|
--- |
|
license: mit |
|
tags: |
|
- music |
|
pretty_name: FMA rank |
|
size_categories: |
|
- 100K<n<1M |
|
--- |
|
|
|
# What is FMA-rank? |
|
|
|
FMA is a music dataset from the Free Music Archive, containing over 8000 hours of Creative Commons-licensed music from 107k tracks across 16k artists and 15k albums. |
|
It was created in 2017 by [Defferrard et al.](https://arxiv.org/abs/1612.01840) in collaboration with [Free Music Archive](https://freemusicarchive.org/). |
|
|
|
FMA contains a lot of good music, and a lot of bad music, so the question is: can we rank the samples in FMA? |
|
|
|
FMA-rank is a CLAP-based statistical ranking of each sample in FMA. We calculate the log-likelihood of each sample in FMA belonging to an estimated gaussian in the CLAP latent space, using these values we can rank and filter FMA. In log-likelihood, higher values are better. |
|
|
|
# Quickstart |
|
|
|
Download any FMA split from the official github https://github.com/mdeff/fma. Extract the FMA folder from the downloaded zip and set the path to the folder in `fma_root_dir`. |
|
Run the following code snippet to load and filter the FMA samples according to the given percentages. The code snippet will return a HF audio dataset. |
|
```Python |
|
from datasets import load_dataset, Dataset, Audio |
|
import os |
|
|
|
# provide location of fma folder |
|
fma_root_dir = "/path/to/fma/folder" |
|
|
|
# provide percentage of fma dataset to use |
|
# for whole dataset, use start_percentage=0 and end_percentage=100 |
|
# for worst 20% of dataset, use start_percentage=0 and end_percentage=20 |
|
# for best 20% of dataset, use the following values: |
|
start_percentage = 80 |
|
end_percentage = 100 |
|
|
|
# load fma_rank.csv from huggingface and sort from lowest to highest |
|
csv_loaded = load_dataset("disco-eth/FMA-rank") |
|
fma_item_list = csv_loaded["train"] |
|
fma_sorted_list = sorted(fma_item_list, key=lambda d: d['CLAP-log-likelihood']) |
|
|
|
def parse_fma_audio_folder(fma_root_dir): |
|
valid_fma_ids = [] |
|
subfolders = os.listdir(fma_root_dir) |
|
for subfolder in subfolders: |
|
subfolder_path = os.path.join(fma_root_dir, subfolder) |
|
if os.path.isdir(subfolder_path): |
|
music_files = os.listdir(subfolder_path) |
|
for music_file in music_files: |
|
if ".mp3" not in music_file: |
|
continue |
|
else: |
|
fma_id = music_file.split('.')[0] |
|
valid_fma_ids.append(fma_id) |
|
return valid_fma_ids |
|
|
|
# select the existing files according to the provided fma folder |
|
valid_fma_ids = parse_fma_audio_folder(fma_root_dir) |
|
df_dict = {"id":[], "score": [], "audio": []} |
|
for fma_item in fma_sorted_list: |
|
this_id = f"{fma_item['id']:06d}" |
|
if this_id in valid_fma_ids: |
|
df_dict["id"].append(this_id) |
|
df_dict["score"].append(fma_item["CLAP-log-likelihood"]) |
|
df_dict["audio"].append(os.path.join(fma_root_dir, this_id[:3] , this_id+".mp3")) |
|
|
|
# filter the fma dataset according to the percentage defined above |
|
i_start = int(start_percentage * len(df_dict["id"]) / 100) |
|
i_end = int(end_percentage * len(df_dict["id"]) / 100) |
|
df_dict_filtered = { |
|
"id": df_dict["id"][i_start:i_end], |
|
"score": df_dict["score"][i_start:i_end], |
|
"audio": df_dict["audio"][i_start:i_end], |
|
} |
|
|
|
# get final dataset |
|
audio_dataset = Dataset.from_dict(df_dict_filtered).cast_column("audio", Audio()) |
|
|
|
""" |
|
Dataset({ |
|
features: ['id', 'score', 'audio'], |
|
num_rows: 1599 |
|
}) |
|
""" |
|
``` |
|
|