metadata
dataset_info:
features:
- name: ARID1A KD
dtype: string
- name: BAP1 KO
dtype: string
- name: CDH1 KO
dtype: string
- name: KEAP1 KO
dtype: string
- name: STK11 KO
dtype: string
- name: NF1 KO
dtype: string
- name: NF2 KO
dtype: string
- name: PBRM1 KO
dtype: string
- name: PTEN KO
dtype: string
- name: RB1 KO
dtype: string
- name: TP53 KO
dtype: string
- name: VHL KO
dtype: string
- name: TP53BP1 KO
dtype: string
splits:
- name: train
num_bytes: 3468
num_examples: 38
download_size: 8229
dataset_size: 3468
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
license: cc-by-4.0
tags:
- biology
- chemistry
- medical
Dataset Card for Dataset Name
This dataset card aims to be a base template for new datasets. It has been generated using this raw template.
Dataset Details
Dataset Description
- Curated by: [More Information Needed]
- Funded by [optional]: [More Information Needed]
- Shared by [optional]: [More Information Needed]
- Language(s) (NLP): [More Information Needed]
- License: [More Information Needed]
Dataset Sources [optional]
- Repository: [More Information Needed]
- Paper [optional]: [More Information Needed]
- Demo [optional]: [More Information Needed]
Uses
Direct Use
[More Information Needed]
Out-of-Scope Use
[More Information Needed]
Dataset Structure
[More Information Needed]
Dataset Creation
Curation Rationale
[More Information Needed]
Source Data
Data Collection and Processing
[More Information Needed]
Who are the source data producers?
[More Information Needed]
Annotations [optional]
Annotation process
[More Information Needed]
Who are the annotators?
[More Information Needed]
Personal and Sensitive Information
[More Information Needed]
Bias, Risks, and Limitations
[More Information Needed]
Recommendations
Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.
Citation [optional]
BibTeX:
@article{
doi:10.1126/sciadv.abm6638,
author = {Xu Feng and Mengfan Tang and Merve Dede and Dan Su and Guangsheng Pei and Dadi Jiang and Chao Wang and Zhen Chen and Mi Li and Litong Nie and Yun Xiong and Siting Li and Jeong-Min Park and Huimin Zhang and Min Huang and Klaudia Szymonowicz and Zhongming Zhao and Traver Hart and Junjie Chen },
title = {Genome-wide CRISPR screens using isogenic cells reveal vulnerabilities conferred by loss of tumor suppressors},
journal = {Science Advances},
volume = {8},
number = {19},
pages = {eabm6638},
year = {2022},
doi = {10.1126/sciadv.abm6638},
URL = {https://www.science.org/doi/abs/10.1126/sciadv.abm6638},
eprint = {https://www.science.org/doi/pdf/10.1126/sciadv.abm6638},
abstract = {Exploiting cancer vulnerabilities is critical for the discovery of anticancer drugs. However, tumor suppressors cannot be directly targeted because of their loss of function. To uncover specific vulnerabilities for cells with deficiency in any given tumor suppressor(s), we performed genome-scale CRISPR loss-of-function screens using a panel of isogenic knockout cells we generated for 12 common tumor suppressors. Here, we provide a comprehensive and comparative dataset for genetic interactions between the whole-genome protein-coding genes and a panel of tumor suppressor genes, which allows us to uncover known and new high-confidence synthetic lethal interactions. Mining this dataset, we uncover essential paralog gene pairs, which could be a common mechanism for interpreting synthetic lethality. Moreover, we propose that some tumor suppressors could be targeted to suppress proliferation of cells with deficiency in other tumor suppressors. This dataset provides valuable information that can be further exploited for targeted cancer therapy. Whole-genome CRISPR screens uncover synthetic lethal interactions for tumor suppressors.}
}
Glossary [optional]
[More Information Needed]
More Information [optional]
[More Information Needed]
Dataset Card Authors [optional]
[More Information Needed]
Dataset Card Contact
[More Information Needed]