File size: 25,829 Bytes
a7f79c1 a5bd49c a7f79c1 a5bd49c a7f79c1 a5bd49c a7f79c1 a5bd49c a7f79c1 a5bd49c a7f79c1 a5bd49c a7f79c1 a5bd49c a7f79c1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 |
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""The Sequence labellIng evaLuatIon benChmark fOr spoken laNguagE (SILICONE) benchmark."""
import textwrap
import pandas as pd
import datasets
_SILICONE_CITATION = """\
@inproceedings{chapuis-etal-2020-hierarchical,
title = "Hierarchical Pre-training for Sequence Labelling in Spoken Dialog",
author = "Chapuis, Emile and
Colombo, Pierre and
Manica, Matteo and
Labeau, Matthieu and
Clavel, Chlo{\'e}",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/2020.findings-emnlp.239",
doi = "10.18653/v1/2020.findings-emnlp.239",
pages = "2636--2648",
abstract = "Sequence labelling tasks like Dialog Act and Emotion/Sentiment identification are a
key component of spoken dialog systems. In this work, we propose a new approach to learn
generic representations adapted to spoken dialog, which we evaluate on a new benchmark we
call Sequence labellIng evaLuatIon benChmark fOr spoken laNguagE benchmark (SILICONE).
SILICONE is model-agnostic and contains 10 different datasets of various sizes.
We obtain our representations with a hierarchical encoder based on transformer architectures,
for which we extend two well-known pre-training objectives. Pre-training is performed on
OpenSubtitles: a large corpus of spoken dialog containing over 2.3 billion of tokens. We
demonstrate how hierarchical encoders achieve competitive results with consistently fewer
parameters compared to state-of-the-art models and we show their importance for both
pre-training and fine-tuning.",
}
"""
_SILICONE_DESCRIPTION = """\
The Sequence labellIng evaLuatIon benChmark fOr spoken laNguagE (SILICONE) benchmark is a collection
of resources for training, evaluating, and analyzing natural language understanding systems
specifically designed for spoken language. All datasets are in the English language and cover a
variety of domains including daily life, scripted scenarios, joint task completion, phone call
conversations, and televsion dialogue. Some datasets additionally include emotion and/or sentimant
labels.
"""
_URL = "https://raw.githubusercontent.com/eusip/SILICONE-benchmark/main"
SWDA_DA_DESCRIPTION = {
"sd": "Statement-non-opinion",
"b": "Acknowledge (Backchannel)",
"sv": "Statement-opinion",
"%": "Uninterpretable",
"aa": "Agree/Accept",
"ba": "Appreciation",
"fc": "Conventional-closing",
"qw": "Wh-Question",
"nn": "No Answers",
"bk": "Response Acknowledgement",
"h": "Hedge",
"qy^d": "Declarative Yes-No-Question",
"bh": "Backchannel in Question Form",
"^q": "Quotation",
"bf": "Summarize/Reformulate",
'fo_o_fw_"_by_bc': "Other",
'fo_o_fw_by_bc_"': "Other",
"na": "Affirmative Non-yes Answers",
"ad": "Action-directive",
"^2": "Collaborative Completion",
"b^m": "Repeat-phrase",
"qo": "Open-Question",
"qh": "Rhetorical-Question",
"^h": "Hold Before Answer/Agreement",
"ar": "Reject",
"ng": "Negative Non-no Answers",
"br": "Signal-non-understanding",
"no": "Other Answers",
"fp": "Conventional-opening",
"qrr": "Or-Clause",
"arp_nd": "Dispreferred Answers",
"t3": "3rd-party-talk",
"oo_co_cc": "Offers, Options Commits",
"aap_am": "Maybe/Accept-part",
"t1": "Downplayer",
"bd": "Self-talk",
"^g": "Tag-Question",
"qw^d": "Declarative Wh-Question",
"fa": "Apology",
"ft": "Thanking",
"+": "Unknown",
"x": "Unknown",
"ny": "Unknown",
"sv_fx": "Unknown",
"qy_qr": "Unknown",
"ba_fe": "Unknown",
}
MRDA_DA_DESCRIPTION = {
"s": "Statement/Subjective Statement",
"d": "Declarative Question",
"b": "Backchannel",
"f": '"Follow-me"',
"q": "Question",
}
IEMOCAP_E_DESCRIPTION = {
"ang": "Anger",
"dis": "Disgust",
"exc": "Excitement",
"fea": "Fear",
"fru": "Frustration",
"hap": "Happiness",
"neu": "Neutral",
"oth": "Other",
"sad": "Sadness",
"sur": "Surprise",
"xxx": "Unknown",
}
class SiliconeConfig(datasets.BuilderConfig):
"""BuilderConfig for SILICONE."""
def __init__(
self,
text_features,
label_column,
data_url,
citation,
url,
label_classes=None,
**kwargs,
):
"""BuilderConfig for SILICONE.
Args:
text_features: `dict[string, string]`, map from the name of the feature
dict for each text field to the name of the column in the tsv file
label_column: `string`, name of the column in the csv/txt file corresponding
to the label
data_url: `string`, url to download the csv/text file from
citation: `string`, citation for the data set
url: `string`, url for information about the data set
label_classes: `list[string]`, the list of classes if the label is
categorical. If not provided, then the label will be of type
`datasets.Value('float32')`.
**kwargs: keyword arguments forwarded to super.
"""
super(SiliconeConfig, self).__init__(version=datasets.Version("1.0.0", ""), **kwargs)
self.text_features = text_features
self.label_column = label_column
self.label_classes = label_classes
self.data_url = data_url
self.citation = citation
self.url = url
class Silicone(datasets.GeneratorBasedBuilder):
"""The Sequence labellIng evaLuatIon benChmark fOr spoken laNguagE (SILICONE) benchmark."""
BUILDER_CONFIGS = [
SiliconeConfig(
name="dyda_da",
description=textwrap.dedent(
"""\
The DailyDialog Act Corpus contains multi-turn dialogues and is supposed to reflect daily
communication by covering topics about daily life. The dataset is manually labelled with
dialog act and emotions. It is the third biggest corpus of SILICONE with 102k utterances."""
),
text_features={
"Utterance": "Utterance",
"Dialogue_Act": "Dialogue_Act",
"Dialogue_ID": "Dialogue_ID",
},
label_classes=["commissive", "directive", "inform", "question"],
label_column="Dialogue_Act",
data_url={
"train": _URL + "/dyda/train.csv",
"dev": _URL + "/dyda/dev.csv",
"test": _URL + "/dyda/test.csv",
},
citation=textwrap.dedent(
"""\
@InProceedings{li2017dailydialog,
author = {Li, Yanran and Su, Hui and Shen, Xiaoyu and Li, Wenjie and Cao, Ziqiang and Niu, Shuzi},
title = {DailyDialog: A Manually Labelled Multi-turn Dialogue Dataset},
booktitle = {Proceedings of The 8th International Joint Conference on Natural Language Processing (IJCNLP 2017)},
year = {2017}
}"""
),
url="http://yanran.li/dailydialog.html",
),
SiliconeConfig(
name="dyda_e",
description=textwrap.dedent(
"""\
The DailyDialog Act Corpus contains multi-turn dialogues and is supposed to reflect daily
communication by covering topics about daily life. The dataset is manually labelled with
dialog act and emotions. It is the third biggest corpus of SILICONE with 102k utterances."""
),
text_features={
"Utterance": "Utterance",
"Emotion": "Emotion",
"Dialogue_ID": "Dialogue_ID",
},
label_classes=["anger", "disgust", "fear", "happiness", "no emotion", "sadness", "surprise"],
label_column="Emotion",
data_url={
"train": _URL + "/dyda/train.csv",
"dev": _URL + "/dyda/dev.csv",
"test": _URL + "/dyda/test.csv",
},
citation=textwrap.dedent(
"""\
@InProceedings{li2017dailydialog,
author = {Li, Yanran and Su, Hui and Shen, Xiaoyu and Li, Wenjie and Cao, Ziqiang and Niu, Shuzi},
title = {DailyDialog: A Manually Labelled Multi-turn Dialogue Dataset},
booktitle = {Proceedings of The 8th International Joint Conference on Natural Language Processing (IJCNLP 2017)},
year = {2017}
}"""
),
url="http://yanran.li/dailydialog.html",
),
SiliconeConfig(
name="iemocap",
description=textwrap.dedent(
"""\
The IEMOCAP database is a multi-modal database of ten speakers. It consists of dyadic
sessions where actors perform improvisations or scripted scenarios. Emotion categories
are: anger, happiness, sadness, neutral, excitement, frustration, fear, surprise, and other.
There is no official split of this dataset."""
),
text_features={
"Dialogue_ID": "Dialogue_ID",
"Utterance_ID": "Utterance_ID",
"Utterance": "Utterance",
"Emotion": "Emotion",
},
label_classes=list(IEMOCAP_E_DESCRIPTION.keys()),
label_column="Emotion",
data_url={
"train": _URL + "/iemocap/train.csv",
"dev": _URL + "/iemocap/dev.csv",
"test": _URL + "/iemocap/test.csv",
},
citation=textwrap.dedent(
"""\
@article{busso2008iemocap,
title={IEMOCAP: Interactive emotional dyadic motion capture database},
author={Busso, Carlos and Bulut, Murtaza and Lee, Chi-Chun and Kazemzadeh, Abe and Mower,
Emily and Kim, Samuel and Chang, Jeannette N and Lee, Sungbok and Narayanan, Shrikanth S},
journal={Language resources and evaluation},
volume={42},
number={4},
pages={335},
year={2008},
publisher={Springer}
}"""
),
url="https://sail.usc.edu/iemocap/",
),
SiliconeConfig(
name="maptask",
description=textwrap.dedent(
"""\
The HCRC MapTask Corpus was constructed through the verbal collaboration of participants
in order to construct a map route. This corpus is small (27k utterances). As there is
no standard train/dev/test split performance depends on the split."""
),
text_features={
"Speaker": "Speaker",
"Utterance": "Utterance",
"Dialogue_Act": "Dialogue_Act",
},
label_classes=[
"acknowledge",
"align",
"check",
"clarify",
"explain",
"instruct",
"query_w",
"query_yn",
"ready",
"reply_n",
"reply_w",
"reply_y",
],
label_column="Dialogue_Act",
data_url={
"train": _URL + "/maptask/train.txt",
"dev": _URL + "/maptask/dev.txt",
"test": _URL + "/maptask/test.txt",
},
citation=textwrap.dedent(
"""\
@inproceedings{thompson1993hcrc,
title={The HCRC map task corpus: natural dialogue for speech recognition},
author={Thompson, Henry S and Anderson, Anne H and Bard, Ellen Gurman and Doherty-Sneddon,
Gwyneth and Newlands, Alison and Sotillo, Cathy},
booktitle={HUMAN LANGUAGE TECHNOLOGY: Proceedings of a Workshop Held at Plainsboro, New Jersey, March 21-24, 1993},
year={1993}
}"""
),
url="http://groups.inf.ed.ac.uk/maptask/",
),
SiliconeConfig(
name="meld_e",
description=textwrap.dedent(
"""\
The Multimodal EmotionLines Dataset enhances and extends the EmotionLines dataset where
multiple speakers participate in the dialogue."""
),
text_features={
"Utterance": "Utterance",
"Speaker": "Speaker",
"Emotion": "Emotion",
"Dialogue_ID": "Dialogue_ID",
"Utterance_ID": "Utterance_ID",
},
label_classes=["anger", "disgust", "fear", "joy", "neutral", "sadness", "surprise"],
label_column="Emotion",
data_url={
"train": _URL + "/meld/train.csv",
"dev": _URL + "/meld/dev.csv",
"test": _URL + "/meld/test.csv",
},
citation=textwrap.dedent(
"""\
@article{chen2018emotionlines,
title={Emotionlines: An emotion corpus of multi-party conversations},
author={Chen, Sheng-Yeh and Hsu, Chao-Chun and Kuo, Chuan-Chun and Ku, Lun-Wei and others},
journal={arXiv preprint arXiv:1802.08379},
year={2018}
}"""
),
url="https://affective-meld.github.io/",
),
SiliconeConfig(
name="meld_s",
description=textwrap.dedent(
"""\
The Multimodal EmotionLines Dataset enhances and extends the EmotionLines dataset where
multiple speakers participate in the dialogue."""
),
text_features={
"Utterance": "Utterance",
"Speaker": "Speaker",
"Sentiment": "Sentiment",
"Dialogue_ID": "Dialogue_ID",
"Utterance_ID": "Utterance_ID",
},
label_classes=["negative", "neutral", "positive"],
label_column="Sentiment",
data_url={
"train": _URL + "/meld/train.csv",
"dev": _URL + "/meld/dev.csv",
"test": _URL + "/meld/test.csv",
},
citation=textwrap.dedent(
"""\
@article{chen2018emotionlines,
title={Emotionlines: An emotion corpus of multi-party conversations},
author={Chen, Sheng-Yeh and Hsu, Chao-Chun and Kuo, Chuan-Chun and Ku, Lun-Wei and others},
journal={arXiv preprint arXiv:1802.08379},
year={2018}
}"""
),
url="https://affective-meld.github.io/",
),
SiliconeConfig(
name="mrda",
description=textwrap.dedent(
"""\
ICSI MRDA Corpus consist of transcripts of multi-party meetings hand-annotated with dialog
acts. It is the second biggest dataset with around 110k utterances."""
),
text_features={
"Utterance_ID": "Utterance_ID",
"Dialogue_Act": "Dialogue_Act",
"Channel_ID": "Channel_ID",
"Speaker": "Speaker",
"Dialogue_ID": "Dialogue_ID",
"Utterance": "Utterance",
},
label_classes=list(MRDA_DA_DESCRIPTION.keys()),
label_column="Dialogue_Act",
data_url={
"train": _URL + "/mrda/train.csv",
"dev": _URL + "/mrda/dev.csv",
"test": _URL + "/mrda/test.csv",
},
citation=textwrap.dedent(
"""\
@techreport{shriberg2004icsi,
title={The ICSI meeting recorder dialog act (MRDA) corpus},
author={Shriberg, Elizabeth and Dhillon, Raj and Bhagat, Sonali and Ang, Jeremy and Carvey, Hannah},
year={2004},
institution={INTERNATIONAL COMPUTER SCIENCE INST BERKELEY CA}
}"""
),
url="https://www.aclweb.org/anthology/W04-2319",
),
SiliconeConfig(
name="oasis",
description=textwrap.dedent(
"""\
The Bt Oasis Corpus (Oasis) contains the transcripts of live calls made to the BT and
operator services. This corpus is rather small (15k utterances). There is no standard
train/dev/test split."""
),
text_features={
"Speaker": "Speaker",
"Utterance": "Utterance",
"Dialogue_Act": "Dialogue_Act",
},
label_classes=[
"accept",
"ackn",
"answ",
"answElab",
"appreciate",
"backch",
"bye",
"complete",
"confirm",
"correct",
"direct",
"directElab",
"echo",
"exclaim",
"expressOpinion",
"expressPossibility",
"expressRegret",
"expressWish",
"greet",
"hold",
"identifySelf",
"inform",
"informCont",
"informDisc",
"informIntent",
"init",
"negate",
"offer",
"pardon",
"raiseIssue",
"refer",
"refuse",
"reqDirect",
"reqInfo",
"reqModal",
"selfTalk",
"suggest",
"thank",
"informIntent-hold",
"correctSelf",
"expressRegret-inform",
"thank-identifySelf",
],
label_column="Dialogue_Act",
data_url={
"train": _URL + "/oasis/train.txt",
"dev": _URL + "/oasis/dev.txt",
"test": _URL + "/oasis/test.txt",
},
citation=textwrap.dedent(
"""\
@inproceedings{leech2003generic,
title={Generic speech act annotation for task-oriented dialogues},
author={Leech, Geoffrey and Weisser, Martin},
booktitle={Proceedings of the corpus linguistics 2003 conference},
volume={16},
pages={441--446},
year={2003},
organization={Lancaster: Lancaster University}
}"""
),
url="http://groups.inf.ed.ac.uk/oasis/",
),
SiliconeConfig(
name="sem",
description=textwrap.dedent(
"""\
The SEMAINE database comes from the Sustained Emotionally coloured Human-Machine Interaction
using Nonverbal Expression project. This dataset has been annotated on three sentiments
labels: positive, negative and neutral. It is built on Multimodal Wizard of Oz experiment
where participants held conversations with an operator who adopted various roles designed
to evoke emotional reactions. There is no official split on this dataset."""
),
text_features={
"Utterance": "Utterance",
"NbPairInSession": "NbPairInSession",
"Dialogue_ID": "Dialogue_ID",
"SpeechTurn": "SpeechTurn",
"Speaker": "Speaker",
"Sentiment": "Sentiment",
},
label_classes=["Negative", "Neutral", "Positive"],
label_column="Sentiment",
data_url={
"train": _URL + "/sem/train.csv",
"dev": _URL + "/sem/dev.csv",
"test": _URL + "/sem/test.csv",
},
citation=textwrap.dedent(
"""\
@article{mckeown2011semaine,
title={The semaine database: Annotated multimodal records of emotionally colored conversations
between a person and a limited agent},
author={McKeown, Gary and Valstar, Michel and Cowie, Roddy and Pantic, Maja and Schroder, Marc},
journal={IEEE transactions on affective computing},
volume={3},
number={1},
pages={5--17},
year={2011},
publisher={IEEE}
}"""
),
url="https://ieeexplore.ieee.org/document/5959155",
),
SiliconeConfig(
name="swda",
description=textwrap.dedent(
"""\
Switchboard Dialog Act Corpus (SwDA) is a telephone speech corpus consisting of two-sided
telephone conversations with provided topics. This dataset includes additional features
such as speaker id and topic information."""
),
text_features={
"Utterance": "Utterance",
"Dialogue_Act": "Dialogue_Act",
"From_Caller": "From_Caller",
"To_Caller": "To_Caller",
"Topic": "Topic",
"Dialogue_ID": "Dialogue_ID",
"Conv_ID": "Conv_ID",
},
label_classes=list(SWDA_DA_DESCRIPTION.keys()),
label_column="Dialogue_Act",
data_url={
"train": _URL + "/swda/train.csv",
"dev": _URL + "/swda/dev.csv",
"test": _URL + "/swda/test.csv",
},
citation=textwrap.dedent(
"""\
@article{stolcke2000dialogue,
title={Dialogue act modeling for automatic tagging and recognition of conversational speech},
author={Stolcke, Andreas and Ries, Klaus and Coccaro, Noah and Shriberg, Elizabeth and
Bates, Rebecca and Jurafsky, Daniel and Taylor, Paul and Martin, Rachel and Ess-Dykema,
Carol Van and Meteer, Marie},
journal={Computational linguistics},
volume={26},
number={3},
pages={339--373},
year={2000},
publisher={MIT Press}
}"""
),
url="https://web.stanford.edu/~jurafsky/ws97/",
),
]
def _info(self):
features = {text_feature: datasets.Value("string") for text_feature in self.config.text_features.keys()}
if self.config.label_classes:
features["Label"] = datasets.features.ClassLabel(names=self.config.label_classes)
features["Idx"] = datasets.Value("int32")
return datasets.DatasetInfo(
description=_SILICONE_DESCRIPTION,
features=datasets.Features(features),
homepage=self.config.url,
citation=self.config.citation + "\n" + _SILICONE_CITATION,
)
def _split_generators(self, dl_manager):
data_files = dl_manager.download(self.config.data_url)
splits = []
splits.append(
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"data_file": data_files["train"],
"split": "train",
},
)
)
splits.append(
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"data_file": data_files["dev"],
"split": "dev",
},
)
)
splits.append(
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"data_file": data_files["test"],
"split": "test",
},
)
)
return splits
def _generate_examples(self, data_file, split):
if self.config.name not in ("maptask", "iemocap", "oasis"):
df = pd.read_csv(data_file, delimiter=",", header=0, quotechar='"', dtype=str)[
self.config.text_features.keys()
]
if self.config.name == "iemocap":
df = pd.read_csv(
data_file,
delimiter=",",
header=0,
quotechar='"',
names=["Dialogue_ID", "Utterance_ID", "Utterance", "Emotion", "Valence", "Activation", "Dominance"],
dtype=str,
)[self.config.text_features.keys()]
if self.config.name in ("maptask", "oasis"):
df = pd.read_csv(data_file, delimiter="|", names=["Speaker", "Utterance", "Dialogue_Act"], dtype=str)[
self.config.text_features.keys()
]
rows = df.to_dict(orient="records")
for n, row in enumerate(rows):
example = row
example["Idx"] = n
if self.config.label_column in example:
label = example[self.config.label_column]
example["Label"] = label
yield example["Idx"], example
|