CustomerName
stringlengths 8
11
| ProductName
stringclasses 100
values | PurchaseDate
stringclasses 365
values | AmountSpent
float64 10
500
| CustomerID
int64 1
5k
| ProductID
int64 1
100
|
---|---|---|---|---|---|
Client_1527 | Product_92 | 2024-12-18 | 444.54 | 1,527 | 92 |
Client_71 | Product_74 | 2024-02-09 | 383.7 | 71 | 74 |
Client_2251 | Product_43 | 2024-12-08 | 235.21 | 2,251 | 43 |
Client_820 | Product_16 | 2024-05-09 | 73.98 | 820 | 16 |
Client_4789 | Product_17 | 2024-05-25 | 463.31 | 4,789 | 17 |
Client_2585 | Product_87 | 2024-04-10 | 267.74 | 2,585 | 87 |
Client_4570 | Product_73 | 2024-07-12 | 281.35 | 4,570 | 73 |
Client_1323 | Product_62 | 2024-10-30 | 364.32 | 1,323 | 62 |
Client_2469 | Product_4 | 2024-09-01 | 264.75 | 2,469 | 4 |
Client_1688 | Product_90 | 2024-07-09 | 417.97 | 1,688 | 90 |
Client_3573 | Product_32 | 2024-12-04 | 472.02 | 3,573 | 32 |
Client_3566 | Product_43 | 2024-01-14 | 245.39 | 3,566 | 43 |
Client_575 | Product_93 | 2024-12-23 | 385.58 | 575 | 93 |
Client_4368 | Product_51 | 2024-09-21 | 342.02 | 4,368 | 51 |
Client_2695 | Product_1 | 2024-06-30 | 205.84 | 2,695 | 1 |
Client_3945 | Product_89 | 2024-12-11 | 290.1 | 3,945 | 89 |
Client_231 | Product_6 | 2024-08-25 | 266.59 | 231 | 6 |
Client_2161 | Product_96 | 2024-10-07 | 464.49 | 2,161 | 96 |
Client_1628 | Product_4 | 2024-10-06 | 362.25 | 1,628 | 4 |
Client_554 | Product_73 | 2024-07-24 | 271.44 | 554 | 73 |
Client_4471 | Product_27 | 2024-04-22 | 45.22 | 4,471 | 27 |
Client_2278 | Product_62 | 2024-02-04 | 216.97 | 2,278 | 62 |
Client_1497 | Product_26 | 2024-10-25 | 233.24 | 1,497 | 26 |
Client_686 | Product_26 | 2024-08-27 | 57.9 | 686 | 26 |
Client_3733 | Product_100 | 2024-10-22 | 185.19 | 3,733 | 100 |
Client_3720 | Product_94 | 2024-01-17 | 24.77 | 3,720 | 94 |
Client_3089 | Product_56 | 2024-12-06 | 122.38 | 3,089 | 56 |
Client_797 | Product_19 | 2024-10-20 | 495.84 | 797 | 19 |
Client_1709 | Product_41 | 2024-09-24 | 471.36 | 1,709 | 41 |
Client_4683 | Product_78 | 2024-11-17 | 81.57 | 4,683 | 78 |
Client_3854 | Product_85 | 2024-01-05 | 86.52 | 3,854 | 85 |
Client_3302 | Product_5 | 2024-02-09 | 370.72 | 3,302 | 5 |
Client_3776 | Product_37 | 2024-06-15 | 255.78 | 3,776 | 37 |
Client_525 | Product_70 | 2024-10-30 | 143.26 | 525 | 70 |
Client_4843 | Product_32 | 2024-08-10 | 265.46 | 4,843 | 32 |
Client_1881 | Product_22 | 2024-09-26 | 438.97 | 1,881 | 22 |
Client_354 | Product_27 | 2024-11-13 | 91.05 | 354 | 27 |
Client_3111 | Product_77 | 2024-11-13 | 255.85 | 3,111 | 77 |
Client_2522 | Product_93 | 2024-10-13 | 374.32 | 2,522 | 93 |
Client_4754 | Product_78 | 2024-09-01 | 325.11 | 4,754 | 78 |
Client_1204 | Product_41 | 2024-11-15 | 184.51 | 1,204 | 41 |
Client_3998 | Product_5 | 2024-03-04 | 372.53 | 3,998 | 5 |
Client_3113 | Product_85 | 2024-12-16 | 497.41 | 3,113 | 85 |
Client_75 | Product_7 | 2024-03-26 | 209.1 | 75 | 7 |
Client_4144 | Product_54 | 2024-01-24 | 393.07 | 4,144 | 54 |
Client_175 | Product_44 | 2024-08-11 | 432.91 | 175 | 44 |
Client_1013 | Product_4 | 2024-05-28 | 43.51 | 1,013 | 4 |
Client_2168 | Product_15 | 2024-11-07 | 250.76 | 2,168 | 15 |
Client_1622 | Product_12 | 2024-03-01 | 305.96 | 1,622 | 12 |
Client_2330 | Product_89 | 2024-02-02 | 193.85 | 2,330 | 89 |
Client_3062 | Product_70 | 2024-07-26 | 174.34 | 3,062 | 70 |
Client_2235 | Product_45 | 2024-07-27 | 396.76 | 2,235 | 45 |
Client_3697 | Product_85 | 2024-05-04 | 263.9 | 3,697 | 85 |
Client_152 | Product_40 | 2024-11-20 | 187.35 | 152 | 40 |
Client_4422 | Product_43 | 2024-04-12 | 437.1 | 4,422 | 43 |
Client_3509 | Product_42 | 2024-08-22 | 107.69 | 3,509 | 42 |
Client_3992 | Product_89 | 2024-03-31 | 28.05 | 3,992 | 89 |
Client_4213 | Product_67 | 2024-08-30 | 14.53 | 4,213 | 67 |
Client_1275 | Product_4 | 2024-02-11 | 304.43 | 1,275 | 4 |
Client_582 | Product_74 | 2024-02-12 | 295.8 | 582 | 74 |
Client_3743 | Product_25 | 2024-07-07 | 113.86 | 3,743 | 25 |
Client_695 | Product_55 | 2024-07-08 | 346.23 | 695 | 55 |
Client_1711 | Product_84 | 2024-05-02 | 238.98 | 1,711 | 84 |
Client_993 | Product_31 | 2024-02-04 | 89.07 | 993 | 31 |
Client_3660 | Product_41 | 2024-10-21 | 359.77 | 3,660 | 41 |
Client_2976 | Product_46 | 2024-05-30 | 77.43 | 2,976 | 46 |
Client_4989 | Product_40 | 2024-12-04 | 211.98 | 4,989 | 40 |
Client_1153 | Product_50 | 2024-02-05 | 102.57 | 1,153 | 50 |
Client_1727 | Product_10 | 2024-03-15 | 67.32 | 1,727 | 10 |
Client_2115 | Product_19 | 2024-04-11 | 439.67 | 2,115 | 19 |
Client_2075 | Product_98 | 2024-11-05 | 448.25 | 2,075 | 98 |
Client_2216 | Product_79 | 2024-06-27 | 150.83 | 2,216 | 79 |
Client_4645 | Product_33 | 2024-06-29 | 444.83 | 4,645 | 33 |
Client_2778 | Product_19 | 2024-02-11 | 376.47 | 2,778 | 19 |
Client_1269 | Product_84 | 2024-03-10 | 228.94 | 1,269 | 84 |
Client_4068 | Product_97 | 2024-04-03 | 419.06 | 4,068 | 97 |
Client_1027 | Product_23 | 2024-02-22 | 376.54 | 1,027 | 23 |
Client_1909 | Product_68 | 2024-05-02 | 481.21 | 1,909 | 68 |
Client_4588 | Product_44 | 2024-03-05 | 370.89 | 4,588 | 44 |
Client_4586 | Product_10 | 2024-11-02 | 31.75 | 4,586 | 10 |
Client_1424 | Product_26 | 2024-04-24 | 87.13 | 1,424 | 26 |
Client_4286 | Product_51 | 2024-07-27 | 271.69 | 4,286 | 51 |
Client_3162 | Product_45 | 2024-08-24 | 219.96 | 3,162 | 45 |
Client_4446 | Product_11 | 2024-12-22 | 372.47 | 4,446 | 11 |
Client_4878 | Product_84 | 2024-04-14 | 19.53 | 4,878 | 84 |
Client_4301 | Product_21 | 2024-05-24 | 394.39 | 4,301 | 21 |
Client_4709 | Product_48 | 2024-02-16 | 366.49 | 4,709 | 48 |
Client_4530 | Product_45 | 2024-09-24 | 147.79 | 4,530 | 45 |
Client_2960 | Product_83 | 2024-08-21 | 365.77 | 2,960 | 83 |
Client_4668 | Product_22 | 2024-12-04 | 484.07 | 4,668 | 22 |
Client_3642 | Product_2 | 2024-01-07 | 51.5 | 3,642 | 2 |
Client_4931 | Product_100 | 2024-09-17 | 426.68 | 4,931 | 100 |
Client_3863 | Product_99 | 2024-09-20 | 434.52 | 3,863 | 99 |
Client_1068 | Product_25 | 2024-07-29 | 300.6 | 1,068 | 25 |
Client_2349 | Product_5 | 2024-08-25 | 426.6 | 2,349 | 5 |
Client_4521 | Product_24 | 2024-10-08 | 101.34 | 4,521 | 24 |
Client_119 | Product_64 | 2024-05-10 | 159.37 | 119 | 64 |
Client_3193 | Product_91 | 2024-03-28 | 127.31 | 3,193 | 91 |
Client_1469 | Product_58 | 2024-09-09 | 472.73 | 1,469 | 58 |
Client_4080 | Product_43 | 2024-11-21 | 474.47 | 4,080 | 43 |
Purchase Recommendation Dataset
Overview
This dataset contains synthetic purchase records of 5,000 customers from a tech retail shop over the course of one year (2024). It is designed to support tasks like sequential product recommendation, customer behavior analysis, and predictive modeling for marketing strategies.
Key Features:
- Customers: 5,000 unique customers with randomly generated identifiers.
- Products: 100 unique products purchased by customers.
- Timeframe: Purchase records span from January 1, 2024, to December 31, 2024.
- Interactions: 50,000 purchase records with details on the amount spent per transaction.
Dataset Details
Columns:
- CustomerName: The name of the customer (synthetically generated).
- ProductName: The name of the product purchased (e.g.,
Product_1
,Product_2
). - PurchaseDate: The date of the transaction (YYYY-MM-DD format).
- AmountSpent: The monetary value spent on the transaction (in USD).
- CustomerID: A unique numerical identifier for each customer.
- ProductID: A unique numerical identifier for each product.
Example Rows:
CustomerName | ProductName | PurchaseDate | AmountSpent | CustomerID | ProductID |
---|---|---|---|---|---|
Client_1 | Product_10 | 2024-01-15 | 125.50 | 1 | 10 |
Client_2 | Product_20 | 2024-02-10 | 89.99 | 2 | 20 |
Usage
Applications
This dataset is suitable for:
- Sequential Recommendations: Predicting the next product a customer might purchase.
- Customer Segmentation: Analyzing purchasing behaviors to group customers based on spending patterns or product preferences.
- Predictive Analytics: Building machine learning models for sales forecasting or personalized marketing.
How to Use
- Load the Dataset:
import pandas as pd # Load dataset df = pd.read_csv("path/to/demos_retail_cust_purchases.csv")
- Exploration:
print(df.head()) print(df.info())
- Sequential Modeling: Create input-output pairs for predicting the next purchase based on historical transactions.
Dataset Statistics
- Number of Records: 50,000
- Number of Customers: 5,000
- Number of Products: 100
- Date Range: January 1, 2024 - December 31, 2024
Licensing
This dataset is provided under the Creative Commons Attribution 4.0 International (CC BY 4.0) license. Users are free to share and adapt the dataset, provided proper attribution is given.
Citation
If you use this dataset in your research or projects, please cite as:
@dataset{purchase_recommendation_2024,
title={Purchase Recommendation Dataset},
author={Synthetic Data Generator},
year={2024},
url={https://huggingface.co/datasets/your-dataset-name}
}
Acknowledgements
This dataset was synthetically generated using Python libraries like faker
and pandas
. Special thanks to the open-source community for providing the tools to generate and share data.
Contact
For questions or issues, please reach out to [Your Name/Organization] at [Your Email or Contact Info].
- Downloads last month
- 41