|
# Community Scripts |
|
|
|
**Community scripts** consist of inference examples using Diffusers pipelines that have been added by the community. |
|
Please have a look at the following table to get an overview of all community examples. Click on the **Code Example** to get a copy-and-paste code example that you can try out. |
|
If a community script doesn't work as expected, please open an issue and ping the author on it. |
|
|
|
| Example | Description | Code Example | Colab | Author | |
|
|:--------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------:| |
|
| Using IP-Adapter with negative noise | Using negative noise with IP-adapter to better control the generation (see the [original post](https://github.com/huggingface/diffusers/discussions/7167) on the forum for more details) | [IP-Adapter Negative Noise](#ip-adapter-negative-noise) | | [Álvaro Somoza](https://github.com/asomoza)| |
|
| asymmetric tiling |configure seamless image tiling independently for the X and Y axes | [Asymmetric Tiling](#asymmetric-tiling ) | | [alexisrolland](https://github.com/alexisrolland)| |
|
|
|
|
|
## Example usages |
|
|
|
### IP Adapter Negative Noise |
|
|
|
Diffusers pipelines are fully integrated with IP-Adapter, which allows you to prompt the diffusion model with an image. However, it does not support negative image prompts (there is no `negative_ip_adapter_image` argument) the same way it supports negative text prompts. When you pass an `ip_adapter_image,` it will create a zero-filled tensor as a negative image. This script shows you how to create a negative noise from `ip_adapter_image` and use it to significantly improve the generation quality while preserving the composition of images. |
|
|
|
[cubiq](https://github.com/cubiq) initially developed this feature in his [repository](https://github.com/cubiq/ComfyUI_IPAdapter_plus). The community script was contributed by [asomoza](https://github.com/Somoza). You can find more details about this experimentation [this discussion](https://github.com/huggingface/diffusers/discussions/7167) |
|
|
|
IP-Adapter without negative noise |
|
|source|result| |
|
|---|---| |
|
|![20240229150812](https://github.com/huggingface/diffusers/assets/5442875/901d8bd8-7a59-4fe7-bda1-a0e0d6c7dffd)|![20240229163923_normal](https://github.com/huggingface/diffusers/assets/5442875/3432e25a-ece6-45f4-a3f4-fca354f40b5b)| |
|
|
|
IP-Adapter with negative noise |
|
|source|result| |
|
|---|---| |
|
|![20240229150812](https://github.com/huggingface/diffusers/assets/5442875/901d8bd8-7a59-4fe7-bda1-a0e0d6c7dffd)|![20240229163923](https://github.com/huggingface/diffusers/assets/5442875/736fd15a-36ba-40c0-a7d8-6ec1ac26f788)| |
|
|
|
```python |
|
import torch |
|
|
|
from diffusers import AutoencoderKL, DPMSolverMultistepScheduler, StableDiffusionXLPipeline |
|
from diffusers.models import ImageProjection |
|
from diffusers.utils import load_image |
|
|
|
|
|
def encode_image( |
|
image_encoder, |
|
feature_extractor, |
|
image, |
|
device, |
|
num_images_per_prompt, |
|
output_hidden_states=None, |
|
negative_image=None, |
|
): |
|
dtype = next(image_encoder.parameters()).dtype |
|
|
|
if not isinstance(image, torch.Tensor): |
|
image = feature_extractor(image, return_tensors="pt").pixel_values |
|
|
|
image = image.to(device=device, dtype=dtype) |
|
if output_hidden_states: |
|
image_enc_hidden_states = image_encoder(image, output_hidden_states=True).hidden_states[-2] |
|
image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) |
|
|
|
if negative_image is None: |
|
uncond_image_enc_hidden_states = image_encoder( |
|
torch.zeros_like(image), output_hidden_states=True |
|
).hidden_states[-2] |
|
else: |
|
if not isinstance(negative_image, torch.Tensor): |
|
negative_image = feature_extractor(negative_image, return_tensors="pt").pixel_values |
|
negative_image = negative_image.to(device=device, dtype=dtype) |
|
uncond_image_enc_hidden_states = image_encoder(negative_image, output_hidden_states=True).hidden_states[-2] |
|
|
|
uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) |
|
return image_enc_hidden_states, uncond_image_enc_hidden_states |
|
else: |
|
image_embeds = image_encoder(image).image_embeds |
|
image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0) |
|
uncond_image_embeds = torch.zeros_like(image_embeds) |
|
|
|
return image_embeds, uncond_image_embeds |
|
|
|
|
|
@torch.no_grad() |
|
def prepare_ip_adapter_image_embeds( |
|
unet, |
|
image_encoder, |
|
feature_extractor, |
|
ip_adapter_image, |
|
do_classifier_free_guidance, |
|
device, |
|
num_images_per_prompt, |
|
ip_adapter_negative_image=None, |
|
): |
|
if not isinstance(ip_adapter_image, list): |
|
ip_adapter_image = [ip_adapter_image] |
|
|
|
if len(ip_adapter_image) != len(unet.encoder_hid_proj.image_projection_layers): |
|
raise ValueError( |
|
f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(unet.encoder_hid_proj.image_projection_layers)} IP Adapters." |
|
) |
|
|
|
image_embeds = [] |
|
for single_ip_adapter_image, image_proj_layer in zip( |
|
ip_adapter_image, unet.encoder_hid_proj.image_projection_layers |
|
): |
|
output_hidden_state = not isinstance(image_proj_layer, ImageProjection) |
|
single_image_embeds, single_negative_image_embeds = encode_image( |
|
image_encoder, |
|
feature_extractor, |
|
single_ip_adapter_image, |
|
device, |
|
1, |
|
output_hidden_state, |
|
negative_image=ip_adapter_negative_image, |
|
) |
|
single_image_embeds = torch.stack([single_image_embeds] * num_images_per_prompt, dim=0) |
|
single_negative_image_embeds = torch.stack([single_negative_image_embeds] * num_images_per_prompt, dim=0) |
|
|
|
if do_classifier_free_guidance: |
|
single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds]) |
|
single_image_embeds = single_image_embeds.to(device) |
|
|
|
image_embeds.append(single_image_embeds) |
|
|
|
return image_embeds |
|
|
|
|
|
vae = AutoencoderKL.from_pretrained( |
|
"madebyollin/sdxl-vae-fp16-fix", |
|
torch_dtype=torch.float16, |
|
).to("cuda") |
|
|
|
pipeline = StableDiffusionXLPipeline.from_pretrained( |
|
"RunDiffusion/Juggernaut-XL-v9", |
|
torch_dtype=torch.float16, |
|
vae=vae, |
|
variant="fp16", |
|
).to("cuda") |
|
|
|
pipeline.scheduler = DPMSolverMultistepScheduler.from_config(pipeline.scheduler.config) |
|
pipeline.scheduler.config.use_karras_sigmas = True |
|
|
|
pipeline.load_ip_adapter( |
|
"h94/IP-Adapter", |
|
subfolder="sdxl_models", |
|
weight_name="ip-adapter-plus_sdxl_vit-h.safetensors", |
|
image_encoder_folder="models/image_encoder", |
|
) |
|
pipeline.set_ip_adapter_scale(0.7) |
|
|
|
ip_image = load_image("source.png") |
|
negative_ip_image = load_image("noise.png") |
|
|
|
image_embeds = prepare_ip_adapter_image_embeds( |
|
unet=pipeline.unet, |
|
image_encoder=pipeline.image_encoder, |
|
feature_extractor=pipeline.feature_extractor, |
|
ip_adapter_image=[[ip_image]], |
|
do_classifier_free_guidance=True, |
|
device="cuda", |
|
num_images_per_prompt=1, |
|
ip_adapter_negative_image=negative_ip_image, |
|
) |
|
|
|
|
|
prompt = "cinematic photo of a cyborg in the city, 4k, high quality, intricate, highly detailed" |
|
negative_prompt = "blurry, smooth, plastic" |
|
|
|
image = pipeline( |
|
prompt=prompt, |
|
negative_prompt=negative_prompt, |
|
ip_adapter_image_embeds=image_embeds, |
|
guidance_scale=6.0, |
|
num_inference_steps=25, |
|
generator=torch.Generator(device="cpu").manual_seed(1556265306), |
|
).images[0] |
|
|
|
image.save("result.png") |
|
``` |
|
|
|
### Asymmetric Tiling |
|
Stable Diffusion is not trained to generate seamless textures. However, you can use this simple script to add tiling to your generation. This script is contributed by [alexisrolland](https://github.com/alexisrolland). See more details in the [this issue](https://github.com/huggingface/diffusers/issues/556) |
|
|
|
|
|
|Generated|Tiled| |
|
|---|---| |
|
|![20240313003235_573631814](https://github.com/huggingface/diffusers/assets/5442875/eca174fb-06a4-464e-a3a7-00dbb024543e)|![wall](https://github.com/huggingface/diffusers/assets/5442875/b4aa774b-2a6a-4316-a8eb-8f30b5f4d024)| |
|
|
|
|
|
```py |
|
import torch |
|
from typing import Optional |
|
from diffusers import StableDiffusionPipeline |
|
from diffusers.models.lora import LoRACompatibleConv |
|
|
|
def seamless_tiling(pipeline, x_axis, y_axis): |
|
def asymmetric_conv2d_convforward(self, input: torch.Tensor, weight: torch.Tensor, bias: Optional[torch.Tensor] = None): |
|
self.paddingX = (self._reversed_padding_repeated_twice[0], self._reversed_padding_repeated_twice[1], 0, 0) |
|
self.paddingY = (0, 0, self._reversed_padding_repeated_twice[2], self._reversed_padding_repeated_twice[3]) |
|
working = torch.nn.functional.pad(input, self.paddingX, mode=x_mode) |
|
working = torch.nn.functional.pad(working, self.paddingY, mode=y_mode) |
|
return torch.nn.functional.conv2d(working, weight, bias, self.stride, torch.nn.modules.utils._pair(0), self.dilation, self.groups) |
|
x_mode = 'circular' if x_axis else 'constant' |
|
y_mode = 'circular' if y_axis else 'constant' |
|
targets = [pipeline.vae, pipeline.text_encoder, pipeline.unet] |
|
convolution_layers = [] |
|
for target in targets: |
|
for module in target.modules(): |
|
if isinstance(module, torch.nn.Conv2d): |
|
convolution_layers.append(module) |
|
for layer in convolution_layers: |
|
if isinstance(layer, LoRACompatibleConv) and layer.lora_layer is None: |
|
layer.lora_layer = lambda * x: 0 |
|
layer._conv_forward = asymmetric_conv2d_convforward.__get__(layer, torch.nn.Conv2d) |
|
return pipeline |
|
|
|
pipeline = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16, use_safetensors=True) |
|
pipeline.enable_model_cpu_offload() |
|
prompt = ["texture of a red brick wall"] |
|
seed = 123456 |
|
generator = torch.Generator(device='cuda').manual_seed(seed) |
|
|
|
pipeline = seamless_tiling(pipeline=pipeline, x_axis=True, y_axis=True) |
|
image = pipeline( |
|
prompt=prompt, |
|
width=512, |
|
height=512, |
|
num_inference_steps=20, |
|
guidance_scale=7, |
|
num_images_per_prompt=1, |
|
generator=generator |
|
).images[0] |
|
seamless_tiling(pipeline=pipeline, x_axis=False, y_axis=False) |
|
|
|
torch.cuda.empty_cache() |
|
image.save('image.png') |
|
``` |