Dataset Preview
Full Screen Viewer
Full Screen
The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
The dataset generation failed because of a cast error
Error code: DatasetGenerationCastError Exception: DatasetGenerationCastError Message: An error occurred while generating the dataset All the data files must have the same columns, but at some point there are 29 new columns ({'soil_moisture_7_to_28cm (m³/m³)', 'direct_radiation (W/m²)', 'apparent_temperature (°C)', 'soil_temperature_100_to_255cm (°C)', 'cloudcover_low (%)', 'soil_temperature_28_to_100cm (°C)', 'cloudcover (%)', 'relativehumidity_2m (%)', 'dewpoint_2m (°C)', 'soil_moisture_100_to_255cm (m³/m³)', 'windspeed_100m (km/h)', 'soil_moisture_0_to_7cm (m³/m³)', 'soil_temperature_0_to_7cm (°C)', 'direct_normal_irradiance (W/m²)', 'temperature_2m (°C)', 'windspeed_10m (km/h)', 'winddirection_100m (°)', 'soil_temperature_7_to_28cm (°C)', 'cloudcover_high (%)', 'pressure_msl (hPa)', 'windgusts_10m (km/h)', 'vapor_pressure_deficit (kPa)', 'surface_pressure (hPa)', 'cloudcover_mid (%)', 'snowfall (cm)', 'soil_moisture_28_to_100cm (m³/m³)', 'shortwave_radiation (W/m²)', 'diffuse_radiation (W/m²)', 'winddirection_10m (°)'}) and 13 missing columns ({'temperature_2m_min (°C)', 'apparent_temperature_max (°C)', 'temperature_2m_max (°C)', 'winddirection_10m_dominant (°)', 'shortwave_radiation_sum (MJ/m²)', 'elevation', 'sunrise (iso8601)', 'sunset (iso8601)', 'windspeed_10m_max (km/h)', 'snowfall_sum (cm)', 'rain_sum (mm)', 'apparent_temperature_min (°C)', 'windgusts_10m_max (km/h)'}). This happened while the csv dataset builder was generating data using hf://datasets/elskow/Weather4cast/train_hourly.csv (at revision 763c2084a6b03532f4b6277818b03e5263d229d3) Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations) Traceback: Traceback (most recent call last): File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 2011, in _prepare_split_single writer.write_table(table) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 585, in write_table pa_table = table_cast(pa_table, self._schema) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2302, in table_cast return cast_table_to_schema(table, schema) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2256, in cast_table_to_schema raise CastError( datasets.table.CastError: Couldn't cast time: string temperature_2m (°C): double relativehumidity_2m (%): double dewpoint_2m (°C): double apparent_temperature (°C): double pressure_msl (hPa): double surface_pressure (hPa): double snowfall (cm): double cloudcover (%): double cloudcover_low (%): double cloudcover_mid (%): double cloudcover_high (%): double shortwave_radiation (W/m²): double direct_radiation (W/m²): double diffuse_radiation (W/m²): double direct_normal_irradiance (W/m²): double windspeed_10m (km/h): double windspeed_100m (km/h): double winddirection_10m (°): double winddirection_100m (°): double windgusts_10m (km/h): double et0_fao_evapotranspiration (mm): double vapor_pressure_deficit (kPa): double soil_temperature_0_to_7cm (°C): double soil_temperature_7_to_28cm (°C): double soil_temperature_28_to_100cm (°C): double soil_temperature_100_to_255cm (°C): double soil_moisture_0_to_7cm (m³/m³): double soil_moisture_7_to_28cm (m³/m³): double soil_moisture_28_to_100cm (m³/m³): double soil_moisture_100_to_255cm (m³/m³): double city: string -- schema metadata -- pandas: '{"index_columns": [{"kind": "range", "name": null, "start": 0, "' + 5175 to {'time': Value(dtype='string', id=None), 'temperature_2m_max (°C)': Value(dtype='float64', id=None), 'temperature_2m_min (°C)': Value(dtype='float64', id=None), 'apparent_temperature_max (°C)': Value(dtype='float64', id=None), 'apparent_temperature_min (°C)': Value(dtype='float64', id=None), 'sunrise (iso8601)': Value(dtype='string', id=None), 'sunset (iso8601)': Value(dtype='string', id=None), 'shortwave_radiation_sum (MJ/m²)': Value(dtype='float64', id=None), 'rain_sum (mm)': Value(dtype='float64', id=None), 'snowfall_sum (cm)': Value(dtype='float64', id=None), 'windspeed_10m_max (km/h)': Value(dtype='float64', id=None), 'windgusts_10m_max (km/h)': Value(dtype='float64', id=None), 'winddirection_10m_dominant (°)': Value(dtype='float64', id=None), 'et0_fao_evapotranspiration (mm)': Value(dtype='float64', id=None), 'elevation': Value(dtype='int64', id=None), 'city': Value(dtype='string', id=None)} because column names don't match During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1321, in compute_config_parquet_and_info_response parquet_operations = convert_to_parquet(builder) File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 935, in convert_to_parquet builder.download_and_prepare( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1027, in download_and_prepare self._download_and_prepare( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1122, in _download_and_prepare self._prepare_split(split_generator, **prepare_split_kwargs) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1882, in _prepare_split for job_id, done, content in self._prepare_split_single( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 2013, in _prepare_split_single raise DatasetGenerationCastError.from_cast_error( datasets.exceptions.DatasetGenerationCastError: An error occurred while generating the dataset All the data files must have the same columns, but at some point there are 29 new columns ({'soil_moisture_7_to_28cm (m³/m³)', 'direct_radiation (W/m²)', 'apparent_temperature (°C)', 'soil_temperature_100_to_255cm (°C)', 'cloudcover_low (%)', 'soil_temperature_28_to_100cm (°C)', 'cloudcover (%)', 'relativehumidity_2m (%)', 'dewpoint_2m (°C)', 'soil_moisture_100_to_255cm (m³/m³)', 'windspeed_100m (km/h)', 'soil_moisture_0_to_7cm (m³/m³)', 'soil_temperature_0_to_7cm (°C)', 'direct_normal_irradiance (W/m²)', 'temperature_2m (°C)', 'windspeed_10m (km/h)', 'winddirection_100m (°)', 'soil_temperature_7_to_28cm (°C)', 'cloudcover_high (%)', 'pressure_msl (hPa)', 'windgusts_10m (km/h)', 'vapor_pressure_deficit (kPa)', 'surface_pressure (hPa)', 'cloudcover_mid (%)', 'snowfall (cm)', 'soil_moisture_28_to_100cm (m³/m³)', 'shortwave_radiation (W/m²)', 'diffuse_radiation (W/m²)', 'winddirection_10m (°)'}) and 13 missing columns ({'temperature_2m_min (°C)', 'apparent_temperature_max (°C)', 'temperature_2m_max (°C)', 'winddirection_10m_dominant (°)', 'shortwave_radiation_sum (MJ/m²)', 'elevation', 'sunrise (iso8601)', 'sunset (iso8601)', 'windspeed_10m_max (km/h)', 'snowfall_sum (cm)', 'rain_sum (mm)', 'apparent_temperature_min (°C)', 'windgusts_10m_max (km/h)'}). This happened while the csv dataset builder was generating data using hf://datasets/elskow/Weather4cast/train_hourly.csv (at revision 763c2084a6b03532f4b6277818b03e5263d229d3) Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)
Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
time
string | temperature_2m_max (°C)
float64 | temperature_2m_min (°C)
float64 | apparent_temperature_max (°C)
float64 | apparent_temperature_min (°C)
float64 | sunrise (iso8601)
string | sunset (iso8601)
string | shortwave_radiation_sum (MJ/m²)
float64 | rain_sum (mm)
float64 | snowfall_sum (cm)
float64 | windspeed_10m_max (km/h)
float64 | windgusts_10m_max (km/h)
float64 | winddirection_10m_dominant (°)
float64 | et0_fao_evapotranspiration (mm)
float64 | elevation
int64 | city
string |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2018-01-01 | 29.9 | 26 | 36.3 | 31.6 | 2018-01-01T05:15 | 2018-01-01T17:49 | 17.59 | 7.7 | 0 | 6.9 | 20.2 | 277 | 3.61 | 0 | su |
2018-01-02 | 30.6 | 25.7 | 37.7 | 31.2 | 2018-01-02T05:15 | 2018-01-02T17:50 | 19.87 | 9.4 | 0 | 7.1 | 18 | 168 | 4.11 | 0 | su |
2018-01-03 | 31.8 | 25.9 | 40.3 | 31.7 | 2018-01-03T05:16 | 2018-01-03T17:50 | 20.44 | 7.8 | 0 | 8.1 | 21.2 | 125 | 4.23 | 0 | su |
2018-01-04 | 30.8 | 26 | 39.1 | 31.6 | 2018-01-04T05:16 | 2018-01-04T17:50 | 20.44 | 29.7 | 0 | 7.2 | 21.6 | 190 | 4.22 | 0 | su |
2018-01-05 | 30.9 | 25.2 | 37.6 | 29.9 | 2018-01-05T05:17 | 2018-01-05T17:51 | 20.1 | 22.5 | 0 | 6.9 | 21.2 | 241 | 4.16 | 0 | su |
2018-01-06 | 31 | 25.6 | 38.1 | 30.9 | 2018-01-06T05:17 | 2018-01-06T17:51 | 19.81 | 8.7 | 0 | 10.3 | 20.2 | 253 | 4.08 | 0 | su |
2018-01-07 | 29.3 | 25.1 | 34.7 | 29.9 | 2018-01-07T05:18 | 2018-01-07T17:52 | 13.01 | 7.8 | 0 | 10.6 | 22.7 | 284 | 2.78 | 0 | su |
2018-01-08 | 31.4 | 25.4 | 38 | 30.6 | 2018-01-08T05:18 | 2018-01-08T17:52 | 19.78 | 6.4 | 0 | 7.1 | 17.6 | 133 | 4.21 | 0 | su |
2018-01-09 | 31.9 | 25.7 | 39.3 | 31.2 | 2018-01-09T05:19 | 2018-01-09T17:52 | 20.13 | 9.1 | 0 | 12.1 | 25.6 | 272 | 4.22 | 0 | su |
2018-01-10 | 31.9 | 25.5 | 36.9 | 29.8 | 2018-01-10T05:19 | 2018-01-10T17:53 | 19.46 | 10.1 | 0 | 14.8 | 34.2 | 278 | 4.24 | 0 | su |
2018-01-11 | 30.8 | 25.2 | 35.1 | 29.3 | 2018-01-11T05:20 | 2018-01-11T17:53 | 14.15 | 4.2 | 0 | 14.9 | 35.6 | 276 | 3.16 | 0 | su |
2018-01-12 | 30.7 | 24.7 | 36.1 | 28.8 | 2018-01-12T05:20 | 2018-01-12T17:53 | 15.45 | 3.1 | 0 | 11.3 | 45.4 | 280 | 3.5 | 0 | su |
2018-01-13 | 29.9 | 25.9 | 33.8 | 30.5 | 2018-01-13T05:21 | 2018-01-13T17:53 | 14.65 | 2.6 | 0 | 20.6 | 43.9 | 279 | 3.3 | 0 | su |
2018-01-14 | 30.6 | 25.8 | 36.3 | 29.9 | 2018-01-14T05:21 | 2018-01-14T17:54 | 16.18 | 4.2 | 0 | 14.2 | 31.7 | 277 | 3.54 | 0 | su |
2018-01-15 | 30.6 | 25.6 | 35.7 | 30.1 | 2018-01-15T05:22 | 2018-01-15T17:54 | 16.94 | 4 | 0 | 15.6 | 30.2 | 290 | 3.61 | 0 | su |
2018-01-16 | 31.1 | 25.7 | 36.8 | 29.7 | 2018-01-16T05:22 | 2018-01-16T17:54 | 20.66 | 2 | 0 | 18.8 | 33.1 | 287 | 4.44 | 0 | su |
2018-01-17 | 31.8 | 26 | 37.8 | 30.3 | 2018-01-17T05:23 | 2018-01-17T17:54 | 19.81 | 5.3 | 0 | 12.8 | 27 | 272 | 4.36 | 0 | su |
2018-01-18 | 31.3 | 25.6 | 37.6 | 30.3 | 2018-01-18T05:23 | 2018-01-18T17:55 | 21.78 | 17.8 | 0 | 15 | 34.9 | 284 | 4.41 | 0 | su |
2018-01-19 | 31.2 | 25.3 | 37.7 | 29.3 | 2018-01-19T05:24 | 2018-01-19T17:55 | 16.7 | 32 | 0 | 13.7 | 27.7 | 274 | 3.53 | 0 | su |
2018-01-20 | 29.6 | 24.9 | 34.8 | 29.1 | 2018-01-20T05:24 | 2018-01-20T17:55 | 15.2 | 21.7 | 0 | 12.3 | 32.8 | 279 | 3.17 | 0 | su |
2018-01-21 | 29.9 | 25.4 | 33.7 | 30.1 | 2018-01-21T05:25 | 2018-01-21T17:55 | 16.28 | 4.9 | 0 | 17.1 | 34.9 | 283 | 3.61 | 0 | su |
2018-01-22 | 29.6 | 26.1 | 34.4 | 30.4 | 2018-01-22T05:25 | 2018-01-22T17:55 | 13.37 | 6.5 | 0 | 18.2 | 41.8 | 289 | 3.03 | 0 | su |
2018-01-23 | 30.3 | 25.2 | 35.2 | 29.7 | 2018-01-23T05:25 | 2018-01-23T17:55 | 15.77 | 7.7 | 0 | 21 | 41.4 | 294 | 3.29 | 0 | su |
2018-01-24 | 30.3 | 25.8 | 36 | 30.3 | 2018-01-24T05:26 | 2018-01-24T17:55 | 18.59 | 7.4 | 0 | 17.1 | 38.5 | 286 | 3.84 | 0 | su |
2018-01-25 | 29.8 | 25.7 | 34.6 | 29.6 | 2018-01-25T05:26 | 2018-01-25T17:56 | 16.93 | 4.9 | 0 | 22.2 | 53.6 | 280 | 3.56 | 0 | su |
2018-01-26 | 29.9 | 26 | 35.1 | 30.2 | 2018-01-26T05:26 | 2018-01-26T17:56 | 20.85 | 6.1 | 0 | 21.4 | 41.8 | 295 | 4.28 | 0 | su |
2018-01-27 | 30.8 | 25.8 | 35.1 | 29.8 | 2018-01-27T05:27 | 2018-01-27T17:56 | 18.97 | 5.6 | 0 | 23.5 | 54 | 292 | 4.2 | 0 | su |
2018-01-28 | 30.5 | 26 | 34.9 | 30.1 | 2018-01-28T05:27 | 2018-01-28T17:56 | 16.95 | 15.4 | 0 | 26.5 | 55.8 | 293 | 3.84 | 0 | su |
2018-01-29 | 30.5 | 26.4 | 35.3 | 30 | 2018-01-29T05:28 | 2018-01-29T17:56 | 16.61 | 6.3 | 0 | 24.7 | 51.5 | 288 | 3.83 | 0 | su |
2018-01-30 | 31.4 | 25.6 | 36.3 | 29.5 | 2018-01-30T05:28 | 2018-01-30T17:56 | 20.5 | 2.7 | 0 | 25 | 45.4 | 294 | 4.41 | 0 | su |
2018-01-31 | 30.1 | 25.1 | 34.7 | 28.1 | 2018-01-31T05:28 | 2018-01-31T17:56 | 18.62 | 5.7 | 0 | 22.4 | 53.3 | 294 | 3.98 | 0 | su |
2018-02-01 | 29.3 | 25.8 | 34.4 | 29.8 | 2018-02-01T05:28 | 2018-02-01T17:56 | 15.7 | 11.6 | 0 | 21.1 | 47.5 | 288 | 3.29 | 0 | su |
2018-02-02 | 30.7 | 25 | 36.4 | 29.2 | 2018-02-02T05:29 | 2018-02-02T17:56 | 20.67 | 9.1 | 0 | 18.8 | 45 | 287 | 4.22 | 0 | su |
2018-02-03 | 29.5 | 25.1 | 35 | 29.4 | 2018-02-03T05:29 | 2018-02-03T17:56 | 17.83 | 16.9 | 0 | 20.7 | 43.6 | 281 | 3.58 | 0 | su |
2018-02-04 | 31.3 | 25.2 | 37.1 | 30.3 | 2018-02-04T05:29 | 2018-02-04T17:56 | 21.86 | 6.5 | 0 | 16.7 | 36 | 276 | 4.45 | 0 | su |
2018-02-05 | 30.7 | 25.4 | 36.9 | 30.2 | 2018-02-05T05:30 | 2018-02-05T17:55 | 19.09 | 20.6 | 0 | 15.2 | 30.2 | 280 | 4.01 | 0 | su |
2018-02-06 | 30 | 24.8 | 33.7 | 28.5 | 2018-02-06T05:30 | 2018-02-06T17:55 | 12.84 | 0.5 | 0 | 19.8 | 36.7 | 280 | 3.04 | 0 | su |
2018-02-07 | 30.9 | 25 | 36 | 28.9 | 2018-02-07T05:30 | 2018-02-07T17:55 | 22.02 | 6.8 | 0 | 19.5 | 35.3 | 288 | 4.56 | 0 | su |
2018-02-08 | 28.4 | 24.9 | 32.7 | 29.2 | 2018-02-08T05:30 | 2018-02-08T17:55 | 12.03 | 5.9 | 0 | 16.9 | 31.3 | 284 | 2.52 | 0 | su |
2018-02-09 | 31.2 | 24.6 | 36.9 | 28.9 | 2018-02-09T05:31 | 2018-02-09T17:55 | 18.09 | 8.7 | 0 | 15.6 | 29.5 | 287 | 3.71 | 0 | su |
2018-02-10 | 31.1 | 24.6 | 37.8 | 29.3 | 2018-02-10T05:31 | 2018-02-10T17:55 | 20.97 | 3.8 | 0 | 11.2 | 23.4 | 286 | 4.34 | 0 | su |
2018-02-11 | 30.3 | 25.1 | 35.3 | 29.3 | 2018-02-11T05:31 | 2018-02-11T17:55 | 16.52 | 6.8 | 0 | 17.8 | 34.2 | 297 | 3.51 | 0 | su |
2018-02-12 | 29.8 | 25.1 | 33.9 | 29.3 | 2018-02-12T05:31 | 2018-02-12T17:54 | 17.23 | 3.6 | 0 | 22.2 | 39.6 | 285 | 3.78 | 0 | su |
2018-02-13 | 31 | 25.7 | 35.5 | 29.7 | 2018-02-13T05:31 | 2018-02-13T17:54 | 22.29 | 9.4 | 0 | 20.9 | 40 | 284 | 4.63 | 0 | su |
2018-02-14 | 31.8 | 25.2 | 36.2 | 29.1 | 2018-02-14T05:31 | 2018-02-14T17:54 | 16.53 | 1.1 | 0 | 19 | 36.7 | 286 | 3.87 | 0 | su |
2018-02-15 | 30.8 | 24.6 | 36.6 | 28 | 2018-02-15T05:32 | 2018-02-15T17:54 | 17.98 | 16.2 | 0 | 19.5 | 38.5 | 283 | 3.79 | 0 | su |
2018-02-16 | 29.7 | 24.5 | 33.8 | 28 | 2018-02-16T05:32 | 2018-02-16T17:53 | 15.45 | 4 | 0 | 21.3 | 42.5 | 285 | 3.48 | 0 | su |
2018-02-17 | 31.4 | 24.9 | 37 | 29 | 2018-02-17T05:32 | 2018-02-17T17:53 | 22.91 | 4.5 | 0 | 20.4 | 38.9 | 285 | 4.61 | 0 | su |
2018-02-18 | 31.5 | 25.5 | 37.1 | 30.4 | 2018-02-18T05:32 | 2018-02-18T17:53 | 20.83 | 0.8 | 0 | 14.3 | 28.8 | 288 | 4.33 | 0 | su |
2018-02-19 | 31.2 | 25.6 | 38.6 | 30.5 | 2018-02-19T05:32 | 2018-02-19T17:53 | 23.14 | 10 | 0 | 9 | 23 | 280 | 4.71 | 0 | su |
2018-02-20 | 31.9 | 25.2 | 39.5 | 30.2 | 2018-02-20T05:32 | 2018-02-20T17:52 | 21.02 | 12.4 | 0 | 11.6 | 27.4 | 288 | 4.29 | 0 | su |
2018-02-21 | 31.3 | 25.4 | 38.9 | 30.6 | 2018-02-21T05:32 | 2018-02-21T17:52 | 21.81 | 9.4 | 0 | 8.3 | 23 | 295 | 4.46 | 0 | su |
2018-02-22 | 31.4 | 25.1 | 38.5 | 29.6 | 2018-02-22T05:32 | 2018-02-22T17:52 | 17.87 | 9.4 | 0 | 7.5 | 20.5 | 266 | 3.76 | 0 | su |
2018-02-23 | 30.5 | 24.2 | 37 | 28.2 | 2018-02-23T05:32 | 2018-02-23T17:51 | 17.07 | 16.3 | 0 | 11.3 | 24.1 | 276 | 3.65 | 0 | su |
2018-02-24 | 28.7 | 25.5 | 34.3 | 30.6 | 2018-02-24T05:32 | 2018-02-24T17:51 | 14.93 | 9.7 | 0 | 11.5 | 24.5 | 292 | 3.04 | 0 | su |
2018-02-25 | 31 | 25 | 38 | 29.8 | 2018-02-25T05:32 | 2018-02-25T17:51 | 18.55 | 6.2 | 0 | 9.8 | 18 | 267 | 3.9 | 0 | su |
2018-02-26 | 29.1 | 25.2 | 35.4 | 29.8 | 2018-02-26T05:32 | 2018-02-26T17:50 | 15.89 | 6.3 | 0 | 9.7 | 21.2 | 269 | 3.28 | 0 | su |
2018-02-27 | 31.8 | 25 | 38.8 | 29.9 | 2018-02-27T05:33 | 2018-02-27T17:50 | 20.74 | 1 | 0 | 6.6 | 16.2 | 238 | 4.31 | 0 | su |
2018-02-28 | 30.3 | 25.8 | 38.1 | 31.5 | 2018-02-28T05:33 | 2018-02-28T17:50 | 22.82 | 3.6 | 0 | 9.4 | 20.2 | 276 | 4.6 | 0 | su |
2018-03-01 | 30.1 | 25.6 | 37.5 | 31.4 | 2018-03-01T05:33 | 2018-03-01T17:49 | 15.48 | 12.1 | 0 | 11.2 | 23.8 | 301 | 3.23 | 0 | su |
2018-03-02 | 32 | 26 | 39.6 | 31.1 | 2018-03-02T05:33 | 2018-03-02T17:49 | 22.36 | 2.4 | 0 | 10.3 | 20.9 | 288 | 4.63 | 0 | su |
2018-03-03 | 29.4 | 26.3 | 36 | 32.3 | 2018-03-03T05:33 | 2018-03-03T17:48 | 16.4 | 4.9 | 0 | 9.7 | 19.1 | 338 | 3.37 | 0 | su |
2018-03-04 | 32 | 25.8 | 40.3 | 31.1 | 2018-03-04T05:33 | 2018-03-04T17:48 | 20.9 | 5.2 | 0 | 6.2 | 23.8 | 253 | 4.35 | 0 | su |
2018-03-05 | 29.9 | 25.9 | 38.8 | 31.4 | 2018-03-05T05:33 | 2018-03-05T17:48 | 21.3 | 41.7 | 0 | 10.2 | 20.9 | 230 | 4.38 | 0 | su |
2018-03-06 | 32.1 | 25.1 | 39.8 | 30.7 | 2018-03-06T05:32 | 2018-03-06T17:47 | 23.06 | 2.8 | 0 | 10.3 | 21.6 | 278 | 4.88 | 0 | su |
2018-03-07 | 30.5 | 25.8 | 38.2 | 30.1 | 2018-03-07T05:32 | 2018-03-07T17:47 | 18.84 | 25.7 | 0 | 10.8 | 21.2 | 280 | 3.96 | 0 | su |
2018-03-08 | 31.6 | 25.3 | 38.5 | 29.9 | 2018-03-08T05:32 | 2018-03-08T17:46 | 17.98 | 10.4 | 0 | 12.5 | 27 | 281 | 3.78 | 0 | su |
2018-03-09 | 31.3 | 25.8 | 38.3 | 30.7 | 2018-03-09T05:32 | 2018-03-09T17:46 | 18.99 | 9 | 0 | 9.7 | 19.4 | 285 | 3.97 | 0 | su |
2018-03-10 | 31.6 | 25.5 | 38.5 | 30.2 | 2018-03-10T05:32 | 2018-03-10T17:45 | 19.88 | 13.1 | 0 | 10 | 19.4 | 274 | 4.14 | 0 | su |
2018-03-11 | 30 | 25.1 | 35.7 | 29.8 | 2018-03-11T05:32 | 2018-03-11T17:45 | 14.24 | 4.7 | 0 | 6.9 | 16.9 | 274 | 2.97 | 0 | su |
2018-03-12 | 29.1 | 26 | 36 | 31.5 | 2018-03-12T05:32 | 2018-03-12T17:44 | 15.88 | 21 | 0 | 7.5 | 19.8 | 239 | 3.31 | 0 | su |
2018-03-13 | 29.6 | 26 | 38.3 | 31 | 2018-03-13T05:32 | 2018-03-13T17:44 | 15.7 | 29.7 | 0 | 13.4 | 25.6 | 200 | 3.28 | 0 | su |
2018-03-14 | 31.8 | 25.3 | 38.5 | 30.5 | 2018-03-14T05:32 | 2018-03-14T17:43 | 19.81 | 8 | 0 | 8 | 22 | 263 | 4.2 | 0 | su |
2018-03-15 | 32.3 | 26.3 | 39.6 | 31.7 | 2018-03-15T05:32 | 2018-03-15T17:43 | 23.41 | 1 | 0 | 6 | 17.6 | 290 | 4.89 | 0 | su |
2018-03-16 | 31 | 25.8 | 38 | 31 | 2018-03-16T05:32 | 2018-03-16T17:43 | 20.88 | 8.8 | 0 | 7.9 | 22 | 270 | 4.38 | 0 | su |
2018-03-17 | 30.6 | 24.3 | 37.2 | 29.2 | 2018-03-17T05:32 | 2018-03-17T17:42 | 17.42 | 13.7 | 0 | 9.4 | 25.9 | 266 | 3.57 | 0 | su |
2018-03-18 | 31.7 | 24.3 | 39.2 | 29.4 | 2018-03-18T05:32 | 2018-03-18T17:42 | 20.52 | 5.6 | 0 | 8.3 | 23.8 | 139 | 4.32 | 0 | su |
2018-03-19 | 32.2 | 26.2 | 40.3 | 31.3 | 2018-03-19T05:32 | 2018-03-19T17:41 | 24.12 | 1.1 | 0 | 7.6 | 18.4 | 273 | 5.06 | 0 | su |
2018-03-20 | 32.9 | 26.3 | 39.7 | 31.6 | 2018-03-20T05:32 | 2018-03-20T17:41 | 25.21 | 0.6 | 0 | 10.4 | 20.5 | 299 | 5.35 | 0 | su |
2018-03-21 | 31.9 | 26.4 | 36.7 | 30.9 | 2018-03-21T05:31 | 2018-03-21T17:40 | 19.26 | 9.3 | 0 | 20 | 36.7 | 301 | 4.06 | 0 | su |
2018-03-22 | 30.3 | 25.8 | 34.8 | 30.3 | 2018-03-22T05:31 | 2018-03-22T17:40 | 11.01 | 8.6 | 0 | 18.4 | 35.3 | 293 | 2.59 | 0 | su |
2018-03-23 | 32 | 25 | 40 | 29.8 | 2018-03-23T05:31 | 2018-03-23T17:39 | 23.25 | 2.4 | 0 | 9 | 20.2 | 255 | 4.82 | 0 | su |
2018-03-24 | 31.6 | 26.9 | 39.2 | 32.9 | 2018-03-24T05:31 | 2018-03-24T17:39 | 19.85 | 4.4 | 0 | 7.3 | 21.6 | 270 | 4.13 | 0 | su |
2018-03-25 | 30.3 | 26.3 | 38.3 | 31.9 | 2018-03-25T05:31 | 2018-03-25T17:38 | 21.81 | 30.1 | 0 | 9.2 | 19.4 | 245 | 4.47 | 0 | su |
2018-03-26 | 31 | 25.5 | 38.4 | 31.1 | 2018-03-26T05:31 | 2018-03-26T17:38 | 17.22 | 3.4 | 0 | 6.6 | 18 | 282 | 3.63 | 0 | su |
2018-03-27 | 29.6 | 26.6 | 36.1 | 32.1 | 2018-03-27T05:31 | 2018-03-27T17:37 | 15.25 | 6.2 | 0 | 8.7 | 18.7 | 278 | 3.23 | 0 | su |
2018-03-28 | 32.5 | 26 | 39.5 | 31.3 | 2018-03-28T05:31 | 2018-03-28T17:37 | 21.96 | 3.2 | 0 | 8 | 20.5 | 285 | 4.61 | 0 | su |
2018-03-29 | 32.6 | 26.2 | 40.2 | 32.1 | 2018-03-29T05:31 | 2018-03-29T17:36 | 24 | 2.1 | 0 | 7.9 | 19.4 | 289 | 5.1 | 0 | su |
2018-03-30 | 31.5 | 26.5 | 39.1 | 31.6 | 2018-03-30T05:31 | 2018-03-30T17:36 | 22.09 | 4.3 | 0 | 11.9 | 23.4 | 286 | 4.58 | 0 | su |
2018-03-31 | 32.1 | 25.6 | 38.8 | 30.4 | 2018-03-31T05:30 | 2018-03-31T17:35 | 23.44 | 4.9 | 0 | 14.5 | 28.4 | 286 | 4.8 | 0 | su |
2018-04-01 | 32 | 25.8 | 40 | 31.2 | 2018-04-01T05:30 | 2018-04-01T17:35 | 21.72 | 5.3 | 0 | 13.8 | 29.2 | 269 | 4.5 | 0 | su |
2018-04-02 | 32.4 | 25.4 | 40.4 | 31.1 | 2018-04-02T05:30 | 2018-04-02T17:34 | 21.9 | 18.9 | 0 | 10.2 | 24.5 | 264 | 4.52 | 0 | su |
2018-04-03 | 31.7 | 25.3 | 39.2 | 30.5 | 2018-04-03T05:30 | 2018-04-03T17:34 | 20.96 | 4 | 0 | 7.2 | 22.3 | 285 | 4.38 | 0 | su |
2018-04-04 | 32.4 | 26 | 39.9 | 31.6 | 2018-04-04T05:30 | 2018-04-04T17:33 | 22.56 | 0.9 | 0 | 7.2 | 16.9 | 149 | 4.82 | 0 | su |
2018-04-05 | 33 | 27 | 40 | 32.7 | 2018-04-05T05:30 | 2018-04-05T17:33 | 23.39 | 0.3 | 0 | 11.1 | 17.3 | 128 | 5.16 | 0 | su |
2018-04-06 | 31.9 | 27.3 | 39.5 | 32.8 | 2018-04-06T05:30 | 2018-04-06T17:32 | 23.09 | 1.8 | 0 | 11.3 | 19.4 | 120 | 5 | 0 | su |
2018-04-07 | 31.5 | 26.3 | 38.3 | 31.6 | 2018-04-07T05:30 | 2018-04-07T17:32 | 20.09 | 5.3 | 0 | 12.8 | 26.3 | 104 | 4.32 | 0 | su |
2018-04-08 | 32 | 24.8 | 37.5 | 29.5 | 2018-04-08T05:30 | 2018-04-08T17:31 | 19.17 | 15.6 | 0 | 11.6 | 29.9 | 109 | 4.18 | 0 | su |
2018-04-09 | 32.3 | 26.6 | 38.2 | 32.1 | 2018-04-09T05:30 | 2018-04-09T17:31 | 19.59 | 4.3 | 0 | 11.3 | 31.3 | 126 | 4.21 | 0 | su |
2018-04-10 | 32.8 | 27.1 | 39 | 32.7 | 2018-04-10T05:29 | 2018-04-10T17:30 | 22.53 | 0 | 0 | 8.7 | 16.6 | 131 | 4.91 | 0 | su |
End of preview.
This repository contains the dataset of weather forecasting competition - Datavidia 2022
Deskripsi File
- train.csv - Data yang digunakan untuk melatih model berisi fitur-fitur dan target
- train_hourly.csv - Data tambahan berisi fitur-fitur untuk setiap jam
- test.csv - Data uji yang berisi fitur-fitur untuk prediksi target
- test_hourly.csv - Data tambahan berisi fitur-fitur untuk setiap jam pada tanggal-tanggal yang termasuk dalam test.csv
- sample_submission.csv - File berisi contoh submisi untuk kompetisi ini
Deskripsi Fitur
train.csv
- time – Tanggal pencatatan
- temperature_2m_max (°C) – Temperatur udara tertinggi pada ketinggian 2 m di atas permukaan
- temperature_2m_min (°C) – Temperatur udara terendah pada ketinggian 2 m di atas permukaan
- apparent_temperature_max (°C) – Temperatur semu maksimum yang terasa
- apparent_temperature_min (°C) – Temperatur semu minimum yang terasa
- sunrise (iso8601) – Waktu matahari terbit pada hari itu dengan format ISO 8601
- sunset (iso8601) – Waktu matahari tenggelam pada hari itu dengan format ISO 8601
- shortwave_radiation_sum (MJ/m²) – Total radiasi matahari pada hari tersebut
- rain_sum (mm) – Jumlah curah hujan pada hari tersebut
- snowfall_sum (cm) – Jumlah hujan salju pada hari tersebut
- windspeed_10m_max (km/h) – Kecepatan angin maksimum pada ketinggian 10 m
- windgusts_10m_max (km/h) - Kecepatan angin minimum pada ketinggian 10 m
- winddirection_10m_dominant (°) – Arah angin dominan pada hari tersebut
- et0_fao_evapotranspiration (mm) – Jumlah evaporasi dan transpirasi pada hari tersebut
- elevation – Ketinggian kota yang tercatat
- city – Nama kota yang tercatat
train_hourly.csv
- time – Tanggal dan jam pencatatan
- temperature_2m (°C) – Temperatur pada ketinggian 2 m
- relativehumidity_2m (%) – Kelembapan pada ketinggian 2 m
- dewpoint_2m (°C) – Titik embun; suhu ambang udara mengembun
- apparent_temperature (°C) – Temperatur semu yang dirasakan
- pressure_msl (hPa) – Tekanan udara pada ketinggian permukaan air laut rata-rata (mean sea level)
- surface_pressure (hPa) – Tekanan udara pada ketinggian permukaan daerah tersebut
- snowfall (cm) – Jumlah hujan salju pada jam tersebut
- cloudcover (%) – Persentase awan yang menutupi langit
- cloudcover_low (%) – Persentase cloud cover pada awan sampai ketinggian 2 km
- cloudcover_mid (%) – Persentase cloud cover pada ketinggian 2-6 km
- cloudcover_high (%) – Persentase cloud cover pada ketinggian di atas 6 km
- shortwave_radiation (W/m²) – Rata-rata energi pancaran matahari pada gelombang inframerah hingga ultraviolet
- direct_radiation (W/m²) – Rata-rata pancaran matahari langsung pada permukaan tanah seluas 1 m2
- diffuse_radiation (W/m²) – Rata-rata pancaran matahari yang dihamburkan oleh permukaan dan atmosfer
- direct_normal_irradiance (W/m²) – Rata-rata pancaran matahari langsung pada luas 1 m2 tegak lurus dengan arah pancaran
- windspeed_10m (km/h) – Kecepatan angin pada ketinggian 10 m
- windspeed_100m (km/h) – Kecepatan angin pada ketinggian 100 m
- winddirection_10m (°) – Arah angin pada ketinggian 10 m
- winddirection_100m (°) – Arah angin pada ketinggian 100 m
- windgusts_10m (km/h) – Kecepatan angin ketika terdapat angin kencang
- et0_fao_evapotranspiration (mm) – Jumlah evapotranspirasi (evaporasi dan transpirasi) pada jam tersebut
- vapor_pressure_deficit (kPa) – Perbedaan tekanan uap air dari udara dengan tekanan uap air ketika udara tersaturasi
- soil_temperature_0_to_7cm (°C) – Rata-rata temperatur tanah pada kedalaman 0-7 cm
- soil_temperature_7_to_28cm (°C) – Rata-rata temperatur tanah pada kedalaman 7-28 cm
- soil_temperature_28_to_100cm (°C) – Rata-rata temperatur tanah pada kedalaman 28-100 cm
- soil_temperature_100_to_255cm (°C) – Rata-rata temperatur tanah pada kedalaman 100-255 cm
- soil_moisture_0_to_7cm (m³/m³) – Rata-rata kelembapan air pada tanah untuk kedalaman 0-7 cm
- soil_moisture_7_to_28cm (m³/m³) – Rata-rata kelembapan air pada tanah untuk kedalaman 7-28 cm
- soil_moisture_28_to_100cm (m³/m³) – Rata-rata kelembapan air pada tanah untuk kedalaman 28-100 cm
- soil_moisture_100_to_255cm (m³/m³) – Rata-rata kelembapan air pada tanah untuk kedalaman 100-255 cm
- city – Nama kota
- Downloads last month
- 41