CustomerName
stringlengths
8
11
ProductName
stringclasses
100 values
PurchaseDate
stringclasses
365 values
AmountSpent
float64
10
500
CustomerID
int64
1
5k
ProductID
int64
1
100
Client_1527
Product_92
2024-12-18
444.54
1,527
92
Client_71
Product_74
2024-02-09
383.7
71
74
Client_2251
Product_43
2024-12-08
235.21
2,251
43
Client_820
Product_16
2024-05-09
73.98
820
16
Client_4789
Product_17
2024-05-25
463.31
4,789
17
Client_2585
Product_87
2024-04-10
267.74
2,585
87
Client_4570
Product_73
2024-07-12
281.35
4,570
73
Client_1323
Product_62
2024-10-30
364.32
1,323
62
Client_2469
Product_4
2024-09-01
264.75
2,469
4
Client_1688
Product_90
2024-07-09
417.97
1,688
90
Client_3573
Product_32
2024-12-04
472.02
3,573
32
Client_3566
Product_43
2024-01-14
245.39
3,566
43
Client_575
Product_93
2024-12-23
385.58
575
93
Client_4368
Product_51
2024-09-21
342.02
4,368
51
Client_2695
Product_1
2024-06-30
205.84
2,695
1
Client_3945
Product_89
2024-12-11
290.1
3,945
89
Client_231
Product_6
2024-08-25
266.59
231
6
Client_2161
Product_96
2024-10-07
464.49
2,161
96
Client_1628
Product_4
2024-10-06
362.25
1,628
4
Client_554
Product_73
2024-07-24
271.44
554
73
Client_4471
Product_27
2024-04-22
45.22
4,471
27
Client_2278
Product_62
2024-02-04
216.97
2,278
62
Client_1497
Product_26
2024-10-25
233.24
1,497
26
Client_686
Product_26
2024-08-27
57.9
686
26
Client_3733
Product_100
2024-10-22
185.19
3,733
100
Client_3720
Product_94
2024-01-17
24.77
3,720
94
Client_3089
Product_56
2024-12-06
122.38
3,089
56
Client_797
Product_19
2024-10-20
495.84
797
19
Client_1709
Product_41
2024-09-24
471.36
1,709
41
Client_4683
Product_78
2024-11-17
81.57
4,683
78
Client_3854
Product_85
2024-01-05
86.52
3,854
85
Client_3302
Product_5
2024-02-09
370.72
3,302
5
Client_3776
Product_37
2024-06-15
255.78
3,776
37
Client_525
Product_70
2024-10-30
143.26
525
70
Client_4843
Product_32
2024-08-10
265.46
4,843
32
Client_1881
Product_22
2024-09-26
438.97
1,881
22
Client_354
Product_27
2024-11-13
91.05
354
27
Client_3111
Product_77
2024-11-13
255.85
3,111
77
Client_2522
Product_93
2024-10-13
374.32
2,522
93
Client_4754
Product_78
2024-09-01
325.11
4,754
78
Client_1204
Product_41
2024-11-15
184.51
1,204
41
Client_3998
Product_5
2024-03-04
372.53
3,998
5
Client_3113
Product_85
2024-12-16
497.41
3,113
85
Client_75
Product_7
2024-03-26
209.1
75
7
Client_4144
Product_54
2024-01-24
393.07
4,144
54
Client_175
Product_44
2024-08-11
432.91
175
44
Client_1013
Product_4
2024-05-28
43.51
1,013
4
Client_2168
Product_15
2024-11-07
250.76
2,168
15
Client_1622
Product_12
2024-03-01
305.96
1,622
12
Client_2330
Product_89
2024-02-02
193.85
2,330
89
Client_3062
Product_70
2024-07-26
174.34
3,062
70
Client_2235
Product_45
2024-07-27
396.76
2,235
45
Client_3697
Product_85
2024-05-04
263.9
3,697
85
Client_152
Product_40
2024-11-20
187.35
152
40
Client_4422
Product_43
2024-04-12
437.1
4,422
43
Client_3509
Product_42
2024-08-22
107.69
3,509
42
Client_3992
Product_89
2024-03-31
28.05
3,992
89
Client_4213
Product_67
2024-08-30
14.53
4,213
67
Client_1275
Product_4
2024-02-11
304.43
1,275
4
Client_582
Product_74
2024-02-12
295.8
582
74
Client_3743
Product_25
2024-07-07
113.86
3,743
25
Client_695
Product_55
2024-07-08
346.23
695
55
Client_1711
Product_84
2024-05-02
238.98
1,711
84
Client_993
Product_31
2024-02-04
89.07
993
31
Client_3660
Product_41
2024-10-21
359.77
3,660
41
Client_2976
Product_46
2024-05-30
77.43
2,976
46
Client_4989
Product_40
2024-12-04
211.98
4,989
40
Client_1153
Product_50
2024-02-05
102.57
1,153
50
Client_1727
Product_10
2024-03-15
67.32
1,727
10
Client_2115
Product_19
2024-04-11
439.67
2,115
19
Client_2075
Product_98
2024-11-05
448.25
2,075
98
Client_2216
Product_79
2024-06-27
150.83
2,216
79
Client_4645
Product_33
2024-06-29
444.83
4,645
33
Client_2778
Product_19
2024-02-11
376.47
2,778
19
Client_1269
Product_84
2024-03-10
228.94
1,269
84
Client_4068
Product_97
2024-04-03
419.06
4,068
97
Client_1027
Product_23
2024-02-22
376.54
1,027
23
Client_1909
Product_68
2024-05-02
481.21
1,909
68
Client_4588
Product_44
2024-03-05
370.89
4,588
44
Client_4586
Product_10
2024-11-02
31.75
4,586
10
Client_1424
Product_26
2024-04-24
87.13
1,424
26
Client_4286
Product_51
2024-07-27
271.69
4,286
51
Client_3162
Product_45
2024-08-24
219.96
3,162
45
Client_4446
Product_11
2024-12-22
372.47
4,446
11
Client_4878
Product_84
2024-04-14
19.53
4,878
84
Client_4301
Product_21
2024-05-24
394.39
4,301
21
Client_4709
Product_48
2024-02-16
366.49
4,709
48
Client_4530
Product_45
2024-09-24
147.79
4,530
45
Client_2960
Product_83
2024-08-21
365.77
2,960
83
Client_4668
Product_22
2024-12-04
484.07
4,668
22
Client_3642
Product_2
2024-01-07
51.5
3,642
2
Client_4931
Product_100
2024-09-17
426.68
4,931
100
Client_3863
Product_99
2024-09-20
434.52
3,863
99
Client_1068
Product_25
2024-07-29
300.6
1,068
25
Client_2349
Product_5
2024-08-25
426.6
2,349
5
Client_4521
Product_24
2024-10-08
101.34
4,521
24
Client_119
Product_64
2024-05-10
159.37
119
64
Client_3193
Product_91
2024-03-28
127.31
3,193
91
Client_1469
Product_58
2024-09-09
472.73
1,469
58
Client_4080
Product_43
2024-11-21
474.47
4,080
43

Purchase Recommendation Dataset

Overview

This dataset contains synthetic purchase records of 5,000 customers from a tech retail shop over the course of one year (2024). It is designed to support tasks like sequential product recommendation, customer behavior analysis, and predictive modeling for marketing strategies.

Key Features:

  • Customers: 5,000 unique customers with randomly generated identifiers.
  • Products: 100 unique products purchased by customers.
  • Timeframe: Purchase records span from January 1, 2024, to December 31, 2024.
  • Interactions: 50,000 purchase records with details on the amount spent per transaction.

Dataset Details

Columns:

  1. CustomerName: The name of the customer (synthetically generated).
  2. ProductName: The name of the product purchased (e.g., Product_1, Product_2).
  3. PurchaseDate: The date of the transaction (YYYY-MM-DD format).
  4. AmountSpent: The monetary value spent on the transaction (in USD).
  5. CustomerID: A unique numerical identifier for each customer.
  6. ProductID: A unique numerical identifier for each product.

Example Rows:

CustomerName ProductName PurchaseDate AmountSpent CustomerID ProductID
Client_1 Product_10 2024-01-15 125.50 1 10
Client_2 Product_20 2024-02-10 89.99 2 20

Usage

Applications

This dataset is suitable for:

  • Sequential Recommendations: Predicting the next product a customer might purchase.
  • Customer Segmentation: Analyzing purchasing behaviors to group customers based on spending patterns or product preferences.
  • Predictive Analytics: Building machine learning models for sales forecasting or personalized marketing.

How to Use

  1. Load the Dataset:
    import pandas as pd
    
    # Load dataset
    df = pd.read_csv("path/to/demos_retail_cust_purchases.csv")
    
  2. Exploration:
    print(df.head())
    print(df.info())
    
  3. Sequential Modeling: Create input-output pairs for predicting the next purchase based on historical transactions.

Dataset Statistics

  • Number of Records: 50,000
  • Number of Customers: 5,000
  • Number of Products: 100
  • Date Range: January 1, 2024 - December 31, 2024

Licensing

This dataset is provided under the Creative Commons Attribution 4.0 International (CC BY 4.0) license. Users are free to share and adapt the dataset, provided proper attribution is given.

Citation

If you use this dataset in your research or projects, please cite as:

@dataset{purchase_recommendation_2024,
  title={Purchase Recommendation Dataset},
  author={Synthetic Data Generator},
  year={2024},
  url={https://huggingface.co/datasets/your-dataset-name}
}

Acknowledgements

This dataset was synthetically generated using Python libraries like faker and pandas. Special thanks to the open-source community for providing the tools to generate and share data.

Contact

For questions or issues, please reach out to [Your Name/Organization] at [Your Email or Contact Info].

Downloads last month
41

Space using eoroot1974/demos_d_retail_cust_purchases 1