|
<p align="center"> |
|
|
|
<h3 align="center"><strong>GEAL: Generalizable 3D Affordance Learning with Cross-Modal Consistency</strong></h3> |
|
|
|
<p align="center"> |
|
<a href="https://dylanorange.github.io" target='_blank'>Dongyue Lu</a> |
|
<a href="https://ldkong.com" target='_blank'>Lingdong Kong</a> |
|
<a href="https://tianxinhuang.github.io/" target='_blank'>Tianxin Huang</a> |
|
<a href="https://www.comp.nus.edu.sg/~leegh/">Gim Hee Lee</a> |
|
</br> |
|
National University of Singapore |
|
</p> |
|
|
|
</p> |
|
|
|
<p align="center"> |
|
<a href="https://dylanorange.github.io/projects/geal/static/files/geal.pdf" target='_blank'> |
|
<img src="https://img.shields.io/badge/Paper-%F0%9F%93%83-lightblue"> |
|
</a> |
|
<a href="https://dylanorange.github.io/projects/geal" target='_blank'> |
|
<img src="https://img.shields.io/badge/Project-%F0%9F%94%97-blue"> |
|
</a> |
|
<a href="https://huggingface.co/datasets/dylanorange/geal" target="_blank"> |
|
<img src="https://img.shields.io/badge/Dataset-%20Hugging%20Face-yellow"> |
|
</a> |
|
|
|
|
|
</p> |
|
|
|
|
|
## About 🛠️ |
|
|
|
**GEAL** is a novel framework designed to enhance the generalization and robustness of 3D affordance learning by leveraging pre-trained 2D models. |
|
|
|
To facilitate robust 3D affordance learning across diverse real-world scenarios, we establish two 3D affordance robustness benchmarks: **PIAD-C** and **LASO-C**, based on the test sets of the commonly used datasets PIAD and LASO. We apply seven types of corruptions: |
|
|
|
- **Add Global** |
|
- **Add Local** |
|
- **Drop Global** |
|
- **Drop Local** |
|
- **Rotate** |
|
- **Scale** |
|
- **Jitter** |
|
|
|
Each corruption is applied with five severity levels, resulting in a total of **4890 object-affordance pairings**, comprising **17 affordance categories** and **23 object categories** with **2047 distinct object shapes**. |
|
|
|
|
|
<div style="text-align: center;"> |
|
<img src="supp_benchmark_1.jpg" alt="GEAL Performance GIF" style="max-width: 100%; height: auto; width: 1000px;"> |
|
<img src="supp_benchmark_2.jpg" alt="GEAL Performance GIF" style="max-width: 100%; height: auto; width: 1000px;"> |
|
</div> |
|
|
|
## Updates 📰 |
|
|
|
- **[2024.12]** - We have released our **PIAD-C** and **LASO-C** datasets! 🎉📂 |
|
|
|
|
|
## Dataset and Code Release 🚀 |
|
|
|
We are excited to announce the release of our dataset and dataloader: |
|
|
|
- **Dataset**: Available in the `PIAD-C` and `LASO-C` files 📜 |
|
- **Dataloader**: Available in the `dataset.py` file 📜 |
|
|
|
Stay tuned! Further evaluation code will be coming soon. 🔧✨ |
|
|