Datasets:

Modalities:
Image
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
Dask
License:
image
imagewidth (px)
512
512
world_name
stringclasses
64 values
character_name
stringclasses
5 values
character_scale
float64
0.7
1.3
camera_yaw
int64
0
315
character_texture
stringclasses
4 values
Egypt
Ammonite
0.7
0
Default
Egypt
Ammonite
0.7
0
Sky
Egypt
Ammonite
0.7
0
Grass
Egypt
Ammonite
0.7
0
Asphalt
Egypt
Ammonite
0.7
45
Default
Egypt
Ammonite
0.7
45
Sky
Egypt
Ammonite
0.7
45
Grass
Egypt
Ammonite
0.7
45
Asphalt
Egypt
Ammonite
0.7
225
Default
Egypt
Ammonite
0.7
225
Sky
Egypt
Ammonite
0.7
225
Grass
Egypt
Ammonite
0.7
225
Asphalt
Egypt
Ammonite
0.7
315
Default
Egypt
Ammonite
0.7
315
Sky
Egypt
Ammonite
0.7
315
Grass
Egypt
Ammonite
0.7
315
Asphalt
Egypt
Ammonite
1
0
Default
Egypt
Ammonite
1
0
Sky
Egypt
Ammonite
1
0
Grass
Egypt
Ammonite
1
0
Asphalt
Egypt
Ammonite
1
45
Default
Egypt
Ammonite
1
45
Sky
Egypt
Ammonite
1
45
Grass
Egypt
Ammonite
1
45
Asphalt
Egypt
Ammonite
1
225
Default
Egypt
Ammonite
1
225
Sky
Egypt
Ammonite
1
225
Grass
Egypt
Ammonite
1
225
Asphalt
Egypt
Ammonite
1
315
Default
Egypt
Ammonite
1
315
Sky
Egypt
Ammonite
1
315
Grass
Egypt
Ammonite
1
315
Asphalt
Egypt
Ammonite
1.3
0
Default
Egypt
Ammonite
1.3
0
Sky
Egypt
Ammonite
1.3
0
Grass
Egypt
Ammonite
1.3
0
Asphalt
Egypt
Ammonite
1.3
45
Default
Egypt
Ammonite
1.3
45
Sky
Egypt
Ammonite
1.3
45
Grass
Egypt
Ammonite
1.3
45
Asphalt
Egypt
Ammonite
1.3
225
Default
Egypt
Ammonite
1.3
225
Sky
Egypt
Ammonite
1.3
225
Grass
Egypt
Ammonite
1.3
225
Asphalt
Egypt
Ammonite
1.3
315
Default
Egypt
Ammonite
1.3
315
Sky
Egypt
Ammonite
1.3
315
Grass
Egypt
Ammonite
1.3
315
Asphalt
Desert
Ammonite
0.7
0
Default
Desert
Ammonite
0.7
0
Sky
Desert
Ammonite
0.7
0
Grass
Desert
Ammonite
0.7
0
Asphalt
Desert
Ammonite
0.7
45
Default
Desert
Ammonite
0.7
45
Sky
Desert
Ammonite
0.7
45
Grass
Desert
Ammonite
0.7
45
Asphalt
Desert
Ammonite
0.7
225
Default
Desert
Ammonite
0.7
225
Sky
Desert
Ammonite
0.7
225
Grass
Desert
Ammonite
0.7
225
Asphalt
Desert
Ammonite
0.7
315
Default
Desert
Ammonite
0.7
315
Sky
Desert
Ammonite
0.7
315
Grass
Desert
Ammonite
0.7
315
Asphalt
Desert
Ammonite
1
0
Default
Desert
Ammonite
1
0
Sky
Desert
Ammonite
1
0
Grass
Desert
Ammonite
1
0
Asphalt
Desert
Ammonite
1
45
Default
Desert
Ammonite
1
45
Sky
Desert
Ammonite
1
45
Grass
Desert
Ammonite
1
45
Asphalt
Desert
Ammonite
1
225
Default
Desert
Ammonite
1
225
Sky
Desert
Ammonite
1
225
Grass
Desert
Ammonite
1
225
Asphalt
Desert
Ammonite
1
315
Default
Desert
Ammonite
1
315
Sky
Desert
Ammonite
1
315
Grass
Desert
Ammonite
1
315
Asphalt
Desert
Ammonite
1.3
0
Default
Desert
Ammonite
1.3
0
Sky
Desert
Ammonite
1.3
0
Grass
Desert
Ammonite
1.3
0
Asphalt
Desert
Ammonite
1.3
45
Default
Desert
Ammonite
1.3
45
Sky
Desert
Ammonite
1.3
45
Grass
Desert
Ammonite
1.3
45
Asphalt
Desert
Ammonite
1.3
225
Default
Desert
Ammonite
1.3
225
Sky
Desert
Ammonite
1.3
225
Grass
Desert
Ammonite
1.3
225
Asphalt
Desert
Ammonite
1.3
315
Default
Desert
Ammonite
1.3
315
Sky
Desert
Ammonite
1.3
315
Grass
Desert
Ammonite
1.3
315
Asphalt
AmusementPark
Ammonite
0.7
0
Default
AmusementPark
Ammonite
0.7
0
Sky
AmusementPark
Ammonite
0.7
0
Grass
AmusementPark
Ammonite
0.7
0
Asphalt

PUG Animals

The PUG: Animals dataset contains 215,040 pre-rendered images based on Unreal-Engine using 70 animal assets, 64 environments, 3 sizes, 4 textures, under 4 camera orientations. It was designed with the intent to create a dataset with variation factors available. Inspired by research on out-of-distribution generalization, PUG: Animals allows one to precisely control distribution shifts between training and testing which can provide better insight on how a deep neural network generalizes on held out variation factors.

LICENSE

The datasets are distributed under the CC-BY-NC, with the addenda that they should not be used to train Generative AI models.

Citing PUG

If you use one of the PUG datasets, please cite:

@misc{bordes2023pug,
      title={PUG: Photorealistic and Semantically Controllable Synthetic Data for Representation Learning}, 
      author={Florian Bordes and Shashank Shekhar and Mark Ibrahim and Diane Bouchacourt and Pascal Vincent and Ari S. Morcos},
      year={2023},
      eprint={2308.03977},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

To learn more about the PUG datasets:

Please visit the website and the github

Downloads last month
97