, "size": 50}, "axis": {"bandPosition": 0.5, "grid": true, "gridColor": "#000000", "gridOpacity": 1, "gridWidth": 0.5, "labelPadding": 10, "tickSize": 5, "tickWidth": 0.5}, "axisBand": {"grid": false, "tickExtra": true}, "legend": {"labelBaseline": "middle", "labelFontSize": 11, "symbolSize": 50, "symbolType": "square"}, "range": {"category": ["#4572a7", "#aa4643", "#8aa453", "#71598e", "#4598ae", "#d98445", "#94aace", "#d09393", "#b9cc98", "#a99cbc"]}}, "data": {"url": "data/10295.tsv"}, "mark": "area", "encoding": {"color": {"value": "#d98445"}, "x": {"type": "temporal", "axis": {}, "bin": false, "field": "Response"}, "y": {"type": "quantitative", "axis": {"labelAngle": 60, "title": "Percentage of internet users"}, "field": "Percentage of internet users"}}, "title": ["Share of adult internet users in the United", "States who use social networking sites from", "2005 to 2015"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"} | Response Percentage of internet users Dec 31, 2004 0.08 Dec 31, 2005 0.16 Dec 31, 2007 0.29 Dec 31, 2008 0.46 Dec 31, 2009 0.61 Dec 31, 2010 0.65 Dec 31, 2011 0.67 Dec 31, 2012 0.73 Dec 31, 2013 0.74 Dec 31, 2014 0.76 | In 2014, nearly 80% of all adult internet users were recorded to have used social networking sites. In 2005, only about 10% of all adult internet users used social networking sites. The use of social networking sites increased beaten 2005 and 2015. |
{"config": {"background": "#fff", "area": {"fill": "#4572a7"}, "line": {"stroke": "#4572a7", "strokeWidth": 2}, "rect": {"fill": "#4572a7"}, "bar": {"fill": "#4572a7"}, "point": {"color": "#4572a7", "strokeWidth": 1.5, "size": 50}, "axis": {"bandPosition": 0.5, "grid": true, "gridColor": "#000000", "gridOpacity": 1, "gridWidth": 0.5, "labelPadding": 10, "tickSize": 5, "tickWidth": 0.5}, "axisBand": {"grid": false, "tickExtra": true}, "legend": {"labelBaseline": "middle", "labelFontSize": 11, "symbolSize": 50, "symbolType": "square"}, "range": {"category": ["#4572a7", "#aa4643", "#8aa453", "#71598e", "#4598ae", "#d98445", "#94aace", "#d09393", "#b9cc98", "#a99cbc"]}}, "data": {"url": "data/10295.tsv"}, "mark": "area", "encoding": {"color": {"value": "#d98445"}, "x": {"type": "temporal", "axis": {}, "bin": false, "field": "Response"}, "y": {"type": "quantitative", "axis": {"labelAngle": 60, "title": "Percentage of internet users"}, "field": "Percentage of internet users"}}, "title": ["Share of adult internet users in the United", "States who use social networking sites from", "2005 to 2015"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"} | Response Percentage of internet users Dec 31, 2004 0.08 Dec 31, 2005 0.16 Dec 31, 2007 0.29 Dec 31, 2008 0.46 Dec 31, 2009 0.61 Dec 31, 2010 0.65 Dec 31, 2011 0.67 Dec 31, 2012 0.73 Dec 31, 2013 0.74 Dec 31, 2014 0.76 | The shares of adult internet users grew at a steady percentage rate from 2005 to 2008. The following two years saw a steep increase of just over 0.3% usage, before reverting back to slower but steady rise in users. |
{"config": {"background": "#333", "title": {"color": "#fff", "subtitleColor": "#fff"}, "style": {"guide-label": {"fill": "#fff"}, "guide-title": {"fill": "#fff"}}, "axis": {"domainColor": "#fff", "gridColor": "#888", "tickColor": "#fff"}, "range": {"category": ["#1b9e77", "#d95f02", "#7570b3", "#e7298a", "#66a61e", "#e6ab02", "#a6761d", "#666666"]}}, "data": {"url": "data/10299.tsv"}, "mark": "line", "encoding": {"color": {"value": "#e7298a"}, "x": {"type": "temporal", "axis": {"labelAngle": 60}, "bin": false, "field": "Year"}, "y": {"type": "quantitative", "axis": {"title": "Imports in thousand metric tons"}, "field": "Imports in thousand metric tons"}}, "title": ["Canadian imports of bauxite from 2005 to", "2019 (in 1,000 metric tons)"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"} | Year Imports in thousand metric tons Dec 31, 2004 3382.7 Dec 31, 2005 3292.4 Dec 31, 2006 3341.3 Dec 31, 2007 3560.2 Dec 31, 2008 2298.5 Dec 31, 2009 3371.7 Dec 31, 2010 3195 Dec 31, 2011 3675.9 Dec 31, 2012 3467.1 Dec 31, 2013 3876.7 Dec 31, 2014 3696 Dec 31, 2015 3581.8 Dec 31, 2016 3838.2 Dec 31, 2017 3714.9 Dec 31, 2018 3674 | The year with the lowest import of bauxite was 2009. Although the results fluctuate from year to year, the graph tends to show a general increase in bauxite imports over time, with the exception of 2009, where there was a large decrease in imports. |
{"config": {"background": "#fff", "area": {"fill": "#4572a7"}, "line": {"stroke": "#4572a7", "strokeWidth": 2}, "rect": {"fill": "#4572a7"}, "bar": {"fill": "#4572a7"}, "point": {"color": "#4572a7", "strokeWidth": 1.5, "size": 50}, "axis": {"bandPosition": 0.5, "grid": true, "gridColor": "#000000", "gridOpacity": 1, "gridWidth": 0.5, "labelPadding": 10, "tickSize": 5, "tickWidth": 0.5}, "axisBand": {"grid": false, "tickExtra": true}, "legend": {"labelBaseline": "middle", "labelFontSize": 11, "symbolSize": 50, "symbolType": "square"}, "range": {"category": ["#4572a7", "#aa4643", "#8aa453", "#71598e", "#4598ae", "#d98445", "#94aace", "#d09393", "#b9cc98", "#a99cbc"]}}, "data": {"url": "data/10300.tsv"}, "mark": "bar", "encoding": {"color": {"value": "#a99cbc"}, "x": {"type": "nominal", "axis": {}, "bin": false, "field": "Country"}, "y": {"type": "quantitative", "axis": {"labelAngle": -45, "title": "Trade value in million U.S. dollars"}, "field": "Trade value in million U\\.S\\. dollars"}}, "title": ["Value of Indian trade with ASEAN countries", "in FY 2019 , by country (in million U.S.", "dollars)"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"} | Country Trade value in million U.S. dollars Singapore 27850.23 Indonesia 21127.02 Malaysia 17223.71 Vietnam 13699.64 Thailand 11875.36 Philippines 2324.74 Myanmar 1726.69 Brunei 647.3 Cambodia 238.6 Laos 40.41 | The chart shows that the highest value of indian trade in 2019 was with Singapore (over 25,000 million US dollars). Indian trade with Laos, cambodia, brunei, myanmar and philipines was the lowest out of the ASEAN countries shown (below 5 million US dollars). |
{"config": {"view": {"fill": "#e5e5e5"}, "area": {"fill": "#000"}, "line": {"stroke": "#000"}, "rect": {"fill": "#000"}, "bar": {"fill": "#000"}, "point": {"color": "#000", "size": 40}, "axis": {"domain": false, "grid": true, "gridColor": "#FFFFFF", "gridOpacity": 1, "labelColor": "#7F7F7F", "labelPadding": 4, "tickColor": "#7F7F7F", "tickSize": 5.67, "titleFontSize": 16, "titleFontWeight": "normal"}, "legend": {"labelBaseline": "middle", "labelFontSize": 11, "symbolSize": 40}, "range": {"category": ["#000000", "#7F7F7F", "#1A1A1A", "#999999", "#333333", "#B0B0B0", "#4D4D4D", "#C9C9C9", "#666666", "#DCDCDC"]}}, "data": {"url": "data/10301.tsv"}, "mark": "bar", "encoding": {"color": {"value": "#1A1A1A"}, "x": {"type": "nominal", "axis": {}, "bin": false, "field": "Response"}, "y": {"type": "quantitative", "axis": {"labelAngle": 0, "title": "Share of respondents"}, "field": "Share of respondents"}}, "title": ["Favorite takeaway cuisine among consumers", "in the United Kingdom (UK) in 2017"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"} | Response Share of respondents Chinese 0.35 Indian 0.24 Pizza 0.13 Fish and Chips 0.07 English 0.04 Italian 0.04 Kebabs/Burgers 0.03 Thai 0.02 Mexican 0.01 Turkish 0.01 | Chinese is the favourite takeaway cuisine among consumers in the United Kingdom in 2017. |
{"config": {"background": "#f9f9f9", "area": {"fill": "#ab5787"}, "line": {"stroke": "#ab5787"}, "rect": {"fill": "#ab5787"}, "bar": {"fill": "#ab5787"}, "point": {"fill": "#ab5787", "size": 30}, "axis": {"domainColor": "#979797", "domainWidth": 0.5, "gridWidth": 0.2, "labelColor": "#979797", "tickColor": "#979797", "tickWidth": 0.2, "titleColor": "#979797"}, "axisBand": {"grid": false}, "axisX": {"grid": true, "tickSize": 10}, "axisY": {"domain": false, "grid": true, "tickSize": 0}, "legend": {"labelFontSize": 11, "padding": 1, "symbolSize": 30, "symbolType": "square"}, "range": {"category": ["#ab5787", "#51b2e5", "#703c5c", "#168dd9", "#d190b6", "#00609f", "#d365ba", "#154866", "#666666", "#c4c4c4"]}}, "data": {"url": "data/10306.tsv"}, "mark": "line", "encoding": {"color": {"value": "#c4c4c4"}, "x": {"type": "temporal", "axis": {"labelAngle": -90}, "bin": false, "field": "Year"}, "y": {"type": "quantitative", "axis": {"title": "Real GDP in billion U.S. dollars"}, "field": "Real GDP in billion U\\.S\\. dollars"}}, "title": ["Real Gross Domestic Product (GDP) of the", "federal state of New Mexico from 2000 to", "2019 (in billion U.S. dollars)"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"} | Year Real GDP in billion U.S. dollars Dec 31, 1999 71.96 Dec 31, 2000 72.05 Dec 31, 2001 74.27 Dec 31, 2002 77.13 Dec 31, 2003 82.84 Dec 31, 2004 83.83 Dec 31, 2005 85.89 Dec 31, 2006 86.51 Dec 31, 2007 85.98 Dec 31, 2008 87.67 Dec 31, 2009 87 Dec 31, 2010 87.17 Dec 31, 2011 87.6 Dec 31, 2012 86.51 Dec 31, 2013 89.28 Dec 31, 2014 91.2 Dec 31, 2015 91.27 Dec 31, 2016 91.34 Dec 31, 2017 93.6 Dec 31, 2018 97.09 | From 2000 to 2019 GDP in New Mexico has increased from approximately $75b to circa $100b. |
{"config": {"range": {"category": ["#4c78a8", "#9ecae9", "#f58518", "#ffbf79", "#54a24b", "#88d27a", "#b79a20", "#f2cf5b", "#439894", "#83bcb6", "#e45756", "#ff9d98", "#79706e", "#bab0ac", "#d67195", "#fcbfd2", "#b279a2", "#d6a5c9", "#9e765f", "#d8b5a5"]}}, "data": {"url": "data/10314.tsv"}, "mark": "area", "encoding": {"color": {"value": "#bab0ac"}, "x": {"type": "temporal", "axis": {}, "bin": false, "field": "Year"}, "y": {"type": "quantitative", "axis": {"title": "Operating profit in trillion Korean won"}, "field": "Operating profit in trillion Korean won"}}, "title": ["Kia 's operating profit from FY 2009 to", "FY 2019 (in trillion Korean won)"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"} | Year Operating profit in trillion Korean won Dec 31, 2008 1.2 Dec 31, 2009 2.37 Dec 31, 2010 3.5 Dec 31, 2011 3.5 Dec 31, 2012 3.2 Dec 31, 2013 2.6 Dec 31, 2014 2.4 Dec 31, 2015 2.5 Dec 31, 2016 0.66 Dec 31, 2017 1.16 Dec 31, 2018 2.01 | Kia's operating profit was highest between FY 2009-FY 2012, at 3.5 trillion Korean won. Kia's operating profit has been falling since FY 2012. It reached its lowest between FY 2016-FY 2018 at 0.5 trillion Korean won. |
{"config": {"range": {"category": ["#4c78a8", "#9ecae9", "#f58518", "#ffbf79", "#54a24b", "#88d27a", "#b79a20", "#f2cf5b", "#439894", "#83bcb6", "#e45756", "#ff9d98", "#79706e", "#bab0ac", "#d67195", "#fcbfd2", "#b279a2", "#d6a5c9", "#9e765f", "#d8b5a5"]}}, "data": {"url": "data/10314.tsv"}, "mark": "area", "encoding": {"color": {"value": "#bab0ac"}, "x": {"type": "temporal", "axis": {}, "bin": false, "field": "Year"}, "y": {"type": "quantitative", "axis": {"title": "Operating profit in trillion Korean won"}, "field": "Operating profit in trillion Korean won"}}, "title": ["Kia 's operating profit from FY 2009 to", "FY 2019 (in trillion Korean won)"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"} | Year Operating profit in trillion Korean won Dec 31, 2008 1.2 Dec 31, 2009 2.37 Dec 31, 2010 3.5 Dec 31, 2011 3.5 Dec 31, 2012 3.2 Dec 31, 2013 2.6 Dec 31, 2014 2.4 Dec 31, 2015 2.5 Dec 31, 2016 0.66 Dec 31, 2017 1.16 Dec 31, 2018 2.01 | Kia’s operating profit increased sharply until 2012. It then decreased slowly until 2016. In 2016, it took a sharp decrease from 2.5 to 0.5. |
{"config": {"background": "#ffffff", "title": {"anchor": "start", "color": "#000000", "font": "Benton Gothic Bold, sans-serif", "fontSize": 22, "fontWeight": "normal"}, "area": {"fill": "#82c6df"}, "line": {"stroke": "#82c6df", "strokeWidth": 2}, "rect": {"fill": "#82c6df"}, "bar": {"fill": "#82c6df"}, "point": {"color": "#82c6df", "size": 30}, "axis": {"labelFont": "Benton Gothic, sans-serif", "labelFontSize": 11.5, "labelFontWeight": "normal", "titleFont": "Benton Gothic Bold, sans-serif", "titleFontSize": 13, "titleFontWeight": "normal"}, "axisX": {"labelPadding": 4, "tickSize": 3}, "axisY": {"labelBaseline": "middle", "maxExtent": 45, "minExtent": 45, "tickSize": 2, "titleAlign": "left", "titleAngle": 0, "titleX": -45, "titleY": -11}, "legend": {"labelFont": "Benton Gothic, sans-serif", "labelFontSize": 11.5, "symbolType": "square", "titleFont": "Benton Gothic Bold, sans-serif", "titleFontSize": 13, "titleFontWeight": "normal"}, "range": {"category": ["#ec8431", "#829eb1", "#c89d29", "#3580b1", "#adc839", "#ab7fb4"], "diverging": ["#e68a4f", "#f4bb6a", "#f9e39c", "#dadfe2", "#a6b7c6", "#849eae"], "heatmap": ["#fbf2c7", "#f9e39c", "#f8d36e", "#f4bb6a", "#e68a4f", "#d15a40", "#ab4232"], "ordinal": ["#fbf2c7", "#f9e39c", "#f8d36e", "#f4bb6a", "#e68a4f", "#d15a40", "#ab4232"], "ramp": ["#fbf2c7", "#f9e39c", "#f8d36e", "#f4bb6a", "#e68a4f", "#d15a40", "#ab4232"]}}, "data": {"url": "data/10317.tsv"}, "mark": "bar", "encoding": {"color": {"value": "#ec8431"}, "x": {"type": "nominal", "axis": {"labelAngle": -30}, "bin": false, "field": "Country"}, "y": {"type": "quantitative", "axis": {"labelAngle": 45, "title": "Rating"}, "field": "Rating"}}, "title": ["ICC Cricket Rankings : Leading Men 's One", "Day International countries worldwide as", "of September 2020"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"} | Country Rating England 127 India 119 New Zealand 116 South Africa 108 Australia 107 Pakistan 102 Bangladesh 88 Sri Lanka 85 West Indies 76 Afghanistan 55 Ireland 49 Netherlands 44 Oman 40 Zimbabwe 39 Scotland 26 Nepal 18 United Arab Emirates 17 Namibia 17 United States 13 | As of September 2020 the ICC cricket rankings leading men in one day internationals shows England players have done the best out of 19 countries. |
{"config": {"range": {"category": ["#4c78a8", "#9ecae9", "#f58518", "#ffbf79", "#54a24b", "#88d27a", "#b79a20", "#f2cf5b", "#439894", "#83bcb6", "#e45756", "#ff9d98", "#79706e", "#bab0ac", "#d67195", "#fcbfd2", "#b279a2", "#d6a5c9", "#9e765f", "#d8b5a5"]}}, "data": {"url": "data/1031.tsv"}, "mark": "bar", "encoding": {"color": {"value": "#fcbfd2"}, "x": {"type": "nominal", "axis": {}, "bin": false, "field": "Country"}, "y": {"type": "quantitative", "axis": {"title": "Number of surgeons"}, "field": "Number of surgeons"}}, "title": ["Countries with the highest number of plastic", "surgeons in 2019"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"} | Country Number of surgeons United States 6900 Brazil 6011 China 3000 Japan 2707 South Korea 2571 India 2400 Mexico 2124 Russia 1812 Turkey 1450 Germany 1397 Italy 1390 Egypt 1215 Colombia 1130 Argentina 1100 France 1082 United Kingdom 1077 Spain 1021 Chinese Taipei 720 Venezuela 625 Peru 563 | The united states had the highest number of plastic surgeons. Brazil had the second highest number of positive surgeons. Peru had the lowest number of plastic surgeons. |
{"config": {"view": {"fill": "#e5e5e5"}, "area": {"fill": "#000"}, "line": {"stroke": "#000"}, "rect": {"fill": "#000"}, "bar": {"fill": "#000"}, "point": {"color": "#000", "size": 40}, "axis": {"domain": false, "grid": true, "gridColor": "#FFFFFF", "gridOpacity": 1, "labelColor": "#7F7F7F", "labelPadding": 4, "tickColor": "#7F7F7F", "tickSize": 5.67, "titleFontSize": 16, "titleFontWeight": "normal"}, "legend": {"labelBaseline": "middle", "labelFontSize": 11, "symbolSize": 40}, "range": {"category": ["#000000", "#7F7F7F", "#1A1A1A", "#999999", "#333333", "#B0B0B0", "#4D4D4D", "#C9C9C9", "#666666", "#DCDCDC"]}}, "data": {"url": "data/10321.tsv"}, "mark": "area", "encoding": {"color": {"value": "#DCDCDC"}, "x": {"type": "temporal", "axis": {"labelAngle": 45}, "bin": false, "field": "Year"}, "y": {"type": "quantitative", "axis": {"labelAngle": -45, "title": "Expenditure in million Japanese yen"}, "field": "Expenditure in million Japanese yen"}}, "title": ["Bridgestone 's expenditure on research and", "development from FY 2009 to FY 2018 (in million", "Japanese yen)"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"} | Year Expenditure in million Japanese yen Dec 31, 2008 85766 Dec 31, 2009 85154 Dec 31, 2010 83982 Dec 31, 2011 82801 Dec 31, 2012 89098 Dec 31, 2013 94147 Dec 31, 2014 94978 Dec 31, 2015 95403 Dec 31, 2016 99791 Dec 31, 2017 103551 | Bridgestone’s research expenditure has gone up over time, although it did dip in 2012. It now’s stands at about 110k. |
{"config": {"view": {"fill": "#e5e5e5"}, "area": {"fill": "#000"}, "line": {"stroke": "#000"}, "rect": {"fill": "#000"}, "bar": {"fill": "#000"}, "point": {"color": "#000", "size": 40}, "axis": {"domain": false, "grid": true, "gridColor": "#FFFFFF", "gridOpacity": 1, "labelColor": "#7F7F7F", "labelPadding": 4, "tickColor": "#7F7F7F", "tickSize": 5.67, "titleFontSize": 16, "titleFontWeight": "normal"}, "legend": {"labelBaseline": "middle", "labelFontSize": 11, "symbolSize": 40}, "range": {"category": ["#000000", "#7F7F7F", "#1A1A1A", "#999999", "#333333", "#B0B0B0", "#4D4D4D", "#C9C9C9", "#666666", "#DCDCDC"]}}, "data": {"url": "data/10321.tsv"}, "mark": "area", "encoding": {"color": {"value": "#DCDCDC"}, "x": {"type": "temporal", "axis": {"labelAngle": 45}, "bin": false, "field": "Year"}, "y": {"type": "quantitative", "axis": {"labelAngle": -45, "title": "Expenditure in million Japanese yen"}, "field": "Expenditure in million Japanese yen"}}, "title": ["Bridgestone 's expenditure on research and", "development from FY 2009 to FY 2018 (in million", "Japanese yen)"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"} | Year Expenditure in million Japanese yen Dec 31, 2008 85766 Dec 31, 2009 85154 Dec 31, 2010 83982 Dec 31, 2011 82801 Dec 31, 2012 89098 Dec 31, 2013 94147 Dec 31, 2014 94978 Dec 31, 2015 95403 Dec 31, 2016 99791 Dec 31, 2017 103551 | Across all financial years between 2009 and 2018, the expenditure in million Japanese yen doesn't drop below roughly 80,000. There is a steady increase from year 2012 to 2018. |
{"config": {"background": "#FFFFFF", "title": {"anchor": "start", "fontSize": 18, "font": "Lato"}, "axisX": {"domain": true, "domainColor": "#000000", "domainWidth": 1, "grid": false, "labelFontSize": 12, "labelFont": "Lato", "tickColor": "#000000", "tickSize": 5, "titleFontSize": 12, "titlePadding": 10, "titleFont": "Lato"}, "axisY": {"domain": false, "domainWidth": 1, "grid": true, "gridColor": "#DEDDDD", "gridWidth": 1, "labelFontSize": 12, "labelFont": "Lato", "labelPadding": 8, "ticks": false, "titleFontSize": 12, "titlePadding": 10, "titleFont": "Lato", "titleAngle": 0, "titleY": -10, "titleX": 18}, "legend": {"labelFontSize": 12, "labelFont": "Lato", "symbolSize": 100, "titleFontSize": 12, "titlePadding": 10, "titleFont": "Lato", "orient": "right", "offset": 10}, "view": {"stroke": "transparent"}, "range": {"category": ["#1696d2", "#ec008b", "#fdbf11", "#000000", "#d2d2d2", "#55b748"], "diverging": ["#ca5800", "#fdbf11", "#fdd870", "#fff2cf", "#cfe8f3", "#73bfe2", "#1696d2", "#0a4c6a"], "heatmap": ["#ca5800", "#fdbf11", "#fdd870", "#fff2cf", "#cfe8f3", "#73bfe2", "#1696d2", "#0a4c6a"], "ordinal": ["#cfe8f3", "#a2d4ec", "#73bfe2", "#46abdb", "#1696d2", "#12719e"], "ramp": ["#CFE8F3", "#A2D4EC", "#73BFE2", "#46ABDB", "#1696D2", "#12719E", "#0A4C6A", "#062635"]}, "area": {"fill": "#1696d2"}, "rect": {"fill": "#1696d2"}, "line": {"color": "#1696d2", "stroke": "#1696d2", "strokeWidth": 5}, "trail": {"color": "#1696d2", "stroke": "#1696d2", "strokeWidth": 0, "size": 1}, "point": {"color": "#1696d2", "size": 30}, "text": {"font": "Lato", "color": "#1696d2", "fontSize": 11, "align": "center", "fontWeight": 400, "size": 11}, "style": {"bar": {"fill": "#1696d2", "stroke": null}}}, "data": {"url": "data/10323.tsv"}, "mark": "bar", "encoding": {"color": {"value": "#d2d2d2"}, "x": {"type": "quantitative", "axis": {"title": "Violent crime severity index"}, "field": "Violent crime severity index"}, "y": {"type": "nominal", "axis": {"labelAngle": -30}, "bin": false, "field": "Province"}}, "title": ["Violent crime severity index in Canada in", "2019 , by province"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"} | Violent crime severity index Province 612.77 Nunavut 480.79 Northwest Territories 236.6 Yukon 188.92 Manitoba 170.97 Saskatchewan 106.65 Alberta 91.48 British Columbia 84.87 New Brunswick 82.13 Nova Scotia 79.1 Newfoundland and Labrador 75.2 Quebec 74.9 Ontario 64.29 Prince Edward Island | Nunavut had the highest violent crime severity index at nearly 600. Prince Edward island had the lowest at below 100. Most provinces had violent crime severity indexes around 100. |
{"config": {"view": {"stroke": "transparent"}, "background": "transparent", "font": "Segoe UI", "header": {"titleFont": "wf_standard-font, helvetica, arial, sans-serif", "titleFontSize": 16, "titleColor": "#252423", "labelFont": "Segoe UI", "labelFontSize": 13.333333333333332, "labelColor": "#605E5C"}, "axis": {"ticks": false, "grid": false, "domain": false, "labelColor": "#605E5C", "labelFontSize": 12, "titleFont": "wf_standard-font, helvetica, arial, sans-serif", "titleColor": "#252423", "titleFontSize": 16, "titleFontWeight": "normal"}, "axisQuantitative": {"tickCount": 3, "grid": true, "gridColor": "#C8C6C4", "gridDash": [1, 5], "labelFlush": false}, "axisBand": {"tickExtra": true}, "axisX": {"labelPadding": 5}, "axisY": {"labelPadding": 10}, "bar": {"fill": "#118DFF"}, "line": {"stroke": "#118DFF", "strokeWidth": 3, "strokeCap": "round", "strokeJoin": "round"}, "text": {"font": "Segoe UI", "fontSize": 12, "fill": "#605E5C"}, "area": {"fill": "#118DFF", "line": true, "opacity": 0.6}, "rect": {"fill": "#118DFF"}, "point": {"fill": "#118DFF", "filled": true, "size": 75}, "legend": {"titleFont": "Segoe UI", "titleFontWeight": "bold", "titleColor": "#605E5C", "labelFont": "Segoe UI", "labelFontSize": 13.333333333333332, "labelColor": "#605E5C", "symbolType": "circle", "symbolSize": 75}, "range": {"category": ["#118DFF", "#12239E", "#E66C37", "#6B007B", "#E044A7", "#744EC2", "#D9B300", "#D64550"], "diverging": ["#DEEFFF", "#118DFF"], "heatmap": ["#DEEFFF", "#118DFF"], "ordinal": ["#DEEFFF", "#c7e4ff", "#b0d9ff", "#9aceff", "#83c3ff", "#6cb9ff", "#55aeff", "#3fa3ff", "#2898ff", "#118DFF"]}}, "data": {"url": "data/10327.tsv"}, "mark": "line", "encoding": {"color": {"value": "#744EC2"}, "x": {"type": "temporal", "axis": {"labelAngle": 30}, "bin": false, "field": "Year"}, "y": {"type": "quantitative", "axis": {"labelAngle": 30, "title": "Number of cases"}, "field": "Number of cases"}}, "title": ["Number of homicide cases in Taiwan from", "2009 to 2019"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"} | Year Number of cases Dec 31, 2008 935 Dec 31, 2009 833 Dec 31, 2010 795 Dec 31, 2011 743 Dec 31, 2012 551 Dec 31, 2013 561 Dec 31, 2014 522 Dec 31, 2015 465 Dec 31, 2016 451 Dec 31, 2017 379 Dec 31, 2018 378 | In 2009 there were nearly 1000 homocide cases in Taiwan. The number durastically reduced to until 2013 where there was a very slight increase, it then continued to drop quite steadily, in 2015 it went to less than 500 and I’m 2018 was at its lowest of 400 cases. |
{"config": {"area": {"fill": "#30a2da"}, "axis": {"domainColor": "#cbcbcb", "grid": true, "gridColor": "#cbcbcb", "gridWidth": 1, "labelColor": "#999", "labelFontSize": 10, "titleColor": "#333", "tickColor": "#cbcbcb", "tickSize": 10, "titleFontSize": 14, "titlePadding": 10, "labelPadding": 4}, "axisBand": {"grid": false}, "background": "#f0f0f0", "view": {"fill": "#f0f0f0"}, "legend": {"labelColor": "#333", "labelFontSize": 11, "padding": 1, "symbolSize": 30, "symbolType": "square", "titleColor": "#333", "titleFontSize": 14, "titlePadding": 10}, "line": {"stroke": "#30a2da", "strokeWidth": 2}, "rect": {"fill": "#30a2da"}, "bar": {"binSpacing": 2, "fill": "#30a2da", "stroke": null}, "range": {"category": ["#30a2da", "#fc4f30", "#e5ae38", "#6d904f", "#8b8b8b", "#b96db8", "#ff9e27", "#56cc60", "#52d2ca", "#52689e", "#545454", "#9fe4f8"], "diverging": ["#cc0020", "#e77866", "#f6e7e1", "#d6e8ed", "#91bfd9", "#1d78b5"], "heatmap": ["#d6e8ed", "#cee0e5", "#91bfd9", "#549cc6", "#1d78b5"]}, "point": {"filled": true, "shape": "circle"}, "title": {"anchor": "start", "fontSize": 24, "fontWeight": 600, "offset": 20}}, "data": {"url": "data/10338.tsv"}, "mark": "line", "encoding": {"color": {"value": "#b96db8"}, "x": {"type": "temporal", "axis": {}, "bin": false, "field": "Year"}, "y": {"type": "quantitative", "axis": {"title": "Sales in million Canadian dollars"}, "field": "Sales in million Canadian dollars"}}, "title": ["Sales of cut flowers in Canada from 2010", "to 2019 (in million Canadian dollars)"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"} | Year Sales in million Canadian dollars Dec 31, 2009 132.64 Dec 31, 2010 140.96 Dec 31, 2011 143.4 Dec 31, 2012 149.61 Dec 31, 2013 150.1 Dec 31, 2014 146.56 Dec 31, 2015 140.09 Dec 31, 2016 127.81 Dec 31, 2017 133.22 Dec 31, 2018 133.55 | Sales of cut flowers in canada has stayed fairly steady over the reported time period (2010 to 2018). There was a peak in 2013-2014 of 150 million canadian dollars, followed by a slight downward trend up to 2017 reaching low of approx 125 million. Overall the figures stayed between 125 million and 150 million throughout the study period. |
{"config": {"background": "#666", "title": {"color": "#fff", "subtitleColor": "#fff"}, "style": {"guide-label": {"fill": "#fff"}, "guide-title": {"fill": "#fff"}}, "axis": {"domainColor": "#fff", "gridColor": "#888", "tickColor": "#fff"}, "range": {"category": ["#fbb4ae", "#b3cde3", "#ccebc5", "#decbe4", "#fed9a6", "#ffffcc", "#e5d8bd", "#fddaec", "#f2f2f2", "#b3e2cd", "#fdcdac", "#cbd5e8", "#f4cae4", "#e6f5c9", "#fff2ae", "#f1e2cc", "#cccccc"]}}, "data": {"url": "data/10339.tsv"}, "mark": "line", "encoding": {"color": {"value": "#cccccc"}, "x": {"type": "temporal", "axis": {"labelAngle": 90}, "bin": false, "field": "Year"}, "y": {"type": "quantitative", "axis": {"title": "Expenditure in thousand U.S. dollars"}, "field": "Expenditure in thousand U\\.S\\. dollars"}}, "title": ["Annual expenditure on health per capita", "in South Korea from 2008 to 2018 (in 1,000", "U.S. dollars)"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"} | Year Expenditure in thousand U.S. dollars Dec 31, 2007 1.57 Dec 31, 2008 1.7 Dec 31, 2009 1.89 Dec 31, 2010 1.98 Dec 31, 2011 2.08 Dec 31, 2012 2.13 Dec 31, 2013 2.24 Dec 31, 2014 2.49 Dec 31, 2015 2.68 Dec 31, 2016 2.87 Dec 31, 2017 3.19 | Expenditures are gradually increasing throughout the years shown. Between 2012 and 2014 there was less of an increase as opposed to other ranges. |
{"config": {"view": {"fill": "#e5e5e5"}, "area": {"fill": "#000"}, "line": {"stroke": "#000"}, "rect": {"fill": "#000"}, "bar": {"fill": "#000"}, "point": {"color": "#000", "size": 40}, "axis": {"domain": false, "grid": true, "gridColor": "#FFFFFF", "gridOpacity": 1, "labelColor": "#7F7F7F", "labelPadding": 4, "tickColor": "#7F7F7F", "tickSize": 5.67, "titleFontSize": 16, "titleFontWeight": "normal"}, "legend": {"labelBaseline": "middle", "labelFontSize": 11, "symbolSize": 40}, "range": {"category": ["#000000", "#7F7F7F", "#1A1A1A", "#999999", "#333333", "#B0B0B0", "#4D4D4D", "#C9C9C9", "#666666", "#DCDCDC"]}}, "data": {"url": "data/10355.tsv"}, "mark": "area", "encoding": {"color": {"value": "#333333"}, "x": {"type": "temporal", "axis": {"labelAngle": 30}, "bin": false, "field": "Year"}, "y": {"type": "quantitative", "axis": {"labelAngle": 0, "title": "Number of fatalities"}, "field": "Number of fatalities"}}, "title": ["Number of road traffic fatalities in Slovakia", "from 2006 to 2019"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"} | Year Number of fatalities Dec 31, 2005 608 Dec 31, 2006 661 Dec 31, 2007 606 Dec 31, 2008 384 Dec 31, 2009 353 Dec 31, 2010 325 Dec 31, 2011 352 Dec 31, 2012 251 Dec 31, 2013 295 Dec 31, 2014 310 Dec 31, 2015 275 Dec 31, 2016 276 Dec 31, 2017 260 Dec 31, 2018 270 | sharp decrease in 2008 then steadily declining from 400 to 250 deaths from 2008 to 2018. |
{"config": {"background": "#000", "title": {"color": "#fff", "subtitleColor": "#fff"}, "style": {"guide-label": {"fill": "#fff"}, "guide-title": {"fill": "#fff"}}, "axis": {"domainColor": "#fff", "gridColor": "#888", "tickColor": "#fff"}, "range": {"category": ["#7fc97f", "#beaed4", "#fdc086", "#ffff99", "#386cb0", "#f0027f", "#bf5b17", "#666666"]}}, "data": {"url": "data/10363.tsv"}, "mark": "bar", "encoding": {"color": {"value": "#bf5b17"}, "x": {"type": "nominal", "axis": {}, "bin": false, "field": "Year"}, "y": {"type": "quantitative", "axis": {"labelAngle": -30, "title": "Budget balance in relation to GDP"}, "field": "Budget balance in relation to GDP"}}, "title": ["Thailand : Budget balance between 2015 to", "2025 in relation to GDP"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"} | Year Budget balance in relation to GDP 2025* −0.0189 2024* −0.0192 2023* −0.0193 2022* −0.0175 2021* −0.0492 2020* −0.0521 2019 −0.0082 2018 0.0006 2017 −0.0043 2016 0.0057 2015 0.0013 | Thailand's budget dipped sharply into deficit in 2020. Thailand's massive deficit lasted two years. In the aftermath of Thailand's budget deficit, Thailand's budget balance did not recover significantly within the following five years. In the three years following Thailand's budget balance deficit, there was no increase in recovery after the initial rebound. |
{"config": {"view": {"stroke": "transparent"}, "background": "transparent", "font": "Segoe UI", "header": {"titleFont": "wf_standard-font, helvetica, arial, sans-serif", "titleFontSize": 16, "titleColor": "#252423", "labelFont": "Segoe UI", "labelFontSize": 13.333333333333332, "labelColor": "#605E5C"}, "axis": {"ticks": false, "grid": false, "domain": false, "labelColor": "#605E5C", "labelFontSize": 12, "titleFont": "wf_standard-font, helvetica, arial, sans-serif", "titleColor": "#252423", "titleFontSize": 16, "titleFontWeight": "normal"}, "axisQuantitative": {"tickCount": 3, "grid": true, "gridColor": "#C8C6C4", "gridDash": [1, 5], "labelFlush": false}, "axisBand": {"tickExtra": true}, "axisX": {"labelPadding": 5}, "axisY": {"labelPadding": 10}, "bar": {"fill": "#118DFF"}, "line": {"stroke": "#118DFF", "strokeWidth": 3, "strokeCap": "round", "strokeJoin": "round"}, "text": {"font": "Segoe UI", "fontSize": 12, "fill": "#605E5C"}, "area": {"fill": "#118DFF", "line": true, "opacity": 0.6}, "rect": {"fill": "#118DFF"}, "point": {"fill": "#118DFF", "filled": true, "size": 75}, "legend": {"titleFont": "Segoe UI", "titleFontWeight": "bold", "titleColor": "#605E5C", "labelFont": "Segoe UI", "labelFontSize": 13.333333333333332, "labelColor": "#605E5C", "symbolType": "circle", "symbolSize": 75}, "range": {"category": ["#118DFF", "#12239E", "#E66C37", "#6B007B", "#E044A7", "#744EC2", "#D9B300", "#D64550"], "diverging": ["#DEEFFF", "#118DFF"], "heatmap": ["#DEEFFF", "#118DFF"], "ordinal": ["#DEEFFF", "#c7e4ff", "#b0d9ff", "#9aceff", "#83c3ff", "#6cb9ff", "#55aeff", "#3fa3ff", "#2898ff", "#118DFF"]}}, "data": {"url": "data/10367.tsv"}, "mark": "area", "encoding": {"color": {"value": "#D64550"}, "x": {"type": "temporal", "axis": {"labelAngle": -60}, "bin": false, "field": "Year"}, "y": {"type": "quantitative", "axis": {"labelAngle": 30, "title": "Deaths per 1,000 live births"}, "field": "Deaths per 1,000 live births"}}, "title": ["Lebanon : Infant mortality rate from 2009", "to 2019 (in deaths per 1,000 live births)"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"} | Year Deaths per 1,000 live births Dec 31, 2008 9.3 Dec 31, 2009 8.8 Dec 31, 2010 8.4 Dec 31, 2011 8 Dec 31, 2012 7.7 Dec 31, 2013 7.4 Dec 31, 2014 7.1 Dec 31, 2015 6.8 Dec 31, 2016 6.6 Dec 31, 2017 6.4 Dec 31, 2018 6.2 | Overall, infant mortality rates have declined from 9 per 1000 live births in 2009, to approximately 6 per 1000 live births in 2019. |
{"config": {"view": {"fill": "#e5e5e5"}, "area": {"fill": "#000"}, "line": {"stroke": "#000"}, "rect": {"fill": "#000"}, "bar": {"fill": "#000"}, "point": {"color": "#000", "size": 40}, "axis": {"domain": false, "grid": true, "gridColor": "#FFFFFF", "gridOpacity": 1, "labelColor": "#7F7F7F", "labelPadding": 4, "tickColor": "#7F7F7F", "tickSize": 5.67, "titleFontSize": 16, "titleFontWeight": "normal"}, "legend": {"labelBaseline": "middle", "labelFontSize": 11, "symbolSize": 40}, "range": {"category": ["#000000", "#7F7F7F", "#1A1A1A", "#999999", "#333333", "#B0B0B0", "#4D4D4D", "#C9C9C9", "#666666", "#DCDCDC"]}}, "data": {"url": "data/10379.tsv"}, "mark": "line", "encoding": {"color": {"value": "#B0B0B0"}, "x": {"type": "temporal", "axis": {}, "bin": false, "field": "Response"}, "y": {"type": "quantitative", "axis": {"title": "Share of urban population in total population"}, "field": "Share of urban population in total population"}}, "title": ["Uzbekistan : Urbanization from 2009 to 2019"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"} | Response Share of urban population in total population Dec 31, 2008 0.5047 Dec 31, 2009 0.5096 Dec 31, 2010 0.5115 Dec 31, 2011 0.5105 Dec 31, 2012 0.5095 Dec 31, 2013 0.5085 Dec 31, 2014 0.5075 Dec 31, 2015 0.5065 Dec 31, 2016 0.5055 Dec 31, 2017 0.5048 Dec 31, 2018 0.5043 | Quite a flat line of data, slightly increasing 2010/2011difficult to read due to the colour. |
{"config": {"view": {"fill": "#e5e5e5"}, "area": {"fill": "#000"}, "line": {"stroke": "#000"}, "rect": {"fill": "#000"}, "bar": {"fill": "#000"}, "point": {"color": "#000", "size": 40}, "axis": {"domain": false, "grid": true, "gridColor": "#FFFFFF", "gridOpacity": 1, "labelColor": "#7F7F7F", "labelPadding": 4, "tickColor": "#7F7F7F", "tickSize": 5.67, "titleFontSize": 16, "titleFontWeight": "normal"}, "legend": {"labelBaseline": "middle", "labelFontSize": 11, "symbolSize": 40}, "range": {"category": ["#000000", "#7F7F7F", "#1A1A1A", "#999999", "#333333", "#B0B0B0", "#4D4D4D", "#C9C9C9", "#666666", "#DCDCDC"]}}, "data": {"url": "data/10379.tsv"}, "mark": "line", "encoding": {"color": {"value": "#B0B0B0"}, "x": {"type": "temporal", "axis": {}, "bin": false, "field": "Response"}, "y": {"type": "quantitative", "axis": {"title": "Share of urban population in total population"}, "field": "Share of urban population in total population"}}, "title": ["Uzbekistan : Urbanization from 2009 to 2019"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"} | Response Share of urban population in total population Dec 31, 2008 0.5047 Dec 31, 2009 0.5096 Dec 31, 2010 0.5115 Dec 31, 2011 0.5105 Dec 31, 2012 0.5095 Dec 31, 2013 0.5085 Dec 31, 2014 0.5075 Dec 31, 2015 0.5065 Dec 31, 2016 0.5055 Dec 31, 2017 0.5048 Dec 31, 2018 0.5043 | In the period shown there is very little change in the share of urban population. In the period shown the share of urban population is almost exactly 0.5 throughout. |
{"config": {"range": {"category": ["#393b79", "#5254a3", "#6b6ecf", "#9c9ede", "#637939", "#8ca252", "#b5cf6b", "#cedb9c", "#8c6d31", "#bd9e39", "#e7ba52", "#e7cb94", "#843c39", "#ad494a", "#d6616b", "#e7969c", "#7b4173", "#a55194", "#ce6dbd", "#de9ed6"]}}, "data": {"url": "data/1037.tsv"}, "mark": "area", "encoding": {"color": {"value": "#ad494a"}, "x": {"type": "temporal", "axis": {}, "bin": false, "field": "Year"}, "y": {"type": "quantitative", "axis": {"title": "Number of employees in thousands"}, "field": "Number of employees in thousands"}}, "title": ["Average number of Caterpillar employees", "worldwide from FY 2006 to FY 2019 (in 1,000s)"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"} | Year Number of employees in thousands Dec 31, 2005 94.6 Dec 31, 2006 101.3 Dec 31, 2007 106.5 Dec 31, 2008 99.4 Dec 31, 2009 98.6 Dec 31, 2010 113.6 Dec 31, 2011 127.8 Dec 31, 2012 122.5 Dec 31, 2013 115.6 Dec 31, 2014 110.8 Dec 31, 2015 99.5 Dec 31, 2016 96 Dec 31, 2017 101.5 Dec 31, 2018 103.4 | The number of employees started off below 100 (in 1000s) at the beginning of 2006. It then peaked in 2012 with just under 120 (in 1000s). After that it was a steady decline to its first point of around 100 (in 1000s). Then has been a slow increase since to 2018. |
{"config": {"background": "#666", "title": {"color": "#fff", "subtitleColor": "#fff"}, "style": {"guide-label": {"fill": "#fff"}, "guide-title": {"fill": "#fff"}}, "axis": {"domainColor": "#fff", "gridColor": "#888", "tickColor": "#fff"}, "range": {"category": ["#fbb4ae", "#b3cde3", "#ccebc5", "#decbe4", "#fed9a6", "#ffffcc", "#e5d8bd", "#fddaec", "#f2f2f2", "#b3e2cd", "#fdcdac", "#cbd5e8", "#f4cae4", "#e6f5c9", "#fff2ae", "#f1e2cc", "#cccccc"]}}, "data": {"url": "data/1038.tsv"}, "mark": "bar", "encoding": {"color": {"value": "#f1e2cc"}, "x": {"type": "nominal", "axis": {}, "bin": false, "field": "Year"}, "y": {"type": "quantitative", "axis": {"title": "Number of beds"}, "field": "Number of beds"}}, "title": ["Annual number of hospital beds in the United", "Kingdom (UK) from 2000 to 2019"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"} | Year Number of beds 2019*** 163873 2018** 165844 2017 167589 2016 168934 2015 169995 2014 176324 2013 176791 2012 178841 2011 181972 2010 * 183849 2009 203326 2008 205976 2007 207789 2006 215513 2005 224882 2004 231399 2003 235512 2002 236205 2001 238641 2000 240144 | The chart is showing a trend of decreasing number of hospital beds in the UK since the year 2000. Especially big decrease happened between year 2009 and 2010. The number of hospital beds from the year 2000 has dropped by over 70.000 by the year 2019 leaving the total number at around 170.000. |
{"config": {"background": "#666", "title": {"color": "#fff", "subtitleColor": "#fff"}, "style": {"guide-label": {"fill": "#fff"}, "guide-title": {"fill": "#fff"}}, "axis": {"domainColor": "#fff", "gridColor": "#888", "tickColor": "#fff"}, "range": {"category": ["#fbb4ae", "#b3cde3", "#ccebc5", "#decbe4", "#fed9a6", "#ffffcc", "#e5d8bd", "#fddaec", "#f2f2f2", "#b3e2cd", "#fdcdac", "#cbd5e8", "#f4cae4", "#e6f5c9", "#fff2ae", "#f1e2cc", "#cccccc"]}}, "data": {"url": "data/1038.tsv"}, "mark": "bar", "encoding": {"color": {"value": "#f1e2cc"}, "x": {"type": "nominal", "axis": {}, "bin": false, "field": "Year"}, "y": {"type": "quantitative", "axis": {"title": "Number of beds"}, "field": "Number of beds"}}, "title": ["Annual number of hospital beds in the United", "Kingdom (UK) from 2000 to 2019"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"} | Year Number of beds 2019*** 163873 2018** 165844 2017 167589 2016 168934 2015 169995 2014 176324 2013 176791 2012 178841 2011 181972 2010 * 183849 2009 203326 2008 205976 2007 207789 2006 215513 2005 224882 2004 231399 2003 235512 2002 236205 2001 238641 2000 240144 | There was the highest number of beds in 2000. The number of beds is smaller by over 50000 in 2019 than it was in 2000. Between 2000 and 2009 there were over 200 000 beds. Between 2010 and 2019 were over 150 000 beds but much less than 200 000. The biggest fall in a number of beds was between 2009 and 2010. |
{"config": {"background": "#ffffff", "title": {"anchor": "start", "color": "#000000", "font": "Benton Gothic Bold, sans-serif", "fontSize": 22, "fontWeight": "normal"}, "area": {"fill": "#82c6df"}, "line": {"stroke": "#82c6df", "strokeWidth": 2}, "rect": {"fill": "#82c6df"}, "bar": {"fill": "#82c6df"}, "point": {"color": "#82c6df", "size": 30}, "axis": {"labelFont": "Benton Gothic, sans-serif", "labelFontSize": 11.5, "labelFontWeight": "normal", "titleFont": "Benton Gothic Bold, sans-serif", "titleFontSize": 13, "titleFontWeight": "normal"}, "axisX": {"labelPadding": 4, "tickSize": 3}, "axisY": {"labelBaseline": "middle", "maxExtent": 45, "minExtent": 45, "tickSize": 2, "titleAlign": "left", "titleAngle": 0, "titleX": -45, "titleY": -11}, "legend": {"labelFont": "Benton Gothic, sans-serif", "labelFontSize": 11.5, "symbolType": "square", "titleFont": "Benton Gothic Bold, sans-serif", "titleFontSize": 13, "titleFontWeight": "normal"}, "range": {"category": ["#ec8431", "#829eb1", "#c89d29", "#3580b1", "#adc839", "#ab7fb4"], "diverging": ["#e68a4f", "#f4bb6a", "#f9e39c", "#dadfe2", "#a6b7c6", "#849eae"], "heatmap": ["#fbf2c7", "#f9e39c", "#f8d36e", "#f4bb6a", "#e68a4f", "#d15a40", "#ab4232"], "ordinal": ["#fbf2c7", "#f9e39c", "#f8d36e", "#f4bb6a", "#e68a4f", "#d15a40", "#ab4232"], "ramp": ["#fbf2c7", "#f9e39c", "#f8d36e", "#f4bb6a", "#e68a4f", "#d15a40", "#ab4232"]}}, "data": {"url": "data/10400.tsv"}, "mark": "area", "encoding": {"color": {"value": "#c89d29"}, "x": {"type": "temporal", "axis": {"labelAngle": 90}, "bin": false, "field": "Year"}, "y": {"type": "quantitative", "axis": {"title": "Import value in thousand GBP"}, "field": "Import value in thousand GBP"}}, "title": ["Value of onions , shallots , garlic and", "leeks imported to the United Kingdom (UK)", "from 2001 to 2019 (in 1,000 GBP)"], "$schema": "https://vega.github.io/schema/vega-lite/v4.8.1.json"} | Year Import value in thousand GBP Dec 31, 2000 76130 Dec 31, 2001 91347 Dec 31, 2002 96607 Dec 31, 2003 97379 Dec 31, 2004 97035 Dec 31, 2005 119177 Dec 31, 2006 161808 Dec 31, 2007 153968 Dec 31, 2008 147950 Dec 31, 2009 199329 Dec 31, 2010 203775 Dec 31, 2011 149087 Dec 31, 2012 214449 Dec 31, 2013 188428 Dec 31, 2014 188444 Dec 31, 2015 228030 Dec 31, 2016 197835 Dec 31, 2017 225513 Dec 31, 2018 293448 | The value of onions, shallots and leeks imported to the UK has increased significantly from 2001 to 2019. |
End of preview. Expand
in Dataset Viewer.
README.md exists but content is empty.
- Downloads last month
- 41