id
stringlengths 36
36
| text
stringlengths 13
4.79k
| idx
int64 0
46
| class
stringclasses 1
value | subject
stringclasses 3
values | chapter
stringclasses 31
values |
---|---|---|---|---|---|
55ea5547-8880-4e58-b88b-7d3adcca8f8a | # UNIT 5
# HUΜΑN PHYSIOLOGY
# Chapter 14
The reductionist approach to study of life forms resulted in increasing use of physico-chemical concepts and techniques. Majority of these studies employed either surviving tissue model or straightaway cell-free systems. An explosion of knowledge resulted in molecular biology.
# Chapter 15
Molecular physiology became almost synonymous with biochemistry and biophysics. However, it is now being increasingly realised that neither a purely organismic approach nor a purely reductionistic molecular approach would reveal the truth about biological processes or living phenomena. Systems biology makes us believe that all living phenomena are emergent properties due to interaction among components of the system under study. Regulatory network of molecules, supra molecular assemblies, cells, tissues, organisms and indeed, populations and communities, each create emergent properties.
# Chapter 16
In the chapters under this unit, major human physiological processes like, exchange of gases, blood circulation, locomotion and movement are described in cellular and molecular terms. The last two chapters point to the coordination and regulation of body events at the organismic level.
# Chapter 17
Locomotion and Movement
# Chapter 18
Neural Control and Coordination
# Chapter 19
Chemical Coordination and Integration
2024-25 | 0 | 11 | Biology | 14 |
1caa948f-7189-44a2-b988-fb8457a7670c | # Alfonso Corti
# (1822 – 1888)
ALFONSO CORTI, Italian anatomist, was born in 1822. Corti began his scientific career studying the cardiovascular systems of reptiles. Later, he turned his attention to the mammalian auditory system. In 1851, he published a paper describing a structure located on the basilar membrane of the cochlea containing hair cells that convert sound vibrations into nerve impulses, the organ of Corti. He died in the year 1888.
2024-25 | 1 | 11 | Biology | 14 |
a39661db-c721-4182-9970-eced62cc402d | # CHAPTER 14
# BREATHING AND EXCHANGE OF GASES
# 14.1 Respiratory Organs
As you have read earlier, oxygen (O2) is utilised by the organisms to indirectly break down simple molecules like glucose, amino acids, fatty acids, etc., to derive energy to perform various activities. Carbon dioxide (CO2) which is harmful is also released during the above catabolic reactions. It is, therefore, evident that O2 has to be continuously provided to the cells and CO2 produced by the cells have to be released out. This process of exchange of O2 from the atmosphere with CO2 produced by the cells is called breathing, commonly known as respiration. Place your hands on your chest; you can feel the chest moving up and down. You know that it is due to breathing. How do we breathe? The respiratory organs and the mechanism of breathing are described in the following sections of this chapter.
# 14.2 Mechanism of Breathing
Mechanisms of breathing vary among different groups of animals depending mainly on their habitats and levels of organisation. Lower invertebrates like sponges, coelenterates, flatworms, etc., exchange O2 with CO2 by simple diffusion over their entire body surface. Earthworms use their moist cuticle and insects have a network of tubes (tracheal tubes) to transport atmospheric air within the body. Special vascularised structures called gills (branchial respiration) are used by most of the aquatic arthropods and molluscs whereas vascularised bags called lungs (pulmonary respiration) are used by the terrestrial forms for the exchange of gases. Among vertebrates, fishes use gills whereas amphibians, reptiles, birds and mammals respire through lungs. Amphibians like frogs can respire through their moist skin (cutaneous respiration) also.
# 14.3 Exchange of Gases
NO_CONTENT_HERE
# 14.4 Transport of Gases
NO_CONTENT_HERE
# 14.5 Regulation of Respiration
NO_CONTENT_HERE
# 14.6 Disorders of Respiratory System
NO_CONTENT_HERE | 2 | 11 | Biology | 14 |
740a549d-28f8-403b-ad68-0d2b355d660f | # 14.1.1 Human Respiratory System
We have a pair of external nostrils opening out above the upper lips. It leads to a nasal chamber through the nasal passage. The nasal chamber opens into the pharynx, a portion of which is the common passage for food and air. The pharynx opens through the larynx region into the trachea. Larynx is a cartilaginous box which helps in sound production and hence called the sound box. During swallowing glottis can be covered by a thin elastic cartilaginous flap called epiglottis to prevent the entry of food into the larynx. Trachea is a straight tube extending up to the mid-thoracic cavity, which divides at the level of 5th thoracic vertebra into a right and left primary bronchi. Each bronchi undergoes repeated divisions to form the secondary and tertiary bronchi and bronchioles ending up in very thin terminal bronchioles. The tracheae, primary, secondary and tertiary bronchi, and initial bronchioles are supported by incomplete cartilaginous rings. Each terminal bronchiole gives rise to a number of very thin, irregular-walled and vascularised bag-like structures called alveoli. The branching network of bronchi, bronchioles and alveoli comprise the lungs (Figure 14.1). We have two lungs which are covered by a double layered pleura, with pleural fluid between them. It reduces friction on the lung-surface. The outer pleural membrane is in close contact with the thoracic.
# Figure 14.1
Diagrammatic view of human respiratory system (sectional view of the left lung is also shown)
|Epiglottis|Larynx|Trachea|
|---|---|---|
|Bronchus|Cut end of rib|Heart|
|Lung|Pleural membranes|Alveoli|
|Pleural fluid|Bronchiole|Diaphragm| | 3 | 11 | Biology | 14 |
f567ec42-1678-4de1-b26e-8c16fa86dc70 | # BREATHING AND EXCHANGE OF GASES
The lining whereas the inner pleural membrane is in contact with the lung surface. The part starting with the external nostrils up to the terminal bronchioles constitute the conducting part whereas the alveoli and their ducts form the respiratory or exchange part of the respiratory system. The conducting part transports the atmospheric air to the alveoli, clears it from foreign particles, humidifies and also brings the air to body temperature. Exchange part is the site of actual diffusion of O2 and CO2 between blood and atmospheric air.
The lungs are situated in the thoracic chamber which is anatomically an air-tight chamber. The thoracic chamber is formed dorsally by the vertebral column, ventrally by the sternum, laterally by the ribs and on the lower side by the dome-shaped diaphragm. The anatomical setup of lungs in thorax is such that any change in the volume of the thoracic cavity will be reflected in the lung (pulmonary) cavity. Such an arrangement is essential for breathing, as we cannot directly alter the pulmonary volume.
# Respiration involves the following steps:
1. Breathing or pulmonary ventilation by which atmospheric air is drawn in and CO2 rich alveolar air is released out.
2. Diffusion of gases (O2 and CO2) across alveolar membrane.
3. Transport of gases by the blood.
4. Diffusion of O2 and CO2 between blood and tissues.
5. Utilisation of O2 by the cells for catabolic reactions and resultant release of CO2 (cellular respiration as dealt in Chapter 12).
# 14.2 MECHANISM OF BREATHING
Breathing involves two stages: inspiration during which atmospheric air is drawn in and expiration by which the alveolar air is released out.
The movement of air into and out of the lungs is carried out by creating a pressure gradient between the lungs and the atmosphere. Inspiration can occur if the pressure within the lungs (intra-pulmonary pressure) is less than the atmospheric pressure, i.e., there is a negative pressure in the lungs with respect to atmospheric pressure. Similarly, expiration takes place when the intra-pulmonary pressure is higher than the atmospheric pressure. The diaphragm and a specialised set of muscles – external and internal intercostals between the ribs, help in generation of such gradients.
Inspiration is initiated by the contraction of diaphragm which increases the volume of thoracic chamber in the antero-posterior axis. The contraction of external inter-costal muscles lifts up the ribs and the... | 4 | 11 | Biology | 14 |
f36d0331-d3fa-48a8-b100-f421db183b41 | # BIOLOGY
sternum causing an increase in the volume of the thoracic chamber in the dorso-ventral axis. The overall increase in the thoracic volume causes a similar increase in pulmonary volume. An increase in pulmonary volume decreases the intra-pulmonary pressure to less than the atmospheric pressure which forces the air from outside to move into the lungs, i.e., inspiration (Figure 14.2a). Relaxation of the diaphragm and the inter-costal muscles returns the diaphragm and sternum to their normal positions and reduce the thoracic volume and thereby the pulmonary volume. This leads to an increase in intra-pulmonary pressure to slightly above the atmospheric pressure causing the expulsion of air from the lungs, i.e., expiration (Figure 14.2b). We have the ability to increase the strength of inspiration and expiration with the help of additional muscles in the abdomen. On an average, a healthy human breathes 12-16 times/minute. The volume of air involved in breathing movements can be estimated by using a spirometer which helps in clinical assessment of pulmonary functions.
# Figure 14.2 Mechanism of breathing showing :
- (a) inspiration
- (b) expiration
# 14.2.1 Respiratory Volumes and Capacities
|Volume Type|Description|Average Volume (mL)|
|---|---|---|
|Tidal Volume (TV)|Volume of air inspired or expired during a normal respiration.|Approx. 500|
|Inspiratory Reserve Volume (IRV)|Additional volume of air, a person can inspire by a forcible inspiration.|2500 to 3000|
|Expiratory Reserve Volume (ERV)|Additional volume of air, a person can expire by a forcible expiration.|1000 to 1100| | 5 | 11 | Biology | 14 |
ef005014-9a2c-45c5-abb1-17d7dc0c8a2b | # BREATHING AND EXCHANGE OF GASES
Residual Volume (RV): Volume of air remaining in the lungs even after a forcible expiration. This averages 1100 mL to 1200 mL.
By adding up a few respiratory volumes described above, one can derive various pulmonary capacities, which can be used in clinical diagnosis.
Inspiratory Capacity (IC): Total volume of air a person can inspire after a normal expiration. This includes tidal volume and inspiratory reserve volume (TV+IRV).
Expiratory Capacity (EC): Total volume of air a person can expire after a normal inspiration. This includes tidal volume and expiratory reserve volume (TV+ERV).
Functional Residual Capacity (FRC): Volume of air that will remain in the lungs after a normal expiration. This includes ERV+RV.
Vital Capacity (VC): The maximum volume of air a person can breathe in after a forced expiration. This includes ERV, TV and IRV or the maximum volume of air a person can breathe out after a forced inspiration.
Total Lung Capacity (TLC): Total volume of air accommodated in the lungs at the end of a forced inspiration. This includes RV, ERV, TV and IRV or vital capacity + residual volume.
# 14.3 EXCHANGE OF GASES
Alveoli are the primary sites of exchange of gases. Exchange of gases also occur between blood and tissues. O2 and CO2 are exchanged in these sites by simple diffusion mainly based on pressure/concentration gradient. Solubility of the gases as well as the thickness of the membranes involved in diffusion are also some important factors that can affect the rate of diffusion.
Pressure contributed by an individual gas in a mixture of gases is called partial pressure and is represented as pO2 for oxygen and pCO2 for carbon dioxide. Partial pressures of these two gases in the atmospheric air and the two sites of diffusion are given in Table 14.1 and in Figure 14.3. The data given in the table clearly indicates a concentration gradient for oxygen from alveoli to blood and blood to tissues. Similarly,
**TABLE 14.1 Partial Pressures (in mm Hg) of Oxygen and Carbon Dioxide at Different Parts Involved in Diffusion in Comparison to those in Atmosphere**
|Respiratory Gas|Atmospheric Air|Alveoli|Blood (Deoxygenated)|Blood (Oxygenated)|Tissues|
|---|---|---|---|---|---|
|O2|159|104|40|95|40|
|CO2|0.3|40|45|40|45| | 6 | 11 | Biology | 14 |
36c6f889-a006-44ae-b6bc-741b631d5b3a | # BIOLOGY
# Figure 14.3
Diagrammatic representation of exchange of gases at the alveolus and the body tissues with blood and transport of oxygen and carbon dioxide a gradient is present for CO2 in the opposite direction, i.e., from tissues to blood and blood to alveoli. As the solubility of CO2 is 20-25 times higher than that of O2, the amount of CO2 that can diffuse through the diffusion membrane per unit difference in partial pressure is much higher compared to that of O2. The diffusion membrane is made up of three major layers (Figure 14.4) namely, the thin squamous epithelium of alveoli, the endothelium of alveolar capillaries and the basement substance (composed of a thin basement membrane supporting the squamous epithelium and the basement membrane surrounding the single layer endothelial cells of capillaries) in between them. However, its total thickness is much less than a millimetre. Therefore, all the factors in our body are favourable for diffusion of O2 from alveoli to tissues and that of CO2 from tissues to alveoli.
# Figure 14.4
A Diagram of a section of an alveolus with a pulmonary capillary.
2024-25 | 7 | 11 | Biology | 14 |
ed7c9da8-a1c8-4a54-acdc-ada978dc8167 | # BREATHING AND EXCHANGE OF GASES
# 14.4 TRANSPORT OF GASES
Blood is the medium of transport for O2 and CO2. About 97 per cent of O2 is transported by RBCs in the blood. The remaining 3 per cent of O2 is carried in a dissolved state through the plasma. Nearly 20-25 per cent of CO2 is transported by RBCs whereas 70 per cent of it is carried as bicarbonate. About 7 per cent of CO2 is carried in a dissolved state through plasma.
# 14.4.1 Transport of Oxygen
Haemoglobin is a red coloured iron containing pigment present in the RBCs. O2 can bind with haemoglobin in a reversible manner to form oxyhaemoglobin. Each haemoglobin molecule can carry a maximum of four molecules of O2. Binding of oxygen with haemoglobin is primarily related to partial pressure of O2. Partial pressure of CO2, hydrogen ion concentration and temperature are the other factors which can interfere with this binding. A sigmoid curve is obtained when percentage saturation of haemoglobin with O2 is plotted against the pO2. This curve is called the Oxygen dissociation curve (Figure 14.5) and is highly useful in studying the effect of factors like pCO2, H+ concentration, etc., on binding of O2 with haemoglobin. In the alveoli, where there is high pO2, low pCO2, lesser H+ concentration and lower temperature, the factors are all favourable for the formation of oxyhaemoglobin, whereas in the tissues, where low pO2, high pCO2, high H+ concentration and higher temperature exist, the conditions are favourable for dissociation of oxygen from the oxyhaemoglobin. This clearly indicates that O2 gets bound to haemoglobin in the lung surface and gets dissociated at the tissues. Every 100 ml of oxygenated blood can deliver around 5 ml of O2 to the tissues under normal physiological conditions.
# 14.4.2 Transport of Carbon Dioxide
CO2 is carried by haemoglobin as carbamino-haemoglobin (about 20-25 per cent). This binding is related to the partial pressure of CO2. pO2 is a major factor which could affect this binding. When pCO2 is high and pO2 is low as in the tissues, more binding of carbon dioxide occurs whereas, when the pCO2 is low and pO2 is high as in the alveoli, dissociation occurs. | 8 | 11 | Biology | 14 |
9bd7e874-7290-4c15-a755-2ddb96d86360 | # 190
# BIOLOGY
of CO2 from carbamino-haemoglobin takes place, i.e., CO2 which is bound to haemoglobin from the tissues is delivered at the alveoli. RBCs contain a very high concentration of the enzyme, carbonic anhydrase and minute quantities of the same is present in the plasma too. This enzyme facilitates the following reaction in both directions.
CO2
+ H2O
←⍇⍇⍇⍇⍇
Carbonic anhydrase
→
H2CO3
←⍇⍇⍇⍇⍇
Carbonic anhydrase
→
HCO3− + H+
At the tissue site where partial pressure of CO2 is high due to catabolism, CO2 diffuses into blood (RBCs and plasma) and forms HCO3− and H+. At the alveolar site where pCO2 is low, the reaction proceeds in the opposite direction leading to the formation of CO2 and H2O. Thus, CO2 trapped as bicarbonate at the tissue level and transported to the alveoli is released out as CO2 (Figure 14.4). Every 100 ml of deoxygenated blood delivers approximately 4 ml of CO2 to the alveoli.
# 14.5 REGULATION OF RESPIRATION
Human beings have a significant ability to maintain and moderate the respiratory rhythm to suit the demands of the body tissues. This is done by the neural system. A specialised centre present in the medulla region of the brain called respiratory rhythm centre is primarily responsible for this regulation. Another centre present in the pons region of the brain called pneumotaxic centre can moderate the functions of the respiratory rhythm centre. Neural signal from this centre can reduce the duration of inspiration and thereby alter the respiratory rate. A chemosensitive area is situated adjacent to the rhythm centre which is highly sensitive to CO2 and hydrogen ions. Increase in these substances can activate this centre, which in turn can signal the rhythm centre to make necessary adjustments in the respiratory process by which these substances can be eliminated. Receptors associated with aortic arch and carotid artery also can recognise changes in CO2 and H+ concentration and send necessary signals to the rhythm centre for remedial actions. The role of oxygen in the regulation of respiratory rhythm is quite insignificant.
# 14.6 DISORDERS OF RESPIRATORY SYSTEM
Asthma is a difficulty in breathing causing wheezing due to inflammation of bronchi and bronchioles. Emphysema is a chronic disorder in which alveolar walls are damaged due to which respiratory surface is decreased. One of the major causes of this is cigarette smoking.
2024-25 | 9 | 11 | Biology | 14 |
44c378ac-22fd-499b-8494-0b23c3937270 | # BREATHING AND EXCHANGE OF GASES
# Occupational Respiratory Disorders
In certain industries, especially those involving grinding or stone-breaking, so much dust is produced that the defense mechanism of the body cannot fully cope with the situation. Long exposure can give rise to inflammation leading to fibrosis (proliferation of fibrous tissues) and thus causing serious lung damage. Workers in such industries should wear protective masks.
# SUMMARY
Cells utilise oxygen for metabolism and produce energy along with substances like carbon dioxide which is harmful. Animals have evolved different mechanisms for the transport of oxygen to the cells and for the removal of carbon dioxide from there. We have a well developed respiratory system comprising two lungs and associated air passages to perform this function.
The first step in respiration is breathing by which atmospheric air is taken in (inspiration) and the alveolar air is released out (expiration). Exchange of O2 and CO2 between deoxygenated blood and alveoli, transport of these gases throughout the body by blood, exchange of O2 and CO2 between the oxygenated blood and tissues and utilisation of O2 by the cells (cellular respiration) are the other steps involved.
Inspiration and expiration are carried out by creating pressure gradients between the atmosphere and the alveoli with the help of specialised muscles – intercostals and diaphragm. Volumes of air involved in these activities can be estimated with the help of spirometer and are of clinical significance.
Exchange of O2 and CO2 at the alveoli and tissues occur by diffusion. Rate of diffusion is dependent on the partial pressure gradients of O2 (pO2) and CO2 (pCO2), their solubility as well as the thickness of the diffusion surface. These factors in our body facilitate diffusion of O2 from the alveoli to the deoxygenated blood as well as from the oxygenated blood to the tissues. The factors are favourable for the diffusion of CO2 in the opposite direction, i.e., from tissues to alveoli.
Oxygen is transported mainly as oxyhaemoglobin. In the alveoli where pO2 is higher, O2 gets bound to haemoglobin which is easily dissociated at the tissues where pO2 is low and pCO2 and H+ concentration are high. Nearly 70 per cent of carbon dioxide is transported as bicarbonate (HCO3) with the help of the enzyme carbonic anhydrase. 20-25 per cent of carbon dioxide is carried by haemoglobin as carbamino-haemoglobin. In the tissues where pCO2 is high, it gets bound to blood whereas in the alveoli where pCO2 is low and pO2 is high, it gets removed from the blood.
Respiratory rhythm is maintained by the respiratory centre in the medulla region of brain. A pneumotaxic centre in the pons region of the brain and a chemosensitive area in the medulla can alter respiratory mechanism. | 10 | 11 | Biology | 14 |
1cd340d6-5227-401c-9914-05d9a718611e | # BIOLOGY
# EXERCISES
1. Define vital capacity. What is its significance?
2. State the volume of air remaining in the lungs after a normal breathing.
3. Diffusion of gases occurs in the alveolar region only and not in the other parts of respiratory system. Why?
4. What are the major transport mechanisms for CO2? Explain.
5. What will be the pO2 and pCO2 in the atmospheric air compared to those in the alveolar air?
|(i)|pO2 higher, pCO2 higher|lesser, pCO2 lesser|higher|
|---|---|---|---|
|(ii)|pO2 higher, pCO2 lesser| | |
|(iii)|pO2 lesser, pCO2| | |
|(iv)|pO2| | |
6. Explain the process of inspiration under normal conditions.
7. How is respiration regulated?
8. What is the effect of pCO2 on oxygen transport?
9. What happens to the respiratory process in a man going up a hill?
10. What is the site of gaseous exchange in an insect?
11. Define oxygen dissociation curve. Can you suggest any reason for its sigmoidal pattern?
12. Have you heard about hypoxia? Try to gather information about it, and discuss with your friends.
13. Distinguish between
1. (a) IRV and ERV
2. (b) Inspiratory capacity and Expiratory capacity.
3. (c) Vital capacity and Total lung capacity.
14. What is Tidal volume? Find out the Tidal volume (approximate value) for a healthy human in an hour.
2024-25 | 11 | 11 | Biology | 14 |
9abb4ec0-448d-4480-b25e-7f0d27e87219 | # BIOLOGY
# CHAPTER 2
# BIOLOGICAL CLASSIFICATION
# 2.1 Kingdom Monera
Since the dawn of civilisation, there have been many attempts to classify living organisms. It was done instinctively not using criteria that were scientific but borne out of a need to use organisms for our own use – for food, shelter and clothing.
# 2.2 Kingdom Protista
Aristotle was the earliest to attempt a more scientific basis for classification. He used simple morphological characters to classify plants into trees, shrubs and herbs. He also divided animals into two groups, those which had red blood and those that did not.
# 2.3 Kingdom Fungi
In Linnaeus' time a Two Kingdom system of classification with Plantae and Animalia kingdoms was developed that included all plants and animals respectively. This system did not distinguish between the eukaryotes and prokaryotes, unicellular and multicellular organisms and photosynthetic (green algae) and non-photosynthetic (fungi) organisms.
# 2.4 Kingdom Plantae
Classification of organisms into plants and animals was easily done and was easy to understand, but, a large number of organisms did not fall into either category. Hence the two kingdom classification used for a long time was found inadequate.
# 2.5 Kingdom Animalia
Besides, gross morphology a need was also felt for including other characteristics like cell structure, nature of wall, mode of nutrition, habitat, methods of reproduction, evolutionary relationships, etc. Classification systems for the living organisms have hence, undergone several changes over the time.
# 2.6 Viruses, Viroids and Lichens
Though plant and animal kingdoms have been a constant under all different systems, the understanding of what groups/organisms be included under these kingdoms have been changing; the number and nature of other kingdoms have also been understood differently by different scientists over the time. | 0 | 11 | Biology | 02 |
1a36ee9c-08fd-49ce-bff3-fba16e288198 | # BIOLOGICAL CLASSIFICATION
# Table 2.1 Characteristics of the Five Kingdoms
|Characters|Monera|Protista|Fungi|Plantae|Animalia|
|---|---|---|---|---|---|
|Cell type|Prokaryotic|Eukaryotic|Eukaryotic|Eukaryotic|Eukaryotic|
|Cell wall|Noncellulosic (Polysaccharide + amino acid)|Present in some|Present with chitin|Present (cellulose)|Absent|
|Nuclear membrane|Absent|Present|Present|Present|Present|
|Body organisation|Cellular|Cellular|Multicellular / loose tissue|Tissue/organ|Tissue/organ system|
|Mode of nutrition|Autotrophic (chemosynthetic and photosynthetic) and Heterotrophic (sapro- phytic/parasitic)|Autotrophic (Photosynthetic) and Heterotrophic|Heterotrophic (Sapro- phytic / Parasitic)|Autotrophic (Photosynthetic)|Heterotrophic (Holzoic / Saprophytic etc.)|
R.H. Whittaker (1969) proposed a Five Kingdom Classification. The kingdoms defined by him were named Monera, Protista, Fungi, Plantae and Animalia. The main criteria for classification used by him include cell structure, body organisation, mode of nutrition, reproduction and phylogenetic relationships. Table 2.1 gives a comparative account of different characteristics of the five kingdoms.
The three-domain system has also been proposed that divides the Kingdom Monera into two domains, leaving the remaining eukaryotic kingdoms in the third domain and thereby a six kingdom classification. You will learn about this system in detail at higher classes.
Let us look at this five kingdom classification to understand the issues and considerations that influenced the classification system. Earlier classification systems included bacteria, blue green algae, fungi, mosses, ferns, gymnosperms and the angiosperms under ‘Plants’. The character that unified this whole kingdom was that all the organisms included had a cell wall in their cells. This placed together groups which widely differed in other characteristics. It brought together the prokaryotic bacteria and the blue green algae (cyanobacteria) with other groups which were eukaryotic. It also grouped together the unicellular organisms and the multicellular ones, say, for example, Chlamydomonas and Spirogyra were placed together under algae. The classification did not differentiate between the heterotrophic group – fungi, and the autotrophic green plants, though they also showed a characteristic difference in their walls composition – the fungi had chitin. | 1 | 11 | Biology | 02 |
afc1f573-7896-42a8-a07f-d59de9079711 | # BIOLOGY
in their walls while the green plants had a cellulosic cell wall. When such characteristics were considered, the fungi were placed in a separate kingdom – Kingdom Fungi. All prokaryotic organisms were grouped together under Kingdom Monera and the unicellular eukaryotic organisms were placed in Kingdom Protista. Kingdom Protista has brought together Chlamydomonas, Chlorella (earlier placed in Algae within Plants and both having cell walls) with Paramoecium and Amoeba (which were earlier placed in the animal kingdom which lack cell wall). It has put together organisms which, in earlier classifications, were placed in different kingdoms. This happened because the criteria for classification changed. This kind of changes will take place in future too depending on the improvement in our understanding of characteristics and evolutionary relationships. Over time, an attempt has been made to evolve a classification system which reflects not only the morphological, physiological and reproductive similarities, but is also phylogenetic, i.e., is based on evolutionary relationships.
In this chapter we will study characteristics of Kingdoms Monera, Protista and Fungi of the Whittaker system of classification. The Kingdoms Plantae and Animalia, commonly referred to as plant and animal kingdoms, respectively, will be dealt separately in chapters 3 and 4.
# 2.1 KINGDOM MONERA
Bacteria are the sole members of the Kingdom Monera. They are the most abundant micro-organisms. Bacteria occur almost everywhere. Hundreds of bacteria are present in a handful of soil. They also live in extreme habitats such as hot springs, deserts, snow and deep oceans where very few other life forms can survive. Many of them live in or on other organisms as parasites.
Bacteria are grouped under four categories based on their shape: the spherical Coccus (pl.: cocci), the rod-shaped Bacillus (pl.: bacilli), the comma-shaped Vibrium (pl.: vibrio) and the spiral Spirillum (pl.: spirilla).
# Figure 2.1 Bacteria of different shapes
|Cocci|Bacilli|Spirilla|Vibrio|
|---|---|---|---|
||||| | 2 | 11 | Biology | 02 |
0903779a-22b0-472b-b84b-6d0374dfbcfe | # BIOLOGICAL CLASSIFICATION
Though the bacterial structure is very simple, they are very complex in behaviour. Compared to many other organisms, bacteria as a group show the most extensive metabolic diversity. Some of the bacteria are autotrophic, i.e., they synthesise their own food from inorganic substrates. They may be photosynthetic autotrophic or chemosynthetic autotrophic. The vast majority of bacteria are heterotrophs, i.e., they depend on other organisms or on dead organic matter for food.
# 2.1.1 Archaebacteria
These bacteria are special since they live in some of the most harsh habitats such as extreme salty areas (halophiles), hot springs (thermoacidophiles) and marshy areas (methanogens). Archaebacteria differ from other bacteria in having a different cell wall structure and this feature is responsible for their survival in extreme conditions. Methanogens are present in the gut of several ruminant animals such as cows and buffaloes and they are responsible for the production of methane (biogas) from the dung of these animals.
# 2.1.2 Eubacteria
There are thousands of different eubacteria or ‘true bacteria’. They are characterised by the presence of a rigid cell wall, and if motile, a flagellum. The cyanobacteria (also referred to as blue-green algae) have chlorophyll a similar to green plants and are photosynthetic autotrophs. The cyanobacteria are unicellular, colonial or filamentous, freshwater/marine or terrestrial algae. The colonies are generally surrounded by gelatinous sheath. They often form blooms in polluted water bodies. Some of these organisms can fix atmospheric nitrogen in specialised cells called heterocysts, e.g., Nostoc and Anabaena. Chemosynthetic autotrophic bacteria oxidise various inorganic substances such as nitrates, nitrites and ammonia and use the released energy for their ATP production. They play a great role in recycling nutrients like nitrogen, phosphorous, iron and sulphur.
Heterotrophic bacteria are most abundant in nature. The majority are important decomposers. Many of them have a significant impact on human affairs. They are helpful in making curd from milk, production of antibiotics, fixing nitrogen in legume.
Figure 2.2 A filamentous blue-green algae – Nostoc | 3 | 11 | Biology | 02 |
900c2fdd-b601-4e25-b4a9-15f9eb8e0c3b | # BIOLOGY
roots, etc. Some are pathogens causing damage to human beings, crops, farm animals and pets. Cholera, typhoid, tetanus, citrus canker are well known diseases caused by different bacteria.
Bacteria reproduce mainly by fission (Figure 2.3). Sometimes, under unfavourable conditions, they produce spores. They also reproduce by a sort of sexual reproduction by adopting a primitive type of DNA transfer from one bacterium to the other.
Figure 2.3 A dividing bacterium
The Mycoplasma are organisms that completely lack a cell wall. They are the smallest living cells known and can survive without oxygen. Many mycoplasma are pathogenic in animals and plants.
# 2.2 KINGDOM PROTISTA
All single-celled eukaryotes are placed under Protista, but the boundaries of this kingdom are not well defined. What may be ‘a photosynthetic protistan’ to one biologist may be ‘a plant’ to another. In this book we include Chrysophytes, Dinoflagellates, Euglenoids, Slime moulds and Protozoans under Protista. Members of Protista are primarily aquatic. This kingdom forms a link with the others dealing with plants, animals and fungi. Being eukaryotes, the protistan cell body contains a well defined nucleus and other membrane-bound organelles. Some have flagella or cilia. Protists reproduce asexually and sexually by a process involving cell fusion and zygote formation.
# 2.2.1 Chrysophytes
This group includes diatoms and golden algae (desmids). They are found in fresh water as well as in marine environments. They are microscopic and float passively in water currents (plankton). Most of them are photosynthetic. In diatoms the cell walls form two thin overlapping shells, which fit together as in a soap box. The walls are embedded with silica and thus the walls are indestructible. Thus, diatoms have left behind large amount of cell wall deposits in their habitat; this accumulation over billions of years is referred to as ‘diatomaceous earth’. Being gritty this soil is used in polishing, filtration of oils and syrups. Diatoms are the chief ‘producers’ in the oceans. | 4 | 11 | Biology | 02 |
20cfe69d-d8ee-495d-aac4-1f1a0a36c7c4 | # 2.2.2 Dinoflagellates
These organisms are mostly marine and photosynthetic. They appear yellow, green, brown, blue or red depending on the main pigments present in their cells. The cell wall has stiff cellulose plates on the outer surface. Most of them have two flagella; one lies longitudinally and the other transversely in a furrow between the wall plates. Very often, red dinoflagellates (Example: Gonyaulax) undergo such rapid multiplication that they make the sea appear red (red tides). Toxins released by such large numbers may even kill other marine animals such as fishes. (a)
# 2.2.3 Euglenoids
Majority of them are fresh water organisms found in stagnant water. Instead of a cell wall, they have a protein rich layer called pellicle which makes their body flexible. They have two flagella, a short and a long one. Though they are photosynthetic in the presence of sunlight, when deprived of sunlight they behave like heterotrophs by predating on other smaller organisms. Interestingly, the pigments of euglenoids are identical to those present in higher plants. Example: Euglena (Figure 2.4b).
# 2.2.4 Slime Moulds
Slime moulds are saprophytic protists. The body moves along decaying twigs and leaves engulfing organic material. Under suitable conditions, they form an aggregation called plasmodium which may grow and spread over several feet. During unfavourable conditions, the plasmodium differentiates and forms fruiting bodies bearing spores at their tips. The spores possess true walls. They are extremely resistant and survive for many years, even under adverse conditions. The spores are dispersed by air currents.
# 2.2.5 Protozoans
All protozoans are heterotrophs and live as predators or parasites. They are believed to be primitive relatives of animals. There are four major groups of protozoans.
Amoeboid protozoans: These organisms live in fresh water, sea water or moist soil. They move and capture (d)
# Figure 2.4
- (a) Dinoflagellates
- (b) Euglena
- (c) Slime mould
- (d) Paramoecium | 5 | 11 | Biology | 02 |
71ed6fc8-87d5-4951-ab71-b36e0c3f8e33 | # 16
# BIOLOGY
their prey by putting out pseudopodia (false feet) as in Amoeba. Marine forms have silica shells on their surface. Some of them such as Entamoeba are parasites.
Flagellated protozoans: The members of this group are either free-living or parasitic. They have flagella. The parasitic forms cause diseases such as sleeping sickness. Example: Trypanosoma.
Ciliated protozoans: These are aquatic, actively moving organisms because of the presence of thousands of cilia. They have a cavity (gullet) that opens to the outside of the cell surface. The coordinated movement of rows of cilia causes the water laden with food to be steered into the gullet. Example: Paramoecium (Figure 2.4d).
Sporozoans: This includes diverse organisms that have an infectious spore-like stage in their life cycle. The most notorious is Plasmodium (malarial parasite) which causes malaria, a disease which has a staggering effect on human population.
# 2.3
# KINGDOM FUNGI
The fungi constitute a unique kingdom of heterotrophic organisms. They show a great diversity in morphology and habitat. You must have seen fungi on a moist bread and rotten fruits. The common mushroom you eat and toadstools are also fungi. White spots seen on mustard leaves are due to a parasitic fungus. Some unicellular fungi, e.g., yeast are used to make bread and beer. Other fungi cause diseases in plants and animals; wheat rust-causing Puccinia is an important example. Some are the source of antibiotics, e.g., Penicillium. Fungi are cosmopolitan and occur in air, water, soil and on animals and plants. They prefer to grow in warm and humid places. Have you ever wondered why we keep food in the refrigerator? Yes, it is to prevent food from going bad due to bacterial or fungal infections.
With the exception of yeasts which are unicellular, fungi are filamentous. Their bodies consist of long, slender thread-like structures called hyphae. The network of hyphae is known as mycelium. Some hyphae are continuous tubes filled with multinucleated cytoplasm – these are called coenocytic hyphae. Others have septae or cross walls in their hyphae. The cell walls of fungi are composed of chitin and polysaccharides.
Most fungi are heterotrophic and absorb soluble organic matter from dead substrates and hence are called saprophytes. Those that depend on living plants and animals are called parasites. They can also live as symbionts – in association with algae as lichens and with roots of higher plants as mycorrhiza.
Reproduction in fungi can take place by vegetative means – fragmentation, fission and budding. Asexual reproduction is by spores. | 6 | 11 | Biology | 02 |
ca84ea11-a599-45bb-acf0-3097d237a100 | # BIOLOGICAL CLASSIFICATION
called conidia or sporangiospores or zoospores, and sexual reproduction is by oospores, ascospores and basidiospores. The various spores are produced in distinct structures called fruiting bodies. The sexual cycle involves the following three steps:
1. Fusion of protoplasms between two motile or non-motile gametes called plasmogamy.
2. Fusion of two nuclei called karyogamy.
3. Meiosis in zygote resulting in haploid spores.
When a fungus reproduces sexually, two haploid hyphae of compatible mating types come together and fuse. In some fungi the fusion of two haploid cells immediately results in diploid cells (2n). However, in other fungi (ascomycetes and basidiomycetes), an intervening dikaryotic stage (n + n, i.e., two nuclei per cell) occurs; such a condition is called a dikaryon and the phase is called dikaryophase of fungus. Later, the parental nuclei fuse and the cells become diploid. The fungi form fruiting bodies in which reduction division occurs, leading to formation of haploid spores.
The morphology of the mycelium, mode of spore formation and fruiting bodies form the basis for the division of the kingdom into various classes.
# 2.3.1 Phycomycetes
Members of phycomycetes are found in aquatic habitats and on decaying wood in moist and damp places or as obligate parasites on plants. The mycelium is aseptate and coenocytic. Asexual reproduction takes place by zoospores (motile) or by aplanospores (non-motile). These spores are endogenously produced in sporangium. A zygospore is formed by fusion of two gametes. These gametes are similar in morphology (isogamous) or dissimilar (anisogamous or oogamous). Some common examples are Mucor, Rhizopus (the bread mould mentioned earlier) and Albugo (the parasitic fungi on mustard).
# 2.3.2 Ascomycetes
Commonly known as sac-fungi, the ascomycetes are mostly multicellular, e.g., Penicillium, or rarely unicellular, e.g., yeast (Saccharomyces). They are saprophytic, decomposers, parasitic or coprophilous (growing on dung).
Figure 2.5 Fungi: (a) Mucor (b) Aspergillus (c) Agaricus | 7 | 11 | Biology | 02 |
46e929ae-40da-40d3-aa82-9147b446e012 | # BIOLOGY
is branched and septate. The asexual spores are conidia produced exogenously on the special mycelium called conidiophores. Conidia on germination produce mycelium. Sexual spores are called ascospores which are produced endogenously in sac like asci (singular ascus). These asci are arranged in different types of fruiting bodies called ascocarps. Some examples are Aspergillus (Figure 2.5b), Claviceps and Neurospora. Neurospora is used extensively in biochemical and genetic work. Many members like morels and truffles are edible and are considered delicacies.
# 2.3.3 Basidiomycetes
Commonly known forms of basidiomycetes are mushrooms, bracket fungi or puffballs. They grow in soil, on logs and tree stumps and in living plant bodies as parasites, e.g., rusts and smuts. The mycelium is branched and septate. The asexual spores are generally not found, but vegetative reproduction by fragmentation is common. The sex organs are absent, but plasmogamy is brought about by fusion of two vegetative or somatic cells of different strains or genotypes. The resultant structure is dikaryotic which ultimately gives rise to basidium. Karyogamy and meiosis take place in the basidium producing four basidiospores. The basidiospores are exogenously produced on the basidium (pl.: basidia). The basidia are arranged in fruiting bodies called basidiocarps. Some common members are Agaricus (mushroom) (Figure 2.5c), Ustilago (smut) and Puccinia (rust fungus).
# 2.3.4 Deuteromycetes
Commonly known as imperfect fungi because only the asexual or vegetative phases of these fungi are known. When the sexual forms of these fungi were discovered they were moved into classes they rightly belong to. It is also possible that the asexual and vegetative stage have been given one name (and placed under deuteromycetes) and the sexual stage another (and placed under another class). Later when the linkages were established, the fungi were correctly identified and moved out of deuteromycetes. Once perfect (sexual) stages of members of deuteromycetes were discovered they were often moved to ascomycetes and basidiomycetes. The deuteromycetes reproduce only by asexual spores known as conidia. The mycelium is septate and branched. Some members are saprophytes or parasites while a large number of them are decomposers of litter and help in mineral cycling. Some examples are Alternaria, Colletotrichum and Trichoderma. | 8 | 11 | Biology | 02 |
b2be69e9-ca28-4aab-b543-19ec67ff689e | # 2.4 KINGDOM PLANTAE
Kingdom Plantae includes all eukaryotic chlorophyll-containing organisms commonly called plants. A few members are partially heterotrophic such as the insectivorous plants or parasites. Bladderwort and Venus fly trap are examples of insectivorous plants and Cuscuta is a parasite. The plant cells have an eukaryotic structure with prominent chloroplasts and cell wall mainly made of cellulose. You will study the eukaryotic cell structure in detail in Chapter 8. Plantae includes algae, bryophytes, pteridophytes, gymnosperms and angiosperms.
Life cycle of plants has two distinct phases – the diploid sporophytic and the haploid gametophytic – that alternate with each other. The lengths of the haploid and diploid phases, and whether these phases are free–living or dependent on others, vary among different groups in plants. This phenomenon is called alternation of generation. You will study further details of this kingdom in Chapter 3.
# 2.5 KINGDOM ANIMALIA
This kingdom is characterised by heterotrophic eukaryotic organisms that are multicellular and their cells lack cell walls. They directly or indirectly depend on plants for food. They digest their food in an internal cavity and store food reserves as glycogen or fat. Their mode of nutrition is holozoic – by ingestion of food. They follow a definite growth pattern and grow into adults that have a definite shape and size. Higher forms show elaborate sensory and neuromotor mechanism. Most of them are capable of locomotion.
The sexual reproduction is by copulation of male and female followed by embryological development. Salient features of various phyla are described in Chapter 4.
# 2.6 VIRUSES, VIROIDS, PRIONS AND LICHENS
In the five kingdom classification of Whittaker there is no mention of lichens and some acellular organisms like viruses, viroids and prions. These are briefly introduced here.
All of us who have suffered the ill effects of common cold or ‘flu’ know what effects viruses can have on us, even if we do not associate it with our condition. Viruses did not find a place in classification since they are not considered truly ‘living’, if we understand living as those organisms that have a cell structure. The viruses are non-cellular organisms that are characterised by having an inert crystalline structure outside the living cell. | 9 | 11 | Biology | 02 |
0a532fa3-72ce-4e3d-ba6b-d3403edada10 | # BIOLOGY
# Head
# Collar
# Sheath
# RNA
# Capsid
# Tail fibres
Figure 2.6 (a) Tobacco Mosaic Virus (TMV)
Figure 2.6 (b) Bacteriophage
Once they infect a cell they take over the machinery of the host cell to replicate themselves, killing the host. Would you call viruses living or non-living?
Virus means venom or poisonous fluid. Dmitri Ivanowsky (1892) recognised certain microbes as causal organism of the mosaic disease of tobacco (Figure 2.6a). These were found to be smaller than bacteria because they passed through bacteria-proof filters. M.W. Beijerinek (1898) demonstrated that the extract of the infected plants of tobacco could cause infection in healthy plants and named the new pathogen “virus” and called the fluid as Contagium vivum fluidum (infectious living fluid). W.M. Stanley (1935) showed that viruses could be crystallised and crystals consist largely of proteins. They are inert outside their specific host cell. Viruses are obligate parasites.
In addition to proteins, viruses also contain genetic material, that could be either RNA or DNA. No virus contains both RNA and DNA. A virus is a nucleoprotein and the genetic material is infectious. In general, viruses that infect plants have single stranded RNA and viruses that infect animals have either single or double stranded RNA or double stranded DNA. Bacterial viruses or bacteriophages (viruses that infect the bacteria) are usually double stranded DNA viruses (Figure 2.6b). The protein coat called capsid made of small subunits called capsomeres, protects the nucleic acid. These capsomeres are arranged in helical or polyhedral geometric forms. Viruses cause diseases like mumps, small pox, herpes and influenza. AIDS in humans is also caused by a virus. In plants, the symptoms can be mosaic formation, leaf rolling and curling, yellowing and vein clearing, dwarfing and stunted growth.
2024-25 | 10 | 11 | Biology | 02 |
83d67d9c-a7f6-45e9-8033-bcbca290b483 | # BIOLOGICAL CLASSIFICATION
# Viroids
In 1971, T.O. Diener discovered a new infectious agent that was smaller than viruses and caused potato spindle tuber disease. It was found to be a free RNA; it lacked the protein coat that is found in viruses, hence the name viroid. The RNA of the viroid was of low molecular weight.
# Prions
In modern medicine certain infectious neurological diseases were found to be transmitted by an agent consisting of abnormally folded protein. The agent was similar in size to viruses. These agents were called prions. The most notable diseases caused by prions are bovine spongiform encephalopathy (BSE) commonly called mad cow disease in cattle and its analogous variant Cr–Jacob disease (CJD) in humans.
# Lichens
Lichens are symbiotic associations i.e. mutually useful associations, between algae and fungi. The algal component is known as phycobiont and fungal component as mycobiont, which are autotrophic and heterotrophic, respectively. Algae prepare food for fungi and fungi provide shelter and absorb mineral nutrients and water for its partner. So close is their association that if one saw a lichen in nature one would never imagine that they had two different organisms within them. Lichens are very good pollution indicators – they do not grow in polluted areas.
# SUMMARY
Biological classification of plants and animals was first proposed by Aristotle on the basis of simple morphological characters. Linnaeus later classified all living organisms into two kingdoms – Plantae and Animalia. Whittaker proposed an elaborate five kingdom classification – Monera, Protista, Fungi, Plantae and Animalia. The main criteria of the five kingdom classification were cell structure, body organisation, mode of nutrition and reproduction, and phylogenetic relationships.
In the five kingdom classification, bacteria are included in Kingdom Monera. Bacteria are cosmopolitan in distribution. These organisms show the most extensive metabolic diversity. Bacteria may be autotrophic or heterotrophic in their mode of nutrition. Kingdom Protista includes all single-celled eukaryotes such as Chrysophytes, Dinoflagellates, Euglenoids, Slime-moulds and Protozoans. Protists have defined nucleus and other membrane bound organelles. They reproduce both asexually and sexually. Members of Kingdom Fungi show a great diversity in structures and habitat. Most fungi are saprophytic in their mode of nutrition. They show asexual and sexual reproduction. Phycomycetes, Ascomycetes, Basidiomycetes and Deuteromycetes are the four classes under this kingdom.
The plantae includes all eukaryotic chlorophyll-containing organisms. Algae, bryophytes, pteridophytes, gymnosperms and angiosperms are included in this group. The life cycle of plants exhibit alternation of generations – gametophytic and sporophytic generations. The heterotrophic eukaryotic, multicellular organisms lacking a cell wall are included in the Kingdom Animalia. The mode of nutrition of these organisms is holozoic. They reproduce mostly by the sexual mode. Some acellular organisms like viruses and viroids as well as the lichens are not included in the five kingdom system of classification.
2024-25 | 11 | 11 | Biology | 02 |
9cc71d5d-aaa4-4336-b592-ea0ceb7b9f30 | # BIOLOGY
# EXERCISES
1. Discuss how classification systems have undergone several changes over a period of time?
2. State two economically important uses of:
heterotrophic bacteria
3. archae bacteria
What is the nature of cell-walls in diatoms?
Find out what do the terms ‘algal bloom’ and ‘red-tides’ signify.
How are viroids different from viruses?
Describe briefly the four major groups of Protozoa.
Plants are autotrophic. Can you think of some plants that are partially heterotrophic?
What do the terms phycobiont and mycobiont signify?
Give a comparative account of the classes of Kingdom Fungi under the following:
mode of nutrition
mode of reproduction
What are the characteristic features of Euglenoids?
Give a brief account of viruses with respect to their structure and nature of genetic material. Also name four common viral diseases.
Organise a discussion in your class on the topic – Are viruses living or non-living?
2024-25 | 12 | 11 | Biology | 02 |
3b84d832-c051-477d-98d6-f9d7401dc0e1 | # EXCRETORY PRODUCTS AND THEIR ELIMINATION
# 16.1 Human Excretory System
Animals accumulate ammonia, urea, uric acid, carbon dioxide, water and ions like Na+, K+, Cl–, phosphate, sulphate, etc., either by metabolic activities or by other means like excess ingestion. These substances have to be removed totally or partially. In this chapter, you will learn the mechanisms of elimination of these substances with special emphasis on common nitrogenous wastes.
# 16.2 Urine Formation
Ammonia, urea and uric acid are the major forms of nitrogenous wastes excreted by the animals. Ammonia is the most toxic form and requires large amount of water for its elimination, whereas uric acid, being the least toxic, can be removed with a minimum loss of water.
# 16.3 Function of the Tubules
The process of excreting ammonia is Ammonotelism. Many bony fishes, aquatic amphibians and aquatic insects are ammonotelic in nature. Ammonia, as it is readily soluble, is generally excreted by diffusion across body surfaces or through gill surfaces (in fish) as ammonium ions. Kidneys do not play any significant role in its removal.
# 16.4 Mechanism of Concentration of the Filtrate
Terrestrial adaptation necessitated the production of lesser toxic nitrogenous wastes like urea and uric acid for conservation of water. Mammals, many terrestrial amphibians and marine fishes mainly excrete urea and are called ureotelic animals. Ammonia produced by metabolism is converted into urea in the liver of these animals and released into the blood which is filtered and excreted out by the kidneys. Some amount of urea may be retained in the kidney matrix of some of these animals to maintain a desired osmolarity.
# 16.5 Regulation of Kidney Function
Reptiles, birds, land snails and insects excrete nitrogenous wastes as uric acid in the form of pellet or paste with a minimum loss of water and are called uricotelic animals.
# 16.6 Micturition
uricotelic
# 16.7 Role of other Organs in Excretion
uricotelic
# 16.8 Disorders of the Excretory System
uricotelic | 0 | 11 | Biology | 16 |
5c5e1509-18e2-46f4-922f-459c41b7ad17 | # 206
# BIOLOGY
A survey of animal kingdom presents a variety of excretory structures. In most of the invertebrates, these structures are simple tubular forms whereas vertebrates have complex tubular organs called kidneys. Some of these structures are mentioned here. Protonephridia or flame cells are the excretory structures in Platyhelminthes (Flatworms, e.g., Planaria), rotifers, some annelids and the cephalochordate – Amphioxus. Protonephridia are primarily concerned with ionic and fluid volume regulation, i.e., osmoregulation. Nephridia are the tubular excretory structures of earthworms and other annelids. Nephridia help to remove nitrogenous wastes and maintain a fluid and ionic balance. Malpighian tubules are the excretory structures of most of the insects including cockroaches. Malpighian tubules help in the removal of nitrogenous wastes and osmoregulation. Antennal glands or green glands perform the excretory function in crustaceans like prawns.
# 16.1 HUMAN EXCRETORY SYSTEM
Figure 16.1 Human Urinary system
In humans, the excretory system consists of a pair of kidneys, one pair of ureters, a urinary bladder and a urethra (Figure 16.1). Kidneys are reddish brown, bean shaped structures situated between the levels of last thoracic and third lumbar vertebra close to the dorsal inner wall of the abdominal cavity. Each kidney of an adult human measures 10-12 cm in length, 5-7 cm in width, 2-3 cm in thickness with an average weight of 120-170 g. Towards the centre of the inner concave surface of the kidney is a notch called hilum through which ureter, blood vessels and nerves enter. Inner to the hilum is a broad funnel shaped space called the renal pelvis with projections called calyces. The outer layer of kidney is a tough capsule. Inside the kidney, there are two zones, an outer cortex and an inner medulla. The medulla is divided into a few conical masses (medullary pyramids) projecting into the calyces (sing.: calyx). The cortex extends in between the | 1 | 11 | Biology | 16 |
87609fa4-433c-4b16-949d-af6ad89e4c00 | # EXCRETORY PRODUCTS AND THEIR ELIMINATION
medullary pyramids as renal columns called Columns of Bertini (Figure 16.2).
Each kidney has nearly one million complex tubular structures called nephrons (Figure 16.3), which are the functional units. Each nephron has two parts – the glomerulus and the renal tubule. Glomerulus is a tuft of capillaries formed by the afferent arteriole – a fine branch of renal artery. Blood from the glomerulus is carried away by an efferent arteriole.
The renal tubule begins with a double walled cup-like structure called Bowman’s capsule, which encloses the glomerulus. Glomerulus along with Bowman’s capsule, is called the malpighian body or renal corpuscle (Figure 16.4). The tubule continues further to form a highly coiled network – proximal convoluted tubule.
# Figure 16.2
Longitudinal section (Diagrammatic) of Kidney
# Figure 16.3
A diagrammatic representation of a nephron showing blood vessels, duct and tubule | 2 | 11 | Biology | 16 |
8b6169ec-1a18-49d2-ba2d-3de9d142a077 | # 208
# BIOLOGY
Afferent arteriole (PCT). A hairpin shaped Henle’s loop is the next part of the tubule which has a descending and an ascending limb. The ascending limb continues as another highly coiled tubular region called distal convoluted tubule (DCT). The DCTs of many nephrons open into a straight tube called collecting duct, many of which converge and open into the renal pelvis through medullary pyramids in the calyces.
The Malpighian corpuscle, PCT and DCT of the nephron are situated in the cortical region of the kidney whereas the loop of Henle dips into the medulla. In majority of nephrons, the loop of Henle is too short and extends only very little into the medulla. Such nephrons are called cortical nephrons. In some of the nephrons, the loop of Henle is very long and runs deep into the medulla. These nephrons are called juxta medullary nephrons.
The efferent arteriole emerging from the glomerulus forms a fine capillary network around the renal tubule called the peritubular capillaries. A minute vessel of this network runs parallel to the Henle’s loop forming a ‘U’ shaped vasa recta. Vasa recta is absent or highly reduced in cortical nephrons.
# 16.2
# URINE FORMATION
Urine formation involves three main processes namely, glomerular filtration, reabsorption and secretion, that takes place in different parts of the nephron.
The first step in urine formation is the filtration of blood, which is carried out by the glomerulus and is called glomerular filtration. On an average, 1100-1200 ml of blood is filtered by the kidneys per minute which constitute roughly 1/5th of the blood pumped out by each ventricle of the heart in a minute. The glomerular capillary blood pressure causes filtration of blood through 3 layers, i.e., the endothelium of glomerular blood vessels, the epithelium of Bowman’s capsule and a basement membrane between these two layers. The epithelial cells of Bowman’s capsule called podocytes are arranged in an intricate manner so as to leave some minute spaces called filtration slits or slit pores. Blood is filtered so finely through these membranes, that almost all the constituents of the plasma except the proteins pass onto the lumen of the Bowman’s capsule. Therefore, it is considered as a process of ultra filtration.
2024-25 | 3 | 11 | Biology | 16 |
a5a23022-36aa-4945-ad65-16d7ef9f69ba | # EXCRETORY PRODUCTS AND THEIR ELIMINATION
The amount of the filtrate formed by the kidneys per minute is called glomerular filtration rate (GFR). GFR in a healthy individual is approximately 125 ml/minute, i.e., 180 litres per day!
The kidneys have built-in mechanisms for the regulation of glomerular filtration rate. One such efficient mechanism is carried out by juxta glomerular apparatus (JGA). JGA is a special sensitive region formed by cellular modifications in the distal convoluted tubule and the afferent arteriole at the location of their contact. A fall in GFR can activate the JG cells to release renin which can stimulate the glomerular blood flow and thereby the GFR back to normal.
A comparison of the volume of the filtrate formed per day (180 litres per day) with that of the urine released (1.5 litres), suggests that nearly 99 per cent of the filtrate has to be reabsorbed by the renal tubules. This process is called reabsorption. The tubular epithelial cells in different segments of nephron perform this either by active or passive mechanisms. For example, substances like glucose, amino acids, Na+, etc., in the filtrate are reabsorbed actively whereas the nitrogenous wastes are absorbed by passive transport. Reabsorption of water also occurs passively in the initial segments of the nephron.
During urine formation, the tubular cells secrete substances like H+, K+ and ammonia into the filtrate. Tubular secretion is also an important step in urine formation as it helps in the maintenance of ionic and acid-base balance of body fluids.
# 16.3 FUNCTION OF THE TUBULES
# Proximal Convoluted Tubule (PCT)
PCT is lined by simple cuboidal brush border epithelium which increases the surface area for reabsorption. Nearly all of the essential nutrients, and 70-80 per cent of electrolytes and water are reabsorbed by this segment. PCT also helps to maintain the pH and ionic balance of the body fluids by selective secretion of hydrogen ions and ammonia into the filtrate and by absorption of HCO3 from it.
# Henle’s Loop
Reabsorption is minimum in its ascending limb. However, this region plays a significant role in the maintenance of high osmolarity of medullary interstitial fluid. The descending limb of loop of Henle is permeable to water but almost impermeable to electrolytes. This concentrates the filtrate as it moves down. The ascending limb is impermeable to water but allows transport of electrolytes actively or passively. Therefore, as the concentrated filtrate passes upward, it gets diluted due to the passage of electrolytes to the medullary fluid.
# Distal Convoluted Tubule (DCT)
Conditional reabsorption of Na+ and water takes place in this segment. DCT is also capable of reabsorption of HCO3 and selective secretion of hydrogen and potassium ions and NH3 to maintain the pH and sodium-potassium balance in blood. | 4 | 11 | Biology | 16 |
cfcbbcdf-34a6-422a-a6c3-f7ea5993c52a | # BIOLOGY
Figure 16.5 Reabsorption and secretion of major substances at different parts of the nephron (Arrows indicate direction of movement of materials.)
Collecting Duct: This long duct extends from the cortex of the kidney to the inner parts of the medulla. Large amounts of water could be reabsorbed from this region to produce a concentrated urine. This segment allows passage of small amounts of urea into the medullary interstitium to keep up the osmolarity. It also plays a role in the maintenance of pH and ionic balance of blood by the selective secretion of H+ and K+ ions (Figure 16.5).
# 16.4 MECHANISM OF CONCENTRATION OF THE FILTRATE
Mammals have the ability to produce a concentrated urine. The Henle’s loop and vasa recta play a significant role in this. The flow of filtrate in the two limbs of Henle’s loop is in opposite directions and thus forms a counter current. The flow of blood through the two limbs of vasa recta is | 5 | 11 | Biology | 16 |
c5983e7a-9356-4e70-b813-d58ab7e314cc | # EXCRETORY PRODUCTS AND THEIR ELIMINATION
also in a counter current pattern. The proximity between the Henle’s loop and vasa recta, as well as the counter current in them help in maintaining an increasing osmolarity towards the inner medullary interstitium, i.e., from 300 mOsmolL–1 in the cortex to about 1200 mOsmolL –1 in the inner medulla. This gradient is mainly caused by NaCl and urea. NaCl is transported by the ascending limb of Henle’s loop which is exchanged with the descending limb of vasa recta. NaCl is returned to the interstitium by the ascending portion of vasa recta. Similarly, small amounts of urea enter the thin segment of the ascending limb of Henle’s loop which is transported back to the interstitium by the collecting tubule. The above described transport of substances facilitated by the special arrangement of Henle’s loop and vasa recta is called the counter current mechanism (Figure. 16.6). This mechanism helps to maintain a concentration gradient
# Figure 16.6
Diagrammatic representation of a nephron and vasa recta showing counter current mechanisms
2024-25 | 6 | 11 | Biology | 16 |
5b9f42cc-534e-4d24-a2b4-78ee6648e508 | # 212
# BIOLOGY
in the medullary interstitium. Presence of such interstitial gradient helps in an easy passage of water from the collecting tubule thereby concentrating the filtrate (urine). Human kidneys can produce urine nearly four times concentrated than the initial filtrate formed.
# 16.5 REGULATION OF KIDNEY FUNCTION
The functioning of the kidneys is efficiently monitored and regulated by hormonal feedback mechanisms involving the hypothalamus, JGA and to a certain extent, the heart.
Osmoreceptors in the body are activated by changes in blood volume, body fluid volume and ionic concentration. An excessive loss of fluid from the body can activate these receptors which stimulate the hypothalamus to release antidiuretic hormone (ADH) or vasopressin from the neurohypophysis. ADH facilitates water reabsorption from latter parts of the tubule, thereby preventing diuresis. An increase in body fluid volume can switch off the osmoreceptors and suppress the ADH release to complete the feedback. ADH can also affect the kidney function by its constrictory effects on blood vessels. This causes an increase in blood pressure. An increase in blood pressure can increase the glomerular blood flow and thereby the GFR.
The JGA plays a complex regulatory role. A fall in glomerular blood flow/glomerular blood pressure/GFR can activate the JG cells to release renin which converts angiotensinogen in blood to angiotensin I and further to angiotensin II. Angiotensin II, being a powerful vasoconstrictor, increases the glomerular blood pressure and thereby GFR. Angiotensin II also activates the adrenal cortex to release Aldosterone. Aldosterone causes reabsorption of Na+ and water from the distal parts of the tubule. This also leads to an increase in blood pressure and GFR. This complex mechanism is generally known as the Renin-Angiotensin mechanism.
An increase in blood flow to the atria of the heart can cause the release of Atrial Natriuretic Factor (ANF). ANF can cause vasodilation (dilation of blood vessels) and thereby decrease the blood pressure. ANF mechanism, therefore, acts as a check on the renin-angiotensin mechanism.
# 16.6 MICTURITION
Urine formed by the nephrons is ultimately carried to the urinary bladder where it is stored till a voluntary signal is given by the central nervous system (CNS). This signal is initiated by the stretching of the urinary bladder as it gets filled with urine. In response, the stretch receptors on the walls of the bladder send signals to the CNS. The CNS passes on motor messages | 7 | 11 | Biology | 16 |
97be34c9-de9c-4d2b-93f9-9418c571eb5c | # EXCRETORY PRODUCTS AND THEIR ELIMINATION
to initiate the contraction of smooth muscles of the bladder and simultaneous relaxation of the urethral sphincter causing the release of urine. The process of release of urine is called micturition and the neural mechanisms causing it is called the micturition reflex. An adult human excretes, on an average, 1 to 1.5 litres of urine per day. The urine formed is a light yellow coloured watery fluid which is slightly acidic (pH-6.0) and has a characteristic odour. On an average, 25-30 gm of urea is excreted out per day. Various conditions can affect the characteristics of urine. Analysis of urine helps in clinical diagnosis of many metabolic disorders as well as malfunctioning of the kidney. For example, presence of glucose (Glycosuria) and ketone bodies (Ketonuria) in urine are indicative of diabetes mellitus.
# 16.7 ROLE OF OTHER ORGANS IN EXCRETION
Other than the kidneys, lungs, liver and skin also help in the elimination of excretory wastes.
Our lungs remove large amounts of CO2 (approximately 200mL/minute) and also significant quantities of water every day. Liver, the largest gland in our body, secretes bile-containing substances like bilirubin, biliverdin, cholesterol, degraded steroid hormones, vitamins and drugs. Most of these substances ultimately pass out along with digestive wastes.
The sweat and sebaceous glands in the skin can eliminate certain substances through their secretions. Sweat produced by the sweat glands is a watery fluid containing NaCl, small amounts of urea, lactic acid, etc. Though the primary function of sweat is to facilitate a cooling effect on the body surface, it also helps in the removal of some of the wastes mentioned above. Sebaceous glands eliminate certain substances like sterols, hydrocarbons and waxes through sebum. This secretion provides a protective oily covering for the skin. Do you know that small amounts of nitrogenous wastes could be eliminated through saliva too?
# 16.8 DISORDERS OF THE EXCRETORY SYSTEM
Malfunctioning of kidneys can lead to accumulation of urea in blood, a condition called uremia, which is highly harmful and may lead to kidney failure. In such patients, urea can be removed by a process called hemodialysis. During the process of haemodialysis, the blood drained from a convenient artery is pumped into a dialysing unit called artificial kidney. Blood drained from a convenient artery is pumped into a dialysing unit after adding an anticoagulant like heparin. The unit contains a coiled cellophane tube surrounded by a fluid (dialysing fluid) having the same | 8 | 11 | Biology | 16 |
5ee4c64b-9d9a-466b-90e0-52a78ea81ea2 | # BIOLOGY
composition as that of plasma except the nitrogenous wastes. The porous cellophane membrance of the tube allows the passage of molecules based on concentration gradient. As nitrogenous wastes are absent in the dialysing fluid, these substances freely move out, thereby clearing the blood. The cleared blood is pumped back to the body through a vein after adding anti-heparin to it. This method is a boon for thousands of uremic patients all over the world.
Kidney transplantation is the ultimate method in the correction of acute renal failures (kidney failure). A functioning kidney is used in transplantation from a donor, preferably a close relative, to minimise its chances of rejection by the immune system of the host. Modern clinical procedures have increased the success rate of such a complicated technique.
Renal calculi: Stone or insoluble mass of crystallised salts (oxalates, etc.) formed within the kidney.
Glomerulonephritis: Inflammation of glomeruli of kidney.
# SUMMARY
Many nitrogen containing substances, ions, CO2, water, etc., that accumulate in the body have to be eliminated. Nature of nitrogenous wastes formed and their excretion vary among animals, mainly depending on the habitat (availability of water). Ammonia, urea and uric acid are the major nitrogenous wastes excreted.
Protonephridia, nephridia, malpighian tubules, green glands and the kidneys are the common excretory organs in animals. They not only eliminate nitrogenous wastes but also help in the maintenance of ionic and acid-base balance of body fluids.
In humans, the excretory system consists of one pair of kidneys, a pair of ureters, a urinary bladder and a urethra. Each kidney has over a million tubular structures called nephrons. Nephron is the functional unit of kidney and has two portions – glomerulus and renal tubule. Glomerulus is a tuft of capillaries formed from afferent arterioles, fine branches of renal artery. The renal tubule starts with a double walled Bowman’s capsule and is further differentiated into a proximal convoluted tubule (PCT), Henle’s loop (HL) and distal convoluted tubule (DCT). The DCTs of many nephrons join to a common collecting duct many of which ultimately open into the renal pelvis through the medullary pyramids. The Bowman’s capsule encloses the glomerulus to form Malpighian or renal corpuscle.
Urine formation involves three main processes, i.e., filtration, reabsorption and secretion. Filtration is a non-selective process performed by the glomerulus using the glomerular capillary blood pressure. About 1200 ml of blood is filtered by the glomerulus per minute to form 125 ml of filtrate in the Bowman’s capsule per | 9 | 11 | Biology | 16 |
99385017-9205-458f-bd40-a63b95498e1a | # EXCRETORY PRODUCTS AND THEIR ELIMINATION
minute (GFR). JGA, a specialised portion of the nephrons, plays a significant role in the regulation of GFR. Nearly 99 per cent reabsorption of the filtrate takes place through different parts of the nephrons. PCT is the major site of reabsorption and selective secretion. HL primarily helps to maintain osmolar gradient (300 mOsmolL –1 -1200 mOsmolL –1) within the kidney interstitium. DCT and collecting duct allow extensive reabsorption of water and certain electrolytes, which help in osmoregulation: H+, K+ and NH3 could be secreted into the filtrate by the tubules to maintain the ionic balance and pH of body fluids.
A counter current mechanism operates between the two limbs of the loop of Henle and those of vasa recta (capillary parallel to Henle’s loop). The filtrate gets concentrated as it moves down the descending limb but is diluted by the ascending limb. Electrolytes and urea are retained in the interstitium by this arrangement. DCT and collecting duct concentrate the filtrate about four times, i.e., from 300 mOsmolL–1 to 1200 mOsmolL–1, an excellent mechanism of conservation of water. Urine is stored in the urinary bladder till a voluntary signal from CNS carries out its release through urethra, i.e., micturition. Skin, lungs and liver also assist in excretion.
# EXERCISES
1. Define Glomerular Filtration Rate (GFR)
2. Explain the autoregulatory mechanism of GFR.
3. Indicate whether the following statements are true or false:
- (a) Micturition is carried out by a reflex.
- (b) ADH helps in water elimination, making the urine hypotonic.
- (c) Protein-free fluid is filtered from blood plasma into the Bowman’s capsule.
- (d) Henle’s loop plays an important role in concentrating the urine.
- (e) Glucose is actively reabsorbed in the proximal convoluted tubule.
4. Give a brief account of the counter current mechanism.
5. Describe the role of liver, lungs and skin in excretion.
6. Explain micturition.
7. Match the items of column I with those of column II:
|Column I|Column II|
|---|---|
|(a) Ammonotelism|(i) Birds|
|(b) Bowman’s capsule|(ii) Water reabsorption|
|(c) Micturition|(iii) Bony fish|
|(d) Uricotelism|(iv) Urinary bladder|
|(d) ADH|(v) Renal tubule| | 10 | 11 | Biology | 16 |
e8d1aec8-e3aa-4a56-b70b-854298c3f22e | # BIOLOGY
1. What is meant by the term osmoregulation?
2. Terrestrial animals are generally either ureotelic or uricotelic, not ammonotelic, why?
3. What is the significance of juxta glomerular apparatus (JGA) in kidney function?
4. Name the following:
1. A chordate animal having flame cells as excretory structures
2. Cortical portions projecting between the medullary pyramids in the human kidney
3. A loop of capillary running parallel to the Henle’s loop.
5. Fill in the gaps:
1. Ascending limb of Henle’s loop is _______ to water whereas the descending limb is _______ to it.
2. Reabsorption of water from distal parts of the tubules is facilitated by hormone _______.
3. Dialysis fluid contain all the constituents as in plasma except _______.
4. A healthy adult human excretes (on an average) _______ gm of urea/day. | 11 | 11 | Biology | 16 |
b463f15d-f25d-4c1d-b298-5b3e1cc86f76 | # CHAPTER 15
# BODY FLUIDS AND CIRCULATION
# 15.1 Blood
You have learnt that all living cells have to be provided with nutrients, O2 and other essential substances. Also, the waste or harmful substances produced, have to be removed continuously for healthy functioning of tissues. It is therefore, essential to have efficient mechanisms for the movement of these substances to the cells and from the cells. Different groups of animals have evolved different methods for this transport. Simple organisms like sponges and coelenterates circulate water from their surroundings through their body cavities to facilitate the cells to exchange these substances. More complex organisms use special fluids within their bodies to transport such materials. Blood is the most commonly used body fluid by most of the higher organisms including humans for this purpose. Another body fluid, lymph, also helps in the transport of certain substances. In this chapter, you will learn about the composition and properties of blood and lymph (tissue fluid) and the mechanism of circulation of blood is also explained herein.
# 15.1.1 Plasma
Plasma is a straw coloured, viscous fluid constituting nearly 55 per cent of the blood. 90-92 per cent of plasma is water and proteins contribute 6-8 per cent of it. Fibrinogen, globulins and albumins are the major proteins. | 0 | 11 | Biology | 15 |
5737b263-2fa7-4f4b-ad50-4fd46a834ce3 | # 194
# BIOLOGY
Fibrinogens are needed for clotting or coagulation of blood. Globulins primarily are involved in defense mechanisms of the body and the albumins help in osmotic balance. Plasma also contains small amounts of minerals like Na, Ca++, Mg++, HCO3, Cl, etc. Glucose, amino acids, lipids, etc., are also present in the plasma as they are always in transit in the body. Factors for coagulation or clotting of blood are also present in the plasma in an inactive form. Plasma without the clotting factors is called serum.
# 15.1.2 Formed Elements
Erythrocytes, leucocytes and platelets are collectively called formed elements (Figure 15.1) and they constitute nearly 45 per cent of the blood. Erythrocytes or red blood cells (RBC) are the most abundant of all the cells in blood. A healthy adult man has, on an average, 5 millions to 5.5 millions of RBCs mm-3 of blood. RBCs are formed in the red bone marrow in the adults. RBCs are devoid of nucleus in most of the mammals and are biconcave in shape. They have a red coloured, iron containing complex protein called haemoglobin, hence the colour and name of these cells. A healthy individual has 12-16 gms of haemoglobin in every 100 ml of blood. These molecules play a significant role in transport of respiratory gases. RBCs have an average life span of 120 days after which they are destroyed in the spleen (graveyard of RBCs).
Leucocytes are also known as white blood cells (WBC) as they are colourless due to the lack of haemoglobin. They are nucleated and are relatively lesser in number which averages 6000-8000 mm-3 of blood. Leucocytes are generally short lived. We have two main categories of WBCs: granulocytes and agranulocytes. Neutrophils, eosinophils and basophils are different types of granulocytes, while lymphocytes and monocytes are the agranulocytes. Neutrophils are the most abundant cells (60-65 per cent) of the total WBCs and basophils are the least (0.5-1 per cent) among them. Neutrophils and monocytes (6-8 per cent) are phagocytic cells which destroy foreign organisms entering the body. Basophils secrete histamine, serotonin, heparin, etc., and are involved in inflammatory reactions. Eosinophils (2-3 per cent) resist infections and are also involved in other immune responses.
# Figure 15.1
Diagrammatic representation of formed elements in blood
|RBC|Eosinophil|Neutrophil|T lymphocyte|
|---|---|---|---|
|Platelets|Basophil|Monocyte|B lymphocyte| | 1 | 11 | Biology | 15 |
31fb6660-ec65-4c97-91eb-7e441f095b1f | # BODY FLUIDS AND CIRCULATION
associated with allergic reactions. Lymphocytes (20-25 per cent) are of two major types – ‘B’ and ‘T’ forms. Both B and T lymphocytes are responsible for immune responses of the body.
Platelets also called thrombocytes, are cell fragments produced from megakaryocytes (special cells in the bone marrow). Blood normally contains 1,500,000-3,500,000 platelets mm. Platelets can release a variety of substances most of which are involved in the coagulation or clotting of blood. A reduction in their number can lead to clotting disorders which will lead to excessive loss of blood from the body.
# 15.1.3 Blood Groups
As you know, blood of human beings differ in certain aspects though it appears to be similar. Various types of grouping of blood has been done. Two such groupings – the ABO and Rh – are widely used all over the world.
# 15.1.3.1 ABO grouping
ABO grouping is based on the presence or absence of two surface antigens (chemicals that can induce immune response) on the RBCs namely A and B. Similarly, the plasma of different individuals contain two natural antibodies (proteins produced in response to antigens). The distribution of antigens and antibodies in the four groups of blood, A, B, AB and O are given in Table 15.1. You probably know that during blood transfusion, any blood cannot be used; the blood of a donor has to be carefully matched with the blood of a recipient before any blood transfusion to avoid severe problems of clumping (destruction of RBC). The donor’s compatibility is also shown in the Table 15.1.
**Table 15.1 Blood Groups and Donor Compatibility**
|Blood Group|Antigens on RBCs|Antibodies in Plasma|Donor’s Group|
|---|---|---|---|
|A|A|anti-B|A, O|
|B|B|anti-A|B, O|
|AB|A, B|nil|AB, A, B, O|
|O|nil|anti-A, B|O|
From the above mentioned table it is evident that group ‘O’ blood can be donated to persons with any other blood group and hence ‘O’ group individuals are called ‘universal donors’. Persons with ‘AB’ group can accept blood from persons with AB as well as the other groups of blood. Therefore, such persons are called ‘universal recipients’. | 2 | 11 | Biology | 15 |
9e6bacc6-b40e-4145-b3b8-cd444f4fffd0 | # 15.1.3.2 Rh grouping
Another antigen, the Rh antigen similar to one present in Rhesus monkeys (hence Rh), is also observed on the surface of RBCs of majority (nearly 80 per cent) of humans. Such individuals are called Rh positive (Rh+ve) and those in whom this antigen is absent are called Rh negative (Rh-ve). An Rh-ve person, if exposed to Rh+ve blood, will form specific antibodies against the Rh antigens. Therefore, Rh group should also be matched before transfusions. A special case of Rh incompatibility (mismatching) has been observed between the Rh-ve blood of a pregnant mother with Rh+ve blood of the foetus. Rh antigens of the foetus do not get exposed to the Rh-ve blood of the mother in the first pregnancy as the two bloods are well separated by the placenta. However, during the delivery of the first child, there is a possibility of exposure of the maternal blood to small amounts of the Rh+ve blood from the foetus. In such cases, the mother starts preparing antibodies against Rh antigen in her blood. In case of her subsequent pregnancies, the Rh antibodies from the mother (Rh-ve) can leak into the blood of the foetus (Rh+ve) and destroy the foetal RBCs. This could be fatal to the foetus or could cause severe anaemia and jaundice to the baby. This condition is called erythroblastosis foetalis. This can be avoided by administering anti-Rh antibodies to the mother immediately after the delivery of the first child.
# 15.1.4 Coagulation of Blood
You know that when you cut your finger or hurt yourself, your wound does not continue to bleed for a long time; usually the blood stops flowing after sometime. Do you know why? Blood exhibits coagulation or clotting in response to an injury or trauma. This is a mechanism to prevent excessive loss of blood from the body. You would have observed a dark reddish brown scum formed at the site of a cut or an injury over a period of time. It is a clot or coagulam formed mainly of a network of threads called fibrins in which dead and damaged formed elements of blood are trapped. Fibrins are formed by the conversion of inactive fibrinogens in the plasma by the enzyme thrombin. Thrombins, in turn are formed from another inactive substance present in the plasma called prothrombin. An enzyme complex, thrombokinase, is required for the above reaction. This complex is formed by a series of linked enzymic reactions (cascade process) involving a number of factors present in the plasma in an inactive state. An injury or a trauma stimulates the platelets in the blood to release certain factors which activate the mechanism of coagulation. Certain factors released by the tissues at the site of injury also can initiate coagulation. Calcium ions play a very important role in clotting. | 3 | 11 | Biology | 15 |
c6877830-21d8-44e8-bb58-893cdfd6ff52 | # 15.2 LYMPH (TISSUE FLUID)
As the blood passes through the capillaries in tissues, some water along with many small water soluble substances move out into the spaces between the cells of tissues leaving the larger proteins and most of the formed elements in the blood vessels. This fluid released out is called the interstitial fluid or tissue fluid. It has the same mineral distribution as that in plasma. Exchange of nutrients, gases, etc., between the blood and the cells always occur through this fluid. An elaborate network of vessels called the lymphatic system collects this fluid and drains it back to the major veins. The fluid present in the lymphatic system is called the lymph. Lymph is a colourless fluid containing specialised lymphocytes which are responsible for the immune responses of the body. Lymph is also an important carrier for nutrients, hormones, etc. Fats are absorbed through lymph in the lacteals present in the intestinal villi.
# 15.3 CIRCULATORY PATHWAYS
The circulatory patterns are of two types – open or closed. Open circulatory system is present in arthropods and molluscs in which blood pumped by the heart passes through large vessels into open spaces or body cavities called sinuses. Annelids and chordates have a closed circulatory system in which the blood pumped by the heart is always circulated through a closed network of blood vessels. This pattern is considered to be more advantageous as the flow of fluid can be more precisely regulated.
All vertebrates possess a muscular chambered heart. Fishes have a 2-chambered heart with an atrium and a ventricle. Amphibians and the reptiles (except crocodiles) have a 3-chambered heart with two atria and a single ventricle, whereas crocodiles, birds and mammals possess a 4-chambered heart with two atria and two ventricles. In fishes the heart pumps out deoxygenated blood which is oxygenated by the gills and supplied to the body parts from where deoxygenated blood is returned to the heart (single circulation). In amphibians and reptiles, the left atrium receives oxygenated blood from the gills/lungs/skin and the right atrium gets the deoxygenated blood from other body parts. However, they get mixed up in the single ventricle which pumps out mixed blood (incomplete double circulation). In birds and mammals, oxygenated and deoxygenated blood received by the left and right atria respectively passes on to the ventricles of the same sides. The ventricles pump it out without any mixing up, i.e., two separate circulatory pathways are present in these organisms, hence, these animals have double circulation. Let us study the human circulatory system. | 4 | 11 | Biology | 15 |
55c2de27-3ce3-4746-84b1-6d8795399fc6 | # 15.3.1 Human Circulatory System
Human circulatory system, also called the blood vascular system consists of a muscular chambered heart, a network of closed branching blood vessels and blood, the fluid which is circulated.
Heart, the mesodermally derived organ, is situated in the thoracic cavity, in between the two lungs, slightly tilted to the left. It has the size of a clenched fist. It is protected by a double walled membranous bag, pericardium, enclosing the pericardial fluid. Our heart has four chambers, two relatively small upper chambers called atria and two larger lower chambers called ventricles. A thin, muscular wall called the inter-atrial septum separates the right and the left atria, whereas a thick-walled, the inter-ventricular septum, separates the left and the right ventricles (Figure 15.2). The atrium and the ventricle of the same side are also separated by a thick fibrous tissue called the atrio-ventricular septum. However, each of these septa are provided with an opening through which the two chambers of the same side are connected. The opening between the right atrium and the right ventricle is guarded by a valve formed of three muscular flaps or cusps, the tricuspid valve, whereas a bicuspid or mitral valve guards the opening between the left atrium and the left ventricle. The openings of the right and the left ventricles into the
Figure 15.2 Section of a human heart | 5 | 11 | Biology | 15 |
13d5e726-c059-45f3-9cb1-72f7233dbdd0 | # BODY FLUIDS AND CIRCULATION
The pulmonary artery and the aorta respectively are provided with the semilunar valves. The valves in the heart allow the flow of blood only in one direction, i.e., from the atria to the ventricles and from the ventricles to the pulmonary artery or aorta. These valves prevent any backward flow.
The entire heart is made of cardiac muscles. The walls of ventricles are much thicker than that of the atria. A specialised cardiac musculature called the nodal tissue is also distributed in the heart (Figure 15.2). A patch of this tissue is present in the right upper corner of the right atrium called the sino-atrial node (SAN). Another mass of this tissue is seen in the lower left corner of the right atrium close to the atrio-ventricular septum called the atrio-ventricular node (AVN). A bundle of nodal fibres, atrio-ventricular bundle (AV bundle) continues from the AVN which passes through the atrio-ventricular septa to emerge on the top of the interventricular septum and immediately divides into a right and left bundle. These branches give rise to minute fibres throughout the ventricular musculature of the respective sides and are called purkinje fibres. The nodal musculature has the ability to generate action potentials without any external stimuli, i.e., it is autoexcitable. However, the number of action potentials that could be generated in a minute varies at different parts of the nodal system. The SAN can generate the maximum number of action potentials, i.e., 70-75 min–1, and is responsible for initiating and maintaining the rhythmic contractile activity of the heart. Therefore, it is called the pacemaker. Our heart normally beats 70-75 times in a minute (average 72 beats min–1).
# 15.3.2 Cardiac Cycle
How does the heart function? Let us take a look. To begin with, all the four chambers of the heart are in a relaxed state, i.e., they are in joint diastole. As the tricuspid and bicuspid valves are open, blood from the pulmonary veins and vena cava flows into the left and the right ventricle respectively through the left and right atria. The semilunar valves are closed at this stage. The SAN now generates an action potential which stimulates both the atria to undergo a simultaneous contraction – the atrial systole. This increases the flow of blood into the ventricles by about 30 per cent. The action potential is conducted to the ventricular side by the AVN and AV bundle from where the bundle of His transmits it through the entire ventricular musculature. This causes the ventricular muscles to contract (ventricular systole), the atria undergo relaxation (diastole), coinciding with the ventricular systole. Ventricular systole increases the ventricular pressure causing the closure of tricuspid and | 6 | 11 | Biology | 15 |
75a98dea-765d-43fc-a093-8690bec4a78d | # BIOLOGY
bicuspid valves due to attempted backflow of blood into the atria. As the ventricular pressure increases further, the semilunar valves guarding the pulmonary artery (right side) and the aorta (left side) are forced open, allowing the blood in the ventricles to flow through these vessels into the circulatory pathways. The ventricles now relax (ventricular diastole) and the ventricular pressure falls causing the closure of semilunar valves which prevents the backflow of blood into the ventricles. As the ventricular pressure declines further, the tricuspid and bicuspid valves are pushed open by the pressure in the atria exerted by the blood which was being emptied into them by the veins. The blood now once again moves freely to the ventricles. The ventricles and atria are now again in a relaxed (joint diastole) state, as earlier. Soon the SAN generates a new action potential and the events described above are repeated in that sequence and the process continues.
This sequential event in the heart which is cyclically repeated is called the cardiac cycle and it consists of systole and diastole of both the atria and ventricles. As mentioned earlier, the heart beats 72 times per minute, i.e., that many cardiac cycles are performed per minute. From this it could be deduced that the duration of a cardiac cycle is 0.8 seconds. During a cardiac cycle, each ventricle pumps out approximately 70 mL of blood which is called the stroke volume. The stroke volume multiplied by the heart rate (no. of beats per min.) gives the cardiac output. Therefore, the cardiac output can be defined as the volume of blood pumped out by each ventricle per minute and averages 5000 mL or 5 litres in a healthy individual. The body has the ability to alter the stroke volume as well as the heart rate and thereby the cardiac output. For example, the cardiac output of an athlete will be much higher than that of an ordinary man.
During each cardiac cycle two prominent sounds are produced which can be easily heard through a stethoscope. The first heart sound (lub) is associated with the closure of the tricuspid and bicuspid valves whereas the second heart sound (dub) is associated with the closure of the semilunar valves. These sounds are of clinical diagnostic significance.
# 15.3.3 Electrocardiograph (ECG)
You are probably familiar with this scene from a typical hospital television show: A patient is hooked up to a monitoring machine that shows voltage traces on a screen and makes the sound “... pip... pip... pip..... peeeeeeeeeeeeeeeeeeeeee” as the patient goes into cardiac arrest. This type of machine (electro-cardiograph) is used to obtain an electrocardiogram (ECG). ECG is a graphical representation of the electrical activity of the heart during a cardiac cycle. To obtain a standard ECG (as shown in the... | 7 | 11 | Biology | 15 |
ef7a5484-7cb8-4e1f-8dfe-4fce47709d6d | # BODY FLUIDS AND CIRCULATION
Figure 15.3), a patient is connected to the machine with three electrical leads (one to each wrist and to the left ankle) that continuously monitor the heart activity. For a detailed evaluation of the heart’s function, multiple leads are attached to the chest region. Here, we will talk only about a standard ECG.
Each peak in the ECG is identified with a letter from P to T that corresponds to a specific electrical activity of the heart.
# Standard ECG
The P-wave represents the electrical excitation (or depolarisation) of the atria, which leads to the contraction of both the atria.
The QRS complex represents the depolarisation of the ventricles which initiates the ventricular contraction. The contraction starts shortly after Q and marks the beginning of the systole.
The T-wave represents the return of the ventricles from an excited state (repolarisation). The end of the T-wave marks the end of systole.
Obviously, by counting the number of QRS complexes that occur in a given time period, one can determine the heart beat rate of an individual. Since the ECGs obtained from different individuals have roughly the same shape for a given lead configuration, any deviation from this shape indicates a possible abnormality or disease. Hence, it is of great clinical significance.
# 15.4 DOUBLE CIRCULATION
The blood flows strictly by a fixed route through Blood Vessels—the arteries and veins. Basically, each artery and vein consists of three layers: an inner lining of squamous endothelium, the tunica intima, a middle layer of smooth muscle and elastic fibres, the tunica media, and an external layer of fibrous connective tissue with collagen fibres, the tunica externa. The tunica media is comparatively thin in the veins (Figure 15.4).
As mentioned earlier, the blood pumped by the right ventricle enters the pulmonary artery, whereas the left ventricle pumps blood into the aorta. The deoxygenated blood pumped into the pulmonary artery is passed on to the lungs from where the oxygenated blood is carried by the pulmonary veins into the left atrium. This pathway constitutes the pulmonary circulation. The oxygenated blood entering the aorta is carried by a network of arteries, arterioles and capillaries to the tissues from where the deoxygenated blood is collected by a system of venules, veins and vena cava and emptied into the right atrium. This is the systemic circulation (Figure 15.4). The systemic circulation provides nutrients, O2 and other essential substances to the tissues and takes CO2 and other harmful substances away for elimination. A unique vascular connection exists between the digestive tract and liver called | 8 | 11 | Biology | 15 |
b7f76e5b-db7c-40b4-a493-d5499cf9698b | # 202
# BIOLOGY
The hepatic portal system. The hepatic portal vein carries blood from intestine to the liver before it is delivered to the systemic circulation. A special coronary system of blood vessels is present in our body exclusively for the circulation of blood to and from the cardiac musculature.
# Figure 15.4
Schematic plan of blood circulation in human
# 15.5
# REGULATION OF CARDIAC ACTIVITY
Normal activities of the heart are regulated intrinsically, i.e., auto regulated by specialised muscles (nodal tissue), hence the heart is called myogenic. A special neural centre in the medulla oblongata can moderate the cardiac function through autonomic nervous system (ANS). Neural signals through the sympathetic nerves (part of ANS) can increase the rate of heart beat, the strength of ventricular contraction and thereby the cardiac output. On the other hand, parasympathetic neural signals (another component of ANS) decrease the rate of heart beat, speed of conduction of action potential and thereby the cardiac output. Adrenal medullary hormones can also increase the cardiac output.
# 15.6
# DISORDERS OF CIRCULATORY SYSTEM
High Blood Pressure (Hypertension): Hypertension is the term for blood pressure that is higher than normal (120/80). In this measurement 120 mm Hg (millimetres of mercury pressure) is the systolic, or pumping, pressure and 80 mm Hg is the diastolic, or resting, pressure. If repeated checks of blood pressure of an individual is 140/90 (140 over 90) or
2024-25 | 9 | 11 | Biology | 15 |
e77166bd-36d2-43f6-9f02-a1a39a2a2390 | # BODY FLUIDS AND CIRCULATION
Higher, it shows hypertension. High blood pressure leads to heart diseases and also affects vital organs like brain and kidney.
# Coronary Artery Disease (CAD)
Coronary Artery Disease, often referred to as atherosclerosis, affects the vessels that supply blood to the heart muscle. It is caused by deposits of calcium, fat, cholesterol and fibrous tissues, which makes the lumen of arteries narrow.
# Angina
It is also called ‘angina pectoris’. A symptom of acute chest pain appears when not enough oxygen is reaching the heart muscle. Angina can occur in men and women of any age but it is more common among the middle-aged and elderly. It occurs due to conditions that affect the blood flow.
# Heart Failure
Heart failure means the state of heart when it is not pumping blood effectively enough to meet the needs of the body. It is sometimes called congestive heart failure because congestion of the lungs is one of the main symptoms of this disease. Heart failure is not the same as cardiac arrest (when the heart stops beating) or a heart attack (when the heart muscle is suddenly damaged by an inadequate blood supply).
# SUMMARY
Vertebrates circulate blood, a fluid connective tissue, in their body, to transport essential substances to the cells and to carry waste substances from there. Another fluid, lymph (tissue fluid) is also used for the transport of certain substances.
Blood comprises of a fluid matrix, plasma and formed elements. Red blood cells (RBCs, erythrocytes), white blood cells (WBCs, leucocytes) and platelets (thrombocytes) constitute the formed elements. Blood of humans are grouped into A, B, AB and O systems based on the presence or absence of two surface antigens, A, B on the RBCs. Another blood grouping is also done based on the presence or absence of another antigen called Rhesus factor (Rh) on the surface of RBCs. The spaces between cells in the tissues contain a fluid derived from blood called tissue fluid. This fluid called lymph is almost similar to blood except for the protein content and the formed elements.
All vertebrates and a few invertebrates have a closed circulatory system. Our circulatory system consists of a muscular pumping organ, heart, a network of vessels and a fluid, blood. Heart has two atria and two ventricles. Cardiac musculature is auto-excitable. Sino-atrial node (SAN) generates the maximum number of action potentials per minute (70-75/min) and therefore, it sets the pace of the activities of the heart. Hence it is called the Pacemaker. The action potential causes the atria and then the ventricles to undergo contraction (systole) followed by their relaxation (diastole). The systole forces the blood to move from the atria to the ventricles and to the pulmonary artery and the aorta. The cardiac cycle is formed by sequential events in the heart which is cyclically repeated and is called the cardiac cycle. A healthy person shows 72 such cycles per minute. About 70 mL of blood is pumped out by each ventricle during a cardiac cycle and it is called the stroke or beat volume. Volume of blood pumped out by each ventricle of heart per minute is called the cardiac output and it is equal to the product of stroke volume and heart rate (approx 5 litres). The electrical activity of the heart can be recorded from. | 10 | 11 | Biology | 15 |
2872c153-5413-4a8a-bfa2-11972898fe95 | # 204
# BIOLOGY
The body surface by using electrocardiograph and the recording is called electrocardiogram (ECG) which is of clinical importance. We have a complete double circulation, i.e., two circulatory pathways, namely, pulmonary and systemic are present. The pulmonary circulation starts by the pumping of deoxygenated blood by the right ventricle which is carried to the lungs where it is oxygenated and returned to the left atrium. The systemic circulation starts with the pumping of oxygenated blood by the left ventricle to the aorta which is carried to all the body tissues and the deoxygenated blood from there is collected by the veins and returned to the right atrium. Though the heart is autoexcitable, its functions can be moderated by neural and hormonal mechanisms.
# EXERCISES
1. Name the components of the formed elements in the blood and mention one major function of each of them.
2. What is the importance of plasma proteins?
3. Match Column I with Column II:
|Column I|Column II|
|---|---|
|(a) Eosinophils|(iii) Resist Infections|
|(b) RBC|(v) Gas transport|
|(c) AB Group|(ii) Universal Recipient|
|(d) Platelets|(i) Coagulation|
|(e) Systole|(iv) Contraction of Heart|
4. Why do we consider blood as a connective tissue?
5. What is the difference between lymph and blood?
6. What is meant by double circulation? What is its significance?
7. Write the differences between:
1. (a) Blood and Lymph
2. (b) Open and Closed system of circulation
3. (c) Systole and Diastole
4. (d) P-wave and T-wave
8. Describe the evolutionary change in the pattern of heart among the vertebrates.
9. Why do we call our heart myogenic?
10. Sino-atrial node is called the pacemaker of our heart. Why?
11. What is the significance of atrio-ventricular node and atrio-ventricular bundle in the functioning of heart?
12. Define a cardiac cycle and the cardiac output.
13. Explain heart sounds.
14. Draw a standard ECG and explain the different segments in it. | 11 | 11 | Biology | 15 |
00eeecce-1d19-4178-b167-91522c13fb89 | # CHAPTER 7
# STRUCTURAL ORGANISATION IN ANIMALS
# 7.1 Organ and Organ System
In the preceding chapters you came across a large variety of organisms, both unicellular and multicellular, of the animal kingdom. In unicellular organisms, all functions like digestion, respiration and reproduction are performed by a single cell. In the complex body of multicellular animals the same basic functions are carried out by different groups of cells in a well organised manner. The body of a simple organism like Hydra is made of different types of cells and the number of cells in each type can be in thousands. The human body is composed of billions of cells to perform various functions. How do these cells in the body work together? As you have already learnt in your earlier classes, in multicellular animals, a group of similar cells along with intercellular substances perform a specific function. Such an organisation is called tissue.
You may be surprised to know that all complex animals consist of only four basic types of tissues. These tissues are organised in specific proportion and pattern to form an organ like stomach, lung, heart and kidney. When two or more organs perform a common function by their physical and/or chemical interaction, they together form organ system, e.g., digestive system, respiratory system, etc. Cells, tissues, organs and organ systems split up the work in a way that exhibits division of labour and contribute to the survival of the body as a whole.
# 7.1 ORGAN AND ORGAN SYSTEM
The basic tissues as you have learnt in earlier classes, organise to form organs which in turn associate to form organ systems in the multicellular organisms. Such an organisation is essential for more efficient and better coordinated activities of millions of cells constituting an organism. Each | 0 | 11 | Biology | 07 |
aabd61b9-aa40-4a16-90a9-31573207f7b5 | # BIOLOGY
Organ in our body is made of one or more type of tissues. For example, our heart consists of all the four types of tissues, i.e., epithelial, connective, muscular and neural. We also notice, after some careful study that the complexity in organ and organ systems displays certain discernable trend. This discernable trend is called evolutionary trend (You will study the details in class XII). In this chapter, you are being introduced to morphology and anatomy of frog. Morphology refers to study of form or externally visible features. In the case of plants or microbes, the term morphology precisely means only this. In case of animals this refers to the external appearance of the organs or parts of the body. The word anatomy conventionally is used for the study of morphology of internal organs in the animals. You will learn the morphology and anatomy of frog representing vertebrates.
# 7.2 FROGS
Frogs can live both on land and in freshwater and belong to class Amphibia of phylum Chordata. The most common species of frog found in India is Rana tigrina. They do not have constant body temperature i.e., their body temperature varies with the temperature of the environment. Such animals are called cold blooded or poikilotherms. You might have also noticed changes in the colour of the frogs while they are in grasses and on dry land. They have the ability to change the colour to hide them from their enemies (camouflage). This protective coloration is called mimicry. You may also know that frogs are not seen during peak summer and winter. During this period they take shelter in deep burrows to protect them from extreme heat and cold. This is known as summer sleep (aestivation) and winter sleep (hibernation) respectively.
# 7.2.1 Morphology
Have you ever touched the skin of frog? The skin is smooth and slippery due to the presence of mucus. The skin is always maintained in a moist condition. The colour of dorsal side of body is generally olive green with dark irregular spots. On the ventral side the skin is uniformly pale yellow. The frog never drinks water but absorbs it through the skin. Body of a frog is divisible into head and trunk (Figure 7.1). A neck and tail are absent. Above the mouth, a pair of nostrils is present. Eyes are bulged and covered by a nictitating membrane that protects them while in water. On either side of eyes a membranous tympanum (ear) receives sound signals. The forelimbs and hind limbs help in
Figure 7.1 External features of frog | 1 | 11 | Biology | 07 |
61ecd897-1e65-4b15-8adf-f1c2f67ae7c2 | # STRUCTURAL ORGANISATION IN ANIMALS
swimming, walking, leaping and burrowing. The hind limbs end in five digits and they are larger and muscular than fore limbs that end in four digits. Feet have webbed digits that help in swimming. Frogs exhibit sexual dimorphism. Male frogs can be distinguished by the presence of sound producing vocal sacs and also a copulatory pad on the first digit of the fore limbs which are absent in female frogs.
# 7.2.2 Anatomy
The body cavity of frogs accommodate different organ systems such as digestive, circulatory, respiratory, nervous, excretory and reproductive systems with well developed structures and functions (Figure 7.2).
The digestive system consists of alimentary canal and digestive glands. The alimentary canal is short because frogs are carnivores and hence the length of intestine is reduced. The mouth opens into the buccal cavity that leads to the oesophagus through pharynx. Oesophagus is a short tube that opens into the stomach which in turn continues as the intestine, rectum and finally opens outside by the cloaca. Liver secretes bile that is stored in the gall bladder. Pancreas, a digestive gland produces pancreatic juice.
|Heart|Oesophagus|Liver|
|---|---|---|
|Gall bladder|Lung|Stomach|
|Fat bodies|Kidney|Ureter|
|Urinary bladder|Rectum|Cloaca|
|Cloacal Aperture|Cloacal Aperture| |
Figure 7.2 Diagrammatic representation of internal organs of frog showing complete digestive system
2024-25 | 2 | 11 | Biology | 07 |
421e6b5a-4f28-4387-8220-b36e1098b764 | # BIOLOGY
containing digestive enzymes. Food is captured by the bilobed tongue. Digestion of food takes place by the action of HCl and gastric juices secreted from the walls of the stomach. Partially digested food called chyme is passed from stomach to the first part of the small intestine, the duodenum. The duodenum receives bile from gall bladder and pancreatic juices from the pancreas through a common bile duct. Bile emulsifies fat and pancreatic juices digest carbohydrates and proteins. Final digestion takes place in the intestine. Digested food is absorbed by the numerous finger-like folds in the inner wall of intestine called villi and microvilli. The undigested solid waste moves into the rectum and passes out through cloaca.
Frogs respire on land and in the water by two different methods. In water, skin acts as aquatic respiratory organ (cutaneous respiration). Dissolved oxygen in the water is exchanged through the skin by diffusion. On land, the buccal cavity, skin and lungs act as the respiratory organs. The respiration by lungs is called pulmonary respiration. The lungs are a pair of elongated, pink coloured sac-like structures present in the upper part of the trunk region (thorax). Air enters through the nostrils into the buccal cavity and then to lungs. During aestivation and hibernation gaseous exchange takes place through skin.
The vascular system of frog is well-developed closed type. Frogs have a lymphatic system also. The blood vascular system involves heart, blood vessels and blood. The lymphatic system consists of lymph, lymph channels and lymph nodes. Heart is a muscular structure situated in the upper part of the body cavity. It has three chambers, two atria and one ventricle and is covered by a membrane called pericardium. A triangular structure called sinus venosus joins the right atrium. It receives blood through the major veins called vena cava. The ventricle opens into a sac-like conus arteriosus on the ventral side of the heart. The blood from the heart is carried to all parts of the body by the arteries (arterial system). The veins collect blood from different parts of body to the heart and form the venous system. Special venous connection between liver and intestine as well as the kidney and lower parts of the body are present in frogs. The former is called hepatic portal system and the latter is called renal portal system. The blood is composed of plasma and cells. The blood cells are RBC (red blood cells) or erythrocytes, WBC (white blood cells) or leucocytes and platelets. RBC’s are nucleated and contain red coloured pigment namely haemoglobin. The lymph is different from blood. It lacks few proteins and RBCs. The blood carries nutrients, gases and water to the respective sites during the circulation. The circulation of blood is achieved by the pumping action of the muscular heart.
The elimination of nitrogenous wastes is carried out by a well developed excretory system. The excretory system consists of a pair of kidneys, ureters, cloaca and urinary bladder. These are compact, dark red and bean like structures situated a little posteriorly in the body cavity on both sides of vertebral column. Each kidney is composed of several structural and functional units called uriniferous tubules or nephrons. Two ureters emerge from the kidneys in the male frogs. The ureters act as urinogenital duct which opens into the cloaca. In females the ureters and | 3 | 11 | Biology | 07 |
904a2e8e-8622-4833-89e1-6c2c91fd3f38 | # STRUCTURAL ORGANISATION IN ANIMALS
The oviduct opens separately in the cloaca. The thin-walled urinary bladder is present ventral to the rectum which also opens in the cloaca. The frog excretes urea and thus is a ureotelic animal. Excretory wastes are carried by blood into the kidney where it is separated and excreted.
The system for control and coordination is highly evolved in the frog. It includes both neural system and endocrine glands. The chemical coordination of various organs of the body is achieved by hormones which are secreted by the endocrine glands. The prominent endocrine glands found in frog are pituitary, thyroid, parathyroid, thymus, pineal body, pancreatic islets, adrenals and gonads. The nervous system is organised into a central nervous system (brain and spinal cord), a peripheral nervous system (cranial and spinal nerves) and an autonomic nervous system (sympathetic and parasympathetic). There are ten pairs of cranial nerves arising from the brain. The brain is enclosed in a bony structure called brain box (cranium). The brain is divided into fore-brain, mid-brain and hind-brain. Forebrain includes olfactory lobes, paired cerebral hemispheres and unpaired diencephalon. The midbrain is characterised by a pair of optic lobes. Hind-brain consists of cerebellum and medulla oblongata. The medulla oblongata passes out through the foramen magnum and continues into spinal cord, which is enclosed in the vertebral column.
Frog has different types of sense organs, namely organs of touch (sensory papillae), taste (taste buds), smell (nasal epithelium), vision (eyes) and hearing (tympanum with internal ears). Out of these, eyes and internal ears are well-organised structures and the rest are cellular aggregations around nerve endings. Eyes in a frog are a pair of spherical structures situated in the orbit in skull. These are simple eyes (possessing only one unit). External ear is absent in frogs and only tympanum can be seen externally. The ear is an organ of hearing as well as balancing (equilibrium).
Frogs have well organised male and female reproductive systems. Male reproductive organs consist of a pair of yellowish ovoid testes (Figure 7.3), which are found adhered to the upper part of kidneys by a double fold of peritoneum called mesorchium. Vasa efferentia are 10-12 in number that arise from testes. They enter the kidneys on their side and open into Bidder’s.
# Figure 7.3 Male reproductive system
# Figure 7.4 Female reproductive system
2024-25 | 4 | 11 | Biology | 07 |
4c615ac3-52ec-461a-932a-5104b4119811 | # BIOLOGY
canal. Finally it communicates with the urinogenital duct that comes out of the kidneys and opens into the cloaca. The cloaca is a small, median chamber that is used to pass faecal matter.
The female reproductive organs include a pair of ovaries (Figure 7.4). The ovaries are situated near kidneys and there is no functional connection with kidneys. A pair of oviduct arising from the ovaries opens into the cloaca separately. A mature female can lay 2500 to 3000 ova at a time. Fertilisation is external and takes place in water larval stage called tadpole. Tadpole undergoes metamorphosis to form the adult.
Frogs are beneficial for mankind because they eat insects and protect the crop. Frogs maintain ecological balance because these serve as an important link of food chain and food web in the ecosystem. In some countries the muscular legs of frog are used as food by man.
urine and sperms to the exterior.
# SUMMARY
Cells, tissues, organs and organ systems split up the work in a way that ensures the survival of the body as a whole and exhibit division of labour. A tissue is defined as group of cells along with intercellular substances performing one or more functions in the body. Epithelia are sheet like tissues lining the body’s surface and its cavities, ducts and tubes. Epithelia have one free surface facing a body fluid or the outside environment. Their cells are structurally and functionally connected at junctions.
The Indian bullfrog, Rana tigrina, is the common frog found in India. Body is covered by skin. Mucous glands are present in the skin which is highly vascularised and helps in respiration in water and on land. Body is divisible into head and trunk. A muscular tongue is present, which is bilobed at the tip and is used in capturing the prey. The alimentary canal consists of oesophagus, stomach, intestine and rectum, which open into the cloaca. The main digestive glands are liver and pancreas. It can respire in water through skin and through lungs on land. Circulatory system is closed with single circulation. RBCs are nucleated. Nervous system is organised into central, peripheral and autonomic. The organs of urinogenital system are kidneys and urinogenital ducts, which open into the cloaca. The male reproductive organ is a pair of testes. The female reproductive organ is a pair of ovaries. A female lays 2500-3000 ova at a time. The fertilisation and development are external. The eggs hatch into tadpoles, which metamorphose into frogs.
# EXERCISES
1. Draw a neat diagram of digestive system of frog.
2. Mention the function of the Ureters in frog.
2024-25 | 5 | 11 | Biology | 07 |
1ac7083c-09cf-4678-911c-e7dd5e97c9f7 | # PLANT KINGDOM
# 3
# PLANT KINGDOM
# 3.1 Algae
In the previous chapter, we looked at the broad classification of living organisms under the system proposed by Whittaker (1969) wherein he suggested the Five Kingdom classification viz. Monera, Protista, Fungi, Animalia and Plantae. In this chapter, we will deal in detail with further classification within Kingdom Plantae popularly known as the ‘plant kingdom’.
# 3.2 Bryophytes
We must stress here that our understanding of the plant kingdom has changed over time. Fungi, and members of the Monera and Protista having cell walls have now been excluded from Plantae though earlier classifications placed them in the same kingdom. So, the cyanobacteria that are also referred to as blue green algae are not ‘algae’ any more. In this chapter, we will describe Algae, Bryophytes, Pteridophytes, Gymnosperms and Angiosperms under Plantae.
# 3.3 Pteridophytes
Let us also look at classification within angiosperms to understand some of the concerns that influenced the classification systems. The earliest systems of classification used only gross superficial morphological characters such as habit, colour, number and shape of leaves, etc. They were based mainly on vegetative characters or on the androecium structure (system given by Linnaeus). Such systems were artificial; they separated the closely related species since they were based on a few characteristics.
# 3.4 Gymnosperms
Also, the artificial systems gave equal weightage to vegetative and sexual characteristics; this is not acceptable since we know that often the vegetative characters are more easily affected by environment. As against this, natural classification systems developed, which were based on natural affinities among the organisms and consider,
# 3.5 Angiosperms
2024-25 | 0 | 11 | Biology | 03 |
5bea7c6a-c31d-4d6f-9e93-66a04ed415dd | # BIOLOGY
not only the external features, but also internal features, like ultra-structure, anatomy, embryology and phytochemistry. Such a classification for flowering plants was given by George Bentham and Joseph Dalton Hooker.
At present phylogenetic classification systems based on evolutionary relationships between the various organisms are acceptable. This assumes that organisms belonging to the same taxa have a common ancestor. We now use information from many other sources too to help resolve difficulties in classification. These become more important when there is no supporting fossil evidence. Numerical Taxonomy which is now easily carried out using computers is based on all observable characteristics. Number and codes are assigned to all the characters and the data are then processed. In this way each character is given equal importance and at the same time hundreds of characters can be considered. Cytotaxonomy that is based on cytological information like chromosome number, structure, behaviour and chemotaxonomy that uses the chemical constituents of the plant to resolve confusions, are also used by taxonomists these days.
# 3.1 ALGAE
Algae are chlorophyll-bearing, simple, thalloid, autotrophic and largely aquatic (both fresh water and marine) organisms. They occur in a variety of other habitats: moist stones, soils and wood. Some of them also occur in association with fungi (lichen) and animals (e.g., on sloth bear).
The form and size of algae is highly variable, ranging from colonial forms like Volvox and the filamentous forms like Ulothrix and Spirogyra (Figure 3.1). A few of the marine forms such as kelps, form massive plant bodies.
The algae reproduce by vegetative, asexual and sexual methods. Vegetative reproduction is by fragmentation. Each fragment develops into a thallus. Asexual reproduction is by the production of different types of spores, the most common being the zoospores. They are flagellated (motile) and on germination gives rise to new plants. Sexual reproduction takes place through fusion of two gametes. These gametes can be flagellated and similar in size (as in Ulothrix) or non-flagellated (non-motile) but similar in size (as in Spirogyra). Such reproduction is called isogamous. Fusion of two gametes dissimilar in size, as in species of Eudorina is termed as anisogamous. Fusion between one large, non-motile (static) female gamete and a smaller, motile male gamete is termed oogamous, e.g., Volvox, Fucus. | 1 | 11 | Biology | 03 |
ef335410-2589-42ea-aa35-c014bff0cefe | # PLANT KINGDOM
# Figure 3.1 Algae
- (a) Green algae
- (i) Volvox
- (ii) Ulothrix
- (b) Brown algae
- (i) Laminaria
- (ii) Fucus
- (iii) Dictyota
- (c) Red algae
- (i) Porphyra
- (ii) Polysiphonia
2024-25 | 2 | 11 | Biology | 03 |
ac0863bf-a0fe-411f-aa31-5ccec128c496 | # BIOLOGY
Algae are useful to man in a variety of ways. At least a half of the total carbon dioxide fixation on earth is carried out by algae through photosynthesis. Being photosynthetic they increase the level of dissolved oxygen in their immediate environment. They are of paramount importance as primary producers of energy-rich compounds which form the basis of the food cycles of all aquatic animals. Many species of Porphyra, Laminaria and Sargassum are among the 70 species of marine algae used as food. Certain marine brown and red algae produce large amounts of hydrocolloids (water holding substances), e.g., algin (brown algae) and carrageen (red algae) which are used commercially. Agar, one of the commercial products obtained from Gelidium and Gracilaria are used to grow microbes and in preparations of ice-creams and jellies. Chlorella a unicellular alga rich in proteins is used as food supplement even by space travellers. The algae are divided into three main classes: Chlorophyceae, Phaeophyceae and Rhodophyceae.
# 3.1.1 Chlorophyceae
The members of chlorophyceae are commonly called green algae. The plant body may be unicellular, colonial or filamentous. They are usually grass green due to the dominance of pigments chlorophyll a and b. The pigments are localised in definite chloroplasts. The chloroplasts may be discoid, plate-like, reticulate, cup-shaped, spiral or ribbon-shaped in different species. Most of the members have one or more storage bodies called pyrenoids located in the chloroplasts. Pyrenoids contain protein besides starch. Some algae may store food in the form of oil droplets. Green algae usually have a rigid cell wall made of an inner layer of cellulose and an outer layer of pectose.
Vegetative reproduction usually takes place by fragmentation or by formation of different types of spores. Asexual reproduction is by flagellated zoospores produced in zoosporangia. The sexual reproduction shows considerable variation in the type and formation of sex cells and it may be isogamous, anisogamous or oogamous. Some commonly found green algae are: Chlamydomonas, Volvox, Ulothrix, Spirogyra and Chara (Figure 3.1a).
# 3.1.2 Phaeophyceae
The members of phaeophyceae or brown algae are found primarily in marine habitats. They show great variation in size and form. They range from simple branched, filamentous forms (Ectocarpus) to profusely branched forms as represented by kelps, which may reach a height of 100 metres. They possess chlorophyll a, c, carotenoids and xanthophylls. They vary in colour from olive green to various shades of brown depending upon the amount of the xanthophyll pigment, fucoxanthin present in. | 3 | 11 | Biology | 03 |
24b04537-3785-45f5-be86-b2f3add4fe09 | # PLANT KINGDOM
them. Food is stored as complex carbohydrates, which may be in the form of laminarin or mannitol. The vegetative cells have a cellulosic wall usually covered on the outside by a gelatinous coating of algin. The protoplast contains, in addition to plastids, a centrally located vacuole and nucleus. The plant body is usually attached to the substratum by a holdfast, and has a stalk, the stipe and leaf like photosynthetic organ – the frond. Vegetative reproduction takes place by fragmentation. Asexual reproduction in most brown algae is by biflagellate zoospores that are pear-shaped and have two unequal laterally attached flagella.
Sexual reproduction may be isogamous, anisogamous or oogamous. Union of gametes may take place in water or within the oogonium (oogamous species). The gametes are pyriform (pear-shaped) and bear two laterally attached flagella. The common forms are Ectocarpus, Dictyota, Laminaria, Sargassum and Fucus (Figure 3.1b).
# 3.1.3
# Rhodophyceae
The members of rhodophyceae are commonly called red algae because of the predominance of the red pigment, r-phycoerythrin in their body. Majority of the red algae are marine with greater concentrations found in the warmer areas. They occur in both well-lighted regions close to the surface of water and also at great depths in oceans where relatively little light penetrates.
The red thalli of most of the red algae are multicellular. Some of them have complex body organisation. The food is stored as floridean starch which is very similar to amylopectin and glycogen in structure.
The red algae usually reproduce vegetatively by fragmentation. They reproduce asexually by non-motile spores and sexually by non-motile.
|Classes|Common Name| | | |
|---|---|---|---|---|
|Chlorophyceae|Green algae| | | |
|Phaeophyceae|Brown algae| | | |
|Rhodophyceae|Red algae| | | |
|Major Pigments|Stored Food|Cell Wall|Flagellar Number and Position of Insertions|Habitat|
|Chlorophyll a, b|Starch|Cellulose|2-8, equal, apical|Fresh water, brackish water, salt water|
|Chlorophyll a, c, fucoxanthin|Mannitol, laminarin|Cellulose and algin|2, unequal, lateral|Fresh water (rare), brackish water, salt water|
|Chlorophyll a, d, phycoerythrin|Floridean starch|Cellulose, pectin and poly sulphate esters|Absent|Fresh water (some), brackish water, salt water (most)| | 4 | 11 | Biology | 03 |
66be98ab-071a-4fe9-bddd-bc2cc502bc1c | # 28
# BIOLOGY
gametes. Sexual reproduction is oogamous and accompanied by complex post fertilisation developments. The common members are: Polysiphonia, Porphyra (Figure 3.1c), Gracilaria and Gelidium.
# 3.2
# BRYOPHYTES
Bryophytes include the various mosses and liverworts that are found commonly growing in moist shaded areas in the hills (Figure 3.2).
Antheridiophore
Archegoniophore
Gemma cup
Rhizoids
(a)
(b)
Antheridial
Capsule
Seta
Leaves
Archegonial
branch
Gametophyte
Main axis
Rhizoids
(c)
(d)
Figure 3.2 Bryophytes: A liverwort – Marchantia (a) Female thallus (b) Male thallus Mosses – (c) Funaria, gametophyte and sporophyte (d) Sphagnum gametophyte
2024-25 | 5 | 11 | Biology | 03 |
77918bd6-3e60-4539-88eb-6aeb162e9047 | # PLANT KINGDOM
Bryophytes are also called amphibians of the plant kingdom because these plants can live in soil but are dependent on water for sexual reproduction. They usually occur in damp, humid and shaded localities. They play an important role in plant succession on bare rocks/soil.
The plant body of bryophytes is more differentiated than that of algae. It is thallus-like and prostrate or erect, and attached to the substratum by unicellular or multicellular rhizoids. They lack true roots, stem or leaves. They may possess root-like, leaf-like or stem-like structures. The main plant body of the bryophyte is haploid. It produces gametes, hence is called a gametophyte. The sex organs in bryophytes are multicellular. The male sex organ is called antheridium. They produce biflagellate antherozoids. The female sex organ called archegonium is flask-shaped and produces a single egg. The antherozoids are released into water where they come in contact with archegonium. An antherozoid fuses with the egg to produce the zygote. Zygotes do not undergo reduction division immediately. They produce a multicellular body called a sporophyte. The sporophyte is not free-living but attached to the photosynthetic gametophyte and derives nourishment from it. Some cells of the sporophyte undergo reduction division (meiosis) to produce haploid spores. These spores germinate to produce gametophyte.
Bryophytes in general are of little economic importance but some mosses provide food for herbaceous mammals, birds and other animals. Species of Sphagnum, a moss, provide peat that have long been used as fuel, and as packing material for trans-shipment of living material because of their capacity to hold water. Mosses along with lichens are the first organisms to colonise rocks and hence, are of great ecological importance. They decompose rocks making the substrate suitable for the growth of higher plants. Since mosses form dense mats on the soil, they reduce the impact of falling rain and prevent soil erosion. The bryophytes are divided into liverworts and mosses.
# 3.2.1 Liverworts
The liverworts grow usually in moist, shady habitats such as banks of streams, marshy ground, damp soil, bark of trees and deep in the woods. The plant body of a liverwort is thalloid, e.g., Marchantia. The thallus is dorsiventral and closely appressed to the substrate. The leafy members have tiny leaf-like appendages in two rows on the stem-like structures.
Asexual reproduction in liverworts takes place by fragmentation of thalli, or by the formation of specialised structures called gemmae (sing. gemma). Gemmae are green, multicellular, asexual buds, which develop in small receptacles called gemma cups located on the thalli. The gemmae become detached from the parent body and germinate to form new individuals. During sexual reproduction, male and female sex | 6 | 11 | Biology | 03 |
a9acccc0-bfbe-4d06-a4d9-3a875ac78873 | # 30
# BIOLOGY
organs are produced either on the same or on different thalli. The sporophyte is differentiated into a foot, seta and capsule. After meiosis, spores are produced within the capsule. These spores germinate to form free-living gametophytes.
# 3.2.2
# Mosses
The predominant stage of the life cycle of a moss is the gametophyte which consists of two stages. The first stage is the protonema stage, which develops directly from a spore. It is a creeping, green, branched and frequently filamentous stage. The second stage is the leafy stage, which develops from the secondary protonema as a lateral bud. They consist of upright, slender axes bearing spirally arranged leaves. They are attached to the soil through multicellular and branched rhizoids. This stage bears the sex organs.
Vegetative reproduction in mosses is by fragmentation and budding in the secondary protonema. In sexual reproduction, the sex organs antheridia and archegonia are produced at the apex of the leafy shoots. After fertilisation, the zygote develops into a sporophyte, consisting of a foot, seta and capsule. The sporophyte in mosses is more elaborate than that in liverworts. The capsule contains spores. Spores are formed after meiosis. The mosses have an elaborate mechanism of spore dispersal. Common examples of mosses are Funaria, Polytrichum and Sphagnum (Figure 3.2).
# 3.3
# PTERIDOPHYTES
The Pteridophytes include horsetails and ferns. Pteridophytes are used for medicinal purposes and as soil-binders. They are also frequently grown as ornamentals. Evolutionarily, they are the first terrestrial plants to possess vascular tissues – xylem and phloem. You shall study more about these tissues in Chapter 6. The pteridophytes are found in cool, damp, shady places though some may flourish well in sandy-soil conditions.
You may recall that in bryophytes the dominant phase in the life cycle is the gametophytic plant body. However, in pteridophytes, the main plant body is a sporophyte which is differentiated into true root, stem and leaves (Figure 3.3). These organs possess well-differentiated vascular tissues. The leaves in pteridophyta are small (microphylls) as in Selaginella or large (macrophylls) as in ferns. The sporophytes bear sporangia that are subtended by leaf-like appendages called sporophylls. In some cases sporophylls may form distinct compact structures called strobili or cones (Selaginella, Equisetum). The sporangia produce spores by meiosis in spore mother cells. The spores germinate to give rise to inconspicuous, small but multicellular. | 7 | 11 | Biology | 03 |
ba375d0c-b526-4614-b0fd-7028c0c9c26c | # PLANT KINGDOM
# 31
# Strobilus
# Node
# Internode
# Branch
# Rhizome
Figure 3.3 Pteridophytes : (a) Selaginella (b) Equisetum (c) Fern (d) Salvinia
# 2024-25 | 8 | 11 | Biology | 03 |
4e25cc21-31f3-408e-aa7d-05480979bcbd | # 32
# BIOLOGY
Free-living, mostly photosynthetic thalloid gametophytes called prothallus. These gametophytes require cool, damp, shady places to grow. Because of this specific restricted requirement and the need for water for fertilisation, the spread of living pteridophytes is limited and restricted to narrow geographical regions. The gametophytes bear male and female sex organs called antheridia and archegonia, respectively. Water is required for transfer of antherozoids – the male gametes released from the antheridia, to the mouth of archegonium. Fusion of male gamete with the egg present in the archegonium result in the formation of zygote. Zygote thereafter produces a multicellular well-differentiated sporophyte which is the dominant phase of the pteridophytes. In majority of the pteridophytes all the spores are of similar kinds; such plants are called homosporous. Genera like Selaginella and Salvinia which produce two kinds of spores, macro (large) and micro (small) spores, are known as heterosporous. The megaspores and microspores germinate and give rise to female and male gametophytes, respectively. The female gametophytes in these plants are retained on the parent sporophytes for variable periods. The development of the zygotes into young embryos take place within the female gametophytes. This event is a precursor to the seed habit considered an important step in evolution.
The pteridophytes are further classified into four classes: Psilopsida (Psilotum); Lycopsida (Selaginella, Lycopodium), Sphenopsida (Equisetum) and Pteropsida (Dryopteris, Pteris, Adiantum).
# 3.4
# GYMNOSPERMS
The gymnosperms (gymnos : naked, sperma : seeds) are plants in which the ovules are not enclosed by any ovary wall and remain exposed, both before and after fertilisation. The seeds that develop post-fertilisation, are not covered, i.e., are naked. Gymnosperms include medium-sized trees or tall trees and shrubs (Figure 3.4). One of the gymnosperms, the giant redwood tree Sequoia is one of the tallest tree species. The roots are generally tap roots. Roots in some genera have fungal association in the form of mycorrhiza (Pinus), while in some others (Cycas) small specialised roots called coralloid roots are associated with N-fixing cyanobacteria. The stems are unbranched (Cycas) or branched (Pinus, Cedrus). The leaves may be simple or compound. In Cycas the pinnate leaves persist for a few years. The leaves in gymnosperms are well-adapted to withstand extremes of temperature, humidity and wind. In conifers, the needle-like leaves reduce the surface area. Their thick cuticle and sunken stomata also help to reduce water loss.
2024-25 | 9 | 11 | Biology | 03 |
4cc5784c-0474-49f3-90c6-66c12c447cbd | # PLANT KINGDOM
The gymnosperms are heterosporous; they produce haploid microspores and megaspores. The two kinds of spores are produced within sporangia that are borne on sporophylls which are arranged spirally along an axis to form lax or compact strobili or cones. The strobili bearing microsporophylls and microsporangia are called microsporangiate or male strobili. The microspores develop into a male gametophytic generation which is highly reduced and is confined to only a limited number of cells. This reduced gametophyte is called a pollen grain. The development of pollen grains take place within the microsporangia. The cones bearing megasporophylls with ovules or megasporangia are called macrosporangiate or female strobili. The male or female cones or strobili may be borne on the same tree (Pinus). However, in Cycas male cones and megasporophylls are borne on different trees. The megaspore mother cell is differentiated from one of the cells of the nucellus. The nucellus is protected by envelopes and the composite structure is called an ovule. The ovules are borne on megasporophylls which may be clustered to form the female cones. The megaspore mother cell divides meiotically to form four megaspores. One of the megaspores enclosed within the megasporangium develops into a multicellular female gametophyte that bears two or more archegonia or female sex organs. The multicellular female gametophyte is also retained within megasporangium.
Unlike bryophytes and pteridophytes, in gymnosperms the male and the female gametophytes do not have an independent free-living existence. They remain within the sporangia retained on the sporophytes. The pollen grain is released from the microsporangium. They are carried in air currents and come in contact with the opening of the ovules borne on megasporophylls. The pollen tube carrying the male gametes grows towards archegonia in the ovules and discharge their contents near the mouth of the archegonia. Following fertilisation, zygote develops into an embryo and the ovules into seeds. These seeds are not covered.
# Figure 3.4 Gymnosperms:
- (a) Cycas
- (b) Pinus
- (c) Ginkgo
2024-25 | 10 | 11 | Biology | 03 |
26413dee-01ff-41e6-a9ea-09fa649c4148 | # 3.5 ANGIOSPERMS
Unlike the gymnosperms where the ovules are naked, in the angiosperms or flowering plants, the pollen grains and ovules are developed in specialised structures called flowers. In angiosperms, the seeds are enclosed in fruits. The angiosperms are an exceptionally large group of plants occurring in wide range of habitats. They range in size from the smallest Wolffia to tall trees of Eucalyptus (over 100 metres). They provide us with food, fodder, fuel, medicines and several other commercially important products. They are divided into two classes: the dicotyledons and the monocotyledons (Figure 3.5).
Figure 3.5 Angiosperms: (a) A dicotyledon (b) A monocotyledon
# SUMMARY
Plant kingdom includes algae, bryophytes, pteridophytes, gymnosperms and angiosperms. Algae are chlorophyll-bearing simple, thalloid, autotrophic and largely aquatic organisms. Depending on the type of pigment possessed and the type of stored food, algae are classified into three classes, namely Chlorophyceae, Phaeophyceae and Rhodophyceae. Algae usually reproduce vegetatively by fragmentation, asexually by formation of different types of spores and sexually by formation of gametes which may show isogamy, anisogamy or oogamy.
Bryophytes are plants which can live in soil but are dependent on water for sexual reproduction. Their plant body is more differentiated than that of algae. It is thallus-like and prostrate or erect and attached to the substratum by rhizoids. They possess root-like, leaf-like and stem- | 11 | 11 | Biology | 03 |
32dbba24-5c9f-4515-9731-75537b5f889f | # PLANT KINGDOM
like structures. The bryophytes are divided into liverworts and mosses. The plant body of liverworts is thalloid and dorsiventral whereas mosses have upright, slender axes bearing spirally arranged leaves. The main plant body of a bryophyte is gamete-producing and is called a gametophyte. It bears the male sex organs called antheridia and female sex organs called archegonia. The male and female gametes produced fuse to form zygote which produces a multicellular body called a sporophyte. It produces haploid spores. The spores germinate to form gametophytes.
In pteridophytes the main plant is a sporophyte which is differentiated into true root, stem and leaves. These organs possess well-differentiated vascular tissues. The sporophytes bear sporangia which produce spores. The spores germinate to form gametophytes which require cool, damp places to grow. The gametophytes bear male and female sex organs called antheridia and archegonia, respectively. Water is required for transfer of male gametes to archegonium where zygote is formed after fertilisation. The zygote produces a sporophyte.
The gymnosperms are the plants in which ovules are not enclosed by any ovary wall. After fertilisation the seeds remain exposed and therefore these plants are called naked-seeded plants. The gymnosperms produce microspores and megaspores which are produced in microsporangia and megasporangia borne on the sporophylls. The sporophylls – microsporophylls and megasporophylls – are arranged spirally on axis to form male and female cones, respectively. The pollen grain germinates and pollen tube releases the male gamete into the ovule, where it fuses with the egg cell in archegonia. Following fertilisation, the zygote develops into embryo and the ovules into seeds.
The angiosperms are divided into two classes – the dicotyledons and the monocotyledons.
# EXERCISES
1. What is the basis of classification of algae?
2. When and where does reduction division take place in the life cycle of a liverwort, a moss, a fern, a gymnosperm and an angiosperm?
3. Name three groups of plants that bear archegonia. Briefly describe the life cycle of any one of them.
4. Mention the ploidy of the following: protonemal cell of a moss; primary endosperm nucleus in dicot, leaf cell of a moss; prothallus cell of a fern; gemma cell in Marchantia; meristem cell of monocot, ovum of a liverwort, and zygote of a fern.
2024-25 | 12 | 11 | Biology | 03 |
8d5b67d1-d7f9-4428-b776-f73e22cd341c | # BIOLOGY
1. Write a note on economic importance of algae and gymnosperms.
2. Both gymnosperms and angiosperms bear seeds, then why are they classified separately?
3. What is heterospory? Briefly comment on its significance. Give two examples.
4. Explain briefly the following terms with suitable examples:
1. protonema
2. antheridium
3. archegonium
4. diplontic
5. sporophyll
6. isogamy
5. Differentiates between the following:
1. red algae and brown algae
2. liverworts and moss
3. homosporous and heterosporous pteridophyte
6. Match the following (column I with column II)
|Column I|Column II|
|---|---|
|(a) Chlamydomonas|(i) Moss|
|(b) Cycas|(iv) Gymnosperm|
|(c) Selaginella|(ii) Pteridophyte|
|(d) Sphagnum|(iii) Algae|
7. Describe the important characteristics of gymnosperms.
2024-25 | 13 | 11 | Biology | 03 |
1c94d9a5-821f-41b4-b4bd-4182d3abe5c6 | # CHAPTER 13
# PLANT GROWTH AND DEVELOPMENT
# 13.1 Growth
You have already studied the organisation of a flowering plant in Chapter 5. Have you ever thought about where and how the structures like roots, stems, leaves, flowers, fruits and seeds arise and that too in an orderly sequence? You are, by now, aware of the terms seed, seedling, plantlet, mature plant. You have also seen that trees continue to increase in height over a period of time. However, the same tree not only have limited dimensions but also appear and fall periodically and sometimes repeatedly. Why does vegetative phase precede flowering in a plant? All plant organs are made up of a variety of tissues; is there any relationship between the structure of a cell, a tissue, an organ and the function they perform? Can the structure and the function of these be altered? All cells of a plant are descendants of the zygote. The question is, then, why and how do they have different structural and functional attributes? Development is the sum of two processes: growth and differentiation. To begin with, it is essential and sufficient to know that the development of a mature plant from a zygote (fertilised egg) follows a precise and highly ordered succession of events. During this process a complex body organisation is formed that produces roots, leaves, branches, flowers, fruits, and seeds, and eventually they die (Figure 1).
# 13.2 Differentiation, Dedifferentiation and Redifferentiation
The first step in the process of plant growth is seed germination. The seed germinates when favourable conditions for growth exist in the environment. In absence of such favourable conditions the seeds do not germinate and goes into a period of suspended growth or rest. Once favourable conditions return, the seeds resume metabolic activities and growth takes place.
# 13.3 Development
In this chapter, you shall also study some of the factors which govern and control these developmental processes. These factors are both intrinsic (internal) and extrinsic (external) to the plant. | 0 | 11 | Biology | 13 |
453157fc-adba-4fb4-86eb-8d85567f40f8 | # PLANT GROWTH AND DEVELOPMENT
# 13.1 GROWTH
Growth is regarded as one of the most fundamental and conspicuous characteristics of a living being. What is growth? Growth can be defined as an irreversible permanent increase in size of an organ or its parts or even of an individual cell. Generally, growth is accompanied by metabolic processes (both anabolic and catabolic), that occur at the expense of energy. Therefore, for example, expansion of a leaf is growth. How would you describe the swelling of a piece of wood when placed in water?
# 13.1.1 Plant Growth Generally is Indeterminate
Plant growth is unique because plants retain the capacity for unlimited growth throughout their life. This ability of the plants is due to the presence of meristems at certain locations in their body. The cells of such meristems have the capacity to divide and self-perpetuate. The product, however, soon loses the capacity to divide and such cells make up the plant body. This form of growth wherein new cells are always being added to the plant body by the activity of the meristem is called the open form of growth. What would happen if the meristem ceases to divide? Does this ever happen?
In earlier classes, you have studied about the root apical meristem and the shoot apical meristem. You know that they are responsible for
Figure 13.1 Germination and seedling development in bean | 1 | 11 | Biology | 13 |
2db471b7-b054-40b4-9cd8-7e06482fbd59 | # 168
# BIOLOGY
# Shoot apical meristem
The primary growth of the plants and principally contribute to the elongation of the plants along their axis. You also know that in dicotyledonous plants and gymnosperms, the lateral meristems, vascular cambium and cork-cambium appear later in life. These are the meristems that cause the increase in the girth of the organs in which they are active. This is known as secondary growth of the plant (see Figure 13.2).
# Vascular cambium
Growth is Measurable
Growth, at a cellular level, is principally a consequence of increase in the amount of protoplasm. Since increase in protoplasm is difficult to measure directly, one generally measures some quantity which is more or less proportional to it. Growth is, therefore, measured by a variety of parameters some of which are: increase in fresh weight, dry weight, length, area, volume and cell number. You may find it amazing to know that one single maize root apical meristem can give rise to more than 17,500 new cells per hour, whereas cells in a watermelon may increase in size by up to 3,50,000 times. In the former, growth is expressed as increase in cell number; the latter expresses growth as increase in size of the cell. While the growth of a pollen tube is measured in terms of its length, an increase in surface area denotes the growth in a dorsiventral leaf.
# Phases of Growth
The period of growth is generally divided into three phases, namely, meristematic, elongation and maturation (Figure 13.3). Let us understand this by looking at the root tips. The constantly dividing cells, both at the root apex and the shoot apex, represent the meristematic phase of growth. The cells in this region are rich in protoplasm, possess large conspicuous nuclei. Their cell walls are primary in nature, thin and cellulosic with abundant plasmodesmatal connections. The cells proximal (just next, away from the tip) to the
# Figure 13.2
Diagrammatic representation of locations of root apical meristem, shoot apical meristem and vascular cambium. Arrows exhibit the direction of growth of cells and organ.
# Figure 13.3
Detection of zones of elongation by the parallel line technique. Zones A, B, C, D immediately behind the apex have elongated most. | 2 | 11 | Biology | 13 |
c7949c9f-1815-40bf-b3ef-bd9e44e92ce2 | # PLANT GROWTH AND DEVELOPMENT
meristematic zone represent the phase of elongation. Increased vacuolation, cell enlargement and new cell wall deposition are the characteristics of the cells in this phase. Further away from the apex, i.e., more proximal to the phase of elongation, lies the portion of axis which is undergoing the phase of maturation. The cells of this zone, attain their maximal size in terms of wall thickening and protoplasmic modifications. Most of the tissues and cell types you have studied in earlier classes represent this phase.
# 13.1.4 Growth Rates
The increased growth per unit time is termed as growth rate. Thus, rate of growth can be expressed mathematically. An organism, or a part of the organism can produce more cells in a variety of ways.
# Figure 13.4
Diagrammatic representation of : (a) Arithmetic (b) Geometric growth and (c) Stages during embryo development showing geometric and arithmetic phases
2024-25 | 3 | 11 | Biology | 13 |
636f1218-2f7a-487e-993b-99067b95cea3 | # BIOLOGY
The growth rate shows an increase that may be arithmetic or geometrical (Figure 13.4).
In arithmetic growth, following mitotic cell division, only one daughter cell continues to divide while the other differentiates and matures. The simplest expression of arithmetic growth is exemplified by a root elongating at a constant rate. Look at Figure 13.5. On plotting the length of the organ against time, a linear curve is obtained. Mathematically, it is expressed as:
L = L0 + rt
- L = length at time ‘t’
- L0 = length at time ‘zero’
- r = growth rate / elongation per unit time.
Let us now see what happens in geometrical growth. In most systems, the initial growth is slow (lag phase), and it increases rapidly thereafter – at an exponential rate (log or exponential phase). Here, both the progeny cells following mitotic cell division retain the ability to divide and continue to do so. However, with limited nutrient supply, the growth slows down leading to a stationary phase. If we plot the parameter of growth against time, we get a typical sigmoid or S-curve (Figure 13.6). A sigmoid curve is a characteristic of living organism growing in a natural environment. It is typical for all cells, tissues and organs of a plant. Can you think of more similar examples? What kind of a curve can you expect in a tree showing seasonal activities?
The exponential growth can be expressed as:
W1 = W0 ert
- W1 = final size (weight, height, number etc.)
- W0 = initial size at the beginning of the period
- r = growth rate
- t = time of growth
- e = base of natural logarithms
Here, r is the relative growth rate and is also the measure of the ability of the plant to produce new plant material, referred to as efficiency index. Hence, the final size of W1 depends on the initial size, W0.
# 2024-25 | 4 | 11 | Biology | 13 |
7101afac-4939-4b6b-b766-3777a1875bd4 | # PLANT GROWTH AND DEVELOPMENT
# Figure 13.7
Diagrammatic comparison of absolute and relative growth rates. Both leaves A and B have increased their area by 5 cm2 in a given time to produce A1, B leaves.
Quantitative comparisons between the growth of living systems can also be made in two ways: (i) measurement and the comparison of total growth per unit time is called the absolute growth rate. (ii) The growth of the given system per unit time expressed on a common basis, e.g., per unit initial parameter is called the relative growth rate. In Figure 13.7, two leaves, A and B, are drawn that are of different sizes but show absolute increase in area in the given time to give leaves, A and B. However, one of them shows much higher relative growth rate. Which one and why?
# 13.1.5 Conditions for Growth
Why do you not try to write down what you think are necessary conditions for growth? This list may have water, oxygen and nutrients as very essential elements for growth. The plant cells grow in size by cell enlargement which in turn requires water. Turgidity of cells helps in extension growth. Thus, plant growth and further development is intimately linked to the water status of the plant. Water also provides the medium for enzymatic activities needed for growth. Oxygen helps in releasing metabolic energy essential for growth activities. Nutrients (macro and micro essential elements) are required by plants for the synthesis of protoplasm and act as a source of energy.
In addition, every plant organism has an optimum temperature range best suited for its growth. Any deviation from this range could be detrimental to its survival. Environmental signals such as light and gravity also affect certain phases/stages of growth. | 5 | 11 | Biology | 13 |
028297f4-3ba9-4bff-8845-43972b4b0d48 | # 13.2 DIFFERENTIATION, DEDIFFERENTIATION AND REDIFFERENTIATION
The cells derived from root apical and shoot-apical meristems and cambium differentiate and mature to perform specific functions. This act leading to maturation is termed as differentiation. During differentiation, cells undergo few to major structural changes both in their cell walls and protoplasm. For example, to form a tracheary element, the cells would lose their protoplasm. They also develop a very strong, elastic, lignocellulosic secondary cell walls, to carry water to long distances even under extreme tension. Try to correlate the various anatomical features you encounter in plants to the functions they perform.
Plants show another interesting phenomenon. The living differentiated cells, that by now have lost the capacity to divide can regain the capacity of division under certain conditions. This phenomenon is termed as dedifferentiation. For example, formation of meristems – interfascicular cambium and cork cambium from fully differentiated parenchyma cells. While doing so, such meristems/tissues are able to divide and produce cells that once again lose the capacity to divide but mature to perform specific functions, i.e., get redifferentiated. List some of the tissues in a woody dicotyledenous plant that are the products of redifferentiation. How would you describe a tumour? What would you call the parenchyma cells that are made to divide under controlled laboratory conditions during plant tissue culture?
Recall, in Section 13.1.1, we have mentioned that the growth in plants is open, i.e., it can be indeterminate or determinate. Now, we may say that even differentiation in plants is open, because cells/tissues arising out of the same meristem have different structures at maturity. The final structure at maturity of a cell/tissue is also determined by the location of the cell within. For example, cells positioned away from root apical meristems differentiate as root-cap cells, while those pushed to the periphery mature as epidermis. Can you add a few more examples of open differentiation correlating the position of a cell to its position in an organ?
# 13.3 DEVELOPMENT
Development is a term that includes all changes that an organism goes through during its life cycle from germination of the seed to senescence. Diagrammatic representation of the sequence of processes which constitute the development of a cell of a higher plant is given in Figure 13.8. It is also applicable to tissues/organs. | 6 | 11 | Biology | 13 |
dd14393a-318c-42c5-b18d-924fe292564a | # PLANT GROWTH AND DEVELOPMENT
# 173
# Cell Division
# Death
# SENESCENCE
# Plasmatic growth
# Differentiation
# MERISTEMATIC CELL
# MATURE CELL
# Expansion (Elongation)
# Maturation
Figure 13.8 Sequence of the developmental process in a plant cell
Plants follow different pathways in response to environment or phases of life to form different kinds of structures. This ability is called plasticity, e.g., heterophylly in cotton, coriander and larkspur. In such plants, the leaves of the juvenile plant are different in shape from those in mature plants. On the other hand, difference in shapes of leaves produced in air and those produced in water in buttercup also represent the heterophyllous development due to environment (Figure 13.9). This phenomenon of heterophylly is an example of plasticity.
Figure 13.9 Heterophylly in (a) larkspur and (b) buttercup
2024-25 | 7 | 11 | Biology | 13 |
e9e6338d-c5bf-4ded-b677-0a65165787c7 | # BIOLOGY
Thus, growth, differentiation and development are very closely related events in the life of a plant. Broadly, development is considered as the sum of growth and differentiation. Development in plants (i.e., both growth and differentiation) is under the control of intrinsic and extrinsic factors. The former includes both intracellular (genetic) or intercellular factors (chemicals such as plant growth regulators) while the latter includes light, temperature, water, oxygen, nutrition, etc.
# 13.4 PLANT GROWTH REGULATORS
# 13.4.1 Characteristics
The plant growth regulators (PGRs) are small, simple molecules of diverse chemical composition. They could be indole compounds (indole-3-acetic acid, IAA); adenine derivatives (N6-furfurylamino purine, kinetin), derivatives of carotenoids (abscisic acid, ABA); terpenes (gibberellic acid, GA) or gases (ethylene, C2H4). Plant growth regulators are variously described as plant growth substances, plant hormones or phytohormones in literature.
The PGRs can be broadly divided into two groups based on their functions in a living plant body. One group of PGRs are involved in growth promoting activities, such as cell division, cell enlargement, pattern formation, tropic growth, flowering, fruiting and seed formation. These are also called plant growth promoters, e.g., auxins, gibberellins and cytokinins. The PGRs of the other group play an important role in plant responses to wounds and stresses of biotic and abiotic origin. They are also involved in various growth inhibiting activities such as dormancy and abscission. The PGR abscisic acid belongs to this group. The gaseous PGR, ethylene, could fit either of the groups, but it is largely an inhibitor of growth activities.
# 13.4.2 The Discovery of Plant Growth Regulators
Interestingly, the discovery of each of the five major groups of PGRs have been accidental. All this started with the observation of Charles Darwin and his son Francis Darwin when they observed that the coleoptiles of canary grass responded to unilateral illumination by growing towards the light source (phototropism). After a series of experiments, it was concluded that the tip of coleoptile was the site of transmittable influence that caused the bending of the entire coleoptile.
Auxin was isolated by F.W. Went from tips of coleoptiles of oat seedlings.
Figure 13.10 Experiment used to demonstrate that tip of the coleoptile is the source of auxin. Arrows indicate direction of light. | 8 | 11 | Biology | 13 |
5caaf39b-3916-41bc-863d-5061dd54a0dc | # PLANT GROWTH AND DEVELOPMENT
The ‘bakanae’ (foolish seedling) disease of rice seedlings, was caused by a fungal pathogen *Gibberella fujikuroi*. E. Kurosawa (1926) reported the appearance of symptoms of the disease in rice seedlings when they were treated with sterile filtrates of the fungus. The active substances were later identified as gibberellic acid.
F. Skoog and his co-workers observed that from the internodal segments of tobacco stems the callus (a mass of undifferentiated cells) proliferated only if, in addition to auxins, the nutrients medium was supplemented with one of the following: extracts of vascular tissues, yeast extract, coconut milk or DNA. Miller et al. (1955), later identified and crystallised the cytokinesis promoting active substance that they termed kinetin.
During mid-1960s, three independent researches reported the purification and chemical characterisation of three different kinds of inhibitors: inhibitor-B, abscission II and dormin. Later all the three were proved to be chemically identical. It was named abscisic acid (ABA).
H.H. Cousins (1910) confirmed the release of a volatile substance from ripened oranges that hastened the ripening of stored unripened bananas. Later this volatile substance was identified as ethylene, a gaseous PGR.
Let us study some of the physiological effects of these five categories of PGRs in the next section.
# 13.4.3 Physiological Effects of Plant Growth Regulators
# 13.4.3.1 Auxins
Auxins (from Greek ‘auxein’: to grow) was first isolated from human urine. The term ‘auxin’ is applied to the indole-3-acetic acid (IAA), and to other natural and synthetic compounds having certain growth regulating properties. They are generally produced by the growing apices of the stems and roots, from where they migrate to the regions of their action. Auxins like IAA and indole butyric acid (IBA) have been isolated from plants. NAA (naphthalene acetic acid) and 2, 4-D (2, 4-dichlorophenoxyacetic) are synthetic auxins. All these auxins have been used extensively in agricultural and horticultural practices.
They help to initiate rooting in stem cuttings, an application widely used for plant propagation. Auxins promote flowering e.g. in pineapples. They help to prevent fruit and leaf drop at early stages but promote the abscission of older mature leaves and fruits.
In most higher plants, the growing apical bud inhibits the growth of the lateral (axillary) buds, a phenomenon called apical dominance. Removal of shoot tips (decapitation) usually results in the growth of lateral buds. It is widely applied in tea plantations, hedge-making. Can you explain why? | 9 | 11 | Biology | 13 |
3ea97bc7-e0e6-431b-be3d-bb1e21d57464 | # BIOLOGY
Auxins also induce parthenocarpy, e.g., in tomatoes. They are widely used as herbicides. 2, 4-D, widely used to kill dicotyledonous weeds, does not affect mature monocotyledonous plants. It is used to prepare weed-free lawns by gardeners. Auxin also controls xylem differentiation and helps in cell division.
# 13.4.3.2 Gibberellins
Gibberellins are another kind of promotory PGR. There are more than 100 gibberellins reported from widely different organisms such as fungi and higher plants. They are denoted as GA 1, GA 2, GA 3 and so on. However, Gibberellic acid (GA 3) was one of the first gibberellins to be discovered and remains the most intensively studied form. All GAs are acidic. They produce a wide range of physiological responses in the plants. Their ability to cause an increase in length of axis is used to increase the length of grapes stalks. Gibberellins cause fruits like apple to elongate and improve its shape. They also delay senescence. Thus, the fruits can be left on the tree longer so as to extend the market period. GA 3 is used to speed up the malting process in brewing industry.
Sugarcane stores carbohydrate as sugar in their stems. Spraying sugarcane crop with gibberellins increases the length of the stem, thus increasing the yield by as much as 20 tonnes per acre.
Spraying juvenile conifers with GAs hastens the maturity period, thus leading to early seed production. Gibberellins also promote bolting (internode elongation just prior to flowering) in beet, cabbages and many plants with rosette habit.
# 13.4.3.3 Cytokinins
Cytokinins have specific effects on cytokinesis, and were discovered as kinetin (a modified form of adenine, a purine) from the autoclaved herring sperm DNA. Kinetin does not occur naturally in plants. Search for natural substances with cytokinin-like activities led to the isolation of zeatin from corn-kernels and coconut milk. Since the discovery of zeatin, several naturally occurring cytokinins, and some synthetic compounds with cell division promoting activity, have been identified. Natural cytokinins are | 10 | 11 | Biology | 13 |
0e3b60e6-1adf-4615-aeb3-b5fffc21fea7 | # PLANT GROWTH AND DEVELOPMENT
synthesised in regions where rapid cell division occurs, for example, root apices, developing shoot buds, young fruits etc. It helps to produce new leaves, chloroplasts in leaves, lateral shoot growth and adventitious shoot formation. Cytokinins help overcome the apical dominance. They promote nutrient mobilisation which helps in the delay of leaf senescence.
# 13.4.3.4 Ethylene
Ethylene is a simple gaseous PGR. It is synthesised in large amounts by tissues undergoing senescence and ripening fruits. Influences of ethylene on plants include horizontal growth of seedlings, swelling of the axis and apical hook formation in dicot seedlings. Ethylene promotes senescence and abscission of plant organs especially of leaves and flowers. Ethylene is highly effective in fruit ripening. It enhances the respiration rate during ripening of the fruits. This rise in rate of respiration is called respiratory climactic.
Ethylene breaks seed and bud dormancy, initiates germination in peanut seeds, sprouting of potato tubers. Ethylene promotes rapid internode/petiole elongation in deep water rice plants. It helps leaves/upper parts of the shoot to remain above water. Ethylene also promotes root growth and root hair formation, thus helping the plants to increase their absorption surface.
Ethylene is used to initiate flowering and for synchronising fruit-set in pineapples. It also induces flowering in mango. Since ethylene regulates so many physiological processes, it is one of the most widely used PGR in agriculture. The most widely used compound as source of ethylene is ethephon. Ethephon in an aqueous solution is readily absorbed and transported within the plant and releases ethylene slowly. Ethephon hastens fruit ripening in tomatoes and apples and accelerates abscission in flowers and fruits (thinning of cotton, cherry, walnut). It promotes female flowers in cucumbers thereby increasing the yield.
# 13.4.3.5 Abscisic acid
As mentioned earlier, abscisic acid (ABA) was discovered for its role in regulating abscission and dormancy. But like other PGRs, it also has other wide ranging effects on plant growth and development. It acts as a general plant growth inhibitor and an inhibitor of plant metabolism. ABA inhibits seed germination. ABA stimulates the closure of stomata and increases the tolerance of plants to various kinds of stresses. Therefore, it is also called the stress hormone. ABA plays an important | 11 | 11 | Biology | 13 |
2c9fb3a2-fe60-46ca-9909-5daeae0b16ba | # BIOLOGY
role in seed development, maturation and dormancy. By inducing dormancy, ABA helps seeds to withstand desiccation and other factors unfavourable for growth. In most situations, ABA acts as an antagonist to GAs.
We may summarise that for any and every phase of growth, differentiation and development of plants, one or the other PGR has some role to play. Such roles could be complimentary or antagonistic. These could be individualistic or synergistic.
Similarly, there are a number of events in the life of a plant where more than one PGR interact to affect that event, e.g., dormancy in seeds/buds, abscission, senescence, apical dominance, etc.
Remember, the role of PGR is of only one kind of intrinsic control. Along with genomic control and extrinsic factors, they play an important role in plant growth and development. Many of the extrinsic factors such as temperature and light, control plant growth and development via PGR. Some of such events could be: vernalisation, flowering, dormancy, seed germination, plant movements, etc.
We shall discuss briefly the role of light and temperature (both of them, the extrinsic factors) on initiation of flowering.
# SUMMARY
Growth is one of the most conspicuous events in any living organism. It is an irreversible increase expressed in parameters such as size, area, length, height, volume, cell number etc. It conspicuously involves increased protoplasmic material. In plants, meristems are the sites of growth. Root and shoot apical meristems sometimes along with intercalary meristem, contribute to the elongation growth of plant axes. Growth is indeterminate in higher plants. Following cell division in root and shoot apical meristem cells, the growth could be arithmetic or geometrical. Growth may not be and generally is not sustained at a high rate throughout the life of cell/tissue/organ/organism. One can define three principle phases of growth – the lag, the log and the senescent phase. When a cell loses the capacity to divide, it leads to differentiation. Differentiation results in development of structures that is commensurate with the function the cells finally has to perform. General principles for differentiation for cell, tissues and organs are similar. A differentiated cell may dedifferentiate and then redifferentiate. Since differentiation in plants is open, the development could also be flexible, i.e., the development is the sum of growth and differentiation. Plant exhibit plasticity in development.
2024-25 | 12 | 11 | Biology | 13 |
53d59700-c0fa-4eba-ad6b-cad83ff93907 | # PLANT GROWTH AND DEVELOPMENT
Plant growth and development are under the control of both intrinsic and extrinsic factors. Intercellular intrinsic factors are the chemical substances, called plant growth regulators (PGR). There are diverse groups of PGRs in plants, principally belonging to five groups: auxins, gibberellins, cytokinins, abscisic acid and ethylene. These PGRs are synthesised in various parts of the plant; they control different differentiation and developmental events. Any PGR has diverse physiological effects on plants. Diverse PGRs also manifest similar effects. PGRs may act synergistically or antagonistically. Plant growth and development is also affected by light, temperature, nutrition, oxygen status, gravity and such external factors.
# EXERCISES
1. Define growth, differentiation, development, dedifferentiation, redifferentiation, determinate growth, meristem and growth rate.
2. Why is not any one parameter good enough to demonstrate growth throughout the life of a flowering plant?
3. Describe briefly:
1. Arithmetic growth
2. Geometric growth
3. Sigmoid growth curve
4. Absolute and relative growth rates
4. List five main groups of natural plant growth regulators. Write a note on discovery, physiological functions and agricultural/horticultural applications of any one of them.
5. Why is abscisic acid also known as stress hormone?
6. ‘Both growth and differentiation in higher plants are open’. Comment.
7. ‘Both a short day plant and a long day plant can produce can flower simultaneously in a given place’. Explain.
8. Which one of the plant growth regulators would you use if you are asked to:
1. induce rooting in a twig
2. quickly ripen a fruit
3. delay leaf senescence
4. induce growth in axillary buds
5. ‘bolt’ a rosette plant
6. induce immediate stomatal closure in leaves.
9. Would a defoliated plant respond to photoperiodic cycle? Why? | 13 | 11 | Biology | 13 |
fa0e6602-36e1-41df-95aa-c60c29bfabc1 | # BIOLOGY
# 10.
What would be expected to happen if:
- (a) GA is applied to rice seedlings
- (b) dividing cells stop differentiating
- (c) a rotten fruit gets mixed with unripe fruits
- (d) you forget to add cytokinin to the culture medium.
2024-25 | 14 | 11 | Biology | 13 |
b4ced422-6100-4388-8af8-a6710b2f4ee2 | # UNIT 1
# DIVERSITY IN THE LIVING WORLD
# Chapter 1
The Living World
# Chapter 2
Biological Classification
# Chapter 3
Plant Kingdom
# Chapter 4
Animal Kingdom
Biology is the science of life forms and living processes. The living world comprises an amazing diversity of living organisms. Early man could easily perceive the difference between inanimate matter and living organisms. Early man deified some of the inanimate matter (wind, sea, fire etc.) and some among the animals and plants. A common feature of all such forms of inanimate and animate objects was the sense of awe or fear that they evoked. The description of living organisms including human beings began much later in human history. Societies which indulged in anthropocentric view of biology could register limited progress in biological knowledge. Systematic and monumental description of life forms brought in, out of necessity, detailed systems of identification, nomenclature and classification. The biggest spin off of such studies was the recognition of the sharing of similarities among living organisms both horizontally and vertically. That all present day living organisms are related to each other and also to all organisms that ever lived on this earth, was a revelation which humbled man and led to cultural movements for conservation of biodiversity. In the following chapters of this unit, you will get a description, including classification, of animals and plants from a taxonomist’s perspective. | 0 | 11 | Biology | 01 |
85d85597-58d1-43c9-b0bb-ec172904746f | # Ernst Mayr
# (1904 – 2004)
Born on 5 July 1904, in Kempten, Germany, Ernst Mayr, the Harvard University evolutionary biologist who has been called ‘The Darwin of the 20th century’, was one of the 100 greatest scientists of all time. Mayr joined Harvard’s Faculty of Arts and Sciences in 1953 and retired in 1975, assuming the title Alexander Agassiz Professor of Zoology Emeritus. Throughout his nearly 80-year career, his research spanned ornithology, taxonomy, zoogeography, evolution, systematics, and the history and philosophy of biology. He almost single-handedly made the origin of species diversity the central question of evolutionary biology that it is today. He also pioneered the currently accepted definition of a biological species. Mayr was awarded the three prizes widely regarded as the triple crown of biology: the Balzan Prize in 1983, the International Prize for Biology in 1994, and the Crafoord Prize in 1999. Mayr died at the age of 100 in the year 2004. | 1 | 11 | Biology | 01 |
1957f02b-5a96-443d-ab90-ec6b3878598e | # CHAPTER 1
# THE LIVING WORLD
# 1.1 Diversity in the Living World
How wonderful is the living world! The wide range of living types is amazing. The extraordinary habitats in which we find living organisms, be it cold mountains, deciduous forests, oceans, fresh water lakes, deserts or hot springs, leave us speechless. The beauty of a galloping horse, of the migrating birds, the valley of flowers or the attacking shark evokes awe and a deep sense of wonder. The ecological conflict and cooperation among members of a population and among populations of a community or even the molecular traffic inside a cell make us deeply reflect on – what indeed is life? This question has two implicit questions within it. The first is a technical one and seeks answer to what living is as opposed to the non-living, and the second is a philosophical one, and seeks answer to what the purpose of life is. As scientists, we shall not attempt answering the second question. We will try to reflect on – what is living?
# 1.1 DIVERSITY IN THE LIVING WORLD
If you look around you will see a large variety of living organisms, be it potted plants, insects, birds, your pets or other animals and plants. There are also several organisms that you cannot see with your naked eye but they are all around you. If you were to increase the area that you make observations in, the range and variety of organisms that you see would increase. Obviously, if you were to visit a dense forest, you would probably see a much greater number and kinds of living organisms in it. Each different kind of plant, animal or organism that you see, represents a species. The number of species that are known and described range between 1.7-1.8 million. This refers to biodiversity or the number and... | 2 | 11 | Biology | 01 |
69e897e8-5bc4-4c83-9f35-5186df92a2e8 | # 4 BIOLOGY
types of organisms present on earth. We should remember here that as we explore new areas, and even old ones, new organisms are continuously being identified.
As stated earlier, there are millions of plants and animals in the world; we know the plants and animals in our own area by their local names. These local names would vary from place to place, even within a country. Probably you would recognise the confusion that would be created if we did not find ways and means to talk to each other, to refer to organisms we are talking about.
Hence, there is a need to standardise the naming of living organisms such that a particular organism is known by the same name all over the world. This process is called nomenclature. Obviously, nomenclature or naming is only possible when the organism is described correctly and we know to what organism the name is attached to. This is identification.
In order to facilitate the study, number of scientists have established procedures to assign a scientific name to each known organism. This is acceptable to biologists all over the world. For plants, scientific names are based on agreed principles and criteria, which are provided in International Code for Botanical Nomenclature (ICBN). You may ask, how are animals named? Animal taxonomists have evolved International Code of Zoological Nomenclature (ICZN). The scientific names ensure that each organism has only one name. Description of any organism should enable the people (in any part of the world) to arrive at the same name. They also ensure that such a name has not been used for any other known organism.
Biologists follow universally accepted principles to provide scientific names to known organisms. Each name has two components – the Generic name and the specific epithet. This system of providing a name with two components is called Binomial nomenclature. This naming system given by Carolus Linnaeus is being practised by biologists all over the world. This naming system using a two word format was found convenient. Let us take the example of mango to understand the way of providing scientific names better. The scientific name of mango is written as *Mangifera indica. Let us see how it is a binomial name. In this name Mangifera represents the genus while indica*, is a particular species, or a specific epithet.
# Other universal rules of nomenclature are as follows:
1. Biological names are generally in Latin and written in italics. They are Latinised or derived from Latin irrespective of their origin.
2. The first word in a biological name represents the genus while the second component denotes the specific epithet.
3. Both the words in a biological name, when handwritten, are separately underlined, or printed in italics to indicate their Latin origin.
2024-25 | 3 | 11 | Biology | 01 |
22f619f9-8c8a-49a7-9562-b06af96f0e5f | # THE LIVING WORLD
# 4.
The first word denoting the genus starts with a capital letter while the specific epithet starts with a small letter. It can be illustrated with the example of Mangifera indica.
Name of the author appears after the specific epithet, i.e., at the end of the biological name and is written in an abbreviated form, e.g., Mangifera indica Linn. It indicates that this species was first described by Linnaeus.
Since it is nearly impossible to study all the living organisms, it is necessary to devise some means to make this possible. This process is classification. Classification is the process by which anything is grouped into convenient categories based on some easily observable characters.
For example, we easily recognise groups such as plants or animals or dogs, cats or insects. The moment we use any of these terms, we associate certain characters with the organism in that group. What image do you see when you think of a dog? Obviously, each one of us will see ‘dogs’ and not ‘cats’. Now, if we were to think of ‘Alsatians’ we know what we are talking about. Similarly, suppose we were to say ‘mammals’, you would, of course, think of animals with external ears and body hair. Likewise, in plants, if we try to talk of ‘Wheat’, the picture in each of our minds will be of wheat plants, not of rice or any other plant. Hence, all these - ‘Dogs’, ‘Cats’, ‘Mammals’, ‘Wheat’, ‘Rice’, ‘Plants’, ‘Animals’, etc., are convenient categories we use to study organisms. The scientific term for these categories is taxa. Here you must recognise that taxa can indicate categories at very different levels. ‘Plants’ – also form a taxa. ‘Wheat’ is also a taxa. Similarly, ‘animals’, ‘mammals’, ‘dogs’ are all taxa – but you know that a dog is a mammal and mammals are animals. Therefore, ‘animals’, ‘mammals’ and ‘dogs’ represent taxa at different levels.
Hence, based on characteristics, all living organisms can be classified into different taxa. This process of classification is taxonomy. External and internal structure, along with the structure of cell, development process and ecological information of organisms are essential and form the basis of modern taxonomic studies.
Hence, characterisation, identification, classification and nomenclature are the processes that are basic to taxonomy.
Taxonomy is not something new. Human beings have always been interested in knowing more and more about the various kinds of organisms, particularly with reference to their own use. In early days, human beings needed to find sources for their basic needs of food, clothing and shelter. Hence, the earliest classifications were based on the ‘uses’ of various organisms.
Human beings were, since long, not only interested in knowing more about different kinds of organisms and their diversities, but also the relationships among them. This branch of study was referred to as systematics. The word systematics is derived from the Latin word ‘systema’ which means systematic arrangement of organisms. | 4 | 11 | Biology | 01 |
85dbbd1b-24d0-4722-b991-652071031ad0 | # BIOLOGY
used Systema Naturae as the title of his publication. The scope of systematics was later enlarged to include identification, nomenclature and classification. Systematics takes into account evolutionary relationships between organisms.
# 1.2 TAXONOMIC CATEGORIES
Classification is not a single step process but involves hierarchy of steps in which each step represents a rank or category. Since the category is a part of overall taxonomic arrangement, it is called the taxonomic category and all categories together constitute the taxonomic hierarchy. Each category, referred to as a unit of classification, in fact, represents a rank and is commonly termed as taxon (pl.: taxa).
Taxonomic categories and hierarchy can be illustrated by an example. Insects represent a group of organisms sharing common features like three pairs of jointed legs. It means insects are recognisable concrete objects which can be classified, and thus were given a rank or category. Can you name other such groups of organisms? Remember, groups represent category. Category further denotes rank. Each rank or taxon, in fact, represents a unit of classification. These taxonomic groups/categories are distinct biological entities and not merely morphological aggregates.
Taxonomical studies of all known organisms have led to the development of common categories such as kingdom, phylum or division (for plants), class, order, family, genus and species. All organisms, including those in the plant and animal kingdoms have species as the lowest category. Now the question you may ask is, how to place an organism in various categories? The basic requirement is the knowledge of characters of an individual or group of organisms. This helps in identifying similarities and dissimilarities among the individuals of the same kind of organisms as well as of other kinds of organisms.
# 1.2.1 Species
Taxonomic studies consider a group of individual organisms with fundamental similarities as a species. One should be able to distinguish one species from the other closely related species based on the distinct morphological differences. Let us consider Mangifera indica, Solanum tuberosum (potato) and Panthera leo (lion). All the three names, indica, tuberosum and leo, represent the specific epithets, while the first words Mangifera, Solanum and Panthera are genera and represents another higher level of taxon or category. Each genus may have one or more than one specific epithets representing different organisms, but having morphological similarities. For example, Panthera has another specific epithet called tigris and Solanum includes species like nigrum and | 5 | 11 | Biology | 01 |
End of preview. Expand
in Data Studio
Science Class 11 Textbook dataset
The dataset titled science-class11-textbook
contains the chapter contents of the Science textbooks for Class 11.
It includes chapters for both Physics and Chemistry.
The chapters in Part 1 are numbered as follows: Chapter 1 is marked as 101, Chapter 2 as 102, and so on. The chapters in Part 2 are numbered starting from 201, 202, and so forth.
Usage
- Use the
datasets
library to load the dataset. Install using the following.
pip install datasets
- Load the dataset.
from datasets import load_dataset
dataset = load_dataset("dmedhi/science-class11-textbook")
Contribution
Please leave a ♥ if you've used the dataset.
- Downloads last month
- 99