File size: 5,017 Bytes
543a587
022e813
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
543a587
 
022e813
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
---
annotations_creators:
- crowdsourced
license: other
pretty_name: DocLayNet
size_categories:
- 10K<n<100K
tags:
- layout-segmentation
- COCO
- document-understanding
- PDF
task_categories:
- object-detection
- image-segmentation
task_ids:
- instance-segmentation
---

# Dataset Card for DocLayNet v1.1

## Table of Contents
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Dataset Structure](#dataset-structure)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Annotations](#annotations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- **Homepage:** https://developer.ibm.com/exchanges/data/all/doclaynet/
- **Repository:** https://github.com/DS4SD/DocLayNet
- **Paper:** https://doi.org/10.1145/3534678.3539043

### Dataset Summary

DocLayNet provides page-by-page layout segmentation ground-truth using bounding-boxes for 11 distinct class labels on 80863 unique pages from 6 document categories. It provides several unique features compared to related work such as PubLayNet or DocBank:

1. *Human Annotation*: DocLayNet is hand-annotated by well-trained experts, providing a gold-standard in layout segmentation through human recognition and interpretation of each page layout
2. *Large layout variability*: DocLayNet includes diverse and complex layouts from a large variety of public sources in Finance, Science, Patents, Tenders, Law texts and Manuals
3. *Detailed label set*: DocLayNet defines 11 class labels to distinguish layout features in high detail.
4. *Redundant annotations*: A fraction of the pages in DocLayNet are double- or triple-annotated, allowing to estimate annotation uncertainty and an upper-bound of achievable prediction accuracy with ML models
5. *Pre-defined train- test- and validation-sets*: DocLayNet provides fixed sets for each to ensure proportional representation of the class-labels and avoid leakage of unique layout styles across the sets.


## Dataset Structure

This dataset is structured differently from the other repository [ds4sd/DocLayNet](https://huggingface.co/datasets/ds4sd/DocLayNet), as this one includes the content (PDF cells) of the detections, and abandons the COCO format.

* `image`: page PIL image.
* `bboxes`: a list of layout bounding boxes.
* `category_id`: a list of class ids corresponding to the bounding boxes.
* `segmentation`: a list of layout segmentation polygons.
* `pdf_cells`: a list of lists corresponding to `bbox`. Each list contains the PDF cells (content) inside the bbox.
* `metadata`: page and document metadetails.

Bounding boxes classes / categories:

```
1: Caption
2: Footnote
3: Formula
4: List-item
5: Page-footer
6: Page-header
7: Picture
8: Section-header
9: Table
10: Text
11: Title
```


The `["metadata"]["doc_category"]` field uses one of the following constants:

```
* financial_reports,
* scientific_articles,
* laws_and_regulations,
* government_tenders,
* manuals,
* patents
```


### Data Splits

The dataset provides three splits
- `train`
- `val`
- `test`

## Dataset Creation

### Annotations

#### Annotation process

The labeling guideline used for training of the annotation experts are available at [DocLayNet_Labeling_Guide_Public.pdf](https://raw.githubusercontent.com/DS4SD/DocLayNet/main/assets/DocLayNet_Labeling_Guide_Public.pdf).


#### Who are the annotators?

Annotations are crowdsourced.


## Additional Information

### Dataset Curators

The dataset is curated by the [Deep Search team](https://ds4sd.github.io/) at IBM Research.
You can contact us at [deepsearch-core@zurich.ibm.com](mailto:deepsearch-core@zurich.ibm.com).

Curators:
- Christoph Auer, [@cau-git](https://github.com/cau-git)
- Michele Dolfi, [@dolfim-ibm](https://github.com/dolfim-ibm)
- Ahmed Nassar, [@nassarofficial](https://github.com/nassarofficial)
- Peter Staar, [@PeterStaar-IBM](https://github.com/PeterStaar-IBM)

### Licensing Information

License: [CDLA-Permissive-1.0](https://cdla.io/permissive-1-0/)


### Citation Information


```bib
@article{doclaynet2022,
  title = {DocLayNet: A Large Human-Annotated Dataset for Document-Layout Segmentation},
  doi = {10.1145/3534678.353904},
  url = {https://doi.org/10.1145/3534678.3539043},
  author = {Pfitzmann, Birgit and Auer, Christoph and Dolfi, Michele and Nassar, Ahmed S and Staar, Peter W J},
  year = {2022},
  isbn = {9781450393850},
  publisher = {Association for Computing Machinery},
  address = {New York, NY, USA},
  booktitle = {Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining},
  pages = {3743–3751},
  numpages = {9},
  location = {Washington DC, USA},
  series = {KDD '22}
}
```