|
from mpi4py import MPI |
|
from mpi4py.futures import MPICommExecutor |
|
|
|
import warnings |
|
from Bio.PDB import PDBParser, PPBuilder, CaPPBuilder |
|
from Bio.PDB.NeighborSearch import NeighborSearch |
|
from Bio.PDB.Selection import unfold_entities |
|
|
|
import numpy as np |
|
import dask.array as da |
|
|
|
from rdkit import Chem |
|
|
|
from functools import partial |
|
|
|
import os |
|
import re |
|
import sys |
|
import io |
|
import random |
|
import gzip |
|
import copy |
|
|
|
from atomic_renamer import AtomicNamer |
|
|
|
from prody import * |
|
|
|
import webdataset as wd |
|
|
|
amino_acids = {'L': 'LEU', 'A': 'ALA', 'G': 'GLY', 'V': 'VAL', 'E': 'GLU', 'S': 'SER', 'I': 'ILE', 'K': 'LYS', |
|
'R': 'ARG', 'D': 'ASP', 'T': 'THR', 'P': 'PRO', 'N': 'ASN', 'Q': 'GLN', 'F': 'PHE', 'Y': 'TYR', |
|
'M': 'MET', 'H': 'HIS', 'C': 'CYS', 'W': 'TRP'} |
|
nfeat = 15 |
|
|
|
|
|
punctuation_regex = r"""(\(|\)|\.|=|#|-|\+|\\|\/|:|~|@|\?|>>?|\*|\$|\%[0-9]{2}|[0-9])""" |
|
|
|
|
|
molecule_regex = r"""(\[[^\]]+]|Br?|Cl?|N|O|S|P|F|I|b|c|n|o|s|p|\(|\)|\.|=|#|-|\+|\\|\/|:|~|@|\?|>>?|\*|\$|\%[0-9]{2}|[0-9])""" |
|
|
|
def get_protein_sequence_and_coords(structure): |
|
hv = structure.getHierView() |
|
|
|
seq = '' |
|
xyz = [] |
|
resindex = [] |
|
|
|
for chain in hv: |
|
cid = chain.getChid() |
|
calpha = structure.select(f'calpha chain {cid} icode _') |
|
N = structure.select(f'name N chain {cid} icode _') |
|
C = structure.select(f'name C chain {cid} icode _') |
|
xyz += [(ca,n,c) for ca,n,c in zip(calpha.getCoords(), N.getCoords(), C.getCoords())] |
|
seq += calpha.getSequence() |
|
resindex += [ca.getResindex() for ca in calpha] |
|
return seq, xyz, resindex |
|
|
|
def get_pdb_components(pdb_id): |
|
""" |
|
Split a protein-ligand pdb into protein and ligand components |
|
:param pdb_id: |
|
:return: |
|
""" |
|
with open(pdb_id,'r') as f: |
|
pdb = parsePDBStream(f,model=1) |
|
|
|
protein = pdb.select('protein') |
|
return protein |
|
|
|
def rot_from_two_vecs(e0_unnormalized, e1_unnormalized): |
|
"""Create rotation matrices from unnormalized vectors for the x and y-axes. |
|
This creates a rotation matrix from two vectors using Gram-Schmidt |
|
orthogonalization. |
|
Args: |
|
e0_unnormalized: vectors lying along x-axis of resulting rotation |
|
e1_unnormalized: vectors lying in xy-plane of resulting rotation |
|
Returns: |
|
Rotations resulting from Gram-Schmidt procedure. |
|
""" |
|
|
|
e0 = e0_unnormalized / np.linalg.norm(e0_unnormalized) |
|
|
|
|
|
c = np.dot(e1_unnormalized, e0) |
|
e1 = e1_unnormalized - c * e0 |
|
e1 = e1 / np.linalg.norm(e1) |
|
|
|
|
|
e2 = np.cross(e0, e1) |
|
|
|
|
|
return np.stack([e0,e1,e2]).T |
|
|
|
def parse_complex(aa, data_dir, i_pdb_fns): |
|
shard_idx, pdb_fns = i_pdb_fns |
|
|
|
chunk_name = [] |
|
chunk_smiles = [] |
|
chunk_lig_xyz = [] |
|
chunk_seq = [] |
|
chunk_rec_xyz = [] |
|
chunk_rec_R = [] |
|
chunk_rec_feat = [] |
|
|
|
for pdb_fn in pdb_fns: |
|
try: |
|
name = os.path.basename(pdb_fn) |
|
protein = get_pdb_components(pdb_fn+'/'+name+'_protein.pdb') |
|
seq, xyz, resindex = get_protein_sequence_and_coords(protein) |
|
|
|
if len(seq) < 3: |
|
raise ValueError |
|
|
|
assert len(xyz) == len(seq), "sequence and coord mismatch" |
|
|
|
R_receptor = [] |
|
for t in xyz: |
|
CA = np.array(t[0]) |
|
N = np.array(t[1]) |
|
C = np.array(t[2]) |
|
|
|
R_receptor.append(rot_from_two_vecs(N-CA,C-CA).flatten().tolist()) |
|
|
|
|
|
feat = np.zeros((len(resindex),nfeat,3),dtype=np.float32) |
|
feat[:] = np.nan |
|
|
|
for i,(n, res) in enumerate(zip(resindex, seq)): |
|
atoms = protein.select(f'resindex {n}') |
|
ss = io.StringIO() |
|
prody.writePDBStream(ss, atoms) |
|
try: |
|
mol = Chem.MolFromPDBBlock(ss.getvalue()) |
|
ref_aa = copy.deepcopy(aa[res]) |
|
reflabels = [l.split()[0] for l in ref_aa.reflabels] |
|
labels = [l.split()[0] for l in ref_aa.name(mol)] |
|
pos = mol.GetConformer().GetPositions() |
|
xyz_labels = sorted([(xyz, reflabels.index(l)) for xyz,l in zip(pos,labels) |
|
if l in reflabels], key=lambda t: t[1]) |
|
for r, j in xyz_labels: |
|
feat[i,j,:] = r |
|
|
|
except Exception as e: |
|
print('Unsuccesful in assigning atoms to amino acid letter {}'.format(res),ss.getvalue(),e) |
|
raise |
|
|
|
|
|
suppl = Chem.SDMolSupplier(pdb_fn+'/'+name+'_ligand.sdf') |
|
mol = next(suppl) |
|
|
|
|
|
smi = Chem.MolToSmiles(mol) |
|
atom_order = [int(s) for s in list(filter(None,re.sub(r'[\[\]]','',mol.GetProp("_smilesAtomOutputOrder")).split(',')))] |
|
|
|
|
|
tokens = list(filter(None, re.split(molecule_regex, smi))) |
|
|
|
|
|
masked_tokens = [re.sub(punctuation_regex,'',s) for s in tokens] |
|
|
|
k = 0 |
|
token_pos = [] |
|
|
|
for i,token in enumerate(masked_tokens): |
|
if token != '': |
|
token_pos.append(tuple(mol.GetConformer().GetAtomPosition(atom_order[k]))) |
|
k += 1 |
|
else: |
|
token_pos.append((np.nan, np.nan, np.nan)) |
|
|
|
chunk_name.append(name) |
|
chunk_seq.append(seq) |
|
chunk_rec_xyz.append(np.array([np.array(t[0]).tolist() for t in xyz])) |
|
chunk_rec_R.append(np.array(R_receptor)) |
|
chunk_rec_feat.append(feat) |
|
chunk_smiles.append(smi) |
|
chunk_lig_xyz.append(token_pos) |
|
|
|
except Exception as e: |
|
print(e) |
|
pass |
|
|
|
try: |
|
shard_idx = str(shard_idx) |
|
with wd.TarWriter(f'{data_dir}/part-' + shard_idx + '.tar', compress=True) as sink: |
|
for index in range(len(chunk_name)): |
|
sink.write({ |
|
'__key__': "%s_%06d" % (shard_idx, index), |
|
'name.txt': chunk_name[index], |
|
'seq.txt': chunk_seq[index], |
|
'smiles.txt': chunk_smiles[index], |
|
'rec_xyz.pyd': chunk_rec_xyz[index], |
|
'rec_R.pyd': chunk_rec_R[index], |
|
'rec_feat.pyd': chunk_rec_feat[index], |
|
'lig_xyz.pyd': chunk_lig_xyz[index], |
|
}) |
|
|
|
return len(chunk_name) |
|
except Exception as e: |
|
print('Exception while writing', repr(e)) |
|
|
|
|
|
if __name__ == '__main__': |
|
import glob |
|
|
|
filenames = glob.glob('data/pdbbind/v2020-other-PL/*') |
|
filenames.extend(glob.glob('data/pdbbind/refined-set/*')) |
|
filenames = sorted(filenames) |
|
|
|
with open('split_direction/timesplit_no_lig_overlap_train','r') as f: |
|
train_rec = f.read().split() |
|
with open('split_direction/timesplit_no_lig_overlap_val','r') as f: |
|
val_rec = f.read().split() |
|
with open('split_direction/timesplit_test','r') as f: |
|
test_rec = f.read().split() |
|
|
|
train = [x for x in filenames if x.split('/')[-1] in train_rec] |
|
val = [x for x in filenames if x.split('/')[-1] in val_rec] |
|
test = [x for x in filenames if x.split('/')[-1] in test_rec] |
|
|
|
print(f'Train has {len(train)} items and first 5 are {train[:5]}') |
|
print(f'Val has {len(val)} items and first 5 are {val[:5]}') |
|
print(f'Test has {len(test)} items and first 5 are {test[:5]}') |
|
|
|
def chunks(lst, n): |
|
"""Yield successive n-sized chunks from lst.""" |
|
for i in range(0, len(lst), n): |
|
yield lst[i:i + n] |
|
|
|
comm = MPI.COMM_WORLD |
|
with MPICommExecutor(comm, root=0) as executor: |
|
if executor is not None: |
|
aa = {k: AtomicNamer(v) for k,v in amino_acids.items()} |
|
|
|
chunk_sizes = executor.map(partial(parse_complex, aa, 'train'), enumerate(chunks(train, 512))) |
|
total_train_rows = 0 |
|
for s in chunk_sizes: |
|
total_train_rows += s |
|
|
|
chunk_sizes = executor.map(partial(parse_complex, aa, 'val'), enumerate(chunks(val, 512))) |
|
total_val_rows = 0 |
|
for s in chunk_sizes: |
|
total_val_rows += s |
|
|
|
chunk_sizes = executor.map(partial(parse_complex, aa, 'test'), enumerate(chunks(test, 512))) |
|
total_test_rows = 0 |
|
for s in chunk_sizes: |
|
total_test_rows += s |
|
|
|
print('Total number of train rows {}'.format(total_train_rows)) |
|
print('Total number of val rows {}'.format(total_val_rows)) |
|
print('Total number of test rows {}'.format(total_test_rows)) |
|
|
|
|