INQUIRE-Rerank / README.md
evendrow's picture
Update README.md
bd3bf64 verified
|
raw
history blame
2.6 kB
---
license: cc-by-nc-4.0
dataset_info:
features:
- name: image
dtype: image
- name: query
dtype: string
- name: relevant
dtype: int64
- name: clip_score
dtype: float64
- name: inat24_image_id
dtype: int64
- name: inat24_file_name
dtype: string
- name: supercategory
dtype: string
- name: category
dtype: string
- name: iconic_group
dtype: string
- name: inat24_category_id
dtype: int64
- name: inat24_category_name
dtype: string
- name: latitude
dtype: float64
- name: longitude
dtype: float64
- name: location_uncertainty
dtype: float64
- name: date
dtype: string
- name: license
dtype: string
- name: rights_holder
dtype: string
splits:
- name: train
num_bytes: 1633954421
num_examples: 16100
download_size: 1507625576
dataset_size: 1633954421
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
size_categories:
- 10K<n<100K
---
# INQUIRE-Rerank
**Please note that this is dataset is preliminary, and will be updated soon.**
<!-- ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/630b1e44cd26ad7f60d490e2/dQBEuQJz46CN5yM7Hz_pq.jpeg) -->
<!-- <img src="https://cdn-uploads.huggingface.co/production/uploads/630b1e44cd26ad7f60d490e2/CIFPqSwwkSSZo0zMoQOCr.jpeg" style="width:100%;max-width:1000px"/> -->
<!-- **INQUIRE: A Natural World Text-to-Image Retrieval Benchmark** -->
INQUIRE is a text-to-image retrieval benchmark designed to challenge multimodal models with expert-level queries about the natural world.
This dataset aims to emulate real world image retrieval and analysis problems faced by scientists working with large-scale image collections.
Therefore, we hope that INQUIRE will both encourage and track advancements in the real scientific utility of AI systems.
![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/630b1e44cd26ad7f60d490e2/CIFPqSwwkSSZo0zMoQOCr.jpeg)
**Dataset Details**
The **INQUIRE-Rerank** task fixes an initial ranking of 100 images per query, obtained using CLIP ViT-H-14 zero-shot retrieval on the entire 5 million image iNat24 dataset.
This fixed starting point makes reranking evaluation consistent, and saves time from running the initial retrieval yourself. If you're interested in full-dataset retrieval,
check out **INQUIRE-Fullrank**.
**Dataset Sources**
- Website: [https://inquire-benchmark.github.io/](https://inquire-benchmark.github.io/)
- Repository: [https://github.com/inquire-benchmark/INQUIRE](https://github.com/inquire-benchmark/INQUIRE)